Untersuchungen zur sX13-abhängigen post-transkriptionellen Regulation und Identifikation bisher unbekannter Proteine von *Xanthomonas campestris* pv. *vesicatoria* mittels Proteogenomik

DISSERTATION

zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

der

Naturwissenschaftlichen Fakultät I-Biowissenschaften-

der Martin-Luther-Universität Halle-Wittenberg,

vorgelegt

von Frau Ulrike Abendroth

geboren am 01.02.1986 in Dessau

Gutachter:

1. Prof. Dr. U. Bonas

2. Prof. Dr. G. Sawers

3. Prof. Dr. A. Wilde

Verteidigung: 01.04.2016

Zusammenfassung

Zusammenfassung

Das Typ III-Sekretionssystem (T3SS) Gram-negativer pathogener Bakterien ist eine molekulare Nanomaschine, welche sogenannte Effektorproteine (T3E) direkt in das Wirtszellzytoplasma transloziert. Dort manipulieren T3E Wirtszellprozesse zum Vorteil für das Bakterium. Xanthomonas campestris pv. vesicatoria (Xcv) ist der Erreger der bakteriellen Fleckenkrankheit auf Paprika und Tomate und transloziert > 30 T3E. Die regulatorischen Details der bakteriellen Anpassung an die Umwelt, z. B. während der Infektion, sind noch unbekannt. Die Entdeckung von kleinen nichtkodierenden RNAs (sRNAs) erweiterte das regulatorische Netzwerk, welches Genexpression und bakterielle Virulenz steuert. sRNAs sind post-transkriptionelle Regulatoren, die die Stabilität und/oder Translation ihrer Ziel-mRNAs beeinflussen. In Vorarbeiten wurden 24 sRNAs (sX1-sX15 und asX1asX7) mit potentiell regulatorischer Funktion in Xcv identifiziert. Es wurde gezeigt, dass die Expression einiger Xcv-sRNAs unter Infektionsbedingungen induziert wird, beispielsweise sX5, sX8 und sX12. Inokulationsexperimente mit einer sX13-Mutante führten zu verminderten Symptomen in suszeptiblen Paprikapflanzen und zu reduzierten Resistenzreaktionen in resistenten Paprikapflanzen, welchen den T3E AvrBs1 erkennen. Diese und weitere Ergebnisse führten zu der Theorie, dass sX13 einen generellen Einfluss auf die Virulenz von Xcv hat. In dieser Arbeit führte die Inokulation der sX13-Mutante sowie des Wildtyps in resistente Paprikapflanzen, welche die T3E AvrBs2 bzw. XopH erkennen, zu vergleichbaren Resistenzreaktionen. Somit scheint sX13 keinen generellen Einfluss auf die Virulenz von Xcv zu haben. Um die biologische Funktion von sX13 näher zu analysieren, wurde eine vergleichende Proteomanalyse durchgeführt. Die Akkumulation von 142 Proteinen war sX13abhängig reguliert, was auf ein wesentlich größeres sX13-Regulon hindeutet, als bisher vermutet. Die Funktionen regulierter Proteine waren sehr divers (z. B. Adaptation an verschiedene Umweltbedingungen, Typ IV-Pilusproteine sowie diverse Stoffwechselwege). Ein weiteres Ziel dieser Arbeit war die Analyse der molekularen Funktionsweise von sX13. Die markantesten Merkmale der experimentell partiell bestätigten sX13 Sekundärstruktur sind drei C-reichen Loops, welche wahrscheinlich als Interaktionsstellen mit Ziel-mRNAs dienen. Die Analyse mutierter sX13-Derivate lässt vermuten, dass vornehmlich Loop 2 funktionell relevant und sX13 länger als bisher annotiert ist. Es konnte bisher keine Interaktion zwischen sX13 und möglichen Ziel-mRNAs oder dem RNA-Bindeprotein (RBP) CsrA detektiert werden und sX13 wirkt scheinbar unabhängig von dem RBP Hfq. Interessanterweise kann die sX13-Mutante durch ektopische Expression von sX5 komplementiert werden, welche ebenfalls C-reiche Sequenzmotive hat. Dies lässt vermuten, dass die C-reichen Sequenzmotive eine regulatorische Funktion haben. Ein weiteres Ziel dieser Arbeit war die Reannotation des Xcv-Genoms. Unter Verwendung eines proteogenomischen Experiments wurden 127.048 Peptide 2.555 proteinkodierenden Genen zugeordnet. Die Abdeckung des Genoms war 53% und führte zur Reannotation von 45 proteinkodierenden Genen und der Identifikation von 27 neuen Genen, darunter einige mögliche neue T3E.

Summary

The Typ III secretion system (T3SS) is a molecular nano-machinery enabling most Gram-negative pathogenic bacteria to secrete virulence factors, so called effectors (T3E), directly into the host-cell cytoplasm. There, T3E manipulate host-cellular processes for the benefit of the pathogen. Xanthomonas campestris pv. vesciatoria (Xcv), the causal agent of the bacterial spot disease on pepper and tomato, employs a set of > 30 T3E. Fine-tuned mechanisms of bacterial adaptation, e. g. during infection, remains still unclear. The discovery of small non-coding RNAs (sRNAs) revealed a regulatory layer, which also influences bacterial virulence. sRNAs are post-transcriptional regulators, regulating mRNA-stability and/or translation by direct base-pairing. A previous study identified 24 sRNAs (sX1-sX15 and asX1-asX7) with potential regulatory functions in Xcv. Expression of some sRNAs was shown to be induced under infection conditions e. g. sX5, sX8 and sX12. Inoculation of a sX13-deficient strain led to decreased disease symptoms in susceptible pepper plants and to reduced resistance reactions in resistant pepper plants recognizing the T3E AvrBs1. These results, among others, led to the theory that sX13 is a general virulence regulating factor. In the present study, inoculation of a sX13-deficient strain into resistant pepper plants (recognizing the T3E AvrBs2 or XopH) resulted in identical resistance reactions compared to wild type. Thus, sX13 does not influence virulence per se and might have another biological function. To gain further insights into the biological function of sX13, a comparative proteomic approach was used. Accumulation of 142 proteins was regulated by sX13, suggesting a sX13-regulon significantly larger than previously assumed. The protein accumulation was positively and negatively influenced by sX13 and regulated proteins had very diverse functions, e. g. adaptation to various environmental conditions, type IVpilus-synthesis and -regulation as well as participation in various metabolic pathways. Another aim of this study was to analyze the molecular function of sX13. The most outstanding features of the sX13 structure are three C-rich loops. It seems quite likely that the C-rich loops directly bind to G-rich motifs of target-mRNAs. Parts of the predicted secondary structure were confirmed experimentally. Functional analysis of sX13-derivatives revealed a functional important role of loop 2 and showed that sX13 might be longer than previously annotated. However, no interaction of sX13 with putative target-mRNAs or the RNA-binding protein CsrA could be detected and sX13 apparently acts independently of the RNA-binding protein Hfq. Interestingly, overexpression of the sRNA sX5, that also has C-rich loops, partially complemented deletion of sX13. This further supports an important regulatory role of the C-rich loop-structure. In the second part, a proteogenomic approach for the refinement of the Xcv-genome was performed, 127,048 peptides were mapped onto 2,555 proteincoding genes with 53% coverage, leading to re-annotation of 45 coding sequences and identification of 27 novel genes. Among these, potential new type III effectors were identified.

Publizierte Teile dieser Arbeit:

Schmidtke C, <u>Abendroth U</u>, Brock J, Serrania J, Becker A, Bonas U. Small RNA sX13: A multifaceted regulator of virulence in the plant pathogen *Xanthomonas*. *PLoS Path* 2013; 9:e1003626.

<u>Abendroth U</u>, Schmidtke C, Bonas U. Small non-coding RNAs in plant-pathogenic *Xanthomonas* spp. *RNA Biol.* 2014;11(5):457-63. Epub 2014 Feb 27.

Inhaltsverzeichnis

Zusamm	usammenfassung		
Summar	^r y	II	
Inhaltsv	erzeichnis	IV	
Abbildu	ngsverzeichnis	VII	
Tabeller	iverzeichnis	IX	
Abkürzı	ıngsverzeichnis	X	
1.	Einleitung	1	
1.1.	Gram-negative phytopathogene Bakterien	1	
1.2.	.2. Der Modellorganismus Xanthomonas campestris pv. vesicatoria und dessen essentielle		
	Pathogenitätsfaktoren	2	
1.3.	Die post-transkriptionelle Regulation der Genexpression	3	
1.3.1.	Trans-kodierte sRNAs	3	
1.1.1.	sRNAs als Modulatoren der Proteinaktivität	4	
1.2.	Die Rolle von RNA-Bindeproteinen bei der post-transkriptionellen Regulation	5	
1.2.1.	Das SM-Protein Hfq als Mediator der sRNA-mRNA Interaktion	6	
1.2.2.	Carbon storage regulator A – CsrA als globaler Regulator der Genexpression	6	
1.3.	Stand der sRNA-Forschung in Xanthomonas spp.	7	
1.4.	Die Identifikation und Validierung von Ziel-mRNAs	8	
1.5.	Herausforderungen in der Postgenomik	9	
1.6.	Zielstellung	10	
2.	Material und Methoden	11	
2.1.	Material	11	
2.1.1.	Nährmedien, Anzuchtbedingungen und Antibiotika	11	
2.1.2.	Bakterienstämme, Plasmide und Oligonukleotide	12	
2.1.3.	Pflanzenmaterial	16	
2.2.	Methoden	16	
2.2.1.	Mikrobiologische Methoden	16	
2.2.1.1.	Generierung von Xcv-Deletionsmutanten	16	
2.2.1.2.	Xcv-Infektionsversuche	17	
2.2.1.3.	Messung der GFP-Fluoreszenz von GFP-Fusionsproteinen in Xcv	18	
2.2.1.4.	Motilitäts- und Biofilmexperimente	18	
2.2.2.	Molekularbiologische und biochemische Methoden	18	
2.2.2.1.	Generierung von sRNA-Expressionskonstrukten und GFP-Reporterkonstrukten	18	
2.2.2.2.	Generierung von Templates für in vitro-Transkription	19	
2.2.2.3.	In vitro-Transkription und 5 ^c -radioaktiv-Markierung von RNAs	19	
2.2.2.4. IV	RNA-Isolierung aus Xcv und nach in vitro-Transkription	19	

2.2.2.5.	cDNA-Synthese und quantitative "Realtime"-PCR (qRT-PCR)	20			
2.2.2.6.	Northern-Blot-Analysen				
2.2.2.7.	In vitro-RNA-RNA-Interaktionsstudien mittels Electromobility shift assay (EMSA)				
2.2.2.8.	In vitro-sRNA-Strukturkartierung				
2.2.2.9.	Die Synthese und Reinigung von PP7::MBP mittels His ₆ -Epitop	21			
2.2.2.10.	SDS-PAGE/Tricine-PAGE und Western-Blot	21			
2.2.2.11.	Affinitätschromatographie mittels in vitro- oder in vivo-transkribierter Epitop-markierter				
	sX13-Derivate	22			
2.2.2.12.	Ribosomenprofil mittels Saccharosedichtegradientenzentrifugation	22			
2.2.2.13.	. Filter-Bindungsexperimente mit CsrA				
2.2.2.14.	Vergleichende Proteomanalyse	23			
2.2.3.	Bioinformatische Methoden und Programme	24			
2.2.3.1.	Verwendete bioinformatische Programme	24			
2.2.3.2.	R-basierte Datenanalysen	24			
3.	Ergebnisse	26			
3.1.	Die molekulare Charakterisierung von sX13	26			
3.1.1.	Ist <i>sX13</i> möglicherweise länger als bisher annotiert?	26			
3.1.2.	Verifizierung der vorhergesagten sX13-Sekundärstruktur	28			
3.1.3.	Die Identifizierung funktioneller Bereiche in sX13	29			
3.1.3.1.	sX5 – eine weitere sRNA mit C-reichen Sequenzmotiven	31			
3.2.	Der Einfluss von sX13 auf das Proteom von Xcv	35			
3.2. 3.2.1.	Der Einfluss von sX13 auf das Proteom von <i>Xcv</i> sX13 beeinflusst die Akkumulation zahlreicher Proteine.	35 36			
3.2. 3.2.1. 3.2.1.1.	Der Einfluss von sX13 auf das Proteom von <i>Xcv</i> sX13 beeinflusst die Akkumulation zahlreicher Proteine. Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-Proben	35 36 37			
3.2. 3.2.1. 3.2.1.1. 3.2.1.2.	Der Einfluss von sX13 auf das Proteom von <i>Xcv</i> sX13 beeinflusst die Akkumulation zahlreicher Proteine. Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-Proben Die sX13-abhängige Akkumulation zahlreicher Proteine in MA-Proben	35 36 37 40			
3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3.	Der Einfluss von sX13 auf das Proteom von <i>Xcv</i> sX13 beeinflusst die Akkumulation zahlreicher Proteine. Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-Proben Die sX13-abhängige Akkumulation zahlreicher Proteine in MA-Proben Vergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-Proben	35 36 37 40 42			
3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2.	Der Einfluss von sX13 auf das Proteom von <i>Xcv</i> sX13 beeinflusst die Akkumulation zahlreicher Proteine. Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-Proben Die sX13-abhängige Akkumulation zahlreicher Proteine in MA-Proben Vergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-Proben Verifizierung von Teilen der Proteomanalyse	35 36 37 40 42 44			
3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3.	Der Einfluss von sX13 auf das Proteom von <i>Xcv</i> sX13 beeinflusst die Akkumulation zahlreicher Proteine. Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-Proben Die sX13-abhängige Akkumulation zahlreicher Proteine in MA-Proben Vergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-Proben Verifizierung von Teilen der Proteomanalyse Vergleich der sX13-Transkriptstudie mit der sX13-Proteomanalytik	35 36 37 40 42 44 47			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 	Der Einfluss von sX13 auf das Proteom von Xcv sX13 beeinflusst die Akkumulation zahlreicher Proteine. Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-Proben Die sX13-abhängige Akkumulation zahlreicher Proteine in MA-Proben Vergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-Proben Verifizierung von Teilen der Proteomanalyse Vergleich der sX13-Transkriptstudie mit der sX13-Proteomanalytik Ist sX13 ein genereller Virulenzfaktor?	 35 36 37 40 42 44 47 49 			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 3.4. 	Der Einfluss von sX13 auf das Proteom von XcvsX13 beeinflusst die Akkumulation zahlreicher Proteine.Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-ProbenDie sX13-abhängige Akkumulation zahlreicher Proteine in MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVerifizierung von Teilen der ProteomanalyseVergleich der sX13-Transkriptstudie mit der sX13-ProteomanalytikIst sX13 ein genereller Virulenzfaktor?Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und Twitching	 35 36 37 40 42 44 47 49 			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 3.4. 	Der Einfluss von sX13 auf das Proteom von XcvsX13 beeinflusst die Akkumulation zahlreicher Proteine.Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-ProbenDie sX13-abhängige Akkumulation zahlreicher Proteine in MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVerifizierung von Teilen der ProteomanalyseVergleich der sX13-Transkriptstudie mit der sX13-ProteomanalytikIst sX13 ein genereller Virulenzfaktor?Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und Twitching motility	 35 36 37 40 42 44 47 49 51 			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 3.4. 3.4.1. 	Der Einfluss von sX13 auf das Proteom von XcvsX13 beeinflusst die Akkumulation zahlreicher Proteine.Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-ProbenDie sX13-abhängige Akkumulation zahlreicher Proteine in MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVerifizierung von Teilen der ProteomanalyseVergleich der sX13-Transkriptstudie mit der sX13-ProteomanalytikIst sX13 ein genereller Virulenzfaktor?Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und Twitching motilitysX13 beeinflusst Twitching motility auf verschiedenen Festmedien.	 35 36 37 40 42 44 47 49 51 			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 3.4. 3.4.1. 3.4.2. 	Der Einfluss von sX13 auf das Proteom von XcvsX13 beeinflusst die Akkumulation zahlreicher Proteine.Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-ProbenDie sX13-abhängige Akkumulation zahlreicher Proteine in MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVergleich der sX13-bien der ProteomanalyseVergleich der sX13-Transkriptstudie mit der sX13-ProteomanalytikIst sX13 ein genereller Virulenzfaktor?Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und Twitching motilitysX13 beeinflusst Twitching motility auf verschiedenen Festmedien.Hat sX13 einen Einfluss auf die Biofilmbildung?	 35 36 37 40 42 44 47 49 51 51 52 			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 3.4. 3.4.1. 3.4.2. 3.5. 	Der Einfluss von sX13 auf das Proteom von XcvsX13 beeinflusst die Akkumulation zahlreicher Proteine.Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-ProbenDie sX13-abhängige Akkumulation zahlreicher Proteine in MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVergleich der sX13-Transkriptstudie mit der sX13-ProteomanalytikIst sX13 ein genereller Virulenzfaktor?Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und TwitchingmotilitysX13 beeinflusst Twitching motility auf verschiedenen Festmedien.Hat sX13 einen Einfluss auf die Biofilmbildung?Interagiert sX13 mit RNAs und Proteinen?	 35 36 37 40 42 44 47 49 51 51 52 53 			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 3.4. 3.4.1. 3.4.2. 3.5. 3.5.1. 	Der Einfluss von sX13 auf das Proteom von XcvsX13 beeinflusst die Akkumulation zahlreicher Proteine.Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-ProbenDie sX13-abhängige Akkumulation zahlreicher Proteine in MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVergleich der sX13-ranskriptstudie mit der sX13-ProteomanalytikIst sX13 ein genereller Virulenzfaktor?Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und Twitching motilitysX13 beeinflusst Twitching motility auf verschiedenen Festmedien.Hat sX13 einen Einfluss auf die Biofilmbildung?Interagiert sX13 mit RNAs und Proteinen?Interaktionsstudien mit den bekannten RNA-Bindeproteinen CsrA und Hfq	 35 36 37 40 42 44 47 49 51 51 52 53 53 			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 3.4. 3.4.1. 3.4.2. 3.5. 3.5.1. 3.5.2. 	Der Einfluss von sX13 auf das Proteom von XcvsX13 beeinflusst die Akkumulation zahlreicher Proteine.Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-ProbenDie sX13-abhängige Akkumulation zahlreicher Proteine in MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVerifizierung von Teilen der ProteomanalyseVergleich der sX13-Transkriptstudie mit der sX13-ProteomanalytikEst sX13 ein genereller Virulenzfaktor?Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und Twitching motilitysX13 beeinflusst Twitching motility auf verschiedenen Festmedien.Hat sX13 einen Einfluss auf die Biofilmbildung?Interagiert sX13 mit RNAs und Proteinen?Interaktionsstudien mit den bekannten RNA-Bindeproteinen CsrA und HfqInteragiert sX13 direkt mit ausgewählten Ziel-mRNAs?	 35 36 37 40 42 44 47 49 51 51 52 53 53 55 			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 3.4. 3.4.1. 3.4.2. 3.5.1. 3.5.1. 3.5.2. 3.5.3. 	Der Einfluss von sX13 auf das Proteom von XcvsX13 beeinflusst die Akkumulation zahlreicher Proteine.Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-ProbenDie sX13-abhängige Akkumulation zahlreicher Proteine in MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVergleich der sX13-ranskriptstudie mit der sX13-ProteomanalytikEt sX13 ein genereller Virulenzfaktor?Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und Twitching motilitysX13 beeinflusst Twitching motility auf verschiedenen Festmedien.Hat sX13 einen Einfluss auf die Biofilmbildung?Interagiert sX13 mit RNAs und Proteinen?Interaktionsstudien mit den bekannten RNA-Bindeproteinen CsrA und HfqInteragiert sX13 direkt mit ausgewählten Ziel-mRNAs?Versuch der Identifizerung von sX13-Interaktoren mittels Affinitätschromatographie	 35 36 37 40 42 44 47 49 51 51 52 53 55 56 			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 3.4. 3.4.1. 3.4.2. 3.5.1. 3.5.1. 3.5.3. 3.5.3.1. 	Der Einfluss von sX13 auf das Proteom von XcvsX13 beeinflusst die Akkumulation zahlreicher Proteine.Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-ProbenDie sX13-abhängige Akkumulation zahlreicher Proteine in MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVergleich der sX13-Transkriptstudie mit der sX13-ProteomanalytikStt sX13 ein genereller Virulenzfaktor?Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und Twitching motilitysX13 beeinflusst Twitching motility auf verschiedenen Festmedien.Hat sX13 einen Einfluss auf die Biofilmbildung?Interagiert sX13 mit RNAs und Proteinen?Interagiert sX13 direkt mit ausgewählten Ziel-mRNAs?Versuch der Identifizierung von sX13-Interaktoren mittels AffinitätschromatographieAffinitätschromatographie mittels in vitro-transkribiertem sX13-Derivat	 35 36 37 40 42 44 47 49 51 51 52 53 53 55 56 57 			
 3.2. 3.2.1. 3.2.1.1. 3.2.1.2. 3.2.1.3. 3.2.2. 3.2.3. 3.3. 3.4. 3.4.1. 3.4.2. 3.5.1. 3.5.2. 3.5.3.1. 3.5.3.2. 	Der Einfluss von sX13 auf das Proteom von XcvsX13 beeinflusst die Akkumulation zahlreicher Proteine.Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-ProbenDie sX13-abhängige Akkumulation zahlreicher Proteine in MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-ProbenVergleich der sX13-ranskriptstudie mit der sX13-ProteomanalytikSt sX13 ein genereller Virulenzfaktor?Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und Twitching motilitysX13 beeinflusst Twitching motility auf verschiedenen Festmedien.Hat sX13 einen Einfluss auf die Biofilmbildung?Interagiert sX13 mit RNAs und Proteinen?Interagiert sX13 direkt mit ausgewählten Ziel-mRNAs?Versuch der Identifizierung von sX13-Interaktoren mittels Affinitätschromatographie Affinitätschromatographie mittels verschiedener in vivo-synthetisierter sX13-Derivate	 35 36 37 40 42 44 47 49 51 51 52 53 53 55 56 57 58 			

V

3.6.	Reannotation des Xcv-Genoms mittels Proteogenomik	61
3.6.1.	Die Erstellung der Datenbank für die massenspektrometrisch gestützte Identifizierung	
	neuer Proteine und Mapping der Peptide auf das Genom von Xcv	61
3.6.2.	Die Identifizierung neuer proteinkodierender Gene in Xcv	64
3.6.3.	Die Korrektur der Annotation bekannter proteinkodierender Gene	65
4.	Diskussion und Ausblick	69
4.1.	Die sX13-Mutation hat einen limitierten Einfluss auf die Virulenz von Xcv	69
4.1.1.	Die C-reichen Motive sind wichtig für die sX13-Funktion	70
4.1.2.	Die sRNAs sX5 und sX13 haben teilweise redundante Funktionen	73
4.2.	Der vielseitige Einfluss von sX13 auf die Physiologie von Xcv	74
4.2.1.	sX13 beeinflusst die Typ IV-Pilus-vermittelte Fortbewegung auf Festmedien	75
4.2.2.	sX13 beeinflusst Signalweiterleitungsprozesse und Zwei-Komponentensysteme in Xcv	77
4.2.3.	sX13 beeinflusst diverse Stoffwechselwege	79
4.2.4.	sX13-abhängig negativ regulierte Gene sind auf Transkript- und Proteinebene beeinflusst	80
4.3.	sX13 interagiert nicht mit bekannten RNA-Bindeproteinen	80
4.3.1.	Die sX13-abhängige Regulation ist Hfq-unabhängig	81
4.3.2.	sX13 und sX5 sind nicht das CsrB-Homolog in Xcv	82
4.3.3.	Gibt es andere RNA-Bindeproteine in <i>Xcv</i> ?	83
4.4.	Proteogenomische Analysen zur Reannotation des Xcv-Genoms	83
4.4.1.	51 Proteine in Xcv haben einen falsch annotierten Translationsstart.	84
4.4.2.	Die Entdeckung 29 neuer proteinkodierender Gene in Xcv	85
4.4.3.	Die Identifikation potentieller neuer Typ III-Effektorproteine	86
4.4.4.	Chancen und Nutzen der proteogenomischen Analyse	87
5.	Referenzen	88
6.	Anhang	98
Erklärı	ing	XII
Danksa	gung	XIII
Publika	tionen	XIV
Lebens	lauf	XV

Abbildungsverzeichnis

Abbildung 1: Vertreter der Xanthomonadaceae befallen verschiedene Pflanzen.	1
Abbildung 2: sRNA-abhängige Regulationsmechanismen	5
Abbildung 3: Sequenz- und Strukturvergleich von sX13-Familienmitgliedern aus der Gruppe der	
Xanthomonadaceae	8
Abbildung 4: Schematische Darstellung des sX13-Lokus in Xcv	26
Abbildung 5: Komplementationsanalysen der sX13-Deletionsmutante mit ektopisch exprimierten sX13-	
Derivaten	28
Abbildung 6: Schema der sX13-Sekundärstruktur und eingeführten Mutationen	29
Abbildung 7: Komplementationsanalysen der sX13-Deletionsmutante durch verschiedene sX13-Loop-	
Derivate	30
Abbildung 8: Sequenz- und Strukturvergleich von sX5-Familienmitgliedern aus der Gruppe der	
Xanthomonadaceae	31
Abbildung 9: Komplementationsanalysen der sX13-Deletionsmutante mit ektopischer Expression von sX5	33
Abbildung 10: Die Doppeldeletion von sX5 und sX13 hat einen Einfluss auf die Virulenz von Xcv	34
Abbildung 11: Versuchsaufbau der vergleichenden Proteomanalyse zwischen Xcv 85-10 und 85-10∆sX13	36
Abbildung 12: Heatmap der in NYG in 85-10 und 85-10∆ <i>s</i> X13 quantifizierten Proteine	39
Abbildung 13: Heatmap der Überschneidungen zwischen der Proteomanalyse von Stämmen, angezogen	
in NYG und MA	43
Abbildung 14: sX13 beeinflusst die Akkumulation von Komponenten des T3SS	44
Abbildung 15: Test von sX13-abhängig regulierten Proteinen mittels GFP-Reportersystem	46
Abbildung 16: Der Einfluss von sX13 auf ausgewählte Transkripte	47
Abbildung 17: Überblick über die sX13-abhängig negativ und positiv regulierten Proteine und	
Transkripte	48
Abbildung 18: 4G-Motiv-Verteilung in Genen sX13-abhängig regulierter Proteine	49
Abbildung 19: sX13 ist kein genereller Virulenzregulator in Xcv.	50
Abbildung 20: sX13 beeinflusst Koloniewachstum und -morphologie von Xcv.	52
Abbildung 21: sX13 hat keinen Einfluss auf die Biofilmbildung und Adhäsion an Glas	53
Abbildung 22: sX13 interagiert im Filter-Bindungsexperiment nicht mit CsrA	54
Abbildung 23: EMSA-Analysen von sX13 mit XCV3927 und hfq	55
Abbildung 24: Die Sekundärstruktur verschiedener sX13-Derivate mit PP7-Epitopmarkierung	56
Abbildung 25: Affinitätschromatographie mit in vitro-transkribierter sX13::PP7-RNA	57
Abbildung 26: Komplementation der sX13-Mutante mit verschiedenen Epitop-markierten sX13-Derivaten	59
Abbildung 27: sX13 ist in ribosomalen Fraktionen nachweisbar	60
Abbildung 28: Schematische Darstellung der Generierung der 6-Leserahmen-Datenbank am Beispiel des	
Xcv-Chromosoms	62
Abbildung 29: Schematische Darstellung der Kartierung der Peptide auf das Genom von Xcv	63
Abbildung 30: Übersicht der zum Xcv 85-10-Genom zugeordneten Proteine	64
Abbildung 31: Schematische Darstellung der zum Chromosom zugeordneten Peptiddaten	68
Abbildung 32: Modell der sX13-abhängigen Regulation der Virulenz von Xcv und anderer Prozesse	70

Abbildungsverzeichnis

Abbildung 33: sX13-abhängig regulierte Typ IV-Piluskomponenten und deren regulatorisches Netzwerk	77
Abbildung 34: Sequenz- und Strukturvergleich von sX13long-Familienmitgliedern aus der Gruppe der	
Xanthomonadaceae	98
Abbildung 35: Enzymatische Strukturkartierung von sX13 (115 Nt)	99
Abbildung 36: Analyse der Verlässlichkeit der Proteomanalytik der NYG-Proben	100
Abbildung 37: Analyse der Verlässlichkeit der Proteomanalytik der MA-Proben	101
Abbildung 38: Heatmap der in MA in 85-10 und 85-10 <i>ΔsX13</i> quantifizierten Proteine	102
Abbildung 39: Voronto-Analyse der quantifizierten Proteine der NYG-Proben	103
Abbildung 40: Voronto-Analyse der quantifizierten Proteine der MA-Proben	104
Abbildung 41: Überschneidung regulierter Proteine aus Stämmen, welche in NYG bzw. MA angezogen	
wurden	105
Abbildung 42: In vivo-Affinitätschromatographie mit modPP7::sX13	136

Tabellenverzeichnis

Tabelle 1: Verwendete Medien	11
Tabelle 2: Verwendete Bakterienstämme	12
Tabelle 3: Verwendete Plasmide	12
Tabelle 4: Verwendet Oligonukleotide	14
Tabelle 5: Verwendete Antikörper	22
Tabelle 6: Verwendete Programme	24
Tabelle 7: Verwendete R-Funktionen	24
Tabelle 8: Ergebnisse der vergleichenden Proteomanalytik von 85-10 und 85-10∆sX13	37
Tabelle 9: Übersicht der am stärksten sX13-abhängig negativ und positv regulierten Proteine in NYG-	
Proben	38
Tabelle 10: Übersicht der am stärksten sX13-abhängig negativ und positv regulierten Proteine in MA-	
Proben	41
Tabelle 11: Zusammenfassung der für die Massenspektrometrie genutzten Stämme und Bedingungen	62
Tabelle 12: Identifizierung von neuen Proteinen und T3E-Kandidaten	65
Tabelle 13: Proteine mit aktualisierter Annotation	67
Tabelle 14: Gegenüberstellung von sX13 und sX5	74
Tabelle 15: R-basierte Korrelationsanalyse der Proteomanalytik der NYG-Proben	100
Tabelle 16: R-basierte Korrelationsanalyse der Proteomanalytik der MA-Proben	101
Tabelle 17: Quantifizierte Proteine in $85-10\Delta sX13$ und $85-10$ in NYG	106
Tabelle 18: Quantifizierte Proteine in 85-10 <i>ΔsX13</i> und 85-10 in MA pH 7	120
Tabelle 19: Neu identifizierte Proteine - Zusatzinformationen	137
Tabelle 20: Korrigierte Proteine - Zusatzinformationen	143

Abkürzungsverzeichnis

Amp	Ampicillin
AS	Aminosäure
ATP	Adenosintriphosphat
Avr	Avirulenz
BLAST	Basic Local Alignment Search Tool
Вр	Basenpaar
BSA	Bovine serum albumin
cDNA	Complementary DNA
CDS	Coding sequence
cpm	Counts per minute
Csr	Carbon storage regulator
DMSO	Dimethylsulfoxid
DNA	Desoxyribonucleic acid
dpi	days post incoluation
DTT	Dithiothreitol
ECW	Early Cal Wonder, Paprikakultivar
EMSA	Electrophoretic mobility shift assay
Fur	Ferric uptake regulator
gfp	Green fluorescent protein
Gm	Gentamycin
GO	Gene Ontology
Hfq	Host factor required for phage $Q\beta$ RNA replication
hpi	Hours post inoculation
HR	Hypersensitive response
hrp	Hypersensitive response and pathogenicity
IgG	Immunglobulin G
IPTG	Isopropyl-β-D-thiogalactopyranosid
KBE	Koloniebildende Einheiten
Kbp	Kilobasen
kDa	Kilodalton
Km	Kanamycin
KS	Konsensussequenz
LB	Lysogeny Broth
MA	Minimal Medium A
MA ⁺	Minimal Medium A mit N ¹³ -Stickstoffquellen
MA-Proben	Proteinproben von Stämmen, welche in MA angezogen wurden
MBP	Maltosebindeprotein
Mbp	Megabasen
MM	Moneymaker, Tomatenkultivar
mRNA	Messenger ribonucleic acid
MS	Massenspektrometer; massenspektrometrisch
MT	Mutante
n.s.	Nicht signifikant
nat	Nativer Promotor
ncRNA	Non-coding ribonucleic acid
Nt	Nukleotide
NYG	Nutrient-Yeast-Glycero
NYG-Proben	Proteinproben von Stämmen, welche in NYG angezogen wurden
OD	Optische Dichte

ORF	Open reading frame
PAGE	Polyacrylamid-Gelelektrophorese
PCI	Phenol/Chloroform/Isoamylalkohol
PCR	Polymerase chain reaction
PIP	Plant inducible promoter
PMSF	Phenylmethylsulfonylfluorid
Ps	Pseudoxanthomonas spadix
pv.	Pathovar
qRT-PCR	Quantitative "Realtime" PCR
RBP	RNA-binding protein
RBS	Ribosome binding site
Rif	Rifampicin
RNA	Ribonucleic acid
RNA-Seq	RNA-Sequenzierung
Rpf	Regulation of pathogenicity factors
rpm	Rounds per minute
rRNA	Ribosomal ribonucleic acid
Rsm	Regulator secondary metabolites
SD	Shine-Dalgarno
SDS	Sodiumdodecylsulfat
Sm, Smal	Stenotrophomonas maltophilia
Spec	Spectinomycin
sRNA	Small ribonucleic acid
STO	Stopfragment-Identitätsnummer
sX	Xcv sRNA
T1SS	Typ I-Sekretionssystem
T3E	Typ III-Effektor
T3SS	Typ III-Sekretionssystem
TBE	Tris Borat EDTA
TE	Tris EDTA
tRNA	Transfer ribonucleic acid
TSS	Transcritpion start site
UE	Untereinheit
UTR	Untranslated region
WT	Wildtyp
Xa	Xanthomonas albilineans
Xam	Xanthomonas axonopodis pv. manihotis
Xcc	Xanthomonas campestris pv. campestris
Xcm	Xanthomonas campestris pv. musacearum
Xcv	Xanthomonas campestris pv. vesicatoria
Xeu	Xanthomonas euvesicatoria
Xfa	Xanthomonas fuscans subsp. aurantifolii
Xg	Xanthomonas gardneri
Xoc	Xanthomonas oryzae pv. oryzicola
Xoo	Xanthomonas oryzae pv. oryzae
Хор	Xanthomonas outer protein
Хр	Xanthomonas perforans
Xyf	Xylella fastidiosa
X-β-Gal	5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid

1.1. Gram-negative phytopathogene Bakterien

Bakteriell verursachte Krankheiten von Nutzpflanzen führen jährlich zu Ernteausfällen. Zu den Gramnegativen phytopathogenen Bakterien gehören Vertreter verschiedener Gattungen, welche diverse Krankheiten verursachen: Agrobacterium (Gallen; Pitzschke und Hirt, 2010), Pectobacterium (Weichfäulen; Pérombelon, 2002), Pseudomonas (Blattflecken und Bleiche; Morris et al., 2013; Vleeshouwers und Oliver, 2014), Ralstonia (Welke; Genin, 2010) und Xanthomonas (Blattflecken und Bleiche; Mansfield et al., 2012). Diese Bakterien sind vornehmlich in gemäßigten bis feuchtwarmen Gebieten verbreitet (Mansfield et al., 2012). Bakterien der Gattungen Xanthomonas und Pseudomonas sind hinsichtlich ihres Wirtsspektrums in Pathovare (pv.) unterteilt. In der Gattung Xanthomonas gibt es Vertreter, welche sich im Verlauf der Infektion lokal im Apoplasten vermehren, während sich andere systemisch ausbreiten (White und Yang, 2009). Ökonomisch bedeutende Vertreter der Xanthomonas spp. sind beispielsweise die Reispathogene X. oryzae pv. oryzae (Xoo) und X. oryzae pv. oryzicola (Xoc), der Erreger der bakteriellen Fleckenkrankheit auf Paprika und Tomate X. campestris pv. vesicatoria (Xcv), der Bananen-Welkeerreger X. campestris pv. musacearum (Xcm), X. axonopodis pv. manihotis (Xam), der Erreger des Bakterienbrandes auf Maniok und X. campestris pv. campestris (Xcc), der Erreger der Adernschwärze auf Kreuzblütlern (Hayward, 1993; Tushemereirwe et al., 2004; Mansfield et al., 2012).

Abbildung 1: Vertreter der Xanthomonadaceae befallen verschiedene Pflanzen.

A und B) Die bakterielle Fleckenkrankheit auf Tomate, ausgelöst durch X. campestris pv. vesicatoria (Xcv): Tomatenblatt (A) und Frucht (B).

C) Die bakterielle Fleckenkrankheit auf Paprika, ausgelöst durch Xcv: Paprikafrucht (C).

D) Der Bakterienbrand auf Maniok, ausgelöst durch X. axonopodis pv. manihotis (Xam): Maniokblätter (D).

E) Die bakterielle Streifenkrankheit von Reis, ausgelöst durch *X. oryzae* pv. *oryzicola* (*Xoc*).

Bilder modifiziert nach: A, B, C; E: www.forestryimages.org und D: www.cabi.org.

1.2. Der Modellorganismus Xanthomonas campestris pv. vesicatoria und dessen essentielle Pathogenitätsfaktoren

Der in dieser Arbeit studierte Modellorganismus *Xcv* ist der Erreger der bakteriellen Fleckenkrankheit auf Paprika (*Capsicum annuum*) und Tomate (*Solanum lycopersicum*) (Büttner und Bonas, 2010). Die phylogenetische Reklassifizierung der Tomaten- und Paprika-pathogenen Xanthomonaden anhand der Erstellung metabolischer Profile führte zur Umbenennung von *Xcv* zu *X. euvesicatoria* (*Xeu*) (Jones *et al.*, 2004). Die Verbreitung von *Xcv* zwischen verschiedenen Pflanzen erfolgt durch Wassertropfen und Wind. Anschließend dringen die Bakterien durch natürliche Öffnungen, wie z. B. Spaltöffnungen und Wunden in die Pflanze ein (Bonas *et al.*, 2000). In suszeptiblen Pflanzen vermehrt sich *Xcv* lokal im Apoplasten, was zur Bildung von Symptomen, sogenannten wässrigen Läsionen führt (Büttner und Bonas, 2010). Die wässrigen Läsionen werden im späteren Verlauf der Krankheit nekrotisch. Die Genomsequenz des *Xcv*-Stamms 85-10 ist seit 2005 verfügbar (Thieme *et al.*, 2005). Das Genom von *Xcv* hat einen GC-Gehalt von ca. 64,5% und besteht aus dem Chromosom (ca. 5,18 Mbp) und vier Plasmiden, p*XCV*2, p*XCV*19, p*XCV*38 und p*XCV*183 (ca. 1,8 Kbp, 19 Kbp, 38 Kbp bzw. 182,5 Kbp). Das Genom kodiert für eine Vielzahl von Pathogenitäts- und Virulenzfaktoren (Thieme *et al.*, 2005).

Das Typ III-Sekretionssystem (T3SS) stellt sowohl in phyto- als auch in tierpathogenen Gramnegativen Bakterien einen essentiellen Pathogenitätsfaktor dar (Büttner und Bonas, 2010; He *et al.*, 2004). Eine Ausnahme bildet *X. albilineans* (*Xa*), welches kein *hrp*-T3SS besitzt und Zuckerrohr befällt (Davis *et al.*, 1994; Pieretti *et al.*, 2015). Das T3SS transloziert sogenannte Typ III-Effektorproteine (T3E) in das Zytoplasma der Wirtszelle (Ghosh, 2004). In suszeptiblen Wirtspflanzen haben T3E verschiedene Aufgaben. Es gibt T3E, welche die pflanzlichen Abwehrmechanismen unterdrücken oder Suszeptibiltätsmechanismen anschalten (Schulze *et al.*, 2012; Kim *et al.*, 2009; Marois *et al.*, 2002; Boch und Bonas, 2010). In resistenten Wirtspflanzen werden bestimmte T3E, sogenannte Avr-Proteine (Avirulenzproteine), durch korrespondierende Resistenzgene oder Resistenzproteine erkannt und vermitteln meist die Induktion einer schnellen lokalen Zelltodreaktion, eine hypersensitive Reaktion (HR). So induzieren die *Xcv*-Effektoren AvrBs1, AvrBs2 und XopH in resistenten Paprikapflanzen des Kultivars ECW-10R, ECW-20R bzw. ECW-70R eine HR, woraufhin kein bakterielles Wachstum mehr stattfindet. (Minsavage *et al.*, 1990; Potnis *et al.*, 2012).

Das T3SS von *Xcv* ist ein Multiproteinkomplex, welcher als Basalapparat die innere und äußere bakterielle Membran durchspannt und extrazellulär mit einem Pilus assoziiert ist (Büttner *et al.*, 2002). Der Pilus erlaubt den Transport der T3E vom bakteriellen Zytoplasma ins Zytoplasma der Wirtszelle, wobei wahrscheinlich Typ III-Translokonproteine in die pflanzliche Plasmamembran inserieren (Rossier *et al.*, 2000; Büttner *et al.*, 2002). Die Komponenten des T3SS sind im *hrp*-Gencluster (*hypersensitive response and pathogenicity*) kodiert, einer 23 Kbp großen chromosomalen Region mit acht Operons (Bonas *et al.*, 1991; Büttner und Bonas, 2002; Büttner *et al.*, 2007; Weber *et al.*, 2007).

Die Expression des *hrp*-Genclusters wird durch die regulatorischen Proteine HrpG und HrpX gesteuert. HrpG, ein OmpR-Typ Antwortregulator, wird in der Pflanze durch ein bisher unbekanntes Signal aktiviert und aktiviert anschließend die Expression von *hrpX* (Wengelnik *et al.*, 1996b). HrpX, ein AraC-Typ Transkriptionsaktivator, bindet an ein *cis*-regulatorisches Element in den Promotoren HrpX-abhängig regulierter Gene, die sogenannte PIP-Box (*plant inducible promoter*) (Koebnik *et al.*, 2006). *In vitro* wird die *hrp*-Genexpression durch Inkubation von *Xcv* in XVM2-Medium aktiviert, das vermutlich die Bedingungen im Apoplasten simuliert (Wengelnik *et al.*, 1996a), oder durch Verwendung eines *hrpG*-Derivates (*hrpG**). Die Punktmutation in *hrpG** führt dazu, dass HrpG konstitutiv aktiv ist und das *hrp*-Gencluster konstitutiv exprimiert wird (Wengelnik *et al.*, 1999).

Neben dem T3SS und den dazugehörigen Substraten, den T3E, gibt es in *Xcv* und anderen Vertretern der Xanthomonaden weitere Virulenzfaktoren. So ist zum Beispiel bekannt, dass das Xps-Typ II-Sekretionssystem, welches Xylanasen und Proteasen sekretiert, für die Virulenz von *Xcv* von Bedeutung ist (Szczesny *et al.*, 2010; Solè *et al.*, 2015). Weiterhin wurden Adhäsine und Typ IV-Pili von *Xoo* als Virulenzfaktoren identifiziert, welche unter anderem die Anheftung ans Blatt und damit die Virulenz fördern (Das *et al.*, 2009).

In tierpathogenen Bakterien wurde gezeigt, dass nicht-kodierende RNAs (ncRNAs) einen Beitrag zur Virulenz leisten und es wurden die grundlegenden regulatorischen Mechanismen aufgeklärt. Diese Mechanismen werden nun zunehmend auch in pflanzenpathogenen Bakterien, wie z. B. *Xcv* in der AG Bonas, erforscht.

1.3. Die post-transkriptionelle Regulation der Genexpression

Neben der Initiation der Transkription stellen post-transkriptionelle Regulationsmechanismen weitere regulatorische Ebenen der Genexpression dar. Hierbei spielen z. B. ncRNAs und RNA-Bindeproteine (RBP), wie z. B. Hfq und CsrA, eine Rolle (Kapitel 1.4.1 und 1.4.2). Zu den ncRNAs gehören neben Transfer-RNAs (tRNAs) und ribosomalen RNAs (rRNAs) die kleinen *trans*-kodierten RNAs (sRNAs), *cis*-kodierte RNAs und RNAs, welche die Aktivität von Proteinen regulieren (Waters und Storz, 2009). Zu den *cis*-kodierten RNAs gehören neben den kleinen *cis*-kodierten antisense RNA auch *cis*-regulatorischen Elemente wie Riboswitches und RNA-Thermometer (Sherwood *et al.*, 2015; Oliva *et al.*, 2015). Im Folgenden liegt der Fokus auf den *trans*-kodierten sRNAs und proteinaktivitätsmodulierenden sRNAs.

1.3.1. Trans-kodierte sRNAs

Trans-kodierte sRNAs haben eine durchschnittliche Länge von 50-500 Nukleotiden (Nt) und sind häufig in intergenischen Bereichen in *trans* zu ihren Ziel-mRNAs kodiert (Gottesman und Storz, 2011). In *trans* bedeutet, dass die sRNA-Gene und deren Ziel-mRNAs an unterschiedlichen Orten im Genom kodiert werden. Bis auf wenige Ausnahmen sind sRNAs nicht-kodierend und bilden durch

intramolekulare Basenpaarungen stabile Sekundärstrukturen. Die Sekundärstrukturen von sRNAs sind gekennzeichnet durch Doppelstrangbereiche, sogenannte *Stems* und Einzelstrangbereiche, die als *Loops* bezeichnet werden. Weiterhin besitzen die meisten sRNAs einen Rho-unabhängigen Terminator, bestehend aus einem Terminator Stem-Loop und Poly-U-Motiv. Die meisten bakteriellen sRNAs interagieren durch kurze, imperfekte Basenpaarungen mit ihren Ziel-mRNAs und regulieren dadurch deren Translation und Stabilität (Abbildung 2; Waters und Storz, 2009). Hierbei binden sRNAs meistens in der 5'-untranslatierten Region (5'-UTR) ihrer Ziel-mRNAs nahe der Ribosomenbindestelle (RBS) und regulieren diese negativ, indem sie zum einen die Initiation der Translation inhibieren, oder einen RNase E- bzw. RNase III-vermittelten Abbau der mRNA bedingen (Viegas *et al.*, 2007; Viegas und Arraiano, 2008). Für wenige sRNAs ist eine aktivierende Wirkung auf die Expression ihrer Ziel-mRNAs beschrieben. In diesen Fällen hat die Interaktion der sRNA mit der 5'-UTR der Ziel-mRNA das Auflösen einer inhibitorischen Sekundärstruktur, welche die RBS für das Ribosom unzugänglich macht, zur Folge (Abbildung 2; Waters und Storz, 2009). Ein Beispiel hierfür ist die sRNA DsrA, welche die Synthese von RpoS aktiviert (Majdalani *et al.*, 1998).

Da sRNAs häufig an der Anpassung an veränderte Umweltbedingungen beteiligt sind und eine bioinformatische Vorhersage der Ziel-Gene durch die kurzen, häufig imperfekten, Interaktionsstellen schwierig ist, werden Ziel-mRNAs experimentell identifiziert. Zum Beispiel kann der Einfluss der sRNA auf die Transkriptstabilität durch Transkriptstudien in einer sRNA-Deletionsmutante untersucht werden. Weiterhin kann die sRNA-abhängige Regulation der Translation durch Proteomanalyse oder translationale Reporterfusionen, z. B. an *gfp* (green fluorescent protein) analysiert werden (Urban und Vogel, 2007).

1.1.1. sRNAs als Modulatoren der Proteinaktivität

Die Anzahl bekannter proteinaktivitätsmodulierenden sRNAs ist geringer, als die der mRNAregulierenden sRNAs. Die proteinaktivitätsmodulierenden sRNAs wirken meist durch sogenanntes *RNA-Mimicry* (Abbildung 2). D. h. die sRNAs besitzen meist mehrere Kopien eines Proteinerkennungsmotivs und konkurrieren mit den mRNAs um die Bindung an das RBP. Ein gut untersuchtes Beispiel ist die sRNA CsrB aus *Escherichia coli* (*E. coli*), die 18 CsrA-Bindestellen besitzt und mit diversen Ziel-mRNAs konkurriert (Romeo, 1998). Ein weiteres Beispiel ist die hochkonservierte 6S RNA, deren Sekundärstruktur der offenen Konformation von DNA, bei der Initiation der Transkription entspricht. Die 6S RNA interagiert hierbei mit der σ^{70} -RNA-Polymerase und inhibiert die Transkription einiger σ^{70} -abhängiger Gene (Wassarman und Storz, 2000).

Abbildung 2: sRNA-abhängige Regulationsmechanismen

Wirkmechanismen *trans*-kodierter sRNAs und proteinaktivitätsmodulierender sRNAs. Gene und RNAs sind als Pfeile dargestellt (roter Pfeil = sRNA-Gene bzw. sRNA; blauer Pfeil = Ziel-Gen bzw. Ziel-mRNA). 1) Durch Bindung der sRNA in der 5'-UTR der mRNA in der Nähe der Ribosomenbindestelle (RBS) wird die Initiation der Translation gehemmt. 2) Induktion des RNase vermittelten Abbaus. 3) Die Bindung der sRNA in der 5'-UTR führt zum Auflösen einer inhibitorischen Sekundärstruktur, welche die Translation hemmt.

4) Modulation der Proteinaktivität durch die Interaktion mit einer sRNA. Die Hemmung der CsrA-Aktivität durch Bindung von CsrB. 5) Modulation der RNA-Polymerase durch Bindung der 6S RNA. 6) Aktivierung eines Proteins durch Bildung eines Ribonukleoproteinkomplexes. 7) RNA-vermittelte Interaktion zweier Proteine. Die Abbildung wurde modifiziert nach Waters und Storz, 2009 und Storz *et al.*, 2011

1.2. Die Rolle von RNA-Bindeproteinen bei der post-transkriptionellen Regulation

Bakterielle sRNAs können sowohl mit mRNAs als auch mit RBP interagieren, indem sie Teil eines Ribonukleoproteinkomplexes sind. RBP können wiederum die Sekundärstruktur von sRNAs beeinflussen, durch sRNAs von ihren eigentlichen Ziel-mRNAs wegtitriert werden, oder selbst eine katalytische Aktivität besitzen. Beispielsweise spielen RNasen ebenfalls eine Rolle bei der post-transkriptionellen Regulation, da sie sowohl bei der Degradation von mRNAs als auch sRNAs von Bedeutung sind (Morita *et al.*, 2005; Viegas und Arraiano, 2008). Im Rahmen dieser Arbeit werden die RBP Hfq und CsrA näher betrachtet.

1.2.1. Das SM-Protein Hfq als Mediator der sRNA-mRNA Interaktion

Hfq (*host factor required for phage Q\beta RNA replication*) ist in 50% der Gram-positiven und negativen Bakterien konserviert und vermittelt die Interaktion zwischen sRNAs und mRNAs (Valentin-Hansen *et al.*, 2004). Kristallstrukturanalysen haben gezeigt, dass Hfq aus *E. coli* homohexamere Ringstrukturen bildet, die homolog zu eukaryotischen LSM- bzw. SM-Proteinen sind, welche in *Splicing* und mRNA-Degradation involviert sind (Wilusz und Wilusz, 2013). Strukturkartierungsexperimente zeigten, dass Hfq die Sekundärstruktur von der sRNA RyhB und der mRNA *sodB* verändert (Geissmann und Touati, 2004). Diese Chaperonfunktion wurde mit einer möglichen ATP-Bindestelle in Verbindung gebracht (Arluison *et al.*, 2007). Weiterhin wurde gezeigt, dass das Hfq-Hexamer mindestens drei RNA-Bindestellen besitzt, wobei die proximale Bindestelle Poly-U Sequenzmotive bindet (Schumacher *et al.*, 2002), die distale Bindestelle bindet präferenziell ein sogenanntes ARN-Motiv (Link *et al.*, 2009) und die laterale Oberfläche bindet den sRNA-Körper (Sauer *et al.*, 2012). Es wird angenommen, dass die proximale Interaktionsplattform die sRNA verankert, wohingegen die laterale Plattform an der Bindung der sRNA-Sequenz involviert ist, welche mit der Ziel-mRNA interagiert (Sauer *et al.*, 2012).

Die Deletion von *hfq* hat in verschiedenen pathogenen Bakterien einen unterschiedlichen Einfluss auf die Virulenz. Für Gram-positive Bakterien wurde gezeigt, dass die sRNA-abhängige Regulation ohne Hfq funktioniert. In *Staphylococcus aureus* bindet Hfq beispielsweise die sRNA RNAIII, die Deletion von *hfq* hat aber keinen nennenswerten Einfluss auf die RNAIII-abhängige post-transkriptionelle Regulation und Virulenz (Bohn *et al.*, 2007). Einen dramatischeren Einfluss hat die Deletion von *hfq* zu verminderter Adhäsion, Motilität, T3E-Sekretion und Invasion in eukaryotische Zellen (Sittka *et al.*, 2007).

1.2.2. Carbon storage regulator A – CsrA als globaler Regulator der Genexpression

Der *Carbon storage regulator A* (CsrA) wurde von Romeo *et al.*, 1993 in *E. coli* als 61 Aminosäure (AS) großer, pleiotroper Regulator diverser Kohlenstoffwechselprozesse beschrieben. Im Gegensatz zu Hfq wirken Proteine der CsrA/RsmA-Familie als selbstständige post-transkriptionelle Regulatoren, d. h. sie benötigen für ihre regulatorische Wirkung auf mRNAs keinen zusätzlichen Faktor. Durch die Bindung von CsrA-Dimeren an die 5'-UTR einer Ziel-mRNA nahe der RBS inhibiert CsrA die Initiation der Translation (Timmermans und Van Melderen, 2010). Das Erkennungsmotiv in ZielmRNAs von CsrA aus *E. coli* ist GGA, was in der Shine-Dalgarno (SD) Sequenz (AGGAGGU) enthalten ist (Baker *et al.*, 2007). In der Regel hat CsrA einen negativen Einfluss auf Ziel-mRNAs, aber es ist ein CsrA-Zielgen bekannt, das positiv durch CsrA reguliert wird. Die *flhCD* mRNA wird durch die Bindung von CsrA vor RNase E-vermitteltem Abbau geschützt (Yakhnin *et al.*, 2013).

Die CsrA-Aktivität wird durch sRNAs reguliert, welche Sequenzähnlichkeit zu Ziel-mRNAs von CsrA haben und mit diesen um die Bindung konkurrieren (Babitzke und Romeo, 2007). Die Expression der CsrA-regulierenden sRNAs CsrB und CsrC in *E. coli* wird durch das Zwei-Komponentensystem BarA/UvrY gesteuert (Camacho *et al.*, 2015). CsrA-abhängig regulierte Prozesse sind vielfältig und reichen von Biofilmbildung und Motilität über den namensgebenden Einfluss auf den Kohlenstoffstoffwechsel bis zu Virulenz (Camacho *et al.*, 2015). Aufgrund des vielschichtigen Einflusses von CsrA auf bakterielle Prozesse hat die Deletion von *csrA* in verschiedenen Bakterien pleiotrope Effekte (Romeo *et al.*, 1993; Cui *et al.*, 1995; Pessi *et al.*, 2001; Lawhon *et al.*, 2003; Heroven *et al.*, 2008).

1.3. Stand der sRNA-Forschung in Xanthomonas spp.

2010 wurden die ersten sRNAs in Vertretern der Xanthomonadaceae identifiziert, wobei sRNAs nur als identifiziert zu werten sind, wenn sie mittels Northern-Blot-Analysen bestätigt wurden. In Xcv mittels cDNA-basierter Transkriptomanalyse (454-Pyrosequenzierung) 24 sRNAs wurden identifiziert, nämlich 16 sRNAs und acht antisense RNAs (Schmidtke et al., 2012). Darüber hinaus wurden die hochkonservierte 6S RNA, tmRNA und SRP RNA sowie 1.421 Transkriptionsstarts (TSS) identifiziert (Schmidtke et al., 2012). Xcv 85-10-Deletionsmutanten in den sRNA-Genen sX12 und sX13 zeigten, dass diese zur Virulenz in Xcv beitragen (Schmidtke et al., 2012; Schmidtke et al., 2013). Beide sRNAs sind als stark strukturiert vorhergesagt und in den sequenzierten Stämmen der Xanthomonadaceae konserviert (Abbildung 3; U. Abendroth, Diplomarbeit, 2011; Schmidtke et al., 2012; Schmidtke et al., 2013; Abendroth et al., 2014). Für sX13 wurden mittels Microarray einige Ziel-mRNAs identifiziert (Schmidtke et al., 2013). In Xcc wurden 12 sRNAs identifiziert, wobei zu beachten ist, dass sRNA-Xcc2, -Xcc3 und -Xcc4 die homologen RNAs zu 6S RNA, SRP und 5S rRNA sind (Jiang et al., 2010; An et al., 2013; Abendroth et al., 2014). Eine Dreifachmutante der sRNA-Loci sRNA-Xcc15, -Xcc16 und -Xcc28 zeigte im Vergleich zum Wildtyp verringerte Virulenz (An et al., 2013). Weiterhin wurde gezeigt, dass diese sRNAs in Abhängigkeit vom Rpf-System (regulation of pathogenicity factors) exprimiert sind (An et al., 2013). Bisher wurden allerdings keine Zielgene dieser sRNAs identifiziert. In Xoo wurden acht sRNAs mittels Shot-gun cloning identifiziert und einzeln deletiert. Allerdings wurde kein Einfluss auf die Virulenz von Xoo festgestellt (Liang et al., 2011). Weitere 16 sRNAs wurden in Stenotrophomonas maltophilia (Smal) identifiziert, der zu den Xanthomonadaceae gehört (Roscetto et al., 2012). Weiterhin wurde in Xcv, Xcc und Xoo festgestellt, dass CsrA/RsmA im jeweiligen Organismus essentiell für die Pathogenität ist (Chao et al., 2008; Zhu et al., 2011; Lu et al., 2012; J. Brock, U. Abendroth und U. Bonas unpubliziert). In Schmidtke et al., 2013 wurde gezeigt, dass eine frameshift-Mutation von hfg keinen Einfluss auf die Virulenz von Xcv hat. Außerdem wurden in Xcv CsrA- und Hfq-gebundene sRNAs identifiziert, darunter auch diverse neue sRNAs (Brock, 2013).

Abbildung 3: Sequenz- und Strukturvergleich von sX13-Familienmitgliedern aus der Gruppe der Xanthomonadaceae A) Nukleotidsequenzvergleich von Rfam-Mitgliedern der sX13-Familie (Rfam 12.0, Juli 2014) aus Xcv (Xanthomonas campestris pv. vesicatoria 85-10), Xa (X. albilineans GPE PC73), Xcc (X. campestris pv. campestris B100), Xfa (X. fuscans subsp. aurantifolii ICPB 11122), Xp (X. perforans 91-118), Xg (X. gardneri ATCC 19865), Xoo (X. oryzae pv. oryzae KACC10331), Xoc (X. oryzae pv. oryzicola BLS256), Xyl (Xylella fastidiosa 9a5c), Ps (Pseudoxanthomonas spadix BD-a59) und Sm (Stenotrophomonas maltophilia K279a). Stark konservierte Nukleotide sind dunkelblau unterlegt. KS Konsensussequenz.

B) Modell der konservierten Sekundärstruktur der sX13-Familienmitglieder.

LocARNA (Version 1.8.0, Vienna RNA package 2.1.8)-Vorhersage der Konsensussekundärstruktur von sX13-Familienmitgliedern aus der Gruppe der *Xanthomonadaceae*, aufgeführt in der Rfam-Datenbank (Rfam 12.0, Juli 2014). Kompensatorische Mutationen, welche die Sekundärstruktur nicht beeinflussen, sind mit einem Kreis markiert. Kompatible Basenpaare sind farbig dargestellt. Die Farbe gibt die Anzahl der verschiedenen Basenpaarungen C-G, G-C, A-U, U-A, G-U oder U-G an. Die Farbtiefe nimmt mit der Anzahl inkompatibler Paare ab. (Abbildung 3 B modifiziert nach Abendroth *et al.*, 2014).

1.4. Die Identifikation und Validierung von Ziel-mRNAs

Die Identifizierung von möglichen Ziel-mRNAs einer sRNA ist nach der Erstellung einer Deletionsmutante ein wichtiger Schritt der funktionellen Charakterisierung. Die Identifizierung von Ziel-mRNAs kann durch verschiedene bioinformatische und experimentelle Ansätze erfolgen. Beispielsweise erfolgte die Identifizierung von *ompC* als Zielgen von MicC in *E. coli* durch eine BLAST-Analyse, welche sich allerdings nicht zur Identifizierung von kurzen, imperfektinteragierenden Ziel-mRNAs eignet (Chen *et al.*, 2004). Aus diesem Grund wurden diverse Vorhersageprogramme entwickelt, deren Algorithmen z. B. die Hybridisierungsenergie, minimale Länge der interagierenden Regionen, die Position der Interaktionsstelle innerhalb der mRNA und Konservierung der Interaktionspartner in verwandten Bakterien berücksichtigen. Auf der Grundlage dieser Faktoren wird den Kandidaten-mRNAs ein Wert zugeordnet, welcher die Wahrscheinlichkeit einer Interaktion widerspiegelt. Gängige Programme sind: CopraRNA, IntaRNA, RNApredator und TargetRNA2 (Wright *et al.*, 2014; Eggenhofer *et al.*, 2011; Kery *et al.*, 2014; Corredor und Murillo, 2014).

Experimentell können Zielgene durch vergleichende Transkriptstudien (*Microarray* und Transkriptom-Sequenzierung von Wildtyp bzw. sRNA-Mutante) und Proteomstudien (2D-Gelanalyse und massenspektrometrische Analysen) von sRNA-Deletionsmutanten oder -Überexpressionsstämmen

identifiziert werden (Sharma *et al.*, 2010; Schmidtke *et al.*, 2013). In weiterführenden Experimenten könnte die direkte Interaktion *in vitro* nachgewiesen werden, wie z. B. mittels RNA-RNA *Electrophoretic Mobility Shift Assays* (EMSA), enzymatische Strukturanalyse eines RNA-RNA Komplexes und Ribosomen *Toeprint*-Analysen (Udekwu *et al.*, 2005). *Toeprint*-Analysen untersuchen die Bildung des Translationsinitiationskomplexes auf einer mRNA in Abhängigkeit der Anwesenheit der regulierenden sRNA.

Weitere Methoden zur Identifikation von RBP sind Ko-Immunopräzipitationsexperimente und Affinitätschromatographie-basierte Versuche. Beispielsweise wurde die mRNA *yejABE* durch Ko-Immunopräzipitation von an Hfq::His-gebundener RydC-sRNA und anschließender cDNA-Sequenzierung identifiziert (Antal *et al.*, 2005). Affinitätschromatographie-gestützte Experimente zur Identifikation proteinogener sRNA-Interaktionspartner arbeiten meist mit *in vitro* transkribierten sRNAs, welche z. B. durch ein RNA-Aptamer oder Biotin Epitop-markiert sind. Die Interaktion von Hfq mit InvR, GcvB und RyhB wurde mittels Affinitätschromatographie *in vitro* nachgewiesen, hierbei waren die sRNAs mit einem MS2-Epitop markiert (Said *et al.*, 2009). Eine Möglichkeit den Einfluss einer sRNA auf die Translation von Ziel-mRNAs an Reporter, z. B. an *gfp* oder β -*galactosidase*, fusioniert (Sharma und Vogel, 2009).

1.5. Herausforderungen in der Postgenomik

verfügbaren Genome durch kosten- und zeiteffizientere Methoden stark angestiegen (Sanger et al., 1978; Médigue und Danchin, 2008). Mittlerweile ist nicht die Sequenzierung großer bzw. verschiedener Genome die eigentliche Herausforderung, sondern die korrekte Annotation, die Grundlage für die meisten weiteren Arbeiten darstellt. Zur Annotation werden diverse Genvorhersageprogramme, beispielsweise Glimmer, Prodigal, Genemark und Easygene verwendet (Delcher et al., 2007; Hyatt et al., 2010; Besemer und Borodovsky, 2005; Larsen und Krogh, 2003). Neben Virus- und Archaeen-Genomen haben auch bakterielle Genome eine hohe Gendichte von bis zu 90% der DNA-Sequenz (Delcher et al., 2007). Genvorhersageprogramme müssen deshalb bei bakteriellen Genomen im Wesentlichen entscheiden, welcher Leserahmen an einer Position am wahrscheinlichsten ein Gen kodiert (Ouyang et al., 2004). Ein wichtiger Qualitätsmaßstab von Vorhersageprogrammen ist die Sensitivität, die beispielsweise bei der ersten Versionen von Glimmer (2.0) 99% betrug (Salzberg et al., 1998). Die Sensitivität gibt an, wie viele der bekannten Gene eines gut charakterisierten Genoms von dem Programm vorhergesagt werden (Delcher et al., 2007). Hierbei wird ein Gen als bekannt eingestuft, wenn es starke Homologie auf Aminosäureebene zu Genen andere Spezies aufweist. Da die Homologie oftmals in der Nähe des Translationsstarts abnimmt, ist dieser besonders schwer vorherzusagen und einer der Ansatzpunkte zur Verbesserung von

Genvorhersageprogrammen (Besemer *et al.*, 2001). Eine weitere Schwierigkeit bei der Vorhersage von Genen in Bakterien ist die hohe Falschpositivenrate, welche durch die hohe Gendichte in bakteriellen Genomen begünstigt wird. Abhilfe kann die Analyse eng-verwandter Bakterien schaffen, wenn diese gut studiert sind. Die Crux einiger Vorhersageprogramme ist deren Abhängigkeit von Datenbanken. So werden Gene in Genomen mit einer höheren Wahrscheinlichkeit übersehen, wenn es z. B. in der Datenbank RefSeq (Pruitt *et al.*, 2012) keinen Eintrag gibt. Problematisch sind außerdem Datenbankeinträge von Proteinen, deren N-Termini falsch annotiert wurden. Diese falschen Informationen sind oftmals nur mit aufwändigen molekularen Experimenten zu korrigieren. Dies könnte sich lohnen, da die korrekte Annotation eines Genoms Grundlage für molekulare Forschungsvorhaben sind.

Das Genom von *Xcv* 85-10 wurde bereits 2005 sequenziert und sowohl automatisch als auch manuell annotiert. Da dieses Genom seitdem häufig als "Referenzgenom" für die meist automatisierte Annotation weiterer *Xanthomonas* spp.-Genome diente (U. Bonas persönliche Kommunikation), ist dessen korrekte Annotation von besonderem Interesse für die wissenschaftliche Gemeinschaft. Gegenwärtig sind drei Proteine von *Xcv* 85-10 bekannt, die falsch annotiert waren. So wurde festgestellt, dass HrpB1 und XopD N-terminal länger sind als ursprünglich annotiert (Canonne *et al.*, 2010; Hausner *et al.*, 2013). Weiterhin war das proteinkodierende Gen *sX6*, welches bei der Suche nach sRNAs in *Xcv* identifiziert wurde, bis dato nicht annotiert (Schmidtke *et al.*, 2012).

1.6. Zielstellung

Ein Ziel dieser Arbeit bestand darin, das aus Vorarbeiten bereits bekannte sX13-Regulon näher zu untersuchen und ggf. zu erweitern. Da das bekannte sX13-Regulon hauptsächlich auf Transkriptdaten beruhte, die nur Spekulationen über einen Einfluss auf Proteinebene zulassen, sollte der sX13-Einfluss auf das Proteom von *Xcv* analysiert werden. Ein weiteres Ziel war die Aufklärung des molekularen Mechanismus' der sX13-Regulation. Dazu sollte zunächst die Sekundärstruktur von sX13 kartiert werden, um eine Grundlage für die anschließende molekulare Charakterisierung funktioneller Bereiche zu schaffen. Weiterhin sollte ermittelt werden, ob die RBP CsrA und Hfq für die sX13-abhängige Regulation relevant sind und ob sX13 mit mRNAs sX13-abhängig regulierter Gene direkt interagiert.

Ein weiterer Schwerpunkt dieser Arbeit war die Reannotation des *Xcv*-Genoms auf Grundlage des *Xcv*-Proteoms. Dazu sollten Gesamt-Proteinextrakte von *Xcv* nach Wachstum unter möglichst diversen Kultivierungsbedingungen mittels MS analysiert werden.

2. Material und Methoden

2.1. Material

2.1.1. Nährmedien, Anzuchtbedingungen und Antibiotika

Medium	Zusammensetzung	Angezogenen Baktieren	Referenz
NYG "Nutrient-Yeast- Glycerol"	0,5% (w/v) Pepton; 0,3% (w/v) Hefe-Extrakt; 0,2% Glycerin	Xcv	Daniels <i>et al.</i> , 1984
MA Minimal Medium A	60 mM K ₂ HPO ₄ ; 33 mM KH ₂ PO ₄ ; 7,6 mM (NH ₄) ₂ SO ₄ ; 1,7 mM Natriumacetat; 10 mM Saccharose; 0,3% (w/v) Casaminosäuren; 1 mM MgSO ₄	Xcv	Ausubel <i>et al</i> ., 1996
XVM2	320 μM K ₂ HPO ₄ ; 160 μM KH ₂ PO ₄ ; 10 mM (NH ₄) ₂ SO ₄ ; 5 mM MgSO ₄ 7H ₂ O; 20 mM NaCl, 10 mM Saccharose; 10 mM Fructose; 0,03% (w/v) Casaminosäuren; 1 mM CaCl ₂ 2H ₂ O; 10 μM FeSO ₄ 7H ₂ O; pH 6,7	Xcv	Wengelnik <i>et</i> <i>al</i> ., 1996a
LB "Lysogeny Broth"	1% (w/v) Trypton; 0,5% (w/v) Hefe-Extrakt; 1% (w/v) NaCl; pH 7,5	E. coli	Miller, 1972

Tabelle 1: Verwendete Medien

Die Anzucht der verwendeten *E. coli*-Stämme erfolgte bei 37°C und die verwendeten *Xanthomonas* Stämme wurde bei 30°C kultiviert. Die verschiedenen Nährmedien wurden durch Autoklavieren für 20 min bei 121°C und 1,1 x 10⁵ Pa sterilisiert und hitzeempfindliche Zuckerlösungen wurden mittels 20 μ m Filter sterilfiltriert. Zur Herstellung von Festmedien wurden den Flüssigmedien 1,5% (w/v) bzw. 1% (w/v) Agar-Agar zugesetzt. Die dauerhafte Lagerung von *E. coli* und *Xanthomonas* bei -80°C erfolgte durch Zugabe von 7% (v/v) Dimethylsulfoxid (DMSO) zu den jeweiligen Bakteriensuspensionen. Zur Selektion von Bakterien, z. B. nach Transformation verschiedener Plasmide, wurden den Nährmedien Antibiotika bzw. X-β-Gal (5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid) zur Blau-Weiß-Selektion zugesetzt.

Selektionsmarker	Endkonzentration
Ampicillin (Amp)	100 µg/ml (feste Medien) bzw. 50 µg/ml (Flüssigmedium)
Gentamycin (Gm)	15 μg/ml
Kanamycin (Km)	25 µg/ml
Rifampicin (Rif)	100 µg/ml
Spectinomycin (Spec)	100 µg/ml
X-β-Gal	0,004 % (w/v)

2.1.2. Bakterienstämme, Plasmide und Oligonukleotide

Die in dieser Arbeit verwendeten Bakterienstämme, Plasmide und Oligonukleotide sind in Tabelle 2, 3 und 4 aufgelistet.

Stamm	Beschreibung	Referenz
Escherichia coli	·	
Top 10	<i>F</i> - mcrA Δ (mrr-hsdRMS-mcrBC) Φ 80lacZ Δ M15 Δ lacX74 recA1 araD139 Δ (araleu)7697 salU salK	Invitrogen GmbH, Karlsruhe, Deutschland
	rnsL (StrR) endA1 nupG	
DH5α(λpir)	endA1 hsdR17 $(r_{\kappa}^{-}m_{\kappa}^{+})$ supE44 thi-1 recA1 gyrA [Nal ^r] relA1 Δ [lacZYA- argF]U169, F ⁽ [φ 80dlacZ Δ (lacZ)M15] [λ pir]	Ménard et al., 1993
Helfer MM294 (pRK2013)	<i>F- endA1 hsdR17 (rK⁻ mK⁺) glnV44</i> <i>thi 1relA1RfbD1 SpoT1</i> ; Helferstamm für die Konjugation; pRK2013 trägt <i>tra</i> -Gene für den Aufbau des Konjugationsapparates	Backman <i>et al.</i> , 1976; Figurski und Helinski, 1979
Rosetta [™] (DE3)pLysS	F ⁻ <i>ompT hsdS</i> _B (r _B ⁻ m _B ⁻) <i>gal dcm</i> (DE3) pLysSRARE (Cam ^R)	Novagen
Xanthomonas campestris pv. vesicatoria		
85-10	Wildtyp; Rif ^R ; Tomaten und Paprikapathogen	Bonas et al., 1989
85-10Δ <i>s</i> X13	Derivat von 85-10; chromosomale Deletion von <i>sX13</i>	Schmidtke et al., 2013
$85-10\Delta sXI3+sXI3_{ch}$	Derivat von 85-10; chromosomale Deletion von <i>sX13</i> mit markierter Reintegration von <i>sX13</i> am <i>sX13</i> - Lokus	Schmidtke et al., 2013
$85-10\Delta sXI3hfq^{-1}$	Derivat von 85-10; chromosomale Deletion von <i>sX13</i> ; Leserahmenverschiebung nach dem 10. Codon von <i>hfq</i>	Schmidtke et al., 2013
85-10hfq	Derivat von 85-10; Leserahmen- verschiebung nach dem 10. Codon von <i>hfq</i>	Schmidtke et al., 2013
85-10∆ <i>s</i> X5	Derivat von 85-10; chromosomale Deletion von <i>sX5</i>	diese Arbeit
85-10Δ <i>s</i> X5Δ <i>s</i> X13	Derivat von 85-10; chromosomale Deletion von <i>sX5</i> und <i>sX13</i>	diese Arbeit

Tabelle 2: Verwendete Bakterienstämme

Tabelle 3: Verwendete Plasmide

Plasmid	Resistenz	Beschreibung	Referenz
pOK1	Spec	sacB, sacQ; mobRK2; oriR6K	Huguet et al., 1998
pBRS	Gent	broad-host-range vector; pBBR1-MCS5; sRNA	Schmidtke et al., 2013
		Expressionsvektor; P _{lac}	
pBRM-P	Gent	pBBR1-MCS5; broad-host-range vector; Golden Gate	Lorenz et al., 2012
		Klonierung; kein Promotor; $lacZ\alpha$; 3 x c-Myc	
pUC57	Amp	Klonierungsvektor; blunt end Klonierung von DNA-	Genscript
		Fragmenten	_
p _{lac} sX13	Gent	Derivat von pBRS; zur Expression von sX13; p _{lac}	Schmidtke et al., 2013
p _{lac} sX5	Gent	Derivat von pBRS; zur Expression von <i>sX5</i> ; p _{lac}	J. Brock und U. Bonas
			unpubliziert
p <i>hrpG</i> * (pFG72-1)	Kan;	incW, mob+, lacZa, Cos, enthält ein konstitutiv aktives	Wengelnik et al., 1999
(pUFR)	Gent	$hrpG(hrpG^*)$	
$p_{lac}\Delta 5^{\prime} sX13$	Gent	Derivat von pBRS; zur Expression von $\Delta 5^{\circ} sX13$; p _{lac}	diese Arbeit,
			Schmidtke et al., 2013
p _{lac} sX13_L1	Gent	Derivat von pBRS; zur Expression von <i>sX13_L1</i> ; p _{lac}	diese Arbeit,
			Schmidtke et al., 2013

p _{lac} sX13_L2	Gent	Derivat von pBRS; zur Expression von <i>sX13_L2</i> ; p _{lac}	diese Arbeit, Schmidtke <i>et al.</i> , 2013
p _{lac} sX13_L3	Gent	Derivat von pBRS; zur Expression von <i>sX13_L3</i> ; p _{lac}	diese Arbeit, Schmidtke <i>et al.</i> , 2013
p _{lac} sX13_L1/2	Gent	Derivat von pBRS; zur Expression von <i>sX13_L1/2</i> ; p _{lac}	diese Arbeit, Schmidtke <i>et al.</i> , 2013
p _{lac} sX13_L1/3	Gent	Derivat von pBRS; zur Expression von <i>sX13_L1/3</i> ; p _{lac}	diese Arbeit, Schmidtke <i>et al.</i> , 2013
p _{lac} sX13_L2/3	Gent	Derivat von pBRS; zur Expression von <i>sX13_L2/3</i> ; p _{lac}	diese Arbeit, Schmidtke <i>et al.</i> , 2013
p _{nat} sX13	Gent	Derivat von pBRM-P; zur Expression von <i>sX13</i> unter Kontrolle des nativen Promotors	diese Arbeit
p _{nat} sX13_L1	Gent	Derivat von pBRM-P; zur Expression von <i>sX13_L1</i> unter Kontrolle des nativen Promotors	diese Arbeit
p _{nat} sX13_L2	Gent	Derivat von pBRM-P; zur Expression von <i>sX13_L2</i> unter Kontrolle des nativen Promotors	diese Arbeit
p _{nat} sX13_L3	Gent	Derivat von pBRM-P; zur Expression von <i>sX13_L3</i> unter Kontrolle des nativen Promotors	diese Arbeit
p _{nat} sX13_L1/2	Gent	Derivat von pBRM-P; zur Expression von <i>sX13_L1/2</i> unter Kontrolle des nativen Promotors	diese Arbeit
p _{nat} .sX13_L1/3	Gent	Derivat von pBRM-P; zur Expression von <i>sX13_L1/3</i> unter Kontrolle des nativen Promotors	diese Arbeit
psX13_L2/3	Gent	Derivat von pBRM-P; zur Expression von <i>sX13_L2/3</i> unter Kontrolle des nativen Promotors	diese Arbeit
p _{nat} PP7::sX13	Gent	Derivat von pBRM-P; zur Expression von <i>PP7::sX13</i> unter Kontrolle des nativen Promotors	diese Arbeit
p _{nat} sX13::PP7	Gent	Derivat von pBRM-P; zur Expression von <i>sX13::PP7</i> unter Kontrolle des nativen Promotors	diese Arbeit
p _{nat} <i>sX13-L3::PP7</i>	Gent	Derivat von pBRM-P; zur Expression von <i>sX13-L3::PP7</i> unter Kontrolle des nativen Promotors	diese Arbeit
p _{nat} modPP7::sX13	Gent	Derivat von pBRM-P; zur Expression von <i>modPP7::sX13</i> unter Kontrolle des nativen Promotors	diese Arbeit
p _{lac} sX13L	Gent	Derivat von pBRS; zur Expression von sX13 (125 Nt); plac	diese Arbeit
pUC57 <i>runoffsX13</i>	Amp	Derivat von pUC57 mit runoff_sX13 Fragment zur Generierung des <i>in vitro</i> -Transkriptionstemplates	Schmidtke et al., 2013
pUC57runoffsX5	Amp	Derivat von pUC57 mit runoff_sX5 Fragment zur Generierung des <i>in vitro</i> -Transkriptionstemplates	diese Arbeit
pUC57runoffsX13::P P7	Amp	Derivat von pUC57 mit runoff_sX13::PP7 Fragment zur Generierung des <i>in vitro</i> -Transkriptionstemplates	diese Arbeit
pFX-P	Spec	Derivat von pDSK602 <i>broad-host-range vector;</i> Golden Gate Klonierung; <i>lacZa; gfp</i> ohne Promotor und Startcodon (GFP-Reporter)	Schmidtke et al., 2013
pFX0	Spec	Derivat von pFX-P; <i>gfp</i> ohne Promotor und Startcodon (GFP-Reporter)	Schmidtke et al., 2013
pFX1	Spec	Derivat von pFX-P; <i>gfp</i> mit p _{lac} ; Positivkontrolle	Schmidtke et al., 2013
pFX-PXCV3927	Spec	Derivat von pFX-P; Region -98 bis +30 relativ zum annotierten Startcodon von <i>XCV3927</i> an <i>gfp</i> fusioniert	Schmidtke et al., 2013
pFX-PXCV3232	Spec	Derivat von pFX-P; Region -99 relativ zum annotierten Startcodon von $pilG$ bis +60 relativ zum annotierten Startcodon von $XCV3232$ an gfp fusioniert	Schmidtke et al., 2013
pFX-Phfq	Spec	Derivat von pFX-P; Region -160 bis +75 relativ zum annotierten Startcodon von hfq an gfp fusioniert	Schmidtke et al., 2013
pFX _{lac} hrpB1	Spec	Derivat von pFX-P mit $p_{lac;}$ Region -37 bis +42 relativ zum annotierten Startcodon von <i>hrpB1</i> an <i>gfp</i> ohne Startcodon	diese Arbeit
pFX _{lac} XCV3619	Spec	Derivat von pFX-P mit p_{lac} ; Region -34 bis + 57 relativ zum annotierten Startcodon von <i>XCV3619</i> an <i>gfp</i> ohne Startcodon	diese Arbeit
pFX _{lac} XCV3060	Spec	Derivat von pFX-P mit p_{lac} ; Region -23 bis +57 relativ zum annotierten Startcodon von <i>XCV3060</i> an <i>gfp</i> ohne Startcodon	diese Arbeit
pFX _{lac} XCV1275	Spec	Derivat von pFX-P mit p_{lac_i} Region -29 bis + 27 relativ zum annotierten Startcodon von <i>XCV1275</i> an <i>gfp</i> ohne Startcodon	diese Arbeit
pFX _{lac} asnB	Spec	Derivat von pFX-P mit p_{lac} , Region -221 bis + 27 relativ zum annotierten Startcodon von <i>asnB</i> an <i>gfp</i> ohne Startcodon	diese Arbeit

pFX _{lac} XCV1375	Spec	Derivat von pFX-P mit p_{lac} , Region -180 bis + 27 relativ	diese Arbeit
		zum annotierten Startcodon von XCV1375 an gfp ohne	
		Startcodon	
pFX _{lac} XCV1707	Spec	Derivat von pFX-P mit p_{lac} , Region -19 bis + 57 relativ	diese Arbeit
		zum annotierten Startcodon von XCV1707 an gfp ohne	
		Startcodon	
pFX _{lac} XCV1528	Spec	Derivat von pFX-P mit p _{lac.} Region -34 bis +27 relativ	diese Arbeit
		zum annotierten Startcodon von XCV1528 an gfp ohne	
		Startcodon	
pFX _{lac} XCV3068	Spec	Derivat von pFX-P mit p_{lac} , Region -42 bis + 42 relativ	diese Arbeit
		zum annotierten Startcodon von XCV3068 an gfp ohne	
		Startcodon	
pFX _{lac} XCV4374	Spec	Derivat von pFX-P mit p _{lac} , Region -105 bis +27 relativ	diese Arbeit
		zum annotierten Startcodon von XCV4374 an gfp ohne	
		Startcodon	
pFX _{lac} XCV2822	Spec	Derivat von pFX-P mit plac, Region -17 bis +57 relativ	diese Arbeit
	-	zum annotierten Stsartcodon von XCV2822 an gfp ohne	
		Startcodon	
pFX _{lac} yecR	Spec	Derivat von pFX-P mit p _{lac} , Region -67 bis +27 relativ	diese Arbeit
		zum vermuteten Startcodon von yecR an gfp ohne	
		Startcodon	
pRK2013	Kan	Für triparentale Konjugation; <i>mob</i> ⁺ <i>tra</i> RK2 ⁺ ; ColE1-	Figurski und Helinski,
		Replicon	1979
$pOK\Delta sX5$	Spec	Derivat von pOK1; zur Deletion des <i>sX5</i> -Lokus	diese Arbeit

Tabelle 4: Verwendet Oligonukleotide

Bezeichnung	Sequenz 5' – 3'
Erstellung von Expressionko	nstrukten
L1 fw	CGGAAACTCCTCCCCAAGTTT
L1 rev	CTCCGAGATCTGCTCCAGCGCATGGGAG
L2 fw	AGCGGAAACTCCTGCGCAAGTTTCCGTTCC
L2 rev	CCGAGATCTGCTCCAGGGGATG
L3 fw	CCCCGCCGACCTGCGCCTGGTCTGC
L3 rev	CCAGGGAACGGAAACTTGGGGA
L1/2 rev	CCGAGATCTGCTCCAGCGCATGGGAGAGATC
L2/3 rev	CCAGGGAACGGAAACTTGCGCAGGAGTTTCC
sX13T7 fw	GAAATTAATACGACTCACTATAGGGCGCAACGCCTGTC
sX13T7 rev	TTATAAAAAGCCCCGCAGACCAGG
sX13d5 fw	TGGAAGCTTATAAAAAGCCCCGCAGACCAG
sX13d5 rev	GCTAAGCTTGCGCATAGTGGAAGGACACAAAT
sX13nat fw'	TTTGGTCTCTCACCTGCGCATAGTGGAAGGACACAAAT
sX13nat rev	TTTGGTCTCTATTCGATTCGGGCGTTGGCGATAA
sX13L fw	TTTGAATTCCGACGGGCGCAACGCCTGTC
sX13L rev	TTTAAGCTTTGCGCATAGTGGAAGGACA
5'sX13nat rev	GGTCTCTCCCGTCGAGGGATATAACAACATT
PP7::sX13 fw	GGTCTCTCGGGTAAGGAGTTTATATGGAAACCCTTAAGAGACC
PP7::sX13 rev	GGTCTCTTAAGGGTTTCCATATAAACTCCTTACCCGAGAGACC
PP7::sX13body fw	GGTCTCTCTTACGCAACGCCTGTCGGTAGAT
sX13-L3PP7 rev	TTTGGTCTCTAACTCCTTAAGGGAACGGAAACTTGGGGAGG
sX13-L3PP7Term fw	TTTGGTCTCTAGTTTATATGGAAACCCTTATTTTATTTGTGTCCTTCCACTATGCGC
	A
sX13-L3PP7Term rev	TGCGCATAGTGGAAGGACACAAATAAAAATAAGGGTTTCCATATAAACTAGAGACC
	AAA
sX13::PP7 rev	TTTGGTCTCTCACCTAAAATAAGGGTTTCCATATAAACTCCTTAGGAAGCCCCGCAG
	ACCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
modPP7fw	TTTGGTCTCTCGGGCCAGTAGAGCGAATATGTCCG
modPP7 rev	TTTGGTCTCTCACCCGCATAGTGGAAGGACACAAATAAAAAGCC
runoff modPP7::sX13 fw	TAATACGACTCACTATAGGGAGACCAGT
runoff modPP7::sX13 rev	TAAAAAGCCCCGCAGACCAGGGGGGGGGGGGGGGGGGGG

runoff sX13 fw (pUC)	GAAATTAATACGACTCACTATAGGGCGCAACGCCTGTC	
runoff sX13 rev (pUC)	TTATAAAAAGCCCCGCAGACCAGG	
runoff sX13 fw	TAATACGACTCACT	
runoff sX13 rev	ATAAAAAGCCCCGCA	
runoff sX13::PP7 rev	TAAAATAAGGGTTTCCATAT	
pFX hrpB1 fw	TTTGGTCTCTGTGGGTGTACGGTCCGCATGCCAT	
pFX hrpB1 rev	TTTGGTCTCTTAGCGATGAGCCCACTCACGACCGA	
pFX XCV3619 fw	TTTGGTCTCTGTGGCTTGCCCAGTTGGGCCATGAC	
pFX XCV3619 rev	TTTGGTCTCTTAGCGGTCTTCTTGCCGGTGTCACC	
pFX XCV3060 fw	TTTGGTCTCTGTGGTCCTTTCAGCGCAGGAGATCG	
pFX XCV3060 rev	TTTGGTCTCTTAGCGCCCTTGCCGGTCTTGAGGT	
pFX XCV1275 fw	TTTGGTCTCTGTGGAGGATTCAACAAGACTACGG	
pFX XCV1275 rev	TTTGGTCTCTTAGCCAGCAGACTGGTGAACAGGC	
pFX asnB fw	TTTGGTCTCTGTGGATGGTCCTTCGCCTCGCCAAC	
pFX asnB rev	TTTGGTCTCTTAGCCAGGCCGAAAATACCGAAGA	
pFX XCV1375 fw	TTTGGTCTCTGTGGAACAGCGAGGACAGTCGGTTC	
pFX XCV1375 rev	TTTGGTCTCTTAGCCAACGTCATACCGCTTTGCT	
pFX XCV1707 fw	TTTGGTCTCTGTGGATGAAGAACGTGACGCCGAT	
pFX XCV1707 rev	TTTGGTCTCTTAGCCCCACCTCGTAAGATAGTG	
pFX XCV1528 fw	TTTGGTCTCTGTGGGTCAACAACGCGGTGCGTCC	
pFX XCV1528 rev	TTTGGTCTCTTAGCGACCAGTATAGTTGTCGTATT	
pFX XCV3068 fw	TTTGGTCTCTGTGGCGGGGGGGGGAGTACCTTCCAATCG	
pFX XCV3068 rev	TTTGGTCTCTTAGCTGCCTTGTTCTTGACAGAAAA	
pFX XCV4374 fw	TTTGGTCTCTGTGGTATCGTTGCCGCTACCGCTGC	
pFX XCV4374 rev	TTTGGTCTCTTAGCCAGGGTGGAGACGGTACGGT	
pFX XCV2822 fw	TTTGGTCTCTGTGGATACGACAGGAGCATGCTATG	
pFX XCV2822 rev	TTTGGTCTCTTAGCCGGGTAGATCCGCGCATCCA	
pFX yecR fw	TTTGGTCTCTGTGGGTGGAGCGCTCGGACAGCTCTG	
pFX yecR rev	TTTGGTCTCTTAGCGGCCGCCGAACCGCAAAACT	
qRT-PCR-Oligonukleotide un	nd Northern-Blot-Sonden	
hrpB1 fw	TGCATGGATTTCGATCAAGC	
hrpB 1 rev	CGAATTCGGAACTTCCATCG	
fur fw	CTCAGCGCAGAAGACATCTA	
fur rev	GAGTGCTCTTCCAGTTCGTA	
XCV3068 fw	CTGTCAAGAACAAGGCATCG	
XCV3068 rev	TTCTGGTTGAACGCATTGAC	
XCV1375 fw	GTAGTGGGGTTCGGTTTGTA	
XCV1375 rev	TCGAACTTGACGTCTTCCTT	
XCV1707 fw	GAGTTGCCTGTATGTGACCT	
XCV1707 rev	GACAACGAATCGAACACCAC	
XCV2822 fw	CAACCATCTGGTGATCATGC	
XCV2822 rev	CGAATGAAACGGTCGATCTG	
16S fw	TACGCTAATACCGCATACGAC	
16S rew	TGGCACGAAGTTAGCCGGTG	
sX13	GAGAGATCTACCGACAGGCGT	
6S RNA	TGGTCGTAATTAAGGGACAAG	
5S rRNA	CCTGGCGATGACCTACTCTC	
Deletionskonstrukt		
$\Delta sX5L_BamHI$	TCGGGATCCGTCCGATCCACTACCAGGGTTG	
$\Delta s X 5 L_Hind III$	TCGAAGCTTTCGCTATCTGGATCACGGCTCG	
$\Delta s X 5 R_HindIII$	TCGAAGCTTTCCCGATTGTCCAAAAAATCAT	
∆sX5R_XbaI	TCGTCTAGACTACAGGAGCATCGCATGACGA	

2.1.3. Pflanzenmaterial

Es wurden Paprikapflanzen (*Capsicum annuum*) der nahezu isogenen Kultivare ECW ("Early Cal Wonder"), ECW-10R, ECW-20R und ECW-70R sowie Tomatenpflanzen (*Solanum lycopersicum*) des Kultivars MM ("Moneymaker") für Infektionsexperimente verwendet. Das Paprikakultivar ECW-10R besitzt im Gegensatz zu ECW das Resistenzgen *Bs1* (Minsavage *et al.*, 1990). ECW-20R Pflanzen besitzen das Resistenzgen *Bs2* (Minsavage et al., 1990) und ECW-70R das Resistenzgen *Bs7* (Potnis *et al.*, 2012). Moneymaker Tomatenpflanzen besitzen das Resistenzgen *Bs4* (Ballvora *et al.*, 2001). Die Anzucht der Paprika- und Tomatenpflanzen erfolgte wie in Bonas *et al.*, 1989 bzw. Marois *et al.*, 2002 beschrieben.

2.2. Methoden

2.2.1. Mikrobiologische Methoden

2.2.1.1. Generierung von *Xcv*-Deletionsmutanten

Zur Erzeugung von sX5-Deletionskonstrukten wurden ca. 600-800 Bp lange DNA-Fragmente aus genomischer DNA von Xcv 85-10 amplifiziert, welche den zu deletierenden Bereich flankieren. Das Konstrukt wurde so designt, dass die gesamte sRNA-Sequenz deletiert wird. Nach der Amplifikation der flankierenden Bereiche erfolgte der Restriktionsverdau der Fragmente und des Zielvektors pOK1 mit den entsprechenden Restriktionsenzymen und die Ligation des linearisierten Vektors mit den Fragmenten der flankierenden Bereiche. Die Klonierung in den Suizidvektor pOK1 erfolgte über *BamHI* und *XbaI*-Restriktionsschnittstellen. pOK1 kodiert ein Spectinomycin-Resistenzgen ($Spec^{R}$) und ein Levansucrase-Gen (sacB). Das Enzym Levansucrase katalysiert die Umwandlung von Saccharose in das toxische Fruktosepolymer Levan, welches zum Tod der Bakterien führt. Die fertigen Deletionskonstrukte wurden in chemisch-kompetent DH5 α (λ pir) E. coli-Zellen transformiert, überprüft und mittels triparentaler Konjugation in die entsprechenden Xcv-Stämme transferiert. Es wurden mindestens vier unabhängige Konjugationen durchgeführt und zunächst auf das erste Rekombinationsereignis, die Insertion des Plasmids, auf Spectinomycin-haltigen Platten selektiert. In einem zweiten Selektionsschritt wurde auf ein weiteres Rekombinationsereignis selektiert, welches zur Deletion des Deletionskonstruktes und weiterer chromosomale Bereiche führen konnte. Um Deletionsmutanten vom Wildtyp zu unterscheiden wurden Spectinomycin-sensitive, Saccharoseinsensitive Klone mittels Kolonie-PCR analysiert. Verwendet wurden Oligonukleotide, welche in den flankierenden Bereichen zu deletierender und in dem zu deletierenden chromosomalen Bereich binden. Ein letztes Oligonukleotidpaar wurde so gewählt, dass ein Oligonukleotid theoretisch im Deletionskonstrukt und ein anderes im Chromosom binden kann.

Material und Methoden

2.2.1.2. *Xcv*-Infektionsversuche

a) Xcv-Inokulationsexperimente

Die zu analysierenden *Xcv*-Stämme wurden einen Tag auf selektiven NYG-Platten angezogen und in 10 mM MgCl₂ resuspendiert, mittels Spektrophotometer auf eine optische Dichte (OD_{600}) von 0,4 (4 x 10^8 KBE/ml) eingestellt, verschiedene Verdünnung hergestellt und mit einer Einwegspritze ohne Kanüle in die Blattunterseite junger Blätter inokuliert. Es wurden immer verschiedene Verdünnungen getestet und die zu vergleichenden Stämme in ähnliche Blattposition desselben Blattes infiltriert. Die Dokumentation der Pflanzenreaktion erfolgte zu unterschiedlichen Zeitpunkten. HR wurden 16 Stunden bis zwei Tage und Symptome drei bis sechs Tage nach Inokulation dokumentiert. Zur Visualisierung wurden Blätter, welche eine HR zeigten in Ethanol gebleicht.

b) Quantifizierung des pflanzlichen Zelltods nach Xcv-Infektion

Zur Quantifizierung des pflanzlichen Zelltods resistenter Paprikapflanzen des Kultivars ECW-10R nach *Xcv*-Infektion wurden Blätter von jeweils drei unabhängigen Pflanzen mit Bakteriensuspensionen inokuliert. Pro Pflanze und Stamm wurden jeweils 4 Blattscheiben (5 mm Durchmesser) 1-1,5 Stunden und 14-16 Stunden nach Inokulation geerntet und am Boden eines 15 ml Reaktionsgefäßes (Greiner) platziert, mit Plastikgitter bedeckt und 7 ml deionisiertes Wasser hinzugegeben. Anschließend wurden die Blattscheiben für 90 Sekunden vakuuminfiltriert und das Vakuum langsam abgelassen. Danach wurden die Blattscheiben für eine Stunde in einem Überkopfschüttler bei 100 Umdrehungen pro Minute inkubiert. Die Bestimmung der zellulären Schädigung des Blattgewebes erfolgte durch die Messung der in den Apoplasten freigesetzten Elektrolyte mittels Konduktometer (Knick, Berlin). Die Bestimmung der maximalen Leitfähigkeit erfolgte nach 10 minütigem Erhitzen der Probe auf 100°C und anschließendem Abkühlen auf Raumtemperatur. Zur Visualisierung wurde die gemessene Leitfähigkeit zur maximalen Leitfähigkeit ins Verhältnis gesetzt (% maximale Leitfähigkeit).

c) "Dip"-Inokulationsexperimente

Für Dip-Inokulationsexperimente wurden pro Stamm 50 ml Bakteriensuspension $OD_{600}= 0,1$ in 10 mM MgCl₂ hergestellt und kurz vor der Behandlung der Paprikapflanzen (ECW) mit 0,04% Silwet L-77 versehen, welches die Oberflächenspannung der Lösung herabsetzt. Es wurden mindestens drei unabhängige Pflanzen pro Experimente verwendet, von denen pro Stamm je zwei Blätter "gedippt" wurden. Dabei wurden die Blätter jeweils eine Minute in die Bakteriensuspension getaucht und anschließend der Bereich markiert, welcher eingetaucht wurde. Die Dokumentation der Symptome erfolgte sieben bis 12 Tage nach Infektion.

2.2.1.3. Messung der GFP-Fluoreszenz von GFP-Fusionsproteinen in Xcv

Die GFP-Fluoreszenzmessung von *Xcv*-Stämmen, mit GFP-Reporterkonstrukten, erfolgte wie in Schmidtke *et al.*, 2013. Die Stämme wurden über Nacht auf NYG-Agarplatten kultiviert. Anschließend wurden Bakteriensuspensionen in 10 mM MgCl₂ auf $OD_{600} = 1,0$ (1,25 x 10⁹ KBE/ml) eingestellt. Die eigentliche GFP-Fluoreszenzmessung erfolgte in einem Mikroplattenlesegerät (SpectraFluor Plus; Tecan Trading AG) bei einer Anregung von 485 nm und einer Emissionswellenlänge von 535 nm.

2.2.1.4. Motilitäts- und Biofilmexperimente

Für die Messung der Typ IV-Pilus-abhängigen Motilität wurden die Stämme *Xcv* 85-10 und 85-10 $\Delta sX13$ in flüssigem NYG bzw. Minimal Medium A bis zum Erreichen der stationären Wachstumsphase (OD₆₀₀ >1,0) kultiviert. Anschließend wurden Bakteriensuspensionen mit OD₆₀₀ = 4,0 im jeweiligen Medium hergestellt und 3 µl auf 1% ige NYG- bzw. MA-Platten getropft. Nach dem Trocknen der auf getropften Bakterienlösungen wurden die Platten erschütterungsfrei bei 30°C für mindestens 6 Tage inkubiert (Semmler *et al.*, 1999a; Kraiselburd *et al.*, 2012).

Zur Analyse der Biofilmbildung und Adhäsion an Glas der *Xcv*-Stämme 85-10 und 85-10 $\Delta sX13$ wurden 20 µl der hergestellten Bakteriensuspensionen in Reagenzgläser mit entsprechend 2 ml frischem Medium gegeben und für 14 Tage erschütterungsfrei inkubiert. Anschließend wurden die Reagenzgläser für 20 Minuten bei 60°C inkubiert und die Kulturen verworfen. Nach drei Waschschritten mit 2,5 ml ddH₂O wurden die an der Glaswand haftenden Zellen entweder mittels Coomassie (0,02% (w/v) Coomassie Brilliant Blue G250; 5% (w/v) Aluminiumsulfat-(14-18)-Hydrat, 10% Ethanol (96%), 2% ortho-Phosphorsäure (100%)), oder Kristallviolett (0,1% (w/v)) gefärbt. Überschüssiger Farbstoff wurde durch zwei Waschschritt entfernt (Friedman und Kolter, 2004).

2.2.2. Molekularbiologische und biochemische Methoden

2.2.2.1. Generierung von sRNA-Expressionskonstrukten und GFP-Reporterkonstrukten

Für die Erstellung der *sX13*-Expressionskonstrukte wurden die auf pBBR1-MCS5 basierenden (Kovach *et al.*, 1995) Vektoren pBRS und pBRM-P verwendet (Lorenz *et al.*, 2012; Schmidtke *et al.*, 2013). Für die Expression von *sX13* und *sX13*-Derivaten unter Kontrolle des nativen Promotors wurden 213 Bp stromaufwärts des annotierten 5^c-Endes von *sX13* und 25 Bp stromabwärts mittels *Golden Gate*-Klonierung über *BsaI*-Restriktionsschnittstellen kloniert. Für verschiedene *sX13*-Derivate wurden mitunter bis zu drei Module *Golden Gate*-basiert kloniert. Die in pBRS klonierten *sX13*-Derivate wurden dagegen über *EcoRI*- und *HindIII*-Restriktionsschnittstellen in den Zielvektor inseriert. pBRS erlaubt die Klonierung von sRNAs direkt hinter den *lac*-Promotor, so dass nur wenige

Nukleotide Vektorsequenz an die sRNA fusioniert werden. Die Erstellung der *sX13*-Derivate mit Punktmutationen in den Loops erfolgte PCR-basiert, indem die einzuführenden Mutationen in den Oligonukleotiden enthalten waren und das gesamte Plasmid amplifiziert wurde. Für die Generierung der GFP-Reporterkonstrukte wurde der promotorlose Vektor pFX-P (Schmidtke *et al.*, 2013), welcher auf pDSK602 basiert (Masui *et al.*, 1983; Murillo *et al.*, 1994), genutzt. pFX-P enthält einen *gfp*-Leserahmen ohne ATG. In einer *Golden Gate*-Klonierungsreaktion wurde ein *lac*-Promotorfragment zusammen mit verschiedenen DNA-Fragmenten von Genen von Interesse kloniert. Diese Fragmente enthielten den 5'-UTR und 10-20 Codons (Tabelle 3).

2.2.2.2. Generierung von Templates für *in vitro*-Transkription

Zur Erstellung von Templates für die *in vitro*-Transkription von RNAs wurde das Gen von Interesse mittels PCR amplifiziert, wobei durch das 5^c-Oligonukleotid die Sequenz des T7-Promotors in das PCR-Produkt eingebracht wurde. Anschließend wurde entweder das PCR-Produkt *blunt end* in den Vektor pUC57 (Thermo Fisher Scientific) kloniert und als Template für die Amplifikation des *in vitro*-Transkriptionstemplates genutzt oder das PCR-Produkt wurde direkt als Template genutzt.

2.2.2.3. In vitro-Transkription und 5'-radioaktiv-Markierung von RNAs

Die *in vitro*-Transkription von RNA wurde mittels MEGAscript® T7 Transcription Kit (Ambion) nach Herstellerangaben durchgeführt. Ca. 100 ng PCR-Template wurden in einem 20 μ l Standardreaktionsansatz eingesetzt, welcher bei 37°C für ca. 16 Stunden inkubierte. Nach der Reinigung der RNA (Kapitel 2.2.2.4) wurde die RNA mittels thermosensitiver alkaliner Phosphatase (FastAP Thermosensitive Alkaline Phosphatase, Thermo Fisher Scientific) dephosphoryliert und mittels Polynukleotidkinase (PNK; Thermo Fisher Scientific) und γ -³²P-ATP radioaktiv-markiert. Anschließend wurde die RNA von nicht umgesetzten γ -³²P-ATP-Moleküle mittels Illustra MicroSpin G-25 Columns (GE Healthcare Life Sciences) gereinigt.

2.2.2.4. RNA-Isolierung aus Xcv und nach in vitro-Transkription

Die zu analysierenden *Xcv*-Stämme wurden in NYG-Medium über Nacht angezogen und am nächsten Morgen in frischem Medium bis zu einer OD₆₀₀ von 0,7-1,0 angezogen. Die RNA-Isolierung erfolgte mit TRI-Reagenz (Trizol) (Chomczynski und Sacchi, 1987; Hartmann *et al.*, 2005). Zur vereinfachten Phasentrennung wurden Phase Lock GelTM Tubes (5Prime GmbH) genutzt. Danach wurde ein DNaseI-Verdau durchgeführt (Roche Diagnostics) und anschließend mit PCI-Fällung gereinigt (Phenol-Chloroform-Isoamylalkohol) (Hartmann *et al.*, 2005). Anschließend wurde die RNA mittels 0,3 M Natriumacetat und Ethanol unter Zusatz von ca. 20 µg Glykogen (Thermo Fisher Scientific) über Nacht bei -20°C gefällt. Die RNA-Konzentrationen wurde mittels NanoDrop® ND-1000 Spectrophotometer (NanoDrop Technologies, USA) bestimmt. Die Reinigung der *in vitro*-Transkriptionsreaktionen erfolgte mittel PCI und Phase Lock GelTM Tubes.

2.2.2.5. cDNA-Synthese und quantitative "Realtime"-PCR (qRT-PCR)

Zum Umschreibung von RNA in cDNA wurde das RevertAid[™] H Minus First Strand cDNA Synthesis Kit (Fermentas GmbH) nach Angaben des Herstellers verwendet. 2 µg Gesamt-RNA wurden mit 0,2 µg Random-Hexamer-Oligonukleotiden in cDNA umgeschrieben. Für anschließenden quantitative "Realtime"-PCR Analysen (qRT-PCR) wurde jeweils eine 1:100 Verdünnung der cDNA eingesetzt. qRT-PCR Analysen wurden durchgeführt wie in Schmidtke *et al.*, 2013 beschrieben.

2.2.2.6. Northern-Blot-Analysen

Die *in vivo*-Synthese der sX13-Derivate wurde mittels Northern-Blot-Analysen überprüft (Schmidtke *et al.*, 2012; Schmidtke *et al.*, 2013). Wenn nicht anders beschrieben, wurden 5 μg Gesamt-RNA mit Formamid-Ladepuffer versetzt, bei 95°C denaturiert und auf einem 6%igen (v/v) 7 M Harnstoff-Polyacrylamidgel elektrophoretisch getrennt. Als Größenstandard diente γ-³²P-radioaktiv-markierter DNA-Marker (pUC Mix, 8; Fermentas GmbH). Mittels Tank Blot-Verfahren wurde die RNA auf eine Nylon-Membran (Hybond XL – GE Healthcare GmbH) transferiert und mittels UV-Crosslink (CL-1000 Ultraviolet Crosslinkers) kovalent an die Membran gebunden. Prähybridisierung und Hybridisierung der Membran erfolgte für jeweils 1,5 h bzw. 3 h bei 42°C in Rapid Hyb Buffer (GE Healthcare GmbH). Die Hybridisierung erfolgte mit 5'-radioaktiv-markierten Oligonukleotidsonden. Nach mehreren Waschschritten, erfolgte die Detektion der Signale mittels Phosphoimagersystem FLA-3000 (Fujifilm) und die Auswertung mit der Software Aida V.3.25. Um Membranen mehrmals hybridisieren zu können, wurden diese in kochendem, SDS-haltigen Wasser inkubiert und die radioaktiv-markierten Sonde entfernt.

2.2.2.7. In vitro-RNA-RNA-Interaktionsstudien mittels Electromobility shift assay (EMSA)

5 nM *in vitro*-transkribierte 5'-radioaktiv-markierte sX13-RNA wurde mit steigenden Konzentration *in vitro*-transkribierter mRNA-Fragmente in 1×*Structure buffer* (10×*Structure buffer*: 100 mM Tris, pH 7.0 ;1 M KCl; 100 mM MgCl₂) zusammen mit 1 μg Hefe-RNA (Ambion) in einem 10 μl Ansatz 15 min bei 37°C inkubiert. Die finalen Konzentrationen der mRNAs sind in der Abbildung angegeben. Vor der elektrophoretischen Auftrennung des Reaktionsansatzes auf einem 6%igen nativen-Polyacrylamidgel in 0,5×TBE-Puffer wurde dieser mit 3 μl nativem Ladepuffer versetzt. Die Elektrophorese erfolgte bei 300 V für ca. 1,5 h bei ca. 4°C. Anschließend wurden die Gele getrocknet und mittels Phosphoimagersystem FLA-3000 (Fujifilm) dokumentiert.

2.2.2.8. In vitro-sRNA-Strukturkartierung

Generell wurde die Strukturkartierung wie in Waldminghaus *et al.*, 2009 beschrieben durchgeführt und ggf. angepasst. Für die enzymatische Kartierung der sX13-Sekundärstruktur wurde 5^c-radioaktivmarkierte RNA verwendet. 30.000 cpm (*counts per minute*) RNA pro Reaktionsansatz wurden eine Minute lang bei 95°C denaturiert, anschließend renaturiert und mit 1 µg Hefe-RNA und 10×*Structure buffer* versetzt. Der partielle enzymatische Verdau erfolgte mit RNase T1 und V1 (0,01 bis 0,0002 u; Ambion) und die Generierung der alkalischen Leiter erfolgte durch Inkubation von 30.000 cpm RNA mit alkalischem Hydrolysepuffer (Ambion). Der Verdau wurde durch die Zugabe von Formamid-Ladepuffer nach fünf Minuten gestoppt. Die Analyse der Proben erfolgte auf 12%igen (v/v) 7 M Harnstoff-Polyacrylamidgel durch elektrophoretische Auftrennung und Autoradiografie.

2.2.2.9. Die Synthese und Reinigung von PP7::MBP mittels His₆-Epitop

Die Synthese von PP7::MBP-His₆ erfolgte von pET28(*PP77::MBB::His₆*) (AG Wahle) in *E. coli* Rosetta DE3 pLSY. Die Zellen wurden nach der Transformation in LB-Medium mit Kanamycin bei 37° C bis zu einer OD₆₀₀= 1,2 angezogen und anschließend 1:1 mit kaltem LB-Medium mit 2 mM IPTG verdünnt. Danach inkubierten die Zellen für drei Stunden bei Raumtemperatur und wurden durch Zentrifugation 12 min bei 5000 g und 4°C geerntet. Die Lagerung des Zellpelletes erfolgte bei -20°C.

Pro 200 ml Kultur wurde das Zellpellet in 3 ml Lysispuffer (Tris pH 7,5 20 mM; KCl 500 mM; Imidazol 20 mM; Glycerin 10%) mit PMSF (8 mg/ 30ml), einer Spatelspitze Lysozym und DNase I gelöst und anschließend dreimal mit einer *French press* (SLM Aminco) aufgeschlossen. Die darauffolgende Affinitätschromatographie des löslichen Lysates erfolgte mittels Äkta (Äktapurifier; GE Healthcare), wobei ~35 ml Zellextrakt mittels Super-Loop auf eine 5 ml NiNTA-Säule geladen wurden und mittels Stufengradienten elutiert wurden (Lysispuffer mit: 50, 100, 250 und 500 mM Imidazol). Danach wurden die Fraktionen mit gewünschter Proteinqualität dialysiert (Dialysepuffer: Tris pH 7,5 20 mM; KCl 50 mM, Glycerin 10%) und anschließend mittels Anionenaustauscher (MiniQ-Säule,) behandelt (Puffer A = Dialyse Puffer und Puffer B: Tris pH 7,5 20 mM; KCl 2 M; Glycerin 10%). Die Konzentrierung der Proteinlösung erfolgte mittels Amicon Ultra Centrifugal Filter Units (Millipore) mit einer Ausschlussgröße von 30.000 Da bei 4°C durch Zentrifugation. Die fertigen Proteinlösungen wurden in flüssigem Stickstoff schockgefroren und bei -20°C gelagert. Die Durchführung der Proteinreinigung wurde unterstützt durch D. Blüher.

2.2.2.10. SDS-PAGE/Tricine-PAGE und Western-Blot

Proteine wurden entsprechend ihrer molekularen Masse mittels SDS- oder Tricine-Polyacrylamid-Gelelektrophorese (SDS- oder Tricine-PAGE) aufgetrennt. Für die Proteomanalytik (Kapitel 2.2.2.14. bzw. 3.2.) wurden die Gele mit kolloidalem Coomassie gefärbt (Kang *et al.*, 2002). Der

immunologische Nachweis von Proteinen erfolgte mittels Western-Blot, wobei die Proteine mittels Tank-Blot Verfahren auf Nitrocellulose-Membranen übertragen wurden. Die Detektion der Proteine erfolgte mittels Chemilumineszenz-Nachweis über einen Peroxidase-gekoppelten sekundären Antikörper (Verdünnung 1:10.000).

Primärantikörper	Sekundärantikörper	Hersteller/ Referenz
α-HrcJ	Kaninchen-IgG	Rossier et al., 2000
α-HrcN	Kaninchen-IgG	Rossier et al., 2000
α-HrpB1	Kaninchen-IgG	Rossier et al., 2000
α-GroEL	Kaninchen-IgG	Stressgene

Tabelle 5: Verwendete Antikörper

2.2.2.11. Affinitätschromatographie mittels *in vitro-* oder *in vivo-*transkribierter Epitop-markierter sX13-Derivate

Zur Identfizierung sX13-gebundener Proteine wurden Affinitätschromatographie-Experimente mit Epitop-markierter sRNA durchgeführt. Die Anzucht der verwendeten *Xcv*-Stämme 85-10 Δ sX13 pBRM-P, 85-10 Δ sX13 p_{nat}(*modPP7::sX13*) und 85-10 pBRM-P erfolgte in NYG-Medium bis OD₆₀₀= 0,9 – 1,2. Die Affinitätschromatographie wurde mit einigen Anpassungen wie in Said *et al.*, 2009 beschrieben durchgeführt. Sowohl für den *in vitro*- als auch *in vivo*- Versuchsaufbau wurden 50 ml Bakterienkultur (ca. 50 OD-Einheiten) zur Herstellung bakterieller Lysate in Puffer A (20 mM Tris-HCl pH 8,0; 150 mM KCl; 1 mM MgCl₂; 1 mM DTT) genutzt. Die Amylose-Matrix (NEB) wurde laut Herstellerangaben vorbereitet und mit 500 pmol PP7::MBP beladen und mit BSA und Hefe-RNA blockiert. Anschließend wurde der gereinigte Zellextrakt zusammen mit 22 µg/ml Heparin, 2 mM DTT und 2 µl RNasin (40 u/µl; Promega) auf die mit dem PP7::MBP Protein beladene Amylosematrix gegeben und für 30 min bei 4°C in einem Überkopfschüttler inkubiert. Nach mehreren Waschschritten (20 mM Tris-HCl pH 8,0; 1 M KCl; 1 mM MgCl₂; 1 mM DTT) wurde mit 15 mM Maltoselösung eluiert.

2.2.2.12. Ribosomenprofil mittels Saccharosedichtegradientenzentrifugation

Die Anzucht der *Xcv*-Stämme erfolgte ausgehend von einer Vorkultur in NYG-Medium bis $OD_{600} = 0,6$. Danach wurde den Kulturen Chloramphenicol in einer Konzentration von 200 mg/ml zugesetzt und für 10 min inkubiert. Zellextrakte wurden hergestellt unter Verwendung der B-PER-Reagenz (Thermo Scientific) laut Herstellerangaben (ca. 20 OD-Einheiten = 200 mg Zellen). Ein Saccharosegradient von 7% – 47% wurde mittel Gradient Master (Biocomp) aus je 6 ml Gradientenpuffer (10 mM Tris-HCl pH 7,8; 60 mM NH₄Cl; 10 mM MgCl₂ und 1 mM DTT) mit 7% bzw. 47% Saccharose hergestellt, so dass in den Zentrifugenröhrchen insgesamt 12 ml Saccharosegradient enthalten waren. 500 µl des löslichen Zellextrakts wurden vorsichtig auf den
Gradienten geladen und anschließend für 4 h bei 34.600 rpm und 4°C mit einem Beckman SW40-Rotor in einer Ultrazentrifuge zentrifugiert, wobei am Ende der Zentrifugation der Rotor nicht abgebremst wurde. Die Fraktionierung der Saccharosegradienten erfolgte mittels GradiFrac-System (Model: A-11417), wobei je Fraktion 24 Tropfen gesammelt wurden (insgesamt 18 Fraktionen). Die Zusammensetzung der Fraktionen wurde durch die UV-Einheit photometrisch im Bereich von 254 nm untersucht und dokumentiert. Die Ribosomenprofilanalyse wurde mit einigen Änderung wie in Zhang und Inouye, 2011 beschrieben durchgeführt. Anschließend wurde die RNA der Fraktionen für Northern-Blot-Analysen gereinigt.

2.2.2.13. Filter-Bindungsexperimente mit CsrA

Die CsrA-Filter-Bindungsexperimente wurden durchgeführt wie in Wahle, 1991 beschrieben, mit folgenden Änderungen: Die *in vitro*-Transkription von sX13 und sX16 wurde wie in Kapitel 2.2.2.3. durchgeführt, wobei die RNAs radioaktiv *body*-markiert wurden. 500 fmol radioaktiv markierte RNA wurde mit verschiedenen Mengen CsrA (50 µl Ansätze) für 20 Minuten bei Raumtemperatur in Filter-Bindepuffer (50 mM Tris-HCl, pH 8,0; 10% Glycerol; 0,2 mg/ml BSA; 0,01% Nonidet P-50; 1 mM EDTA; 1 mM Dithiothreitol; 100 mM KCl) inkubiert. Anschließend wurden 45 µl der Reaktionsansätze über einen Nitrocellulose-Filter gegeben und mittels Wasserstrahlpumpe filtriert. Danach wurden die Filter mit zweimal 4 ml Waschpuffer (10 mM Tris-HCl, pH 8,0; 100 mM NaCl) gewaschen und abschließend die auf dem Filter verbliebene Radioaktivität mittels Szintillationszähler bestimmt.

2.2.2.14. Vergleichende Proteomanalyse

Die *Xcv*-Stämme 85-10 und 85-10 $\Delta sX13$ wurden in Minimal Medium A pH 7 und NYG-Medium bei 30°C angezogen. Die Kulturen wurden beim Übergang von der exponentiellen zur stationären Wachstumsphase OD₆₀₀ 0,8 geerntet. Nach der Zentrifugation wurden die Zellpellets einmal mit Wasser gewaschen und erneut zentrifugiert. Die Zellpellets wurden mittels *French press* aufgeschlossen und die Proteinkonzentration des Überstandes mittels Nanodrop bestimmt.

Die Anzucht der Referenzstämme (*Xcv* 85-10 und 85-10 $\Delta sX13$) erfolgte in MA⁺. MA⁺-Medium ist Minimal Medium A (Kapitel 2.1.1.), in dem Casaminosäuren gegen Bioexpress-Medium CGM-1000N (www.isotope.com) ausgetauscht wurden. Das Ammoniumsulfat wurde ebenfalls gegen Ammoniumsulfat, bestehend aus N¹⁵, ausgetauscht (NLM-713-10-PK; www.isotope.com). Die Stämme wurden sowohl in der Vorkultur als auch Hauptkultur in MA⁺ kultiviert. Die Hauptkultur wurde mit OD₆₀₀ 0,05 angeimpft und bis OD₆₀₀ 0,8 kultiviert. Die Aufbereitung der Proteinproben erfolgte wie oben beschrieben. Die Proteinextrakte der beiden Referenzstämme wurde im Verhältnis 1:1 gemischt. Abschließend wurde die gemischte Referenzprobe mit den zu untersuchenden Proteinproben der Stämme 85-10 und 85-10 $\Delta sX13$ gemischt. Das Endmischungsverhältnis war 1:1:2. Die so gemischten Proben wurden mittels 1D SDS-PAGE aufgetrennt, kolloidal Coomassie gefärbt, fixiert und zur Analyse an A. Otto (Universität Greifswald, Institut für Mikrobiologie) versandt. Ergänzende Informationen zu den MS-Analysen (Kapitel 3.2. und 3.6.) befinden sich im Anhang.

2.2.3. Bioinformatische Methoden und Programme

2.2.3.1. Verwendete bioinformatische Programme

Die in dieser Arbeit verwendeten Programme sind in Tabelle 6 gelistet. Homologie-Suche wurde BlastN. BlastP und **TBlastN** der NCBI Genomdatenbank mittels durchgeführt (http://blast.ncbi.nlm.nih.gov/Blast.cgi; National Center for Biotechnology Information, U.S. National Library of Medicine 8600 Rockville Pike, Bethesda MD, 20894 USA). Sequenzvergleiche wurden mit ClustalW2 und Jalview durchgeführt. Die Vorhersage von sRNA-Sekundärstrukturen erfolgte mittels mFold und die Analyse der Konsensus-Sekundärstrukturen mittels LocaRNA. Proteinsequenzen wurden mittels Pfam und InterProScan analysiert. Die Übersetzung des Xcv-Genoms in die sechs Leserahmen erfolgte mittels http://mankinlab.cpb.uic.edu/trans.html.

Programmbezeichnung	Homepage	Referenz			
Artemis	http://www.sanger.ac.uk/resources/software/artemis/	Rutherford et al., 2000			
CLC Main Workbench 6	http://clc-main-workbench.software.informer.com/6.5/	Quiagen			
ClustalW2	http://www.ebi.ac.uk/Tools/msa/clustalw2/	Li et al., 2015			
Rfam	http://rfam.sanger.ac.uk/	Nawrocki et al., 2015			
Pfam	http://pfam.sanger.ac.uk/	Finn et al., 2013			
mFold	http://mfold.rit.albany.edu/?q=mfold	Zuker, 2003			
LocaRNA	http://rna.informatik.uni-freiburg.de/LocARNA/Input.jsp	Smith et al., 2010			
InterProScan	http://www.ebi.ac.uk/Tools/pfa/iprscan/	Jones et al., 2014			
BProm	http://linux1.softberry.com/berry.phtml?topic=bprom&group =programs&subgroup=gfindb	Softberry, Inc.			
Voronto	http://vis.usal.es/voronto/Intro.html	Santamaría und Pierre,			
		2012			
Metabion Oligo Calculator	http://www.metabion.com/biocalc/index.html	Metabion international AG			
Jalview	http://www.jalview.org/	Waterhouse et al., 2009			

Tabelle 6: Verwendete Programme

2.2.3.2. R-basierte Datenanalysen

Für die R-basierte Analyse der Proteomdaten wurde RStudio (https://www.rstudio.com/) verwendet und die Student's T-Test-Analyse wurde mittels Excel druchgeführt. Die verwendeten Packages sind: gplots, ggplots2, heatmap, heatmap.plus und stats. Die Daten wurden als .txt oder .csv in die Arbeitsumgebung geladen. Die genutzten Funktionen sind in Tabelle 7 gelistet.

	T
Anwendung	Funktion
Korrelation	>cor(x, y)
Binomialverteilung	>binom.test(x=,n=,p=)
Hauptkomponentenanalyse, PCA-Plot	>plot(x)
Heatmap mit hierarchischer Clusteranalyse	>heatmap.2(data, na.color="black",
	key.title=NA, key.xlab=NA, key.ylab=NA, keysize=0.8,
	dendrogram="row", margin=c(5,32), trace="none",
	cexCol=1, col=greenred(250))

 Tabelle 7: Verwendete R-Funktionen

Dendrogramm	>d <- dist(as.matrix(mtcars))
	> hc <- hclust(d)
	> plot(hc)
Fischer-Exakt-Test	fisher.test(x, y = NULL, workspace = 200000, hybrid =
	FALSE, control = list(), or = 1, alternative = "two.sided",
	conf.int = TRUE, conf.level = 0.95, simulate.p.value =
	FALSE, B = 2000)

3. Ergebnisse

3.1. Die molekulare Charakterisierung von sX13

3.1.1. Ist sX13 möglicherweise länger als bisher annotiert?

Auf der Grundlage von Vorarbeiten von C. Schmidtke wurde sX13 mit einer Länge von 115 Nt beschrieben (Schmidtke et al., 2012). Allerdings wurden bei der Analyse Hfq- und CsrA-gebundener sRNAs mittels Ko-Immunopräzipitation und RNA-Seq neben der 115 Nt langen sX13 auch eine 125 Nt-lange sX13-RNA detektiert (schematische Darstellung Abbildung 4; J. Brock, 2013). Im weiteren Verlauf dieser Arbeit wird die publizierte sX13-Spezies als sX13 (Schmidtke et al., 2012) bezeichnet und die 125 Nt sX13-RNA als sX13long (oder sX13L). Die Strukturvorhersage von sX13long ergab im Unterschied zu sX13, vier lange Doppelstrangbereiche, welche durch 1-2 Nt lange Einzelstrangbereiche separiert sind (Abbildung 34 A siehe Anhang). Die Vorhersage der Konsensussekundärstruktur der sX13long-Familienmitglieder aus der Gruppe der Xanthomonadaceae hat gezeigt, dass die Struktur ebenfalls konserviert ist, wobei der erste Doppelstrangbereich weniger stark konserviert ist, als die Doppelstrangbereiche an deren Ende sich die C-reichen einzelsträngigen Loops anschließen (Abbildung 3; Abbildung 34 B siehe Anhang).

Abbildung 4: Schematische Darstellung des sX13-Lokus in Xcv

Die Pfeile kennzeichnen Gene und deren Leserichtung. Das grüne Kästchen kennzeichnet den mit Softberry (Solovyev und Salamov, 2011) vorhergesagten sX13-Promotor und die rote Pfeilspitze des sX13-Gens illustriert den vorhergesagten Rho-unabhängigen Terminator. Die gestrichelte Linie markiert die in den RNA-Seq Daten von J. Brock gefundene sX13-Spezies, die vornehmlich identifiziert wurde. Δ kennzeichnet den chromosomalen Bereich der in 85-10 (AsX13 deletiert wurde. Die klonierten chromosomalen Bereiche, für Komplementationsanalysen sind gekennzeichnet (piacsX13, piacsX13L und pnatsX13). piac bezeichnet Konstrukte, deren Expression durch einen lac-Promotor gesteuert wird und p_{nat} bezeichnet ein Konstrukt, dessen Expression durch den sX13-Promotor vermittelt wird.

Die von C. Schmidtke erstellte sX13-Deletionsmutante weist eine 148 Bp Deletion des sX13-Lokus auf (Schmidtke et al., 2013) und wurde, historisch bedingt, zunächst auf der Basis eines lac-Promotor getriebenen Expressionskonstrukts komplementiert, welches von C. Schmidtke erstellt wurde. Die lac-Promotor getriebene Expression in Xcv ist konstitutiv (Wengelnik et al., 1996a). Das Komplementationskonstrukt von C. Schmidtke placsX13 beinhaltet die 115 Bp-Region des annotierten sX13-Lokus' und zusätzlich 3 Bp stromaufwärts und 24 Bp stromabwärts der sRNA (Schmidtke et al., 2013). C. Schmidtke zeigte in Northern-Blot-Analysen, dass dieses Konstrukt nur 25% der Wildtyp-Expressionsrate von sX13 erreicht und detektierte verschiedene spezifische RNA-Spezies (Schmidtke 2013). Diese Problematik zum Anlass nehmend, et al., sollten weitere ektopische

Expressionskonstrukte erstellt werden, um im Anschluss daran funktionelle Bereiche von sX13 zu identifizieren.

Basierend auf den RNA-Seq Daten von J. Brock (Brock, 2013) wurde in pBRS (Schmidtke *et al.*, 2013) ein Expressionskonstrukt unter Kontrolle des *lac*-Promotors erstellt, dessen 5'-Ende 7 Bp und dessen 3'-Ende 1 Bp länger sind, als das $p_{lac}sX13$ -Expressionskonstrukt (Abbildung 4). Dieses Konstrukt wird im Folgenden als $p_{lac}(sX13L)$ bezeichnet. Ein weiteres *sX13*-Expressionskonstrukt unter Kontrolle des nativen Promotors wurde in pBRM-P (Lorenz *et al.*, 2012) kloniert, $p_{nat}sX13$. Hierfür wurden 213 Bp stromaufwärts des publizierten 5'-Endes von *sX13* zusammen mit 25 Bp stromabwärts der sRNA in pBRM-P kloniert (Abbildung 4). Dieses Konstrukt wurde erstellt, da vermutete wurde, dass der native Promotor im Vergleich zum *lac*-Promotor zu stärkerer Expression führt.

C. Schmidtke hatte beschrieben, dass die Deletion von sX13 zu einer verzögerten HR nach Inokulation in ECW-10R-Pflanzen führt (Schmidtke et al., 2013). Dieser Phänotyp diente zur Untersuchung der Funktionalität verschiedener sX13-Derivate und Komplementationskonstrukte. Um zu untersuchen, ob die neuen Expressionskonstrukte in der Lage sind die sX13-Mutante zu komplementieren, wurden diese in $85-10\Delta sX13$ konjugiert und Infektionsexperimente und Leitfähigkeitsmessungen in resistenten ECW-10R-Pflanzen durchgeführt (Abbildung 5 A). Leitfähigkeitsmessungen wurden durchgeführt um den Einfluss auf die AvrBs1-vermittelte HR zu quantifizieren. Hierbei wird die zelluläre Schädigung des Blattgewebes durch die Messung der in den Apoplasten freigesetzten Elektrolyte bestimmt. Als Kontrollstämme dienten 85-10 und 85-10 $\Delta sX13$, welche den Kontrollvektor pBRS trugen. Es wurde nur ein Kontrollvektor für diese Experimente gewählt, da pBRS und pBRM-P beide pBBR1-MCS5-Derviate sind (Lorenz et al., 2012; Schmidtke et al., 2013). 1,5 Stunden nach Inokulation (hpi) aller fünf Stämme wurden ähnliche Leitfähigkeiten gemessen und phänotypisch keine Unterschiede detektiert. 16 hpi wurden deutliche Unterschiede festgestellt: Xcv 85-10 pBRS, 85-10ΔsX13 placsX13L und 85-10ΔsX13 p_{nat}sX13 führten zu deutlich sichtbaren Zelltodreaktionen, die Stämme 85-10ΔsX13 pBRS und 85-10ΔsX13 placsX13 hingegen noch nicht (Abbildung 5 A). Die Leitfähigkeit des Blattgewebes, das mit 85-10\DeltasX13 pBRS und 85-10\DeltasX13 placsX13 infiziert war, zeigte 16 hpi vergleichbare Werte zum Ausgangswert (1,5 hpi) und signifikant geringere Werte als Blattgewebe, infiziert mit Xcv 85-10 pBRS, 85-10AsX13 placsX13L und pnatsX13 16 hpi (Abbildung 5 A). Zu späteren Zeitpunkten wurde deutlich, dass auch $85-10\Delta sX13$ placsX13 zu einer schnelleren HR führt, als 85-10 $\Delta sX13$ (Abbildung 7).

Ergebnisse

Abbildung 5: Komplementationsanalysen der *sX13*-Deletionsmutante mit ektopisch exprimierten *sX13*-Derivaten. A) Quantifizierung der AvrBs1-abhängigen HR durch Leitfähigkeitsmessungen. Die Stämmen *Xcv* 85-10 und 85-10 Δ *sX13* mit p_{lac}*sX13*, p_{lac}*sX13L*, p_{nat}*sX13L*, p_{nat}*sX13L*

Die Ergebnisse wurden in mindestens einem unabhängigen Experiment reproduziert.

Die Synthese von sX13 wurde mittels Northern-Blot-Analysen überprüft. Die Abbildung 5 B zeigt, dass ein sX13-spezifisches Signal bei ca. 110 Nt für den Wildtyp, nicht aber für die *sX13*-Deletionsmutante detektiert wurde. Ein vergleichbares Signal wurde detektiert, wenn der *sX13*-defiziente Stamm das Konstrukt $p_{nat}sX13$, welches die Expression von *sX13* unter Kontrolle des nativen Promotors steuert, exprimiert (Abbildung 5 B). Die Expression der 125 Nt-Version von *sX13* $p_{lac}sX13L$ unter Kontrolle des *lac*-Promotors führte zur Detektion eines spezifischen Signals, welches einer etwas längeren sX13-RNA entspricht (Abbildung 5 B). Wie zuvor von C. Schmidtke beschrieben zeigte das Konstrukte $p_{lac}sX13$ im Stamm 85-10 $\Delta sX13$ $p_{lac}sX13$ mehrere Signale, eines knapp unterhalb von 147 Nt Markierung und ein anderes unterhalb des sX13-spezifischen Signals im Wildtyp (Abbildung 5 B).

Diese Ergebnisse zeigen, dass die Konstrukte $p_{nat}sX13$ und $p_{lac}sX13L$ zur Expression Wildtypähnlicher sX13-RNA-Mengen und -Spezies führten und den *in planta*-Phänotyp einer *sX13*-Mutante am besten komplementierten. Im Gegensatz dazu führte die Expression des Konstrukts $p_{lac}sX13$ im Northern-Blot zu stark vom Wildtyp abweichenden Signalen und es komplementierte die *sX13*-Mutante schlechter.

3.1.2. Verifizierung der vorhergesagten sX13-Sekundärstruktur

Zunächst sollte die vorhergesagte Sekundärstruktur von sX13 experimentell mittels *in vitro*-Strukturkartierung bestätigt werden. Hierfür wurde *in vitro*-transkribierte 5'-radioaktiv-markierte sX13-RNA (115 Nt) mit den RNasen V1 und T1 inkubiert und die Produkte elektrophoretisch getrennt (Abbildung 35 im Anhang). RNase T1 schneidet bevorzugt einzelsträngige RNA nach Guanin-Resten, 28 wohingegen RNase V1 doppelsträngige Bereiche zufällig schneidet. Die Auswertung des Autoradiogramms zeigte, dass RNase V1 im Bereich des ersten und zweiten vorhergesagten Stems von sX13 schneidet, wohingegen keine Signale für die korrespondierenden Loop-Regionen und den 5'-Bereich von sX13 detektierbar waren. Diese enzymatische Strukturkartierung bestätigt die drei langen Stem-Loops in sX13, nicht aber den kurzen Stem im 5'-Bereich (Abbildung 35 im Anhang).

3.1.3. Die Identifizierung funktioneller Bereiche in sX13

Ausgehend von der experimentell bestätigten Sekundärstruktur von sX13 sollten funktionelle Bereiche identifiziert werden. Dazu wurde der 5'-Bereich von sX13 und die 4C- bzw. 5C-Bereiche der ungepaarten Loop-Regionen untersucht und je zwei Cytosione zu Guaninen mutiert (Abbildung 6). Diese Mutationen wurden gewählt, da sich die vorhergesagten Sekundärstrukturen der Derivate im Vergleich zur Wildtyp sX13-RNA nicht veränderten. Weiterhin sollten es die gewählten Mutationen erleichtern, in Folgeexperimenten kompensatorische Mutationen in Zielgene einzuführen. Die Generierung verschiedener sX13-Derivate erfolgte zunächst auf der Grundlage des zuvor erstellten $p_{lac}sX13$ -Konstruktes (Schmidtke *et al.*, 2013). Später wurden die gleichen Mutationen im *sX13*-Expressionskonstrukt unter Kontrolle des nativen Promotors $p_{nat}sX13$ eingeführt (Kapitel 3.1.1.).

Abbildung 6: Schema der sX13-Sekundärstruktur und eingeführten Mutationen

sX13-Sekundärstruktur (115 Nt) vorhergesagt mit mfold Web Server 4.6 (http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form). Die Nummerierung der Loops erfolgte auf Basis der Strukturkartierung (siehe Kapitel 3.1.1). Blau gekennzeichnet ist der einzelsträngige deletierte 5'-Bereich von sX13 auf Basis von $p_{lac}(sX13)$. Rot gekennzeichnet sind Cytosine, welche sowohl in $p_{lac}(sX13)$ als auch $p_{nat}(sX13)$ zu Guanin substituiert wurden. Die mutierten Sequenzen der Loop-Regionen sind noch einmal gesondert angegeben. (Abbildung modifiziert nach Schmidtke *et al.*, 2013, Abbildung von U. Abendroth)

Infektionsexperimente mit ECW-10R-Paprikapflanzen wurden durchgeführt. Die *sX13*-Deletionsmutante wurde partiell mit $p_{lac}sX13$, $p_{lac}sX13_L1$, $p_{lac}sX13_L2$, $p_{nat}sX13_L1$, $p_{nat}sX13_L3$ und $p_{nat}sX13_L1/3$ komplementiert (Abbildung 7 A publiziert in Schmidtke *et al.*, 2013, Abbildung U. Abendroth; Abbildung 7 B). sX13-Derivate auf Basis von $p_{lac}sX13$ mit Mutationen in Loop 3 ($p_{lac}sX13_L1/3$ und $p_{lac}sX13_L1/3$ und $p_{lac}sX13_L1/3$ intervalue for the solution of the solu

(Abbildung 7 B). Der Stamm 85-10 $\Delta sX13$ p_{lac} $\Delta 5$ 'sX13, in dem der 5'-einzelstängige Bereich in sX13 deletiert wurde, löste auf resistenten Paprikapflanzen eine schnellere HR aus. Im Vergleich zum Wildtyp begann hier die HR ca. fünf Stunden früher (Abbildung 7 A; Schmidtke *et al.*, 2013; Abbildung U. Abendroth). Die Synthese der sX13-Derivate wurde mittels Northern-Blot-Analysen überprüft (Abbildung 7 C und D).

Abbildung 7: Komplementationsanalysen der sX13-Deletionsmutante durch verschiedene sX13-Loop-Derivate

Die Xcv-Stämme 85-10 und 85-10 $\Delta sX13$ mit den Plasmiden p_{lac}sX13, p_{lac}sX13_L1, p_{lac}sX13_L2, p_{lac}sX13_L1/2, p_{lac}sX13_L1/2, p_{lac}sX13_L1/2, p_{lac}sX13_L1/2, p_{lac}sX13_L1/2, p_{lac}sX13_L2/3, p_{lac}sX

A und B) Infektionsexperimente von ECW-10R-Pflanzen mit Bakteriensuspensionen mit einer Zelldichte von 5×10^8 KBE/ml. Die Dokumentation der Reaktionen erfolgte nach zwei Tage (A) und einem Tag (B) nach Inokulation. Zur besseren Visualisierung der HR wurden die Blätter in Ethanol gebleicht. Gestrichelte Linien kennzeichnen die Infektionsbereiche.

C und D) Northern-Blot-Analyse von Gesamt-RNA der unter A und B verwendeten Stämme. Die RNA (C = 10 μ g und D = 5 μ g) wurde mit einer sX13-spezifischen Oligonukleotidsonde analysiert, eine Sonde gegen die 5S rRNA diente als Ladekontrolle.

Die Versuche wurden mindestens zweimal unabhängig durchgeführt.

Die Teilabbildungen A und C sind in modifizierter Form publiziert in Schmidtke *et al.*, 2013. C) Ergebnisse von C. Schmidtke. A, B, D) Ergebnisse von U. Abendroth

Die Northern-Blots (Abbildung 7 C und D) zeigen, dass ein sX13-spezifisches Signal bei ca. 110 Nt für *Xcv* 85-10, nicht aber für die *sX13*-Deletionsmutante detektiert wurde. Vergleichbare Signale wurde detektiert, wenn die *sX13*-Deletionsmutante die Expressionskonstrukte basierend auf $p_{nat}sX13$, exprimierte (Abbildung 7 D). Die *sX13*-Expression im Stamm 85-10 $\Delta sX13$ mit den Expressionskonstrukten auf Basis $p_{lac}sX13$ ergab für alle getesteten Loop-Derivate mehrere Signale, eines knapp unterhalb von 147 Nt Markierung und ein weiteres unterhalb des sX13-spezifischen Signals im Wildtyp (Abbildung 7 C; Schmidtke *et al.*, 2013; Abbildung C. Schmidtke). Die Intensitäten der Signale variierten leicht, allerdings wurde kein Zusammenhang zwischen der Expressionsstärke und der Fähigkeit zur Komplementation der *sX13*-Mutante festgestellt (Abbildung 7 C und D).

Zusammenfassend zeigen die Daten aus Kapitel 3.1.1. und 3.1.3., dass die C-reichen Loops von sX13 wichtig für die Funktionalität sind. Außerdem ist die Expression von *sX13* und Derivaten unter Kontrolle des nativen Promotors besser zur Komplementation der *sX13*-Mutante geeignet, da zum einen vergleichbare Mengen RNA und zum anderen keine zusätzlichen RNA-Spezies synthetisiert werden. Die Komplementationsanalysen mit sX13-Derivaten auf Basis von $p_{lac}sX13$ deuten darauf hin, dass Loops 2 und 3 von sX13 funktionell relevant sind, wohingegen die Ergebnisse der Komplementationsanalyse mit $p_{nat}sX13$ -Derivaten gezeigt haben, dass ausschließlich Loop 2 funktionell relevant ist.

3.1.3.1. sX5 – eine weitere sRNA mit C-reichen Sequenzmotiven

In *Xcv* wurde eine weitere sRNA identifiziert, welche einen C-reichen Loop besitzt, sX5 (Schmidtke *et al.*, 2012). Die *sX5*-Gene in *Xanthomonadaceae* sind hochkonserviert und mindestens 80% identisch. Die sRNA ist meist 50 Nt lang (Schmidtke *et al.*, 2012; Abbildung 8 A) und ist in einer intergenischen Region zwischen *XCV1684* und *XCV1683* auf dem Minusstrang kodiert (Schmidtke *et al.*, 2012). Im Gegensatz zu sX13 besitzt sX5 nur einen vorhergesagten Doppelstrang- und Einzelstrangbereich. Der Loop von sX5 zeichnet sich durch zwei benachbarte C-reiche Sequenzmotive aus (Abbildung 8 B).

Abbildung 8: Sequenz- und Strukturvergleich von sX5-Familienmitgliedern aus der Gruppe der Xanthomonadaceae A) Nukleotidsequenzvergleich von Rfam-Mitgliedern der sX5-Familie (Rfam 12.0, Juli 2014) aus Xcv (Xanthomonas campestris pv. vesicatoria 85-10), Xcc (Xanthomonas campestris pv. campestris B100), Xfa (Xanthomonas fuscans subsp. aurantifolii ICPB 11122), Xp (Xanthomonas perforans 91-118), Xg (Xanthomonas gardneri ATCC 19865), Xoo (Xanthomonas oryzae pv. oryzae KACC10331), Xoc (Xanthomonas oryzae pv. oryzicola BLS256), Sm (Stenotrophomonas maltophilia K279a). Stark konservierte Nukleotide sind dunkelblau unterlegt. KS Konsensussequenz.

B) Modell der konservierten Sekundärstruktur der sX5-Familienmitglieder.

LocARNA (Version 1.8.0, Vienna RNA package 2.1.8)-Vorhersage der Konsensussekundärstruktur von sX5-Familienmitgliedern aus der Gruppe der *Xanthomonadaceae*, aufgeführt in der Rfam-Datenbank (Rfam 12.0, Juli 2014). Kompensatorische Mutationen, welche die Sekundärstruktur nicht beeinflussen sind mit einem Kreis markiert. Kompatible Basenpaare sind farbig dargestellt. Die Farbe gibt die Anzahl der verschiedenen Basenpaarungen C-G, G-C, A-U, U-A, G-U oder U-G an. Die Farbtiefe nimmt mit der Anzahl inkompatibler Paare ab.

Da sX5 und sX13 C-reiche Sequenzmotive besitzen, ergab sich die Frage, ob sX13 und sX5 redundante Funktionen haben. Daher wurde zunächst versucht, mittels ektopischer Expression von *sX5* die *sX13*-Deletionsmutante zu komplementieren. Hierfür wurde zum einen der *in planta*-Phänotyp und zum anderen die Komplementation von sX13-abhängig regulierten Proteinen mittels GFP-Reportersystem untersucht. Es wurde ein Plasmid zur ektopischen Expression von *sX5* unter Kontrolle des *lac*-Promotors $p_{lac}sX5$ in *Xcv* 85-10 und 85-10 $\Delta sX13$ konjugiert. Das Plasmid wurde von J. Brock erstellt.

Wie erwartet, löste der Stamm 85-10 $\Delta sX13$ pBRS eine verzögerte HR im Vergleich zu *Xcv* 85-10 pBRS nach Inokulation in ECW-10R-Blätter aus (Schmidtke *et al.*, 2013; Abbildung 9 A, Abbildung U. Abendroth). Der Stamm 85-10 $\Delta sX13$ mit dem Expressionskonstrukt p_{nat}sX13 bzw. p_{lac}sX5 löste eine zu *Xcv* 85-10 pBRS vergleichbare HR aus (Abbildung 9 A), sodass die ektopische Expression von *sX5* die *sX13*-Mutante hinsichtlich HR-Induktion komplementierte.

Die Analyse der ausgewählten sX13-abhängig regulierten Proteine XCV3232, Hfq und XCV3927 mittels GFP-Reportersystem bestätigte deren bereits bekannte sX13-Abhängigkeit (Schmidtke *et al.*, 2013). Das GFP-Reportersystem wurde ursprünglich für *E. coli* entwickelt, um den Einfluss von sRNAs auf die Translation ihrer Ziel-mRNAs zu untersuchen (Urban und Vogel, 2007). C. Schmidtke modifizierte dieses System und machte es kompatibel für Analysen in *Xcv* (Schmidtke *et al.*, 2013). Die gemessenen Fluoreszenzwerte des Stammes 85-10 Δ sX13 pBRS waren für alle drei getesteten Reporterkonstrukte im Vergleich zu *Xcv* 85-10 pBRS höher. Wurde neben den Reporterkonstrukten auch *sX13* zur Komplementation im *sX13*-defizienten Stamm exprimiert, so waren die gemessenen Fluoreszenzwerte vergleichbar mit denen des *Xcv* 85-10 pBRS Stamms. Die Komplementation der *sX13*-Deletionsmutante mittels ektopischer Expression von *sX5* ergab unterschiedliche Ergebnisse. Der Stamm 85-10 Δ sX13 placsX5, welcher das Reporterkonstrukt für *hfq::gfp* trug, zeigte zum Wildtyp vergleichbare GFP-Fluoreszenz, wohingegen 85-10 Δ sX13 placsX5 mit den Reporterkonstrukten für *XCV3927* oder *XCV3232* zur *sX13*-Mutante vergleichbare Fluoreszenzwerte zeigte (Abbildung 9 B).

Diese Ergebnisse zeigen, dass sX5 teilweise die *sX13*-Mutante komplementiert. Dies führte zu der Hypothese, dass sX5 auch zur Virulenz von *Xcv* beiträgt. In vorangegangen Arbeiten wurde von C. Schmidtke gezeigt, dass *sX5* HrpG/HrpX-abhängig exprimiert wird (Schmidtke et al., 2012). Aus diesem Grund sollte getestet werden, ob sX5 einen Einfluss auf die Virulenz von *Xcv* hat. Hierfür wurde ein Teil des *sX5*-Lokus' im Genom von *Xcv* mit einem dafür generierten Suizidplasmid ($pOK\Delta sX5$) deletiert.

Abbildung 9: Komplementationsanalysen der *sX13*-**Deletionsmutante mit ektopischer Expression von** *sX5* Die *Xcv*-Stämme 85-10 und 85-10Δ*sX13* mit den Plasmiden p_{lac}*sX13*, p_{lac}*sX5*, p_{nat}*sX13* bzw. mit dem korrespondierenden Kontrollplasmid pBRS und den Reporterkonstrukten pFX-P*XCV3232::gfp*, pFX-P*XCV3927::gfp* oder pFX-P*hfq::gfp* wurden verwendet. A) Infektionsexperimente mit ECW-10R-Pflanzen. Die optische Dichte (OD₆₀₀) der verwendeten Inokulationslösungen und die Dokumentationszeitpunkte sind angegeben. Zur Visualisierung der HR wurden die Blätter eventuell in Ethanol gebleicht. Gestrichelte Linien kennzeichnen die Infektionsbereiche.

B) GFP-Reporterassay von *Xcv*-Stämmen, angezogen auf NYG-Festmedium. Die GFP-Fluoreszenz von *Xcv* 85-10 mit entsprechendem Reporterkonstrukt wurde auf den Wert 1, die übrigen Werte dazu ins Verhältnis gesetzt. Datenpunkte repräsentieren die Mittelwerte von zwei Experimenten, mit jeweils zwei unabhängigen Transkonjuganten. Ein Sternchen kennzeichnet einen statistisch signifikanten Unterschied zum Wildtypstamm mit pBRS. Fehlerbalken kennzeichnen die Standardabweichung. Die abgebildeten Ergebnisse (A und B) wurden in mindestens zwei unabhängigen Experimenten reproduziert.

Die Deletion von sX5 wurde in die Stämme Xcv 85-10 und 85-10 Δ sX13 eingebracht, um die Rolle beider sRNAs in der Virulenz von Xcv studieren zu können. Bakteriensuspensionen der Stämme Xcv $85-10\Delta sX13$, $85-10\Delta sX13+sX13_{chv}$ 85-10∆*s*X5 und $85-10\Delta s X 5 \Delta s X 13$ 85-10, (*sX5/sX13*-Doppeldeletionsmutante) wurden in verschiedenen Konzentrationen in die Blätter der Versuchspflanzen inokuliert. Die Xcv Stämme 85-10 und $85-10\Delta sX13+sX13_{ch}$ verursachten Krankheitssymptome in ECW-Paprikapflanzen, welche sich wie zuvor beschrieben von der sX13-Mutante unterschieden (Schmidtke *et al.*, 2013). Die durch $85-10\Delta sX5$ verursachten Symptome in ECW-Paprikapflanzen waren vergleichbar zu Xcv 85-10, aber die durch 85-10AsX5AsX13 verursachten Symptome waren im Vergleich zum Wildtyp einen halben Tag früher zu erkennen und stärker (Abbildung 10 A). Die Bildung schnellerer Symptome durch Infektion mit Xcv $85-10\Delta sX5\Delta sX13$ deutet auf einen synergetischen Effekt beider sRNAs auf die Virulenz hin. Nach Infektion resistenter ECW-10R-Pflanzen mit Xcv kam es wie erwartet zur Induktion einer HR (Minsavage et al., 1990). Die AvrBs1-vermittelte HR war deutlich schwächer im Vergleich zu Xcv 85-10, wenn 85-10 $\Delta sX13$ oder 85-10 $\Delta sX5\Delta sX13$ inokuliert wurden. Es konnte also kein Einfluss von sX5 auf die AvrBs1-HR festgestellt werden (Abbildung 10 A).

Abbildung 10: Die Doppeldeletion von sX5 und sX13 hat einen Einfluss auf die Virulenz von Xcv.

Die *Xcv*-Stämme 85-10, 85-10 $\Delta sX13$, 85-10 $\Delta sX13 + sX13_{ch}$ 85-10 $\Delta sX5$ und 85-10 $\Delta sX5\Delta sX13$ mit dem Plasmid p_{nat}sX13, dem Kontrollplasmid pBRM-P oder ohne Plasmid wurden verwendet.

A) Infektionsexperimente von Blättern von ECW-10R- und ECW-Pflanzen. Die optische Dichte (OD_{600}) der verwendeten Inokulationslösungen und die Dokumentationszeitpunkte sind in der Abbildung angegeben. Zur Visualisierung der HR wurden die Blätter in Ethanol gebleicht. Gestrichelte Linien kennzeichnen die Infektionsbereiche.

B) Quantifizierung der AvrBs1-abhängigen HR durch Leitfähigkeitsmessungen. Blätter von ECW-10R Paprikapflanzen wurden mit einer Bakteriendichte von 4×10^8 KBE/ml inokuliert. Proben wurden 1 und 16 hpi geerntet und die Leitfähigkeit ermittelt. Sternchen kennzeichnen statistisch signifikante Unterschiede zum Wildtyp mit pBRM-P (16 hpi) (Student's T-Test: P<0,05) und n.s bedeutet kein signifikanter Unterschied.

Um den Einfluss von sX5 auf die AvrBs1-vermittelte HR zu quantifizieren, wurde die zelluläre Schädigung des Blattgewebes, durch die Messung der in den Apoplasten freigesetzten Elektrolyte bestimmt. Es wurden Blätter von ECW-10R-Pflanzen mit Bakteriensuspensionen der Stämme *Xcv* 85-10, 85-10 Δ s*X13*, 85-10 Δ s*X5*, 85-10 Δ s*X5\DeltasX13* inokuliert, die jeweils pBRM-P oder p_{nat}s*X13* trugen. Leitfähigkeitsmessungen des Apoplastenvolumens erfolgten 1 und 16 hpi. Nach 1 hpi wurden ähnliche Leitfähigkeiten nach Inokulation aller fünf Stämme gemessen, und auch makroskopisch war zu diesem Zeitpunkt kein Unterschied erkennbar (Abbildung 10 B). Nach 16 h wurden deutliche phänotypische Unterschiede zwischen *Xcv* 85-10-, 85-10 Δ s*X13*- und 85-10 Δ s*X5\DeltasX13*- infiziertem Gewebe detektiert. Die Leitfähigkeit von Blattgewebe, infiziert mit 85-10 Δ s*X13* und 85-10 Δ s*X5\DeltasX13* war 16 hpi vergleichbar mit dem jeweiligen Ausgangswert (1 hpi) und signifikant geringer als die 16 hpi-Werte von Blattgewebe, infiziert mit *Xcv* 85-10, 85-10 $\Delta sX5$ und 85-10 $\Delta sX5\Delta sX13$ p_{nat}sX13 (Abbildung 10 B). Die Deletion von sX5 in Kombination mit der sX13-Deletion scheint folglich keinen Einfluss auf die AvrBs1-vermittelte HR zu haben. Das deutet daraufhin, dass sX5 nur gering zur Virulenz von *Xcv* beiträgt.

3.2. Der Einfluss von sX13 auf das Proteom von Xcv

In Vorarbeiten von C. Schmidtke (AG Bonas) wurde gezeigt, dass sX13 einen Einfluss auf die Akkumulation verschiedener mRNAs hat (Schmidtke et al., 2013). Da für viele trans-kodierte sRNAs eine post-transkriptionelle Regulation von Ziel-mRNAs beschrieben ist, welche nicht nur auf die Akkumulation von mRNAs wirkt, sondern auch deren Translation beeinflusst (Kapitel 1.3.1., Waters und Storz, 2009), wurde im Folgenden die sX13-abhängige Proteinakkumulation untersucht. In einem ersten Versuch wurde in 1D-Gel-Analysen gezeigt, dass sX13 einen Einfluss auf die Proteinakkumulation hat (U. Abendroth, Diplomarbeit, 2011). Um dies näher zu untersuchen, wurde eine vergleichende Proteomstudie durchgeführt. Mittels Gel-basierter massenspektrometrischer Analysen wurde das Proteom von Xcv 85-10 mit dem Proteom von 85-10 $\Delta sX13$ verglichen. Die Stämme wurden in dem Komplexmedium NYG bzw. Minimalmedium A pH 7 (im Folgenden als MA bezeichnet) kultiviert. Die Stämme wurden in Triplikaten angezogen, um unabhängige Proben mit einander vergleichen zu können (im Folgenden NYG- bzw. MA-Proben genannt). In Stämmen, welche in NYG angezogen wurden, sind Virulenzgene nur schwach, oder gar nicht exprimiert, im Vergleich zu Stämmen angezogen in MA (Ausubel et al., 1996; Schmidtke et al., 2013). Die Deletion von sX13 hat einen negativen Einfluss auf das in vitro-Wachstum in NYG- und MA-Medium (Schmidtke et al., 2013). Dies legt bereits nahe, dass sX13 auch nicht-Virulenz-assoziierte Prozesse von *Xcv* beeinflusst.

Für die Quantifizierung der Unterschiede zweier Proteome ist eine Referenzprobe nötig. In diesem proteomanalytischen Experiment wurde daher eine Referenzprobe stabil isotopmarkiert. Die Referenzprobe bestand aus Proteinextrakten der Xcv Stämme 85-10 und 85-10 $\Delta sX13$, welche in MA-Medium mit schwerem Stickstoff (¹⁵N) kultiviert wurden (MA⁺). Durch die ¹⁵N-Markierung erhöht sich das Molekulargewicht der Proteine. So können identische Proteine, die in MA-, NYG- und MA⁺-Proben vorliegen, aufgrund ihrer unterschiedlichen Masse unterschieden werden. Die Proteinextrakte der Referenzstämme wurden für die massenspektrometrische Analyse 1:1 gemischt (Abbildung 11). Eine Mischung der MA⁺-Proteinextrakte der Stämme 85-10 und 85-10ΔsX13 als Referenzprobe erfolgte in der Annahme, dass möglicherweise einige Proteine nur in einem der beiden Extrakte enthalten waren. Für die Quantifizierung der Proteine des Proteoms von Xcv 85-10 wurden die Proteinextrakte aus NYG bzw. MA (NYG- bzw. MA-Proben) 1:1 mit der gemischten Referenzprobe (Endmischungsverhältnis 1:1:2). Analog dazu wurde mit den Proben der versetzt sX13-Deletionsmutante verfahren. Durch die Verwendung der gleichen Referenz in allen zu analysierenden Proteinproben, wurde simultan das Verhältnis von markierten zu nicht-markierten Proteinen in einer Probe bestimmt. Dies lässt die Quantifizierung des Unterschieds zwischen dem Proteom beider Stämme zu. Die erhaltenen Proteinproben, bestehend aus dem zu untersuchenden Extrakt und der Referenz, wurden elektrophoretisch getrennt, fixiert, gefärbt und zur massenspektrometrischen Analyse an A. Otto (Institut für Mikrobiologie, Universität Greifswald) geschickt. Als Datenbank für die massenspektrometrische Identifizierung der Proteine diente das annotierte Proteom von *Xcv*. Die Korrelation der Triplikate wurde mittels Hauptkomponentenanalyse überprüft (Abbildung 36 und Abbildung 37, Tabelle 15 und Tabelle 16 siehe Anhang). Diese Analyse gibt Aufschluss darüber, ob sich die einzelnen Proben der Triplikate zueinander gleich verhalten. Die Analyse ergab, dass sich die *Xcv* 85-10 bzw. 85-10 $\Delta sX13$ -Proben aus NYG bzw. MA zueinander gleich verhalten und die Auswertung legitimieren.

Abbildung 11: Versuchsaufbau der vergleichenden Proteomanalyse zwischen *Xcv* 85-10 und 85-10 $\Delta sX13$ Schematische Darstellung der Probenzusammensetzung für die massenspektrometrische Analyse der *Xcv*-Stämme 85-10 und 85-10 $\Delta sX13$. Die Stämme für die Proteinreferenz wurden bis zu einer optischen Dichte OD₆₀₀ 0,8 in MA+ angezogen. Die zu vergleichenden Stämme 85-10 und 85-10 $\Delta sX13$ wurden in biologischen Triplikaten in NYG bzw. MA an aufeinanderfolgenden Tagen bis OD₆₀₀ = 0,8 kultiviert.

3.2.1.sX13 beeinflusst die Akkumulation zahlreicher Proteine.

Im von A. Otto erhaltenen Datensatz galt ein Protein als detektiert, wenn mindestens zwei Peptide für das jeweilige Protein in der massenspektrometrischen Analyse gemessen wurden. Rund ein Drittel der 4.726 annotierten proteinkodierenden Gene in *Xcv* wurden in der Proteomanalytik detektiert (Tabelle 8; Thieme *et al.*, 2005): in den NYG-Proben 1.549 und in den MA-Proben 1.483 Proteine (Tabelle 8). Zahlreiche Proteine konnten nicht weiter analysiert werden, z. B. weil sie nur in einem der Triplikate oder nur in einem der Stämme identifiziert wurden. In den Stämmen, welche in NYG bzw. MA angezogen wurden, wurden 1.043 bzw. 1.022 Proteine mittels Student's T-Test analysiert. 441 von 1.043 Proteinen aus den NYG-Proben und 506 von 1.022 Proteinen aus den MA-Proben hatten bei der

Student's T-Test-basierten statistischen Mittelwertanalyse einen P-Wert von <0,05 und wurde näher analysiert.

In den NYG-Proben waren 73 Proteine in der *sX13*-Mutante abundanter als in *Xcv* 85-10 und 28 Proteine weniger abundant. In den MA-Proben waren 71 Proteine in der *sX13*-Mutante abundanter und 18 Proteine weniger abundant im Vergleich zum *Xcv* 85-10. In den NYG-Proben waren 340 Proteine in beiden analysierten Stämmen vergleichbar abundant, während dies in den MA-Proben auf 417 Proteine zutraf.

Tubene of Engebinbbe der vergreichenden i roteomanarytik von och io und och iombrito					
	NYG	MA			
Anzahl der detektierten Proteine	1549	1483			
Anzahl der analysierten Proteine	1043	1022			
Proteine mit einem P-Wert <0,05	441	506			
- negativ regulierte ^a Proteine ($\geq 0,585 \log 2$ -fache Änderung)	73	71			
- positiv regulierte ^b Proteine (\leq -0,585 log2-fache Änderung)	28	18			
- nicht regulierte Proteine	340	417			

Tabelle 8: Ergebnisse der vergleichenden Proteomanalytik von 85-10 und 85-10ΔsX13

^a negative Regulation = Proteine sind in 85-10 $\Delta sXI3$ abundanter als in 85-10

^b positive Regulation = Proteine sind in $85-10\Delta sX13$ weniger abundant als in 85-10

3.2.1.1. Die sX13-abhängige Akkumulation zahlreicher Proteine in NYG-Proben

Zur Analyse differentiell akkumulierter Proteine in den NYG-Proben wurden die log2-fachen Änderungen von 441 Proteinen des Stamms Xcv 85-10 und der sX13-Mutante in NYG im Vergleich zur Referenz als Heatmap dargestellt (Abbildung 12). Um Proteingruppen mit ähnlicher Regulation zu identifizieren, wurde außerdem eine hierarchische Clusteranalyse durchgeführt (Abbildung 12). Die Clusteranalyse ergab eine Unterteilung aller analysierten Proteine in fünf Gruppen. Gruppe A (62 Proteine) umfasst Proteine, welche in 85-10 und 85-10*ΔsX13* im Vergleich zur Referenzprobe abundanter sind. In Gruppe A sind Proteine enthalten, deren Akkumulation sX13-abhängig positiv reguliert war, (Tabelle 9) oder nicht beeinflusst war. In Gruppe B (81 Proteine) sind Proteine, welche in Xcv 85-10 vergleichbar abundant, oder weniger abundant sind als in der Referenzprobe und die gleichzeitig in 85-10 $\Delta sX13$ abundanter sind als in der Referenzprobe. Zu Gruppe B gehören zum Teil Proteine, die sX13-abhängig negativ reguliert sind. Gruppe C (274 Proteine) umfasst vornehmlich Proteine, die in 85-10 und $85-10\Delta sX13$ weniger abundant sind als in der Referenzprobe. Die Proteine in Gruppe C sind vornehmlich nicht reguliert. Gruppe D (13 Proteine) ist von besonderem Interesse, da sX13 die Abundanz dieser Proteine negativ beeinflusst (Tabelle 9). Zu Gruppe E (11 Proteine) gehören Proteine, welche im Vergleich zur Referenzprobe in 85-10 und 85-10 $\Delta sX13$ weniger abundant sind. In Gruppe E sind ebenfalls Proteine enthalten, welche sX13-abhängig positiv reguliert sind. Tabelle 9 zeigt die 20 am stärksten sX13-abhängig negativ regulierten Proteine in den NYG-Proben. Auffällig ist, dass die Hälfte der in Tabelle 9 aufgeführten Proteine am Aufbau und/oder der Regulation von Typ IV-Pili beteiligt sind. Außerdem befinden sich zwei weitere Typ IV-Pilusproteine unter den übrigen 18 stark sX13-abhängig negativ regulierten Proteinen (Gruppe B, Abbildung 12). Proteine, welche eine Rolle bei der bakteriellen Chemotaxis spielen, machen ebenfalls einen großen Anteil sX13-abhängig negativ regulierter Proteine aus.

28 Proteine zeigten eine positive sX13-Abhängigkeit in den NYG-Proben. In Tabelle 9 sind die 20 am stärksten sX13-abhängig positiv regulierten Proteine aufgelistet, unter denen sich TonB-abhängige Rezeptoren, Zwei-Komponentensysteme und Proteine mit Funktion in diversen Stoffwechselwegen befinden

Proteine	Anreicherung ΔsX13/WT ^a	P-Wert ^b	annotierte Funktion/ Domäne ^c				
sX13-abhängig negativ regulierte Proteine							
XCV2186	5,52	3,69E-06	Methyl-accepting chemotaxis protein				
PilQ	5,23	3,48E-05	Type IV pilus Secretin PilQ				
XCV3927	4,29	6,10E-06	LysM-domain				
XCV2185	4,26	4,56E-06	Unbekannte Funktion				
PilM	3,95	6,56E-06	Type IV pilus assembly protein				
XCV0173	3,94	1,04E-03	Putative secreted protein				
PilN	3,84	5,71E-06	Fimbrial assembly protein PilN				
PilO	3,70	4,60E-06	Type IV pilus assembly protein PilO				
PilP	3,45	2,27E-04	Type IV pilus assembly protein PilP				
XCV3068	3,41	2,79E-05	Pilus retraction ATPase PilT				
PilH	3,38	2,24E-06	Type IV pilus response regulator PilH				
XCV3730	3,18	4,56E-06	Pilus retraction ATPase PilT				
XCV4142	2,95	4,48E-06	Gram-negative bacterial TonB protein				
XCV3227	2,81	3,38E-05	CheW-like protein				
PilI	2,75	1,23E-05	Chemotaxis signal transduction protein				
PilJ	2,72	1,23E-05	Methyl-accepting chemotaxis protein				
AlgR	2,71	1,28E-04	Signal transduction response regulator				
XCV4274	2,67	2,03E-05	Unbekannte Funktion				
XCV3033	2,60	4,96E-03	Unbekannte Funktion				
XCV3228	2,40	7,95E-04	Chemotaxis glutamate methyltransferase				
		sX13-abb	nängig positiv regulierte Proteine				
XCV2510	-2,09	2,40E-04	TonB-dependent receptor				
XCV1420	-1,89	1,44E-02	Unbekannte Funktion				
XCV3572	-1,87	1,85E-05	TonB-dependent receptor				
XCV2015	-1,53	2,68E-04	Two-component response regulator				
AsnB	-1,41	5,91E-04	Asparagine synthase				
FleQ	-1,41	1,04E-05	Flagellar sigma-54 dependent transcriptional activator $FleQ$				
XCV0079	-1,40	2,21E-03	Putative host attachment protein				
XCV0799	-1,14	2,60E-03	Putative secreted protein				
XCV3574	-1,13	2,45E-02	Putative regulatory protein				
RpiB	-1,06	8,46E-03	Ribose-5-phosphate isomerase				
Egl3	-1,058	6,58E-03	Cellulase				
XCV3038	-1,04	2,18E-02	Putative phospholipase accessory protein				
XCV2647	-1,02	1,64E-03	Aldehyde dehydrogenase				
XCV3739	-0,98	1,04E-03	HAD hydrolase/ Phosphoglycolate phosphatase				
XCV2429	-0,91	4,66E-02	Fe/S biogenesis protein NfuA				
XCV3961	-0,79	1,74E-02	Putative secreted protein				
OmpW1	-0,77	2,57E-02	Outer membrane protein, OmpW				
XCV4079	-0,76	7,31E-03	HAD hydrolase				
XCV3060	-0,76	1,27E-02	Peroxiredoxin OsmC				
LipA	-0,74	3,05E-02	Lipoyl synthase				

Tab	elle 9: Übersicht de	er am stärkst	ten sX13-abhän	gig negativ und	positv regulierten	Proteine in NYG-Proben
	lo	σ2 . fache				

^a Mittelwert der Anreicherung der Proteine in 85-10Δ*sX13* gegenüber 85-10 basierend auf dem Logarithmus zur Basis 2 ^bP-Wert der Students T-Test-Mittelwertanalyse zwischen 85-10Δ*sX13* gegenüber 85-10

c Annotation der Funktion/ Domäne erfolgte mittels "InterProScan sequence search" (InterProScan5)

http://www.ebi.ac.uk/interpro/search/sequence-search und NCBI Blast; http://blast.ncbi.nlm.nih.gov/Blast.cgi

Abbildung 12: Heatmap der in NYG in 85-10 und 85-10AsX13 quantifizierten Proteine

Heatmap-Analyse der 441 in den NYG-Proben identifizierten, quantifizierbaren Proteine (P-Wert < 0,05, Student's T-Test). Die Heatmap und die hierarchische Clusteranalyse erfolgten mittels R-basierter Datenanalyse auf Basis der heatmap.2-Funktion. Ausgehend von der komplexen Heatmap und der hierarchischen Clusteranalyse wurden fünf Gruppen identifiziert. Für Gruppe A, B, D und E wurden die Ausschnitte der Heatmap vergrößert und die Gruppenmitglieder gelistet. Die mittels Farbskala dargestellten log2-fachen Änderungen beziehen sich auf das Proteinverhältnis zwischen Probe und Referenz, welches später zur Berechnung der log2-fachen Änderung zwischen den beiden Stämmen herangezogen wurden. Grün bedeutet geringere Proteinabundanz in der Probe im Vergleich zur Referenz und rot bedeutet eine höhere Proteinabundanz in der jeweiligen Probe im Vergleich zur Referenz.

3.2.1.2. Die sX13-abhängige Akkumulation zahlreicher Proteine in MA-Proben

Zur Analyse differentiell akkumulierter Proteine in den MA-Proben wurden die log2-fachen Änderungen der 506 in Xcv 85-10 und 85-10 $\Delta sX13$ identifizierten Proteine der MA-Proben im Vergleich zur Referenz als Heatmap dargestellt (Abbildung 38 im Anhang). Um Proteingruppen mit ähnlicher Regulation zu identifizierten, wurde außerdem eine hierarchische Clusteranalyse durchgeführt (Abbildung 38 im Anhang). Die Clusteranalyse ergab eine Unterteilung aller analysierten Proteine in fünf Gruppen. Gruppe A (479 Proteine) umfasst Proteine, welche in 85-10 und 85-10ΔsX13 im Vergleich zueinander ähnlich abundant sind. In Gruppe A sind Proteine enthalten, welche sX13-abhängig positiv, negativ (Tabelle 10) und nicht reguliert sind. Gruppe B (20 Proteine) ist von besonderem Interesse, da sX13 die Abundanz dieser Proteine stark negativ beeinflusst (Tabelle 10). Gruppe C (1 Protein) bildet das Protein DapA2, welches in beiden Stämmen wesentlich abundanter ist, als in der Referenzprobe und zu den nicht regulierten Proteinen gehört. Zu Gruppe D gehört ebenfalls nur ein Protein (ThiC), welches in 85-10 und 85-10 $\Delta sX13$ weniger abundant ist, als in der Referenzprobe. ThiC ist das am stärksten sX13-abhängig positiv regulierte Protein. Zu Gruppe E (5 Proteine) gehören Proteine, welche im Vergleich zur Referenzprobe in 85-10 und 85-10ΔsX13 weniger abundant sind. In Gruppe E sind ebenfalls Proteine enthalten, welche sX13-abhängig positiv reguliert sind (Tabelle 10).

Die Tabelle 10 zeigt die 20 am stärksten sX13-abhängig negativ regulierten Proteine in den MA-Proben. Unter den 20 am stärksten sX13-abhängig negativ regulierten Proteinen befinden sich zehn Proteine, welche Typ IV Pilus-Komponenten und Kontrollproteine sind. Weiterhin befinden sich eine Vielzahl von Chemotaxisproteinen unter diesen 20 Proteinen. In Tabelle 10 sind alle 18 sX13abhängig positiv regulierten Proteine der MA-Proben aufgelistet. Im Gegensatz zu den sX13-abhängig negativ regulierten Proteinen kann keine klare funktionelle Kategorisierung vorgenommen werden. Unter den sX13-abhängig positiv regulierten Proteinen befinden sich TonB-abhängige Rezeptoren, Zwei-Komponentensysteme, Transkriptionsregulatoren und einige Proteine, welche Teil diverser Stoffwechselwege sind.

Proteine	log2-fache Anreicherung	P-Wert ^b	annotierte Funktion/ Domäne ^c				
$\Delta s X 13 / WT^{a}$							
sX13-abhängig negativ regulierte Proteine							
XCV2186	5,88	5,66E-05	Methyl-accepting chemotaxis protein				
XCV2818	5,40	8,27E-03	Type IV fimbrial biogenesis protein PilX				
PilQ	5,24	1,03E-05	Type IV pilus Secretin PilQ				
XCV3927	4,65	7,26E-06	LysM-domain				
PilM	4,49	1,69E-05	Type IV pilus assembly protein				
XCV2185	4,33	1,80E-05	Unbekannte Funktion				
PilO	4,22	2,35E-05	Type IV pilus assembly protein PilO				
PilP	4,20	2,67E-04	Type IV pilus assembly protein PilP				
PilN	4,17	2,73E-05	Fimbrial assembly protein PilN				
PilH	4,02	3,21E-05	Type IV pilus response regulator PilH				
XCV3730	3,85	2,21E-04	Pilus retraction ATPase PilT				
PilI	3,76	3,44E-05	Chemotaxis signal transduction protein				
XCV3227	3,61	4,03E-05	CheW-like protein				
XCV3068	3,58	1,13E-04	Pilus retraction ATPase PilT				
PilJ	3,51	3,47E-05	Methyl-accepting chemotaxis protein				
PilG	3,26	3,77E-05	CheY-like receiver domain protein				
XCV3228	3,18	5,88E-05	Chemotaxis glutamate methyltransferase				
XCV4142	3,10	1,44E-05	Gram-negative bacterial TonB protein				
PilA	2,53	2,96E-07	Type IV pilin/Fimbrial protein pilin				
XCV3571	2,37	5,88E-05	Signal transduction response regulator				
		sX13-abhäng	jig positiv regulierte Proteine				
ThiC	-7,78	2,20E-04	Thiamine biosynthesis protein ThiC				
HrpB1	-2,02	1,20E-04	Type III secretion system, HrpB1/HrpK				
XCV3572	-1,58	1,13E-06	TonB dependent receptor				
XCV0915	-1,57	1,88E-03	Transcription regulator HTH, LysR				
XCV2510	-1,42	3,55E-04	TonB dependent receptor				
XCV1275	-1,33	1,01E-03	Putative secreted protein				
AsnB	-1,16	8,92E-05	Asparagine synthase				
XCV2015	-1,13	1,17E-04	Two-component response regulator				
Suh	-1,11	1,12E-02	Glycoside hydrolase				
XCV3765	-1,03	7,35E-05	Chorismate mutase				
XCV4399	-0,99	3,75E-03	P-loop containing nucleoside triphosphate hydrolase				
BioB	-0,87	1,01E-02	Biotin synthase/Biotin biosynthesis bifunctional protein BioAB				
FleQ	-0,80	4,03E-03	flagellar sigma-54 dependent transcriptional activator FleQ				
TrmE	-0,79	4,82E-02	tRNA modification GTPase TrmE				
XCV4400	-0,74	1,16E-04	Unbekannte Funktion				
XCV0838	-0,73	2,79E-03	Membrane-bound metalloendopeptidase				
OprB	-0,69	1,29E-03	Carbohydrate-selective porin, OprB				
DyrU	0.62	1 18E 05	Unidulate kinage				

	••							
T 1 11 10	TTI • 14	1	3743 11	• • •	1 • 4	1. 4	n	
	horeacht	dor om storizston	CXI4 ODD	anaia naaati	v und nocits	7 roaninorton	Protoino in	VIA Prohon
I ADCHE IV.	UDCISICIL	uci ani stai ksten	571.2-4016	анугу нсуди	v uniu Dusiliv	/ I CYUNCI LCH	I I ULCHIC III	
							0 0 0 0	

^a Mittelwert der Anreicherung der Proteine in 85-10ΔsX13 gegenüber 85-10 basierend auf dem Logarithmus zur Basis 2 ^b P-Wert der Students T-Test-Mittelwertanalyse zwischen 85-10ΔsX13 gegenüber 85-10

^c Annotation der Funktion/ Domäne erfolgte mittels "InterProScan sequence search" (InterProScan5)

http://www.ebi.ac.uk/interpro/search/sequence-search und NCBI Blast; http://blast.ncbi.nlm.nih.gov/Blast.cgi

Diese Ergebnisse deuten darauf hin, dass der negative Einfluss von sX13 auf die Proteinakkumulation wesentlich stärker war als der positive Einfluss (Tabelle 9/10). Dies wurde sowohl für die Stämme, welche in NYG angezogen wurden als auch für die in MA angezogenen Stämme beobachtet. Auffällig war weiterhin, dass sX13 offenbar einen starken Einfluss auf Typ IV-Pilus-Komponenten hat und die Abundanz dieser Proteine negativ reguliert.

Um die sX13-abhängig regulierten Proteine funktionellen Kategorien und Prozessen zuzuordnen, wurde die "Gene-Ontology-Annotation" (GO-Annotation)-Datenbank verwendet. Die GO-Datenbank beschreibt Genprodukte in drei verschiedenen Ebenen: biologische Prozesse, zelluläre Komponenten und molekulare Funktion (Ashburner et al., 2000; Consortium, 2015). Für die Zuordnung der Proteomdaten zur GO-Annotation wurde das Programm Voronto (http://vis.usal.es/voronto; Santamaría und Pierre, 2012) verwendet. Dies ist in der Lage, Expressionsdaten in 2D-Heatmaps (sogenannte Voronio-Treemaps) darzustellen, was auf einem *Xanthomonas* spezifischen *Gene-Annotation files* (GAF) basiert. Dabei werden die Expressionsdaten in Bezug zu ihrem funktionellen Kontext gestellt und eine zwei-dimensionale Heatmap wird erstellt, die Informationen über die Gruppierung der regulierten Proteine hinsichtlich regulatorischer Prozesse enthält.

In den NYG-Proben waren Proteine sX13-abhängig negativ reguliert, welche in Signaltransduktionsprozessen, z. B. Zwei-Komponentensystemen oder dem Katabolismus von Makromolekülen beteiligt sind. Positiv regulierte Proteine waren vornehmlich verschiedenen Stoffwechselkategorien, wie z. B. Lipidmetabolismus und Kohlenstoffmetabolismus zugeordnet. In den MA-Proben waren Proteine sX13-abhängig negativ reguliert, welche in Signaltransduktionsprozessen (z. B. Zwei-Komponentensystemen) oder der Perzeption chemischer Reize und dem Proteintransport beteiligt sind. Positiv regulierte Proteine können verschiedenen Stoffwechselwegen (z. B. die Biosynthese von kleinen Molekülen und Vitaminen) zugeordnet werden (Abbildung 39 und Abbildung 40 im Anhang).

3.2.1.3. Vergleich der sX13-abhängig regulierten Proteine aus NYG- und MA-Proben

In Abschnitt 3.2.1.1. und 3.2.1.2. wurde die Akkumulation von Proteinen in 85-10 im Vergleich zu 85-10ΔsX13 in den beiden Anzuchtmedien NYG und MA gesondert betrachtet. Weiterhin sollte die Änderung der Proteinakkumulation zwischen den beiden Anzuchtbedingungen verglichen werden. Hierfür wurden die zuvor betrachteten Proteinverhältnisse zwischen den Proben (Wildtyp bzw. Mutante) und der Referenz ins Verhältnis zueinander gesetzt und in Abhängigkeit des Mediums analysiert. Abbildung 13 zeigt eine Heatmap mit hierarchischer Clusteranalyse aller in den NYG- und MA-Proben analysierten Proteine, in der die log2-fachen Unterschiede der Proteinverhältnisse zwischen Wildtyp und sX13-Mutante dargestellt sind. Die Proteine wurden weiterhin hinsichtlich der Art ihrer Regulation hierarchisch in sieben regulatorische Cluster gruppiert (Abbildung 13). Gruppe A und B beinhalten die Proteine, die unter beiden Bedingungen deutlich sX13-abhängig negativ reguliert waren, wohingegen Gruppe F und G Proteine beinhalten, die unter beiden Anzuchtbedingungen sX13abhängig positiv reguliert waren. Die anderen Gruppen beinhalten Proteine, deren Regulation weniger stark sX13-abhängig war oder sich in Abhängigkeit des Mediums änderte. Bei Betrachtung der Heatmap (Abbildung 13) wird deutlich, dass viele Proteine unter beiden Anzuchtbedingungen in gleicher Weise sX13-abhängig reguliert sind. Die Venndiagramme in Abbildung 41 zeigen den Vergleich zwischen den beiden Anzuchtbedingungen.

Abbildung 13: Heatmap der Überschneidungen zwischen der Proteomanalyse von Stämmen, angezogen in NYG und MA

Heatmap-Analyse der 260 in NYG und MA identifizierten Proteine (P-Wert < 0,05; Student's T-Test). Die Heatmap und die hierarchische Clusteranalyse erfolgten mittels R-basierter Datenanalyse auf Basis der heatmap.2-Funktion. Ausgehend von der komplexen Heatmap und der hierarchischen Clusteranalyse wurden sieben Gruppen identifiziert. Für Gruppe A, B, C, D, E und F wurden die Ausschnitte der Heatmap vergrößert und die Gruppenmitglieder gelistet. Die mittels Farbskala dargestellten log2-fachen Änderungen beziehen sich auf das Proteinverhältnis zwischen *Xcv* 85-10 und 85-10 Δ s*X13* in den beiden korrespondierenden Medien.

In den NYG-Proben sind 73 Proteine sX13-abhängig negativ reguliert und in den MA-Proben 71. 43 dieser Proteine sind unter beiden Bedingungen sX13-abhängig negativ reguliert. Die Überschneidung der positiv regulierten Proteine, das heißt weniger abundant in der *sX13*-Mutante im Vergleich zum Wildtypstamm, umfasst fünf Proteine, wobei unter beiden Bedingungen insgesamt weniger sX13-

abhängig positiv regulierte Proteine gefunden wurden. Die statistische Analyse der Überschneidungen der sX13-abhängig regulierten Proteine in den NYG- und MA-Proben mittels Fischer-Exakt Test hat gezeigt, dass die Überschneidungen sowohl für die sX13-abhängig negativ (P = 0,0001) als auch die positiv regulierten Proteine (P = 0,0319) signifikant ist. Das heißt die Überschneidungen basieren nicht auf Zufall.

3.2.2. Verifizierung von Teilen der Proteomanalyse

Im folgenden Kapitel werden einige Ergebnisse der Proteomanalytik mittels alternativer Analyseverfahren wie z. B. Western-Blot Analysen verifiziert.

Abbildung 14: sX13 beeinflusst die Akkumulation von Komponenten des T3SS. Analyse der Proteinmenge von Komponenten des T3SS mittels Immunoblot.

Die Anzucht der *Xcv*-Stämme 85-10 und 85-10 $\Delta sX13$ erfolgte in MA pH 7 Medium (A). Die Inkubation der Stämme *Xcv* 85-10, 85-10 $\Delta sX13$ und 85-10 $\Delta sX13+sX13_{ch}$ mit und ohne phrpG* erfolgte für 3,5 Stunden in dem hrp-Gen-induzierenden Medium XVM2 (B). Gesamtproteinextrakte wurden mittels HrcN-, HrpB1- bzw. HrcJ-spezifischem Antikörper und GroEL-spezifischem Antikörper analysiert. Die unter (A) gezeigten Ergebnisse wurden in drei unabhängigen Experimenten mit je zwei biologischen Replikaten reproduziert. Die unter (B) gezeigten Ergebnisse wurden in zwei unabhängigen Experimenten reproduziert (Abbildung B modifiziert aus Schmidtke *et al.*, 2013; Abbildung U. Abendroth).

Um zu untersuchen, ob der in der Proteomanalytik gezeigte positive Einfluss von sX13 auf HrpB1 (Tabelle 10), eine Komponente des T3SS (Hausner et al., 2013), nachgewiesen werden kann, wurden Xcv-Gesamtzellextrakte nach Wachstum in MA immunologisch analysiert. Hierbei wurden größere Mengen HrpB1 in Xcv 85-10 im Vergleich zur sX13-Mutante nachgewiesen (Abbildung 14 A). Dies bestätigt die Ergebnisse der Proteomanalytik. Abbildung 14 B zeigt den immunologischen Nachweis der T3SS-Komponenten HrcN und HrcJ aus Bakterienkulturen, welche in XVM2 inkubiert wurden (modifiziert aus Schmidtke et al., 2013; Abbildung U. Abendroth). HrcN ist die ATPase des T3SS und HrcJ eine Innermembrankomponente (Deng und Huang, 1999; Lorenz und Büttner, 2009). Für die Stämme 85-10 und 85-10 $\Delta sX13 + sX13_{ch}$ wurden im Vergleich zum sX13-defizienten Stamm stärkere HrcN- und HrcJ-spezifische Signale detektiert. Im Gegensatz dazu war kein Unterschied zwischen den getesteten Stämmen detektierbar, wenn zusätzlich $hrpG^*$ exprimiert wurde (modifiziert aus Schmidtke et al., 2013; Abbildung U. Abendroth). hrpG* kodiert für ein konstitutiv aktives HrpG-Derivat und erlaubt die Expression von Komponenten des T3SS unter nicht-induzierenden Bedingungen. Als Kontrolle für die aufgetragenen Proteinmengen diente in beiden Versuchen ein GroEL-spezifischer Antikörper. Das Chaperon GroEL wird vermutlich unabhängig vom Xcv-Stamm und Medium in gleichen Mengen synthetisiert (Abbildung 14). 44

Die Proteinabundanz 12 ausgewählter Proteine wurde in Xcv 85-10 und 85-10ΔsX13 mittels GFP-Reportersystem analysiert. Die Auswahl der getesteten Proteine erfolgte anhand folgender Kriterien: bekannter Transkriptionsstart, sX13-Abhängigkeit hinsichtlich Stärke, Medium (Regulation in NYGund/oder MA-Proben) und Regulation (positiv bzw. negativ) und wurden hinsichtlich der Stärke ihrer sX13-abhängigen Regulation möglichst divers gewählt. Ausgewählt wurden: XCV3619, XCV3060, XCV1275, HrpB1, AsnB, XCV1375, XCV1707, XCV1528, XCV3068, XCV4374 und XCV2822 (Kapitel 3.2.1). Zur Erstellung der Reporterkonstrukte wurden die jeweiligen 5'-UTR und 10 - 20 Codons vor gfp kloniert, welches kein eigenes Startcodon besitzt. Die erstellten Plasmide wurden in Xcv 85-10 und 85-10\DeltasX13 konjugiert und die Fluoreszenz der auf NYG-Festmedium kultivierten Stämme gemessen. Fünf der ausgewählten Proteine waren in der Proteomanalytik sX13-abhängig positiv reguliert. Eine sX13-abhängige Regulation zeigte sich hingegen nicht im GFP-Reportersystem, denn die Fluoreszenz von Xcv 85-10 war vergleichbar mit der Fluoreszenz von 85-10 $\Delta sX13$ (Abbildung 15). Sechs der getesteten Proteine waren zuvor als sX13-abhängig negativ reguliert identifiziert wurden (Kapitel 3.2.1.). Für die fünf Proteine XCV1375, XCV1707, XCV3068, XCV4374 und XCV2822 wurde diese Regulation auch im GFP-Reportersystem nachgewiesen (Abbildung 15). Nur das Reporterkonstrukt XCV1528::gfp zeigte keine sX13-abhängige Regulation. In der späteren proteogenomischen Analyse (Kapitel 3.6.) wurden zahlreiche neue Gene identifiziert, darunter yecR, welches ebenfalls in GFP-Reportersystem analysiert wurde, da es vermutlich einen bekannten Transkriptionsstart besitzt und in seiner 5'-UTR ein eine mögliche sX13-Bindestelle trägt. Da yecR zu Beginn dieser Arbeit nicht annotiert war, konnte eine mögliche sX13-Abhängigkeit in der unter Kapitel 3.2. beschriebenen Proteomanalytik nicht festgestellt werden.

Die gemessenen Fluoreszenzwerte im Stamm 85-10 $\Delta sX13$ mit dem Reporterkonstrukt für *yecR::gfp* waren höher im Vergleich zu *Xcv* 85-10, was auf eine sX13-abhängige negative Regulation hinweist (Abbildung 15). Mit Hilfe des GFP-Reportersystems wurde das Ergebnis der Proteomanalytik also für fünf von sechs getesteten sX13-abhängig negativ regulierten Proteinen bestätigt, wohingegen die sX13-abhängige positive Regulation von sechs weiteren Proteinen mit dieser Methode nicht nachgewiesen werden konnte (Abbildung 15).

Ergebnisse

Abbildung 15: Test von sX13-abhängig regulierten Proteinen mittels GFP-Reportersystem.

GFP-Reporterassay. Relative GFP-Fluoreszenz, der auf NYG-Festmedium angezogenen Stämme Xcv 85-10 $\Delta sX13$ im Vergleich zu 85-10 mit den Reporterkonstrukten für pFX-p_{lac}(XCV3068::gfp), pFX-p_{lac}(XCV3060::gfp), pFX-p_{lac}(XCV1275::gfp), pFX-p_{lac}(hrpB1::gfp), pFX-p_{lac}(XCV1775::gfp), pFX-p_{lac}(XCV17

Um eine mögliche Korrelation zwischen der Proteinakkumulation sX13-abhängig regulierter Proteine und veränderter Transkriptakkumulation zu untersuchen, wurden zusätzlich zu den Transkriptstudien von C. Schmidtke (Schmidtke *et al.*, 2013; Kapitel 3.2.3.) Transkripte ausgewählter Gene mittels quantitativer Realtime-PCR (qRT-PCR) untersucht. Dazu wurde cDNA der Stämme 85-10 und 85-10 Δ sX13 aus stationärer Wachstumsphase verwendet (Kapitel 2.2.2.5.). Die positive sX13abhängige Regulation der Gene *fur* und *hrpB1* wurde auch für die Transkriptakkumulation gezeigt (Abbildung 19). Die Transkriptakkumulation der Gene *XCV3068*, *XCV1375* und *XCV1707* war im *sX13*-defizienten Stamm 4,5- bzw. 1,5-mal höher als im Wildtyp (Abbildung 16). Das Gen *XCV2822* zeigte unter den getesteten Bedingungen keine sX13-Abhängigkeit.

Abbildung 16: Der Einfluss von sX13 auf ausgewählte Transkripte

qRT-PCR Analysen von Genen sX13-abhängig regulierter Proteine. Xcv 85-10 und 85-10 $\Delta sX13$ wurden in NYG- und MA-Medium kultiviert und in stationärer Wachstumsphase geerntet. cDNA wurde aus Gesamt-RNA dieser Stämme synthetisiert. Die Transkriptmenge der Gene in Xcv 85-10 wurde jeweils auf den Wert 1, die Wert von 85-10 $\Delta sX13$ dazu ins Verhältnis gesetzt. Die Normalisierung der eingesetzten cDNA-Mengen erfolgte gegen 16S rRNA. Datenpunkte repräsentieren die Mittelwerte von drei biologischen Replikaten, Fehlerbalken kennzeichnen die Standardabweichung. Das Sternchen kennzeichnet Proben, welche in MA angezogen wurden. Unterstrichene Gene tragen mindestens eine mögliche sX13-Bindestelle (Kapitel 3.2.3.).

3.2.3. Vergleich der sX13-Transkriptstudie mit der sX13-Proteomanalytik

Die Ergebnisse der Proteomanalytik (Kapitel 3.2.1.) werden im Folgenden mit den von C. Schmidtke durchgeführten Transkriptstudien (*Microarray*) verglichen, bei denen der Einfluss von sX13 auf die Akkumulation von mRNAs untersucht wurde (Schmidtke *et al.*, 2013). Dieser Vergleich könnte Rückschlüsse auf die Ebene (Transkriptstabilität/Translation) der sX13-abhängigen Regulation liefern. Von den 441 in der Proteomanalytik quantifizierten Proteinen in den NYG-Proben, gab es eine Überschneidung von 25 Proteinen/Genen, mit den 179 mRNAs, welche in der Transkriptstudie in Stämmen, angezogen in NYG quantifiziert wurden. In MA-Proben beträgt die Überschneidung von 506 quantifizierten Proteinen und 71 mRNAs 12 Proteine/Gene. Die statistische Analyse der Überschneidungen mittels Fischer-Exakt Test zeigte, dass die Überschneidung sX13-abhängig negativ regulierter Protein/Gene in NYG und MA (P = 0,00245 bzw. P = 0,02652) nicht auf Zufall beruht, wohingegen die Überschneidungen der positiv regulierten Proteine/Gene (P = 0,5043 bzw. P = 1) zufällig ist. Das in Abbildung 17 A dargestellte Venndiagramm zeigt die Überschneidung der sX13-abhängig negativ regulierten Proteine Proteine Proteine der Proteomanalytik und Gene der Transkriptstudien in den NYG- und MA-Proben.

73 Proteine in den NYG-Proben, waren sX13-abhängig negativ reguliert. Davon wurden 10 Gene in der Transkriptstudie von C. Schmidtke auf mRNA-Ebene auch als sX13-abhängig negativ reguliert gefunden (Abbildung 17 A). Wie in Abbildung 41 gezeigt umfasst die Überschneidung von sX13-abhängig negativ regulierten Proteinen der NYG- und MA-Proben 43 Proteine. In den MA-Proben waren insgesamt 71 Proteine als negativ reguliert identifiziert wurden, von denen fünf in der Transkriptstudie als negativ reguliert gefunden wurden (Abbildung 17 A). 28 Proteine waren sX13-

abhängig positiv reguliert, wenn die analysierten Stämme in NYG kultiviert wurden. Davon wurde nur *XCV3572* auch in der Transkriptstudie als positiv reguliert gefunden. In der Transkriptstudie, welche mit Stämmen durchgeführt wurde, die in MA angezogen wurden, wurde kein sX13-abhängig positiv reguliertes Transkript identifiziert.

Abbildung 17: Überblick über die sX13-abhängig negativ und positiv regulierten Proteine und Transkripte Venndiagramme, welche die Überschneidungen der sX13-abhängig negativ (A) bzw. positiv (B) regulierten Proteine/ Gene aus Stämmen, welche in NYG bzw. MA angezogen wurden, zeigen.

In Kapitel 3.1.2. wurde die Struktur von sX13 (115 Nt) untersucht und gezeigt, dass der 5'-Bereich und die drei Loops von sX13 als Einzelstrangbereiche vorliegen. Weiterhin wurde in Kapitel 3.1.3. gezeigt, dass die sX13-Loops unterschiedlich zur Funktion von sX13 beitragen und ein Derivat ohne den unstrukturierten 5'-Bereich zu Hypervirulenz auf ECW-10R-Pflanzen führt. Aus diesem Grund wurde angenommen, dass als einzig mögliche Interaktionsplattformen die Loop-Regionen in sX13 dienen könnten, welche sich durch C-reiche Sequenzmotive (4-5C) auszeichnen. In Schmidtke et al. gezeigt, dass die sX13-abhängig negativ regulierten Transkripte 2013 wurde bereits überdurchschnittlich viele potentielle sX13-Bindestellen in Form von 4G-Motiven (vier Guanin) in der Nähe des Startcodons enthalten (Schmidtke et al., 2013). Im Folgenden wurde untersucht, ob die 4G-Motive auch in den Genen der sX13-abhängig regulierten Proteine überdurchschnittlich oft vorkommen. Dazu wurde ein Suchfenster von 50 Nt vor und hinter dem annotierten Startcodon gewählt. Unter beiden Anzuchtbedingungen haben ca. 50% der sX13-abhängig negativ regulierten Proteine mindestens ein 4G-Motiv. Im Gegensatz dazu tragen nur ca. 17% der positiv regulierten Proteine aus den NYG-Proben ein 4G-Motiv und 21% der sX13-abhängig positiv regulierten Proteine der MA-Proben, was annährend der durchschnittlichen Verteilung im Chromosom von ca. 18% entspricht (Abbildung 18).

Prozentuale Verteilung von 4G-Motiven unter den sX13-abhängig regulierten Proteinen und auf dem gesamten *Xcv*-Chromosom -50 bis +50 Basenpaare um den Translationsstart oder, im Fall von bekannten Transkriptionsstarts, den kompletten 5'-UTR umfassend bis +50 Basenpaare nach dem Translationsstart. Die Anzahl der untersuchten Fälle (n) ist angegeben. Sternchen kennzeichnen statistisch signifikante Unterschiede zur Verteilung im Chromosom.

Mittels Binomialverteilungstest wurde weiterhin festgestellt, dass die Häufung von 4G-Motiven in den Genen von sX13-abhängig negativ regulierten Proteinen statistisch signifikant ist (P < 0,001). Ein 4G-Motiv ist also signifikant häufiger in der Nähe des Translationsstarts von Genen, deren Proteinmenge sX13-abhängig negativ beeinflusst wird.

Die Ergebnisse aus Kapitel 3.2. lassen neue Rückschlüsse auf die biologische Funktion von sX13 zu. So sind neben Typ IV-Pili, Zwei-Komponentensystemen auch verschiedene Stoffwechselwege sX13abhängig reguliert. Der Einfluss von sX13 auf Typ IV-Pili wurde bereits zuvor in Microarray-Analyse gezeigt (Schmidtke *et al.*, 2013) und konnte nun auf Proteinebene bestätigt werden. Diese Ergebnisse führten zu der Hypothese, dass die biologische Funktion von sX13 in erster Linie die Regulation von *Twitching motility* und der Antwort auf diverse Umweltbedingungen ist und die Hauptfunktion von sX13 nicht wie bisher angenommen, in der Regulation der Virulenz begründet liegt.

3.3. Ist sX13 ein genereller Virulenzfaktor?

Das Wirtsspektrum von Xcv umfasst Paprika- und Tomatenpflanzen (Jones et al., 2004). C. Schmidtke stellte fest, dass sX13 die Pflanzenreaktionen von suszeptiblen (ECW) und resistenten (ECW-10R) Paprikapflanzen positiv beeinflusst und vermutete eine generelle Virulenzfunktion von sX13 (Schmidtke et al., 2013). Um dies näher zu untersuchen, wurden im Folgenden suszeptible Tomaten und resistente Paprikapflanzen infiziert, welche die Effektoren AvrBs2 (ECW-20R) bzw. XopH (ECW-70R) erkennen (Minsavage et al., 1990; Potnis et al., 2012). Weiterhin wurde der Einfluss von sX5 auf die Virulenz von Xcv näher untersucht, da die Deletion von sX5 zusammen mit der Deletion von sX13 einen Einfluss auf Symptome (ECW) hatte (Kapitel 3.1.3.1.). Hierfür wurden Blätter der entsprechenden Linien (ECW-20R, ECW-70R und Tomate "Moneymaker") mit Bakteriensuspensionen der *Xcv*-Stämme 85-10, 85-10 $\Delta sX13$, 85-10 $\Delta sX13 + sX13_{ch}$, 85-10 $\Delta sX5$ und 85-10 $\Delta sX5\Delta sX13$ infiziert. *Xcv* 85-10 verursachte wie erwartet Krankheitssymptome in Tomate (Jones *et al.*, 2004), welche im Verlauf der Infektion nekrotisch wurden (Abbildung 19 A). Die Symptome, die von 85-10 $\Delta sX5\Delta sX13$ ausgelöst wurden, waren im Vergleich zu *Xcv* 85-10 stärker (Abbildung 19 A). Symptome nach Infektion von Tomatenpflanzen mit 85-10, 85-10 $\Delta sX5$ und 85-10 $\Delta sX13$ waren weitestgehend identisch (4 dpi). Es wurde lediglich eine verringerte Nekrotisierung des mit 85-10 $\Delta sX13$ infizierten Blattgewebes festgestellt (Abbildung 19 A). Im Vergleich zu ECW-Pflanzen war der Einfluss der *sX13*-Deletion auf Tomatenpflanzen geringer (Abbildung 19 A; Abbildung 10). Die Infektion resistenter ECW-20R und ECW-70R Pflanzen mit *Xcv* 85-10 induzierte wie erwartet eine HR (Minsavage *et al.*, 1990; Potnis *et al.*, 2012). Die in ECW-70R- und ECW-20R-Pflanzen vermittelte XopH- bzw. AvrBs2-abhängige HR war überraschenderweise nach Inokulation aller getesteten Stämme vergleichbar und somit sX13-unabhängig (Abbildung 19 A). Es kann festgehalten werden, dass sX13 die AvrBs2- und XopH-vermittelte HR nicht signifikant beeinflusst.

A) Infektionsexperimente mit ECW-20R, ECW-70R und Tomate (Moneymaker) und den *Xcv*-Stämmen 85-10, 85-10 $\Delta sX13$, 85-10 $\Delta sX13$ + $sX13_{ch}$, 85-10 $\Delta sX5$ und 85-10 $\Delta sX5\Delta sX13$. Die optische Dichte (OD₆₀₀) und die Dokumentationszeitpunkte (dpi = Tage nach Infektion) sind angegeben. Zur Visualisierung der HR und nekrotischen Symptome wurden die Blätter eventuell in Ethanol gebleicht. Gestrichelte Linien kennzeichnen den Infektionsbereich.

B) Dip-Inokulation von ECW-Paprikablättern in Bakterienlösungen $(5 \times 10^7 \text{ KBE/ml})$ der Stämme *Xcv* 85-10 bzw. 85-10 $\Delta sX13$. Die dargestellten Blätter zeigen repräsentative Blätter 11 dpi.

Die Ergebnisse (A & B) wurden in mindestens zwei unabhängigen Experimenten reproduziert.

Um den Einfluss von sX13 auf die Virulenz in ECW-Paprikapflanzen näher zu untersuchen, wurden Dip-Inokulationen durchgeführt, da diese die natürliche Infektion besser widerspiegeln. Zu Beginn der Infektion, wenn die ersten "Spots" auf den Blättern zu erkennen sind, waren keine Unterschiede zwischen der *sX13*-Mutante und *Xcv* 85-10 dokumentierbar (Daten nicht gezeigt). Lediglich der Zeitpunkt des beginnenden Absterbens der Blätter unterschied sich zwischen Blättern, welche mit 85-10-Bakteriensuspension bzw. 85-10 $\Delta sX13$ -Bakteriensuspension infiziert wurden (Abbildung 19 B).

Blätter, die mit 85-10-Bakteriensuspension behandelt wurden, wurden schneller chlorotische als Blätter, die mit $85-10\Delta sX13$ -Bakteriensuspension infiziert wurden.

3.4. Die Analyse des möglichen Einflusses von sX13 auf Biofilmbildung und *Twitching motility*

Sowohl in der von C. Schmidtke durchgeführten Transkriptstudie (Schmidtke *et al.*, 2013), als auch der in dieser Arbeit vorgestellten Proteomanalytik (Kapitel 3.2.) waren zahlreiche Typ IV-Pilusgene bzw. -Pilusproteine sX13-abhängig negativ reguliert. Typ IV-Pilusproteine sind für den Aufbau und die Regulation von Typ IV-Pili verantwortlich. Aufgrund dieser Beobachtungen wurde vermutete, dass sX13 einen Einfluss auf die Typ IV-abhängige Motilität (*Twitiching motility*) haben könnte.

3.4.1. sX13 beeinflusst *Twitching motility* auf verschiedenen Festmedien.

Twitching motility beschreibt eine Flagellum-unabhängige Bewegungsform von Bakterien. Dabei heften sich polare Typ IV-Pili an Oberflächen oder andere Bakterien an. Durch Pilus-Kontraktion kommt daraufhin ein Vorwärtsziehen des Bakteriums zustande (Mattick, 2002). Um zu untersuchen, ob sX13 *Twitching motility* beeinflusst, wurde das Wachstum von *Xcv* auf verschiedenen Festmedien untersucht. Dazu wurde der Koloniedurchmesser nach Auftropfen einer Bakteriensuspension auf 1% ige Agarplatten bestimmt, welche mit ihrer feuchten Oberfläche *Twitching* begünstigen. Bis zum sechsten Tag nach dem Auftropfen wurde für *Xcv* 85-10 und 85-10 Δ s*X13* kein signifikanter Unterschied des Koloniedurchmessers festgestellt (Abbildung 20 A). Im Gegensatz dazu wurde auf 1% igen MA-Platten ein signifikant größerer Koloniedurchmesser für den *Xcv*-Stamm 85-10 (Durchschnitt 15 mm) im Vergleich zur *sX13*-Mutante (Durchschnitt 12 mm) bereits nach zwei Tagen gemessen (Abbildung 20 A).

Ebenfalls dokumentiert wurde die Koloniemorphologie beider Bakterienstämme. Xcv 85-10 zeigte auf den beiden getesteten Medien am äußeren Kolonierand eine strahlenförmige Ausbreitung der Kolonie und im Inneren konzentrische Ringe (Abbildung 20 A). Im Vergleich hierzu zeigte, die sX13-Mutante auf NYG-Medium nur schwache Strahlen und auf MA-Medium waren mit bloßem Auge keine komplexeren Strukturen zu erkennen (Abbildung 20 A). Um die Strukturen genauer zu untersuchen, wurden in Kooperation mit G. Hause (Martin-Luther-Universität Halle-Wittenberg) elektronenmikroskopische Negativkontrastierungsaufnahmen von Bakterien aus den Randbereichen von auf MA-Platten gewachsenen Kolonien der Xcv Stämme 85-10 und 85-10ΔsX13 aufgenommen. Im Vergleich zum Wildtyp sind für die sX13-Deletionsmutante viele fadenförmige extrazelluläre Strukturen erkennbar, welche sowohl an Bakterienzellen assoziiert als auch nicht assoziiert vorlagen (Abbildung 20 B und C).

Diese Ergebnisse zeigen, dass sX13 einen Einfluss auf die bakterielle Fortbewegung hat und dass der Einfluss der *sX13*-Deletion auf *Twitching motility* möglicherweise durch die Akkumulation der Typ IV-Piluskomponenten in der *sX13*-Mutante zustande kommt.

Abbildung 20: sX13 beeinflusst Koloniewachstum und -morphologie von Xcv.

Luther-Universität Halle-Wittenberg).

A) Plattentropfexperiment auf 1% igen NYG-und MA-Platten von Xcv 85-10 und 85-10 $\Delta sXI3$. Es wurden 3 µl einer Bakteriensuspension (4 × 10⁹ KBE/ml) getropft. Die Messung des Koloniedurchmessers erfolgte zwei Tage und die Dokumentation der Koloniemorphologie erfolgte sechs Tage nach dem Tropfen. Die Ergebnisse wurden in mindestens drei unabhängigen Experimenten reproduziert. B und C) Elektronenmikroskopische Negativkontrastierungsaufnahmen. Bakterienmaterial des Wildtyps (B) und *sXI3*-defzienten Stammes (C) wurden aus dem äußeren Rand einer auf MA-Festmedium gewachsenen Kolonie in 10 mM MgCl₂ durch invertieren homogenisiert. 3 µl der Bakteriensuspensionen wurden für die Aufarbeitung der Negativkontrastierungsproben verwendet (Kooperation G. Hause; Martin-

3.4.2. Hat sX13 einen Einfluss auf die Biofilmbildung?

Typ IV-Pili sind essentiell für *Twitching motility* und können darüber hinaus auch zur bakteriellen Adhäsion an Feststoffe beitragen (Klausen *et al.*, 2003; Barken *et al.*, 2008). Ein Einfluss von Typ IV-Pili auf die Adhäsion von *Pseudomonas aeruginosa* an Glas und Polystyrene (Klausen *et al.*, 2003) wurde bereits nachgwiesen, sodass im Folgenden untersucht wurde, ob sX13 auch einen Einfluss auf die bakterielle Adhäsion hat. In Abbildung 21 ist ein Biofilmexperiment in Reagenzgläsern dargestellt. In MA-Medium zeigte sowohl *Xcv* 85-10 als auch 85-10 Δ *sX13* eine verstärkte Adhäsion und Biofilmbildung im Vergleich zu den in NYG angezogenen Stämmen. Eine sX13-Abhängigkeit konnte nicht festgestellt werden, sodass sX13 zwar die Typ IV-Pilus-abhängige *Twitching motility* beeinflusst, nicht aber die Adhäsion an Glas und Biofilmbildung an der Grenzfläche zwischen Medium und Luft.

Abbildung 21: sX13 hat keinen Einfluss auf die Biofilmbildung und Adhäsion an Glas. Biofilmexperiment mit *Xcv* 85-10 und 85-10 Δ sX13, kultiviert in NYG- und MA-Medium. 2 ml frisches Medium wurden mit 20 µl Bakteriensuspension (4 × 10⁹ KBE/ml) angeimpft und für 14 Tage erschütterungsfrei bei 30°C inkubiert. Die angehefteten Zellen wurden mit Kristallviolett gefärbt und anschließend dokumentiert. Dargestellt sind die Triplikate eines repräsentativen Experiments. Das Ergebnis wurde in zwei unabhängigen Experimenten reproduziert.

3.5. Interagiert sX13 mit RNAs und Proteinen?

Ein Schwerpunkt dieser Arbeit lag auf der Analyse des molekularen Mechanismus' der sX13abhängigen Regulation. *Trans*-kodierte sRNAs wirken meist durch direkte Basenpaarung mit ZielmRNAs auf deren Translation und/oder deren Akkumulation. Häufig benötigen sRNAs ein Chaperon, z. B. Hfq, um eine stabile Interaktion mit Ziel-mRNAs zu etablieren (Kapitel 1.4.1). Deshalb war ein Ziel dieser Arbeit die Identifizierung von Ziel-mRNAs und möglichen proteinogenen Interaktionspartnern.

3.5.1. Interaktionsstudien mit den bekannten RNA-Bindeproteinen CsrA und Hfq

Im Rahmen der Dissertation von J. Brock (AG Bonas) wurden Hfg- und CsrA-gebundene RNAs identifiziert (Brock, 2013). sX13 wurde sowohl in den RNA-Seq Daten einer Hfq- als auch einer CsrA-Ko-Immunopräzipitation gefunden und als angereichert identifiziert, was auf eine direkte oder indirekte Interaktion hinweist. In Zusammenarbeit mit J. Brock wurde mittels Filter-Bindungsexperiment untersucht, ob sX13 direkt mit CsrA interagiert. Hierfür wurde ein Filter-Bindungsexperiment mit CsrA und den in vitro transkribierten RNAs sX13 und sX16 durchgeführt. Da sX16 ebenfalls in den RNA-Seq Daten der CsrA-Ko-Immunopräzipitation als an CsrA gebunden identifiziert wurde, wurde sX16 ebenfalls in einem Filter-Bindungsexperiment getestet (J. Brock und U. Bonas unpubliziert). In Filter-Bindungsexperimenten werden steigende Proteinmengen zusammen mit einer konstanten Menge radioaktiv-markierter RNA inkubiert. Gereinigtes CsrA wurde von J. Brock zur Verfügung gestellt. Die sX13-Bindungskurve zeigte auch mit steigender Proteinkonzentration keine Bindung von sX13 an CsrA (Abbildung 22 A). Im Gegensatz dazu stieg der Prozentsatz gebundener RNA für sX16 auf ca. 60% (Abbildung 22 A). Obwohl die direkte Bindung von sX16 an CsrA bestätigt wurde, interagiert sX13 unter den getesteten Bedingungen nicht mit CsrA. Daher war die von J. Brock identifizierte Bindung von sX13 an CsrA vermutlich indirekt.

Abbildung 22: sX13 interagiert im Filter-Bindungsexperiment nicht mit CsrA.

A) Filter-Bindungsexperiment zwischen sX13, sX16 und CsrA-His₆-Protein. Es wurden 500 fmol radioaktiv-markierte, *in vitro*-transkribierte sRNA mit steigenden Konzentrationen von CsrA-His₆ inkubiert und über einen Nitrocellulosefilter immobilisiert. Die schwarzen Kreise kennzeichnen die gewählten Messpunkte und die Kurven wurden mittels linearer Regression ermittelt. Dargestellt sind die Ergebnisse eines Experiments, welche in einem zweiten, unabhängigen Experiment reproduziert wurden.

B) GFP-Reporterassay. Relative GFP-Fluoreszenz der auf NYG-Festmedium angezogenen Stämme Xcv 85-10, 85-10 hfq^{-} , 85-10 $\Delta sX13$ und 85-10 $\Delta sX13hfq^{-}$. Die Stämme enthielten die Reporterkonstrukte pFX3927 oder pFXhfq. Die Autofluoreszenz von Xcv wurde mit 85-10 pFX0 bestimmt. Die GFP-Fluoreszenz des Wildtypstammes mit entsprechendem Reporterkonstrukt wurde auf den Wert 1, die übrigen Werte dazu ins Verhältnis gesetzt. Datenpunkte repräsentieren die Mittelwerte von vier unabhängigen Experimenten, die Fehlerbalken kennzeichnen die Standardabweichungen und Sternchen kennzeichnen statistisch signifikante Unterschiede im Vergleich zum jeweiligen Xcv 85-10 (Student's T-Test; P<0,01; Schmidtke *et al.*, 2013, Experiment U. Abendroth)

Als nächstes sollte ein möglicher Einfluss von Hfq auf die sX13-abhängige Regulation der Translation ausgewählter sX13-Ziel-mRNAs mittels GFP-Reporteranalysen untersucht werden. Verwendet wurden Reporterkonstrukte für die sX13-Zielgene XCV3927 und hfq, welche den nativen Promotor und 10 bzw. 20 Codons mit vorhergesagter sX13-Bindestelle an gfp ohne eigenen Promotor und Startcodon kodierten (zur Verfügung gestellt von C. Schmidtke; Schmidtke et al., 2013). Im Vergleich zu Xcv 85-10 wurden für 85-10 $\Delta sX13$ mit den Reporterkonstrukten für XCV3927::gfp und hfg::gfp signifikant höhere Fluoreszenzwerte gemessen (Abbildung 22 B). Für Xcv 85-10hfq⁻ mit hfq::gfp wurden zum Wildtyp vergleichbare Fluoreszenzwerte gemessen, wohingegen 85-10hfg mit XCV3927::gfp niedrigere Fluoreszenzwerte zeigte als Xcv 85-10. Die Translation beider Konstrukte wird also wie erwartet sX13-abhängig reprimiert. Die von J. Brock eingebrachte Frameshift-Mutation in hfg (Brock, 2013) hatte keinen wesentlichen Einfluss auf die gemessenen Fluoreszenzwerte (Abbildung 22 B, Schmidtke et al., 2013; Experiment U. Abendroth). Mit diesen Ergebnissen wurde gezeigt, dass die sX13-abhängige Regulation von Ziel-mRNAs unabhängig von Hfq erfolgt und dass sX13 nicht direkt mit CsrA interagiert. Die Hfq-Unabhängigkeit der sX13-abhängigen Regulation deutet auf die Existenz eines anderen RNA-"Chaperons" hin, welches die Interaktion zwischen sX13 und deren Ziel-mRNAs vermittelt.

3.5.2. Interagiert sX13 direkt mit ausgewählten Ziel-mRNAs?

Nachdem festgestellt wurde, dass die sX13-Funktion CsrA- und Hfq-unabhängig ist (siehe Kapitel 3.5.1.), sollte eine mögliche direkte Interaktion zwischen sX13 und deren Ziel-mRNAs untersucht werden. Dazu wurden *in vitro*-Interaktionsstudien mittels RNA-RNA-EMSA durchgeführt. Das sRNA-mRNA Paar MicC und *ompC* aus *E. coli*, welches *in vivo* Hfq benötigt, diente als Positivkontrolle (Chen et al., 2004). Für die EMSA-Experimente wurden die sRNAs sX13 und MicC sowie je ca. 60 Nt-lange mRNA-Fragmente, bestehend aus 5'-UTR und kodierender Sequenz von *XCV3927, hfq, XCV3232, XCV1375, XCH4374, XCV3068* und *ompC in vitro*-transkribiert (Kapitel 2.2.2.3. und 2.2.2.7.). Diese Gene wurden ausgewählt, da sie in ihrer 5'-UTR mindestens ein 4G-Motiv enthalten und in der Proteomanalytik und/oder dem GFP-Reportersystem sX13-abhängig waren. Außerdem wurden nur ca. 60 Nt-lange mRNA-Fragmente *in vitro*-transkribiert, um Sekundärstrukturen zu minimieren und für die EMSA-Experimente ähnliche Interaktionsplattformen anzubieten, wie in den GFP-Reporteranaylsen. Die sRNAs sX13 und MicC wurden 5'-radioaktiv-markiert und mit ihren jeweiligen Interaktionspartnern inkubiert (siehe Kapitel 2.2.2.7.).

Wie die Abbildung 23 zeigt, interagiert die MicC sRNA mit steigender Menge des *ompC*-mRNA-Fragments. Als Negativkontrolle diente das mRNA-Fragment von *XCV3927*, das nicht mit MicC interagierte (Abbildung 23).

Abbildung 23: EMSA-Analysen von sX13 mit XCV3927 und hfq

In vitro-Interaktion von sX13-RNA mit den 5'-UTR von XCV3927 und hfq. 5 nM radioaktiv-markierte sX13-RNA wurde mit steigenden Mengen von XCV3927- und hfq-mRNA-Fragmenten 15 Minuten bei 37°C inkubiert. Anschließend wurde der Reaktionsansatz auf einem 6% igen nativen Polyacrylamidgel aufgetrennt und mittels Autoradiografie dokumentiert. Die Ergebnisse wurden in mindestens zwei unabhängigen Experimenten reproduziert.

Da für sX13 noch kein direkter Interaktionspartner bekannt ist, wurden Oligonukleotidfragmente komplementär zum 5'-Bereich und zur Loop 2-Region der sRNA als mögliche Positivkontrolle gewählt. Für die möglichen Ziel-mRNAs *XCV3927*, *hfq* und Positivkontrollen konnte keine

Interaktion unter den gewählten Bedingungen nachgewiesen werden (Abbildung 23). Auch für mRNA-Fragmente von XCV3232, XCV4374, XCV3068 und XCV1375 wurde keine Interaktion mit sX13 nachgewiesen (Daten nicht gezeigt).

3.5.3. Versuch Identifizierung sX13-Interaktoren der mittels von Affinitätschromatographie

Folgenden versucht sX13-Interkationspartner Im wurde mittels **RNA-basierter** Affinitätschromatographie zu identifizieren. Dazu wurde sX13 mit dem Aptamer PP7 markiert, das Das PP7-Aptamer ist 25 Nt lang und besteht aus einem Doppelstrangbereich mit einem Purin-Bulge auf der 5'-Seite des Doppelstrangbereichs und einem 6 Nt-großen Loop (Lim et al., 2001; Lim und Peabody, 2002).

Abbildung 24: Die Sekundärstruktur verschiedener sX13-Derivate mit PP7-Epitopmarkierung A-D) Die mfold-Vorhersage der Sekundärstruktur verschiedener sX13-Derivate mit PP7-Epitopmarkierung. (http://mfold.rna.albany.edu/?q=mfold/rna-folding-form; Version: 3.5) A) PP7::sX13; B) sX13::PP7; C) sX13-L3::PP7 und D) modPP7::sX13. L1 = original sX13-Loop 1, L2 = original sX13-Loop 2, L3 = original sX13-Loop 3, PP7 = PP7-Aptamer.

3.5.3.1. Affinitätschromatographie mittels in vitro-transkribiertem sX13-Derivat

Um potentielle proteinogene Interaktionspartner von sX13 zu identifizieren, wurde ein sX13-Derivat mit 3'-PP7-Epitopmarkierung *in vitro*-transkribiert. Das PP7-Epitop wurde über einen drei Nukleotidlangen *Linker* an den dritten Stem-Loop von sX13 fusioniert und das Poly-U Motiv des Rhounabhängigen Terminators von sX13 hinter den PP7-Stem-Loop fusioniert (Abbildung 24 B). Nach der *in vitro*-Transkription wurde zunächst die Bindung des sX13-Derviats an das PP7::MBP::His₆ Protein mittels Filter-Bindungsexperiment bestätigt (Daten nicht gezeigt). Anschließend wurde eine Affinitätschromatographie mit Gesamt-Proteinextrakt von *Xcv* 85-10 Δ *sX13*, welcher bis zur frühen stationären Phase (OD₆₀₀ = 0,9) in NYG angezogen wurde, durchgeführt.

Abbildung 25: Affinitätschromatographie mit in vitro-transkribierter sX13::PP7-RNA

A) Schematische Darstellung des experimentellen Ansatzes der *in vitro*-Affinitätschromatographie. Nach Blockierung der Amylose-Matrix mit Hefe-RNA und BSA, wurde das PP7::MBP::His₆-Protein an die Matrix gebunden (1). Darauf folgte die Immobilisierung der *in vitro*-transkribierten RNAs (2). Anschließend sollten potentielle sX13-Interaktionspartner aus dem Zellextrakt immobilisiert werden (3).
B) Affinitätschromatographie von *in vitro*-transkribierter sX13::PP7. Die Affinitätschromatographie wurde mit Gesamt-Proteinextrakt des Stamms 85-10*ΔsX13* durchgeführt, welcher in NYG angezogen wurde. Als Negativkontrollen dienten die *in vitro*-transkribierten RNAs sX13 und PP7. An PP7::sX13 gebundene Proteine wurden mittels Maltoselösung eluiert, durch SDS-PAGE aufgetrennt und silbergefärbt. Das Dreieck kennzeichnet die vermutete Größe von PP7::MBP::His₆ Protein (55 kDa). Aufgetragen wurden das eingesetzte Gesamt-Proteinextrakt sowie die Elutionsfraktionen (E) und Proteine, welche nach der Elution an der Matrix (M) verblieben sind. Das abgebildete Ergebnis wurde in zwei unabhängigen Experimenten reproduziert.

Abbildung 25 B zeigt den schematischen Versuchsaufbau und ein repräsentatives Ergebnis einer sX13-Affinitätschromatographie. Die letzten sechs Spuren zeigen die Elutionsfraktionen in denen schwache Unterschiede erkennbar waren. Dieses Ergebnis liefert erste Hinweise, dass *in vitro*-basierte RNA-Affinitätschromatographie genutzt werden könnte um sX13-Interaktionspartner zu identifizieren.

Eine Optimierungsmöglichkeit könnte sein, dass die sRNA *in vitro* transkribiert wurde und die Interaktion im Zellextrakt nicht stabil zustande kommt, so dass im Folgenden *in vivo*-transkribierte sRNA genutzt werden sollte.

3.5.3.2. Affinitätschromatographie mittels verschiedener *in vivo*-synthetisierter sX13-Derivate

Da die Affinitätschromatographie mit *in vitro*-transkribierter sX13::PP7-RNA erste schwache Hinweise auf einen proteinogenen Interaktor lieferte (Kapitel 3.5.3.1.), wurden anschließend *in vivo*-Experimente durchgeführt. Dies hatte den Vorteil, dass sich mögliche RNA-Proteinkomplexe schon *in vivo* etablieren können, wohingegen diese Komplexe *in vitro* während der Affinitätschromatographie gebildet werden müssen. Hierfür wurden verschiedene *sX13*-Expressionskonstrukte zur Expression von PP7-Epitop-markierten *sX13*-Derivaten unter Kontrolle des nativen Promotors in *Xcv* erstellt (Abbildung 24 A - D). Die Epitopmarkierung wurde sowohl 5^c als auch 3^c und als Ersatz für Loop 3 an sX13 fusioniert (Abbildung 24 A - C). Weiterhin wurde ein Epitop-markiertes sX13-Derivat erstellt, p_{nat}(*mod:PP7::sX13*), in dem der GC-Gehalt der Epitop-Markierung dem GC-Gehalt der sRNA angeglichen wurde (Abbildung 24 D). sX13 hat einen GC-Gehalt von ca. 62%. Die Komposition des PP7-Epitops erfolgte dabei auf Grundlage der Arbeiten von Lim und Peabody, 2002. Das modifiziert PP7-Epitop hatte einen GC-Gehalt von ca. 48%, wohingegen das native PP7-Epitop ein GC-Gehalt von 32% hatte.

Idealerweise hat die Verwendung der Epitopmarkierung keinen Einfluss auf die Funktion von sX13. Um zu untersuchen, ob die generierten Expressionskonstrukte in der Lage sind, die sX13-Mutante zu komplementieren, wurden diese in den Stamm 85-10*\DeltasX13* konjugiert und Infektionsexperimente in resistenten ECW-10R-Pflanzen durchgeführt (Abbildung 26 A). Wie zuvor beschrieben, führte die Inokulation von 85-10ΔsX13 pBRM-P im Vergleich zu 85-10 pBRM-P zu einer deutlichen Verzögerung des pflanzlichen Zelltods 22 hpi (Abbildung 26 A; Schmidtke et al., 2013). Xcv p_{nat}(*sX13-L3::PP7*) 85-10∆*sX13*-Stämme, welche die Plasmide $p_{nat}(PP7::sX13),$ und pnat(modPP7::sX13) trugen, lösten eine Zelltodreaktion aus, die vergleichbar stark war, wie die Zelltodreaktion nach Inokulation von Xcv 85-10 (Abbildung 26 A). Damit komplementierten alle getesteten Derivate die sX13-Deletion und waren funktional. Überraschenderweise hatte die Expression der sX13-Derivate in 85-10 einen negativen Einfluss auf die ausgelösten Zelltodreaktionen (Abbildung 23 A). Dieser dominant negative Effekt beruht möglicherweise auf der Akkumulation von funktionaler sX13-RNA.
Ergebnisse

Abbildung 26: Komplementation der *sX13*-Mutante mit verschiedenen Epitop-markierten *sX13*-Derivaten A) Infektionsexperimente mit ECW-10R und den *Xcv*-Stämmen 85-10 und 85-10 $\Delta sX13$ mit pBRM-P, p_{nat}*sX13*, p_{nat}*PP7::sX13*, p_{nat}*sX13*- *L3::PP7* und p_{nat}*modPP7::sX13*. Die Stämme wurden mit Zelldichten von 5×10^8 KBE/ml inokuliert. Die Dokumentation der Reaktionen erfolgte 22 hpi. Zur Visualisierung der HR wurden die Blätter in Ethanol gebleicht. Gestrichelte Linien kennzeichnen die Infektionsbereiche. Die abgebildeten Ergebnisse wurden in mindestens zwei unabhängigen Experimenten reproduziert. B) Northern-Blot-Analyse von Gesamt-RNA der unter (A) verwendeten Stämme. Die RNA wurde mit einer sX13-spezifischen Oligonukleotidsonde analysiert, eine Sonde gegen die 5S rRNA diente als Ladekontrolle. Die Dreiecke markieren die erwartete Größe der

sX13-Derivate. Das Experiment wurde mindestens einmal unabhängig wiederholt.

Die Synthese der sX13-Derivate wurde mittels Northern-Blot-Analysen überprüft. Die Abbildung 26 B zeigt, dass ein sX13-spezifisches Signal bei ca. 110 Nt für den Stamm 85-10 pBRM-P, nicht aber für 85-10 $\Delta sX13$ pBRM-P detektiert wurde. Für die Stämme 85-10 und 85-10 $\Delta sX13$ mit p_{nat}(*PP7::sX13*) wurde ein spezifisches Signal bei ca. 147 Nt detektiert, welches der erwarteten Größe der Epitop-markierten sX13-RNA entspricht. Außerdem wurde ein Signal bei 110 Nt detektiert, welches mit der Größe des sX13-Derivates ohne PP7-Epitop oder der endogenen *sX13* korreliert. Die Analyse der Expression des Konstrukts p_{nat}(*sX13-L3::PP7*) in 85-10 $\Delta sX13$ ergab, dass lediglich ein spezifisches Signal unter 110 Nt detektiert wurde, welches einem sX13-Derivat, bestehend aus zwei Loops entspricht. Einzig für den Stamm 85-10 $\Delta sX13$ p_{nat}(*modPP7::sX13*) war nahezu ausschließlich ein spezifisches Signal detektierbar, welches knapp unterhalb 147 Nt war und der erwarteten Größe der Epitop-markierten sX13-RNA entsprach (Abbildung 26 B).

Zusammenfassend wird deutlich, dass alle Konstrukte die *sX13*-Mutante komplementierten, aber im Northern-Blot lediglich das Konstrukt $p_{nat}(modPP7::sX13)$ ausschließlich zur Detektion des erwarteten Signals führte. Im Gegensatz dazu führten die Konstrukte $p_{nat}(PP7::sX13)$ und $p_{nat}(sX13-L3::PP7)$ im Northern-Blot vornehmlich zu Signalen, welche vermuten lassen, dass diese sX13-Derivate nicht stabil synthetisiert werden und deshalb ungeeignet für die Affinitätschromatographie erscheinen.

Für die Affinitätschromatographie wurde der Stamm $85-10\Delta sX13$ p_{nat}(*modPP7::sX13*) und der als Negativkontrolle dienende Stamm 85-10 pBRMP-P verwendet. Aufgrund der vielen Hintergrundsignale nach der Silberfärbung, konnte auch in diesem Experiment kein eindeutiger Beweis für das Vorhandensein eines proteinogenen sX13-Interaktionspartners erbracht werden (Abbildung 42 im Anhang).

3.5.4. Im Saccharosegradient ist sX13 in ribosomalen Fraktionen zu detektieren

Wie zuvor beschrieben hemmt sX13 die Translation zahlreicher Ziel-mRNAs (Kapitel 3.2., Schmidtke et al., 2013). Viele sRNAs hemmen die Translation von mRNAs, indem sie diese in der Nähe der RBS binden und damit die Interaktion zwischen mRNA und Ribosomen verhindern. Wenn sX13 auch diesem Mechanismus unterliegt, dann sollte dies mit einer Fraktionierung der ribosomalen Fraktionen nachweisbar sein. sX13 sollte dann nur in Fraktionen untranslatierter mRNAs und nicht in ribosomalen Fraktionen zu finden sein. Mittels Saccharosedichtegradientenzentrifugation wurden translatierte und untranslatierte RNA-Fraktionen separiert (Kapitel 2.2.2.12.). Dieser experimentelle Aufbau könnte die Grundlage zur Analyse des Einflusses von sX13 auf die Interaktion zwischen mRNAs und Ribosomen darstellen. Abbildung 27 zeigt die schematische Darstellung einer Dichtegradientenzentrifugation mit Chromatogramm der einzelnen Fraktionen und einen Northern-Blot, welcher mit einer Oligonukleotidsonde, spezifisch gegen sX13 bzw. 6S RNA, inkubiert wurde. sX13 wurde in nahezu allen Fraktionen detektiert, wohingegen die 6S RNA wie erwartet nur in den untranslatierten Fraktionen nachweisbar war. Die Verwendung der 6S RNA-spezifischen Sonde erfolgte als Kontrolle, da die 6S RNA mit der RNA-Polymerase II, nicht aber mit Ribosomen interagiert (Lee et al., 1978; Wassarman und Storz, 2000). Offensichtlich konnte die eingangs formulierte Theorie, nicht bestätigt werden, da sX13 auch in Fraktionen zu finden ist, welche assemblierte Ribosomen enthalten.

Dichtegradientenzentrifugation im Saccharosegradienten, gefolgt von Northern-Blot-Analyse. *Xcv* 85-10 wurde in NYG bis zu einer $OD_{600} = 0,8$ angezogen. Es wurde die gesamte RNA der jeweiligen Fraktionen geladen. Die RNA wurde mit einer sX13-spezifischen Oligonukleotidsonde analysiert, eine Sonde gegen die 6S RNA diente als Kontrolle für die erfolgreiche Dichtegradientenzentrifugation. UE = ribosomale Untereinheiten. Das abgebildete Ergebnis wurde in zwei unabhängigen Experimenten reproduziert.

Ergebnisse

3.6. Reannotation des *Xcv*-Genoms mittels Proteogenomik

Die korrekte Annotation eines Genoms bildet die Grundlage für molekularbiologische und proteomanalytische Experimente. Die Annotation eines Genoms und der darin enthaltenen kodierenden Bereiche erfolgt häufig unter Verwendung verschiedener Genvorhersageprogramme (Larsen und Krogh, 2003; Delcher *et al.*, 2007; Hyatt *et al.*, 2010; Kapitel 1.7.). Diese Programme können proteinkodierende Sequenzen übersehen, im falschen offenen Leserahmen annotieren, oder Proteinsequenzen N-terminal verkürzt ausgeben. Zusätzliche Informationen wie Transkriptionsstarts und regulatorische Motive (z. B. Ribosomenbindestelle) können helfen diese Schwachstellen zu verringern. Ein weiterer Schwachpunkt von Genvorhersageprogrammen ist, dass sie in der Regel eine Minimumlänge für offene Leserahmen verwenden, die meist bei ca. 300 Nukleotiden liegt (Dinger *et al.*, 2008). Dies führt dazu, dass Proteine ≤ 100 Aminosäuren nicht automatisch annotiert werden.

Die sicherste Möglichkeit der Annotation von proteinkodierenden Bereichen eines Genoms ist die massenspektrometrische Analyse von Gesamtproteinextrakten. Dies wurde im Rahmen dieser Arbeit für *Xcv* 85-10 in Kooperation mit A. Otto (Institut für Mikrobiologie, Universität Greifswald) durchgeführt.

3.6.1. Die Erstellung der Datenbank für die massenspektrometrisch gestützte Identifizierung neuer Proteine und *Mapping* der Peptide auf das Genom von *Xcv*

Zur massenspektrometrischen Identifizierung von Proteinen muss eine Datenbank vorhanden sein, welche es erlaubt, nach spezifischen Proteinsequenzen zu suchen. Um unvoreingenommen nach der Gesamtheit aller möglichen Proteine von *Xcv* mittels massenspektrometrischer Analyse suchen zu können, wurde eine Datenbank erstellt, welche alle in *Xcv* möglichen Proteine enthält. Dazu wurde das *Xcv*-Genom *in silico* mit einem Programm der Universität von Illinois (Chicago, http://mankinlab.cpb.uic.edu/trans.html) in alle sechs Lesenrahmen translatiert.

In silico wurden so 175.698 verschiedene Proteinsequenzen erhalten. 21.627 Proteinsequenzen setzten sich aus maximal sechs Aminosäuren zusammen und konnten experimentell bedingt bei der massenspektrometrischen Analyse nicht berücksichtigt werden. In Tabelle 11 sind die für die massenspektrometrische Analyse verwendeten Stämme und Anzuchtbedingungen aufgelistet. Die Bedingungen sollten möglichst divers sein, damit möglichst viele verschiedene Proteine von den Bakterien synthetisiert werden.

Abbildung 28: Schematische Darstellung der Generierung der 6-Leserahmen-Datenbank am Beispiel des *Xcv*-Chromosoms

Durchgehende Stiche stellen das linearisierte *Xcv*-Chromosom dar. Gestrichelte Linien kennzeichnen einen fiktiven Ausschnitt aus der DNA-Sequenz des Chromosoms. Pfeile kennzeichnen die Startpunkte und Richtungen der 6 verschiedenen offenen Leserahmen.

Stamm	Medium	Wachstumsphase			
85-10	NYG	exponentiell			
85-10	NYG	stationär			
85-10	XVM2	exponentiell			
85-10	XVM2	stationär			
85-10 p(<i>hrpG</i> *)	NYG	exponentiell			
85-10 p(<i>hrpG</i> *)	NYG	stationär			
85-10 p(<i>hrpG</i> *)	XVM2	exponentiell			
85-10 p(<i>hrpG</i> *)	XVM2	stationär			
Zusammensetzung der Proben für die SDS- und Tricine-PAGE:					
Stamm	Medium	Wachstumsphase			
85-10	NYG & XVM2	exponentiell & stationär			
85-10	NYG & XVM2	stationär & exponentiell			
85-10 p(<i>hrpG</i> *)	NYG & XVM2	exponentiell & stationäre			
85-10 p(<i>hrpG</i> *)	NYG & XVM2	stationär & exponentiell			

Tabelle 11: Zusammenfassung der für die Massenspektrometrie genutzten Stämme und Bedingungen

Die Stämme 85-10 und 85-10 p($hrpG^*$) wurden im Komplexmedium NYG und im hrp-Gen induzierenden Medium XVM2 kultiviert (Wengelnik *et al.*, 1996a). Proteinproben wurden in der exponentiellen und stationären Wachstumsphase geerntet. Tabelle 11 listet alle für die SDS- und Tricine-PAGE gemischten Proteinproben auf.

Die vier verschiedenen erhaltenen Proteinproben, wurden auf einem 10% igen Polyacrylamid-SDS-Gel und einem 10% igen Polyacrylamid-Tricine-Gel elektrophoretisch aufgetrennt. Weiterhin wurden in TE-Puffer hergestellte Proteinextrakte in Tabelle 11 gelisteten Bedingungen hergestellt und zusammen mit den Gelen an A. Otto (Institut für Mikrobiologie, Universität Greifswald) zur Analyse versandt.

Die MS-Sequenzdaten umfassten bei Verwendung einer standardmäßigen Protein-Falschpositivenrate (Protein-FDR) von 0,4% bzw. einer Peptid-FDR von 0,0% 126.995 verschiedene Peptide. Die weitere bioinformatische Auswertung der Peptide erfolgte in Zusammenarbeit mit B. Grüneisen

(Bioinformatiker, AG Bonas). Abbildung 29 zeigt schematisch das Vorgehen für die Zuordnung der Peptiddaten zum Genom von *Xcv*. Die durch A. Otto bereitgestellten Daten enthielten Informationen, welche die Peptide ihren *in silico*-Proteinen zuwiesen und deren Position innerhalb dieses Proteins. Aufgrund der Komplexität der untersuchten Proben, dem methodischen Vorgehen der Probenaufarbeitung sowie der MS-Analyse ist es unwahrscheinlich, ein Protein komplett mit Peptiddaten abzudecken. Deshalb wurde jeweils das am weitesten N-terminale Peptid eines Proteins als Grundlage für die Zuordnung zu dem *Xcv*-Genom zugrunde gelegt. Das heißt, ausgehend von der Position dieses Peptids wurde angenommen, dass die Translation des Proteins bis zum nächsten Stopcodon im gleichen Leserahmen erfolgt. Die so erhaltenen Proteinsequenzen, bestehend aus 126.995 Peptiden, wurden mittels tBlastN dem Genom von *Xcv* zugeordnet (Abbildung 29). Insgesamt wurden 2.486 chromosomal-kodierte Proteine und 95 Plasmid-kodierte Proteine identifiziert (Abbildung 30).

Abbildung 29: Schematische Darstellung der Kartierung der Peptide auf das Genom von Xcv

Dargestellt ist der erste Leserahmen mit zwei möglichen Proteinen, die durch ein Stopcodon getrennt sind. Die schwarzen Balken stellen Peptide dar, welche zu bestimmten Positionen der Protein 1 und 2 passen. Grüne Boxen kennzeichnen die durch die MS-Daten abgesicherten Proteinsequenzen. Beispielhaft sind die Ergebnisse des tBlastN-basierten *Mappings* auf das *Xcv*-Chromosom für ExbD1 und ExbD2 dargestellt.

Abbildung 30: Übersicht der zum Xcv 85-10-Genom zugeordneten Proteine

3.6.2. Die Identifizierung neuer proteinkodierender Gene in Xcv

Nach dem Mapping der Proteine auf das Genom von Xcv wurde das Chromosom und die Plasmide nach neuen, vorher nicht annotierten proteinkodierenden Genen durchsucht. Für das Chromosom wurden 22 vorher nicht annotierte Proteine und für die Plasmide sieben neue Proteine identifiziert (Abbildung 30). Die Durchschnittslänge der neuen Proteine beträgt ca. 231 AS, wobei sieben Proteine kürzer als 100 AS sind. In Tabelle 12 sind alle neuen Proteine gelistet. Die Tabelle 12 gibt Auskunft über die benachbarten Gene, die Länge der Proteine bis zum ersten möglichen Translationsstart, Funktion, Konservierung in der Gattung der Xanthomonaden sowie Informationen über mögliche Sekretionssignale, T3E-Kandidatenvorhersagen und Kernlokalisierungssignale und die Länge der Proteine bis zum nächsten Startcodon, wobei ATG, GTG und TTG berücksichtigt wurden. 23 neue Proteine besitzen keine annotierte Funktion oder Proteindomäne. Die meisten neuen Gene sind auf der Nukleotidebene in anderen Vertretern der Xanthomonaden konserviert und neun dieser Proteine besitzen ein vorhergesagtes Signalpeptid. Von 29 neuen Proteinen wurden 16, durch mindestens eins der verwendeten Vorhersageprogramme (Bean, Gecco oder Effective), als T3E-Kandidaten vorhergesagt, von denen drei auch ein mögliches Kernlokalisierungssignal besitzen. Zusätzliche Informationen wie zum Beispiel die genaue chromosomale Position (Koordinaten), die Länge des in den Peptiddaten gefundenen Proteins, der Name des zugrundeliegenden Datenbankeintrags sowie Aminosäuresequenz befinden sich im Anhang (Tabelle 19).

Tabelle 12: Identifizierung von neuen Proteinen und T3E-Kandidaten.

SignalP ^d SignalP ^d SignalP ^d SignalP ^d SignalP ^d Servierung ^c anderen frunktion ^b Funktion ^b Funktion ^b	S-Vorhersage ^f
3/ pp. nal	
XCV0062-XCV0063 256 Serine/threonine phosphatases,	-
XCV0209-XCV0210 116 Hypothetical protein	-
XCV0214-XCV0215 306 Hypothetical protein +	-
XCV0282-XCV0283 98 Short C-terminal domain +	-
parE-pyrG 59 sX6, hypothetical protein 1-25 +	-
XCV2618-XCV2619 107 YecR-like lipoprotein + 1-22 +	-
XCV2723-XCV2723 70 Hypothetical protein + - +	-
XCV3389-virB6 161 DUF4189 + +	+
<i>XCV3391-XCV3392</i> 141 <i>Putative secreted protein</i> + 1-25 +	-
XCV3494 V117/ DUF4381, putative membrane + + -	+
XCV3657-xpsD 99 Exported hypothetical protein + 1-25 + +	
XCV3783-XCV3784 191 Hypothetical protein + 1-28 +	-
rsmC-XCV3801 157 Hypothetical protein + 1-22 + +	-
kefC-XCV4167 148 Hypothetical protein +	-
xvlB2-XCV4282 * Unbekannte Funktion + - + + + -	+
XCV4416-XCV4417 141 Hypothetical protein + 1-25 + +	-
XCVd0054-XCVd0055 132 Hypothetical protein +	-
XCVd0124-XCVd0125 129 Hypothetical protein	-
vor XCVc0001 109 Hypothetical protein + - +	-
tnpR-XCVc0009 76 Hypothetical protein + +	-
XCVc0025-XCVc0026 138 Hypothetical protein +	+
nach XCVa0002 60 Hypothetical protein	-
as-gcvP 837 Putative metal-dependent +	-
as-XCV2096 39 Putative secreted protein + 1-21 +	-
as-glkI 162 Hypothetical protein + - +	-
as-XCV2593 258 Unbekannte Funktion +	-
<i>as-XCV4209</i> 203 <i>Putative secreted protein</i> + - + + - +	-
as-XCVd0155 L51/ M60 Putative secreted protein - 1-17 + - +	-
as-xadA1 1597 Hypothetical protein + - +	+

^a Länge des Proteins in Aminosäuren bis zum nächstmöglichen Translationsstart (ATG bzw. den angegebenen möglichen alternativen Startcodons)

^b Annotation der Funktion/Domäne erfolgte mit "InterProScan sequence search" (InterProScan5)

http://www.ebi.ac.uk/interpro/search/sequence-search und BlastP http://blast.ncbi.nlm.nih.gov/Blast.cgi

^c Konservierung der Proteine in *Xanthomonas* spp. auf Ebene der Nukleotide, tBlastN

^d Vorhersage eines Signalpeptides mit SignalP 4.1, http://www.cbs.dtu.dk/services/SignalP/

^e Vorhersage möglicher T3E-Kandidaten mit den Webanwendungen: Bean, Gecco und Effective

http://protein.cau.edu.cn:8080/bean/, http://gecco.org.chemie.uni-frankfurt.de/T3SS_prediction/T3SS_prediction.html und http://www.effectors.org/

^f Vorhersage von Kernlokalisierungssignalen (NLS) unter Verwendung von NLS Mapper und NLStradamus, http://nls-

mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi und http://www.moseslab.csb.utoronto.ca/NLStradamus/

as = antisense,

+ = ja; - = nein; * = kein gängiges Startcodon; Leere Felder wurden nicht analysiert.

3.6.3. Die Korrektur der Annotation bekannter proteinkodierender Gene

Die Sichtung der Peptiddaten für bekannte proteinkodierende Gene ergab, dass 50 chromosomalkodierte Proteine und ein Plasmid-kodiertes Protein N-terminal länger sind als zuvor annotiert, in Tabelle 13 sind 20 dieser Proteine aufgeführt. Die Tabelle 13 gibt Auskunft über die annotierte Länge der Proteine, die Länge der Proteine bis zum ersten möglichen Translationsstart, Funktion, Konservierung in der Gattung der Xanthomonaden sowie Informationen über mögliche Sekretionssignale, T3E-Kandidatenvorhersagen und Kernlokalisierungssignale.

Die Proteine, deren Annotation korrigiert werden muss, sind im Durchschnitt 93 Aminosäuren länger, wobei N-terminale Verlängerungen im Bereich von 3 - 470 Aminosäuren festgestellt wurden. Die durchschnittliche Länge der Proteine beträgt 427 Aminosäuren. Drei von 51 Proteinen weisen keine annotierte Funktion oder Proteindomäne auf und vier Proteine besitzen ein vorhergesagtes Signalpeptid. Nahezu alle in Tabelle 13 gelisteten Genprodukte sind auf der Ebene der Nukleotidsequenz in anderen Vertretern der Xanthomonaden konserviert. Bei 27 der 51 neuen Proteine könnte es sich um T3E handeln von denen 15 auch ein mögliches Kernlokalisierungssignal besitzen (Tabelle 13). Zusätzliche Informationen wie zum Beispiel chromosomale Position (Koordinaten), Länge des in den Peptiddaten gefundenen Proteins, Name des zugrundeliegenden Datenbankeintrags sowie Aminosäuresequenz befinden sich im Anhang (Tabelle 20). Abbildung 31 zeigt an sechs Beispielen die schematische Zuordnung der Peptiddaten zum Xcv-Chromosom. In Abbildung 31 A sind einige ausgewählte Beispiele für die Identifizierung neuer proteinkodierender Gene dargestellt. XCV3494 ist im Leserahmen -2 kodiert und für die Hälfte der annotierten kodierenden Sequenz wurden in den MS-Daten Peptide gefunden. In gleicher Leserichtung wurden Peptide im Leserahmen -1 gefunden, welche zu keinem annotierten proteinkodierenden Gen gehören. Dieses Protein ist Teil des in silico-Datenbankeintrags STO 0143360. Ein weiteres neues proteinkodierendes Gen wurde zwischen kefC und XCV4167 identifiziert. Dieses Gen (STO_012004) ist in gleicher Leserichtung wie XCV4167 kodiert, jedoch im Leserahmen -2. Ein letztes Beispiel für ein neues proteinkodierendes Gen ist STO 0111303, welches zwischen xylB2 und XCV4282 in gleicher Leserichtung wie xylB2 im Leserahmen -2 kodierte ist. Abbildung 31 B zeigt MS-Daten zu bereits annotierten proteinkodierenden Genen. Für raxA wurden unter den getesteten Bedingungen keine Peptiddaten erhalten, wohingegen für raxB Peptiddaten vorhanden sind, welche mit der Annotation von raxA überlappen. Bei genauer Betrachtung des 5'-Bereichs von raxB wird deutlich, dass die Translation von RaxB mit einem ungewöhnlichen Translationsinititationscodon beginnt. Zwischen dem stromaufwärts gelegenen Stopcodon und dem ersten neu-identifizierten Peptid von RaxB, ist das einzige infrage kommende Startcodon ACG, das normalerweise für Threonin kodiert und in vivo als seltenes Startcodon dienen könnte (Sacerdot et al., 1982; Oin et al., 2007; Sussman et al., 1996). Ein weiteres Beispiel ist hrpD6. Die annotierte kodierende Sequenz von hrcD (Leserahmen -2) wurde komplett durch Peptiddaten bestätigt. In gleicher Leserichtung, allerdings in Leserahmen -3, befindet sich hrpD6. Peptiddaten für dieses Gen zeigen, dass das Gen mindestens 243 Bp länger ist als zuvor annotiert. Ein letztes Beispiel für ein falsch annotiertes proteinkodierenden Gen ist XCV0252. XCV0252 ist in Leserahmen 3 kodiert, und die kodierende Sequenz ist mindestens 333 Bp länger als zuvor annotiert und überlappt nun mit der annotierten kodierenden Sequenz von XCV0251. Für XCV0251 wurden ebenfalls Peptide gefunden, wobei die Peptiddaten nicht bis zum annotierten Translationsstart reichen.

Zusammenfassend zeigen die Daten aus Kapitel 3.6., dass die hier beschriebene proteogenomische Analyse von Xcv 85-10 zur Reannotation des Genoms beitragen wird.

	Länge bis ATG/ GTG/ TTG ^a Annotierte Länge, Protein			Konservierung ^c in anderen Xanthomonas spp.	SignalP ^d	T3E–Vorhersage ^e				NLS-
Gen			Funktion ^b			Bean	Gecco	Effective	Sec-Signal	-Vorhersage ^f
xopD	545	760	Ulp1 protease family	+	-	-	-	-		+
XCV0557	247	330	DUF3426	+	-	+	+	-	+	-
XCV0855	260	279	S-adenosylmethionine-dependent methyltransferases	+	-	-	-	-	+	-
raxB	axB 718 * ABC-type bacteriocin/lantibiotic exporters		+	-	-	+	-	+	+	
XCV1265	208	265	D-alanyl-D-alanine carboxypeptidase	+	-	-	•	-	•	-
XCV1378	162	206	cobaltochelatase subunit CobN	-	-	+	+	-	•	-
dapD	285 398	398	2,3,4,5-tetrahydropyridine-2,6- carboxylate N-succinyltransferase	+	-	+	+	-	+	+
grpE	172	*	GrpE nucleotide exchange factor	+	-	-	+	-	-	+
XCV1716	272	394	Subtilases are a family of serine proteases	+	-	-	-	-	+	-
XCV2312	150	150 172 Carboxymuconolactone decarboxylase- like		-	-	-	-	-	-	-
cydD	570	578	ABC transporter, CydDC cysteine exporter (CydDC-E) family, permease/ATP-binding protein CydD	+	-	-	+	+	-	-
argB	426	609	Acetylglutamate kinase	+	-	+	+	-	•	+
dksA	147	271	RNA polymerase-binding transcription factor DksA	+	-	-	-	-	+	+
XCV3377	103	122	Predicted transcriptional regulator	-	-	-	-	-	-	-
rmlD	273	300	dTDP-4-dehydrorhamnose reductase	+	-	-	-	-	-	-
XCV3785	616	688	XopAA, Type III-effector	+	-	+	+	+	-	-
rpoD	625	630	RNA polymerase sigma factor RpoD	+	-	-	-	-	-	+
rho	420	599	Transcription termination factor Rho	+	-	+	-	-	-	-
guaA	256	275	GMP synthase	+	1-26	-	-	-	-	-
XCVd0050	Vd0050 217 228 Hypothetical protein		-	-	-	-	-	-	+	

Tabelle 13: Proteine mit aktualisierter Annotation

^a Länge des reannotierten Proteins in Aminosäuren bis zum nächstmöglichen Translationsstart (ATG bzw. den angegebenen möglichen alternativen Startcodons). ^b Annotation der Funktion/Domäne erfolgte unter Nutzung von "InterProScan sequence search" (InterProScan5),

http://www.ebi.ac.uk/interpro/search/sequence-search und BlastP http://blast.ncbi.nlm.nih.gov/Blast.cgi

^c Konservierung der Proteine in *Xanthomonas* spp. auf Ebene der Nukleotide, tBlastN ^d Vorhersage eines Signalpeptides unter Verwendung von SignalP 4.1, http://www.cbs.dtu.dk/services/SignalP/

^e Vorhersage möglicher T3E-Kandidaten mit den Webanwendungen: Bean, Gecco und Effective

http://protein.cau.edu.cn:8080/bean/, http://gecco.org.chemie.uni-frankfurt.de/T3SS_prediction/T3SS_prediction.html und http://www.effectors.org/

^f Vorhersage von Kernlokalisierungssignalen (NLS) unter Verwendung von NLS Mapper und NLStradamus, http://nls-

mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi und http://www.moseslab.csb.utoronto.ca/NLStradamus/

+ = ja; - = nein; * = kein gängiges Startcodon.

Ergebnisse

A Chromosomale Lokalisierung neuer proteinkodierender Gene

		kefC		
1				
2				
2				XCV4282
3				
		XCV4167	xylB2	
-1				
2	XCV3494	-0111111		allill
-2				34000
-3				

B Korrektur der Annotation bekannter proteinkodierender Gene

Abbildung 31: Schematische Darstellung der zum Chromosom zugeordneten Peptiddaten

A) Schematische Darstellung neuer proteinkodierender Gene im chromosomalen Kontext von Xcv. B) Schematische Darstellung von Paptiddaten welche zu bekannten proteinkodierenden Genen gehörer

B) Schematische Darstellung von Peptiddaten welche zu bekannten proteinkodierenden Genen gehören.

Graue Pfeile kennzeichnen Leserahmen und Leserichtung. Gestreifte Pfeile kennzeichnen den chromosomalen Bereich, für den in den MS-Daten Peptide gefunden wurden. Gestrichelte Linien und das schwarze Kästchen markieren einen vergrößerten Bildausschnitt. Schwarze Kreise markieren die Position von Stopcodons und ein grünes Sechseck kennzeichnet das einzige mögliche Startcodon ACG.

4. Diskussion und Ausblick

4.1. Die sX13-Mutation hat einen limitierten Einfluss auf die Virulenz von Xcv

Aus Vorarbeiten von C. Schmidtke war bekannt, dass sX13 eine positive Rolle bei der Infektion von ECW-10R- und ECW-Pflanzen spielt (Schmidtke et al., 2013). Da sX13 die Transkriptmenge und/oder Proteinmenge von hrpX, hrpF, hrcJ, hrcN, avrBs1, xopS, xopJ und hrpB1 positiv reguliert (Schmidtke et al., 2013; Kapitel 3.2.1.), wurde ein genereller Einfluss von sX13 auf das hrp-Regulon und damit auch auf die Virulenz von Xcv beschrieben (Schmidtke et al., 2013). Um die Virulenzfunktion von sX13 näher zu untersuchen, wurde im Rahmen dieser Arbeit getestet, ob die Deletion von sX13 auch einen Einfluss auf weitere Resistenzmechanismen bzw. die Virulenz in einer anderen Wirtspflanze hat. Infektionsversuche mit Tomatenpflanzen zeigten, dass sX13 auch zur Bildung von Symptomen in suszeptiblen Tomatenpflanzen beiträgt (Abbildung 19). Die Infektionsexperimente mit Paprikakultivaren, welche die T3E XopH bzw. AvrBs2 erkennen, zeigten überraschenderweise keine Unterschiede zwischen Xcv 85-10 und der sX13-Mutante (Abbildung 19). Dies bedeutet, dass sX13 die T3SS-abhängige Translokation und Expression von AvrBs2 und XopH nicht wesentlich beeinflusst und die sX13-Mutante das T3SS vergleichbar effizient zur Translokation von XopH und AvrBs2 nutzt, wie Xcv 85-10. Obwohl sX13 Transkript- und/oder Proteinmengen von verschiedenen T3SS-Komponenten, -Regulatoren und T3E positiv reguliert, ist sX13 wahrscheinlich nicht generell und grundlegend an Expression, Aufbau sowie Funktion des T3SS beteiligt. Der von C. Schmidtke beschriebene Einfluss von sX13 auf die AvrBs1-vermittelte HR und die Symptome in suszeptiblen Paprikapflanzen könnte in dem Einfluss der sRNA auf die Akkumulation von einzelnen Effektoren bzw. deren Transkripten begründet sein. In Schmidtke et al., 2013 wurde ein negativer Einfluss der sX13-Deletion auf die Transkriptmengen von avrBs1, xopS und xopJ gezeigt. Der negative Einfluss der sX13-Deletion auf die AvrBs1-vermittelte HR könnte mit der sX13-abhängig reduzierten avrBs1-Transkriptmenge begründet werden. In einem vorläufigen Experiment konnte der sX13-Mutantenphänotyp auf ECW-10R-Pflanzen durch ein avrBs1-Expressionskonstrukt komplementiert werden. Die durch 85-10 $\Delta sX13$ im Vergleich zu Xcv 85-10 ausgelösten, schwächeren Krankheitssymptome in ECW-Paprikapflanzen, könnten in ähnlicher Weise mit der verringerten xopS-Transkriptmenge erklärt werden. XopS trägt zur Bildung von Symptomen nach Inokulation in suszeptiblen Paprikapflanzen bei, beeinflusst allerdings nicht das in planta-Wachstum von Xcv (Schulze et al., 2012). Dies ähnelt dem Phänotyp der sX13-Deletion, die ebenfalls zur Folge hat, dass Krankheitssymtome leicht reduziert sind, während das in planta Wachstum unverändert bleibt (Schmidtke et al., 2013). Insgesamt zeigen die Daten, dass das zuvor aufgestellte Modell zur Virulenzfunktion sX13 modifiziert werden sollte, da kein genereller Effekt von sX13 auf die Virulenz von Xcv festgestellt wurde. Möglicherweise trägt sX13 zur Virulenz in bestimmten Pflanzen bei, indem es die Transkriptmenge einzelner Effektoren reguliert (Abbildung 32). Diese Theorie könnte z. B. durch weitere qRT-PCR Analysen getestet werden..

Abbildung 32: Modell der sX13-abhängigen Regulation der Virulenz von *Xcv* **und anderer Prozesse** Schematische Darstellung der Rolle von sX13 in der Virulenz und diveresen Prozessen von *Xcv*. Pfeile kennzeichen positiv regulierte Prozesse, wohingegen die "inhibitorischen"-Striche negativ regulierte Prozesse kennzeichnen. Gestrichelte Linien sind vermutlich keine direkten sX13-abhängigen Effekte. Das Fragezeichen kennzeichnet den möglichen Einfluss von Typ IV-Pili auf die Virulenz.

Ein weiterer Hinweis darauf, dass sX13 keinen generellen Einfluss auf das T3SS hat, ist das Vorhandensein dieser sRNA in Vertretern der Xanthomonaden, die kein *hrp*-T3SS kodieren (Pieretti *et al.*, 2015; Schmidtke *et al.*, 2013). Da die Sekundärstruktur und die Sequenz der Loop-Regionen in allen sX13-Homologen nahezu identisch sind (Abbildung 3), besitzen diese mit großer Wahrscheinlichkeit die gleichen Ziel-mRNAs. Neben einem Einfluss von sX13 auf T3SS-assoziierte Gene, könnte demnach auch ein Einfluss auf nicht-Virulenz assoziierte Prozesse die wesentliche biologische Funktion von sX13 sein. Diese Hypothese, wird durch die in dieser Arbeit durchführte Proteomanalytik und die Transkriptstudie von C. Schmidtke bekräftigt, bei denen ein Einfluss von sX13 auf die Akkumulation von Proteinen und mRNAs von Genen mit Beteiligung an verschiedensten physiologischen Prozessen festgestellt wurde (Kapitel 3.2.1.; Schmidtke *et al.*, 2013).

4.1.1. Die C-reichen Motive sind wichtig für die sX13-Funktion

Die Identifizierung funktioneller Bereiche von sX13 war eines der Ziele dieser Arbeit. Die Strukturkartierung ergab, dass die 115 Nt-lange sX13-Spezies zwei doppelsträngige Bereiche mit einzelstängigen Loops bildet und der 5'-Bereich einzelsträngig vorliegt (Abbildung 35). Damit wurde ein Großteil der vorhergesagten Struktur bestätigt und eine fundierte Grundlage für die Identifizierung funktioneller Bereiche geschaffen.

Da sX13 zur Virulenz von *Xcv* beiträgt (Schmidtke *et al.*, 2013), konnte die Funktionalität verschiedener sX13-Derivate in Komplementationsanalysen überprüft werden. Zunächst wurden sX13-Derivate der 115 Nt-langen sX13 unter Kontrolle des *lac*-Promotors analysiert. Dabei wurde festgestellt, dass der 5'-Bereich und Loop 1 nicht für die Virulenzfunktion wichtig sind, wohingegen ein Einfluss von Loop 2 und 3 auf die Virulenzfunktion von sX13 festgestellt wurde (Abbildung 7 A,

Schmidtke *et al.*, 2013). Dieses Resultat weist darauf hin, dass vor allem die Loops 2 und 3 funktionell wichtige Bereiche sind. Wurden diese Experimente allerdings mit *sX13*-Derviaten durchgeführt, deren Expression unter Kontrolle des nativen Promotors stand, wurde festgestellt, dass Loop 2 essentiell für die Virulenzfunktion von sX13 ist, Loop 3 hingegen nicht (Abbildung 7 B). Eine untergeordnete Rolle von Loop 3 bei der Virulenzfunktion von sX13 wird auch dadurch bekräftigt, dass der Austausch von Loop 3 durch eine PP7-Epitopmarkierung keinen Einfluss auf die Virulenzfunktion hatte (Abbildung 26 A). Die Northern-Blot-Analysen der verschiedenen Expressionskonstrukte ergaben, dass *sX13*-Derivate unter Kontrolle des nativen Promotors nur ein einziges distinktes Signal zeigten, welches der Größe chromosomal-kodierter *sX13* entsprach (Abbildung 7 D, Abbildung 26 B). Im Gegensatz dazu zeigten Expressionskonstrukte unter Kontrolle des *lac*-Promotors mehrere Hybridisierungssignale, deren Größe nicht mit dem Signal der chromosomal-kodierten sRNA übereinstimmte (Abbildung 7 C). Aufgrund dieser Beobachtungen erscheinen die Ergebnisse, die mit den Derivaten unter Kontrolle des nativen Romosomal-kodierten sRNA übereinstimmte (Abbildung 7 K).

Während sX13 mit einer Länge von 115 Nt publiziert wurde (Schmidtke *et al.*, 2013), deuten Ergebnisse von J. Brock an, dass sX13 vornehmlich mit einer Länge von 125 Nt (10 zusätzliche Nt an 5') in *Xcv* vorliegt (Brock, 2013). Unter Berücksichtigung dieser Daten wurde ein weiteres Expressionskonstrukt erstellt, bei dem die *sX13*-Expression unter Kontrolle des *lac*-Promotors stand. Dieses Konstrukt kodiert den *lac*-Promotor, die 10 Nt vor dem 5'-Ende der annotierten sX13-Version, die annotierte *sX13*-Sequenz und 25 Nt hinter dem 3'-Ende von *sX13* und unterschied sich damit leicht von dem zuvor genutzten Konstrukt zur Expression von sX13, das nur 3 Nt vor (5') und 24 Nt hinter (3') *sX13* und *sX13* kodiert. Mittels Northern-Blot wurde bei der Verwendung des neuen Expressionskonstrukts nur ein spezifisches Signal detektiert (Abbildung 5 B) und in Infektionsexperimenten komplementierte dieses Konstrukt die *sX13*-Mutante besser, als das zuvor genutzte (Abbildung 5 A). Die Klonierung zusätzlicher zehn Nukleotide 5' der annotierten 115 Ntlangen *sX13* hatte somit einen positiven Einfluss auf das Expressionsmuster (Abbildung 5 B) und auch die Virulenzfunktion von sX13. Diese Ergebnisse deuten darauf hin, dass *sX13* möglicherweise länger ist als bisher annotiert. In weiterführenden Analysen sollte das 5'-Ende von *sX13* mittels 5'-RACE analysiert werden.

Die größeren RNA-Spezies bei der Expression der 115 Nt *sX13* unter Kontrolle des *lac*-Promotors könnten wie zuvor beschrieben entweder Verlängerungen am 5^c- oder am 3^c-Ende infolge eines alternativen Transkriptionsstarts oder alternativer Termination sein (Schmidtke *et al.*, 2013). Alternative Termination erscheint aber unwahrscheinlich, da für ein sX13-Derivat mit 3^c-PP7-Epitopmarkierung (sX13::PP7) unter Kontrolle des nativen Promotors im Northern-Blot nur ein Signal für sX13 ohne 3^c-PP7-Epitop detektiert wurde. Ursache dafür ist vermutlich eine vorzeitige Termination nach dem dritten Stem von sX13. Überraschenderweise terminiert die Transkription dieses Konstruktes vorzeitig, obwohl das zum Terminator-Stem gehörige Poly-U-Motiv hinter das

71

PP7-Epitop fusioniert wurde, welches ebenfalls einen Stem-Loop bildet. Dieses Ergebnis deutet darauf hin, dass die Termination der *sX13*-Transkription effizient funktioniert und die im Northern-Blot detektierten zusätzlichen Signale, bei *lac*-Promotor gesteuerte *sX13*-Expression, wahrscheinlich 5' verlängerte Varianten von sX13 sind. Unter Betrachtung aller in Kapitel 3.1. gezeigten Ergebnisse wird deutlich, dass die Expression von *sX13* unter Kontrolle des nativen Promotors besser zur Analyse der Funktionsweise von sX13 geeignet ist.

sX13 wirkt wahrscheinlich durch direkte Interaktion mit Ziel-mRNAs, die nur durch zugängliche Bereiche in der sRNA möglich sind (Schmidtke et al., 2013). Basierend auf der Strukturkartierung könnte der 5'-Bereich und die drei Loops als Interaktionsplattformen dienen. Die Deletion des unstrukturierten 5'-Bereiches von sX13 hatte einen positiven Einfluss auf die Virulenzfunktion von sX13. Damit erscheinen lediglich die Loop-Regionen mit ihren C-reichen Motiven als geeignete Interaktionsplattformen. Vermutlich interagieren die C-reichen Motive von sX13 mit komplementären G-reichen Motiven in mRNAs. In Schmidtke et al., 2013 wurde die Verteilung von 4G-Motiven um den Translationsstart aller proteinkodierenden Gene mit bekanntem Transkriptionsstart analysiert. Diese Analyse zeigte eine Anhäufung von 4G-Motiven etwa 10 Nt vor dem Translationsstart, einem Bereich der möglicherweise mit der Position der Ribosomenbindestelle korreliert (Schmidtke et al., 2013). Dies deutet auf einen regulatorischen Einfluss von den 4G-Motiven und wahrscheinlich auch von sX13 auf die Translation von Ziel-mRNAs hin. Dass dieses Motiv eine regulatorische Funktion haben kann, wurde in GFP-Reporteranalysen gezeigt, in denen sX13 post-transkriptionell die Translation von Ziel-mRNAs reprimierte (Schmidtke et al., 2013). In einer von C. Schmidtke durchgeführten Transkriptstudie trugen ca. 70% der sX13-abhängig negativ regulierten Transkripte mindestens ein 4G-Motiv in den 100 Nt 5' und 3' des annotierten Translationsstarts (Schmidtke et al., 2013). Die bioinformatische Analyse der Proteomanalytik dieser Arbeit zeigte, dass 50-55% der Gene sX13-abhängig negativ regulierter Proteine mindestens ein 4G-Motiv 50 Nt 5' oder 3' des Translationsstarts tragen (Abbildung 18). Diese Anreicherung ist im Vergleich zur Verteilung im gesamten Chromosom signifikant. Dadurch wird die These gestützt, dass sX13 über C-reiche Sequenzmotive mit G-reichen Sequenzmotiven in Ziel-mRNAs interagiert und deren Transkriptstabilität und Translation negativ moduliert. Weiterhin wurde gezeigt, dass durch Mutation der G-reichen Sequenzmotive in Ziel-mRNAs deren Translation sX13-unabhängig wird (Schmidtke et al., 2013).

Für die *Helicobacter pylori* sRNA RepG ("*Regulator of polymeric G-repeats"*) wurde ein ähnlicher Mechanismus beschrieben (Pernitzsch *et al.*, 2014). RepG wirkt als post-transkriptioneller Repressor von *tlpB*. Dabei bindet RepG mittels eines C/U-reichen Sequenzmotives das G-reiche Sequenzmotiv in der 5'-UTR der *tlpB*-mRNA und reprimiert deren Translation, was zur Destabilisierung der mRNA führt (Pernitzsch *et al.*, 2014; Sharma *et al.*, 2010). Ein weiteres Beispiel ist die sRNA RNAIII aus *Staphylococcus aureus*, die *spa*, *rot* und *ssaA* durch direkte Interaktion der C-reichen Loop-Regionen reguliert und dadurch deren Translation inhibiert. Dies führt zu einem RNaseIII-vermittelten Abbau 72 der mRNAs (Boisset *et al.*, 2007). Eine weitere sRNA aus *S. aureus* mit C-reichen regulatorischen Sequenzmotiven ist *RsaE*, deren Expression, ebenso wie *sX13*, unter Stressbedingungen verändert ist (Geissmann *et al.*, 2009; Schmidtke *et al.*, 2013). In Geissmann *et al.*, 2009 wurde die Interaktion von RsaE mit deren Ziel-mRNA *oppB*, welche eine Oligopeptid-Transportsystem Permease kodiert, gezeigt. Zusammengefasst erscheint die Theorie, dass sX13 direkt mit mRNAs interagiert und diese post-transkriptionell reguliert, plausibel. Leider konnte die direkte Interaktion bisher nicht nachgewiesen werden. Ein möglicher Grund hierfür, könnte das Fehlen eines Vermittlerproteins sein, sodass der RNA-RNA-EMSA mit einem proteinogen Vermittler wiederholt werden könnte. Eine weitere Möglichkeit könnten Strukturkartierungsexperimente (*footprint*) sein, hier wird die Struktur von z. B. sX13 mit und ohne mRNA-Interaktor analysiert, wobei sich im Zuge der Interaktion neue Doppelstrangbereich bilden sollten (Chevalier *et al.*, 2009). Ein komplizierterer Ansatz wäre die *in vitro*-Analyse der Translation von Ziel-mRNAs mit und ohne sX13, wobei die Effizienz theoretisch durch Zugabe von sX13 geringer sein sollte als ohne (Sharma und Vogel, 2009). Da für sX13 noch kein Interaktionspartner bekannt ist, kann die Etablierung und Optimierung der oben genannten experimentellen Ansätze zeitintensiv sein.

4.1.2. Die sRNAs sX5 und sX13 haben teilweise redundante Funktionen

Das Vorhandensein C-reicher Sequenzmotive in sX5 und sX13 lässt vermuten, dass sie Ziel-mRNAs über einen ähnlichen Mechanismus regulieren und es ggf. Überschneidungen zwischen ihren Regulons gibt. Die HrpX-abhängige Induktion der sX5-Expression war ein Hinweis auf deren Beitrag zur Virulenz von Xcv (Schmidtke et al., 2012). Überraschenderweise hat die Deletion von sX5 im Gegensatz zur Deletion von sX13 keinen sichtbaren Einfluss auf die von Xcv verursachten Virulenzund Avirulenzreaktionen (Abbildung 10; Abbildung 19; Schmidtke et al., 2013). Um mögliche funktionelle Redundanzen von sX5 und sX13 zu untersuchen, wurde eine Doppeldeletionsmutante erstellt und deren Virulenz untersucht. Infektionsexperimente mit suszeptiblen Pflanzen zeigten überraschenderweise, dass die Doppeldeletion eine erhöhte Virulenz in Paprika- und Tomatenpflanzen zur Folge hatte (Abbildung 10), wohingegen kein Einfluss auf die AvrBs1-vermittelte HR zu detektieren war (Abbildung 10). Ausgehend von der Theorie, dass beide sRNAs gemeinsame ZielmRNAs haben, wurde versucht, die sX13-Deletionsmutante mit der ektopischen Expression von sX5 zu komplementieren. Dies gelang für die verzögerte AvrBs1-vermittelte HR der sX13-Deletionsmutante und die Hfq::GFP-Synthese. Im Gegensatz dazu komplementierte sX5 die sX13-Deletionsmutante nicht hinsichtlich der Regulation der Synthese von XCV3927::GFP und XCV3232::GFP (Abbildung 9).

Die Ergebnisse zeigen, dass sX5 und sX13 teilweise redundante Funktionen haben. Möglicherweise regulieren sX5 und sX13 zum Teil die gleichen Gene, wobei beide sRNAs zu unterschiedlichen Zeitpunkten exprimiert werden. *sX5* wird HrpX-abhängig, d. h. während der Infektion exprimiert, wohingegen *sX13* konstitutiv exprimiert wird und unter Stressbedingungen induziert ist (Schmidtke *et*

al., 2012; Schmidtke et al., 2013). Weitere Ähnlichkeiten von sX5 und sX13 sind, dass beide RNAs von J. Brock in der Hfq- bzw. CsrA-Ko-Immunopräzipitation identifiziert wurden, wobei sie nicht direkt mit CsrA interagieren (Abbildung 22; Brock, 2013; J. Brock und U. Bonas unpubliziert; Tabelle 14). In weiterführenden Analysen könnten sX5-Ziel-mRNAs identifiziert werden, beispielsweise mit einer differentiellen RNA-Seq Analyse, in welcher die sX5-Deletionsmutante mit Xcv 85-10 verglichen wird. Weiterhin könnte eine Proteomanalytik durchgeführt werden. Außerdem könnte untersucht werden ob die verstärkten Symptome einer sX5/sX13-Doppelmutante mit erhöhtem in planta Wachstum einhergehen. In der Literatur sind sRNAs wie sX5 und sX13, welche teilweise überlappende Funktionen haben, nicht unbekannt. In Salmonella enterica wurden die sRNAs RfrB und RfrA (RyhB-1 und RyhB-2) als sRNA-, Geschwisterpaar" beschrieben, deren Expression Fur-abhängig reprimiert wird (Ellermeier und Slauch, 2008; Kröger et al., 2013; Padalon-Brauch et al., 2008). Die Expression beider sRNAs wird während der Infektion von Makrophagen induziert (Padalon-Brauch et al., 2008). RfrA und RfrB (IsrE) regulieren die Expression von sodB, einer Superoxid-Dismutase (Ellermeier und Slauch, 2008; Padalon-Brauch et al., 2008), wohingegen die Expression von cheY, flgJ und fliF ausschließlich durch RfrB reguliert wird. Des Weiteren sind safA und acnB Ziel-mRNAs von RfrA, welche nur schwach von RfrB reguliert werden (Kim und Kwon, 2013). Weitere Beispiele für sRNAs eines Organismus' mit ähnlichen Funktionen sind AbcR1 und AbcR2 aus Vertretern der Rhizobiales spp., in denen diese sRNAs die Expression von ABC-Transportern regulieren (Del Val et al., 2007; Wilms et al., 2011; Wilms et al., 2012; Torres-Quesada et al., 2013).

× ×	sX13	sX5
C-Motive in Loops	3× in drei Loops	2× in einem Loop
HrpG/HrpX-abhängig exprimiert	- (C.S)	+ (C.S)
Expressionsniveau in NYG	viel Transkript (C.S)	wenig Transkript (C.S)
Beitrag zur Symptombildung (ECW)	+ (C.S)	-
Beitrag zur HR-Induktion (ECW-10R HR)	+ (C.S)	-
Interaktion im CsrA-Pulldown	+ (J.B)	+ (J.B)
Interaktion im Hfq-Pulldown	+ (J.B)	+ (J.B)
Direkte Interaktion mit CsrA	-	- (J.B)
Komplementation von $85-10\Delta sX13$ hinsichtlich:		
1. HR ind ECW-10R	+	+
2. XCV3927::GFP	+	-
3. PilH::GFP	+	_
4. Hfq::GFP	+	+

In Klammern aufgeführte Kürzel stehen für C.S = C. Schmidtke; J.B = J. Brock. Die Ergebnisse wurden von den aufgeführten Personen bzw. in dieser Arbeit gewonnen. + = ja; - = nein

4.2. Der vielseitige Einfluss von sX13 auf die Physiologie von Xcv

Um die physiologische Relevanz von sX13 und das sX13-Regulon näher zu untersuchen, wurde eine vergleichende Proteomanalytik durchgeführt. In dieser Arbeit wurden 142 potentielle Zielgene von sX13 anhand ihrer veränderten Proteinakkumulation in der *sX13*-Deletionsmutante im Vergleich zu *Xcv* 85-10 identifiziert. 101 Proteine waren sX13-abhängig negativ und 41 positiv reguliert. In

Arbeiten von C. Schmidtke wurde in GFP-Reporteranalysen bereits ein negativer Einfluss von sX13 auf die Abundanz von XCV3232 (PilH), Hfq und XCV3927 gezeigt (Schmidtke *et al.*, 2013), was in dieser Arbeit bestätigt wurde.

Die funktionelle Kategorisierung der regulierten Proteine hat gezeigt, dass vornehmlich Proteine sX13-abhängig negativ reguliert sind, die zu den Kategorien Signaltransduktion, Zwei-Komponentensystemen und Typ IV-Pilusbiosynthese gehören. Proteine, die eine Rolle beim Katabolismus von Makromolekülen spielen, wurden nur in den NYG-Proben als reguliert identifiziert und waren sX13-abhängig negativ reguliert. In den MA-Proben waren hauptsächlich Proteine sX13-abhängig negativ reguliert, die am Proteintransport und an der Perzeption chemischer Reize beteiligt sind. sX13-abhängig positiv regulierte Proteine gehörten zu verschiedenen Stoffwechselwegen, wie z. B. Kohlenstoffstoffwechsel, Lipidstoffwechsel und die Biosynthese kleiner Moleküle und Vitamine (Tabelle 9 und 10; Abbildung 32, Abbildung 39, Abbildung 40). Offensichtlich hat sX13 einen signifikanten direkten, oder indirekten Einfluss auf die Akkumulation von einer Vielzahl von Proteinen diverser physiologischer Prozesse. Diese Beobachtungen unterstützen die zuvor formulierte Theorie (Kapitel 4.1.), dass sX13 neben den Komponenten des T3SS und T3E weitere physiologische Prozesse beeinflusst.

In Xoo wurden Proteomanalysen mit sRNA-Deletionsmutanten der sRNAs sRNA-Xoo1, sRNA-Xoo3 und sRNA-X004 mittels 2D-Gel-Analyse durchgeführt (Liang et al., 2011). Für die sRNAs wurden mehrere positiv und negativ regulierte Proteine identifiziert, die verschiedensten Stoffwechselwegen angehören. Beispielsweise reguliert sRNA-Xool sechs Proteine negativ und 16 Proteine positiv. Positiv regulierte Proteine spielen vornehmlich in Stoffwechselprozessen (z. B. Aminosäurestoffwechsel) eine Rolle. Ebenfalls unter den positiv regulierten Proteinen befindet sich das Enzym Phosphoenolpyruvat-Synthase (PEP) (Liang et al., 2011). Die Autoren vermuten, dass sRNA-Xool den Stoffwechsel aromatischer Aminosäuren positiv, über die Regulation von PEP, beeinflusst (Liang et al., 2011). In H. pylori wurden das Protein TlpB durch 1D-SDS-Gelelektrophorese als durch die sRNA HPnc5490 (RepG) negativ reguliert identifiziert (Sharma et al., 2010). Die Ergebnisse aus Kapitel 3.2. sowie die aufgezählten Literaturbeispiele machen deutlich, dass proteomanalytische Studien zur Analyse von sRNA-Regulons geeignet sind, wobei keine Unterscheidung zwischen direkten und indirekten Ziel-Genen getroffen werden kann.

4.2.1. sX13 beeinflusst die Typ IV-Pilus-vermittelte Fortbewegung auf Festmedien

Typ IV-Pili sind flexible, filamentöse Oberflächenstrukturen von Bakterien, die sich hauptsächlich aus Pilin-Polymeren zusammensetzen. Die Typ IV-Pilus-vermittelte *Twitching motility* ist eine bakterielle Fortbewegungsform auf festen Oberflächen. Nach dem Aufbau von meist polaren Pili und der Adhäsion der Pilusspitze an eine Oberfläche kommt eine Vorwärtsbewegung durch den Abbau des Pilus' zustande (Strom und Lory, 1993; Mattick, 2002).

Überraschenderweise wurden in dieser Arbeit mehr als 10 verschiedene Typ IV-Piluskomponenten und -Regulatorproteine als sX13-abhängig negativ reguliert identifiziert (Abbildung 33). Die Ergebnisse dieser Arbeit erweitern die Ergebnisse der Transkriptstudie von C. Schmidtke, in der Typ IV-Pilus assoziierte Gene sX13-abhängig negativ reguliert waren (Schmidtke et al., 2013). Unter den regulierten Proteinen war die Hauptkomponente des Pilus' PilA und das Typ IV-Pilus-Sekretin PilQ, das für den Export der Pilinuntereinheiten verantwortlich ist (Abbildung 33). In weiterführenden Experimenten wurde untersucht, ob 85-10AsX13 im Vergleich zu 85-10 infolge erhöhter Proteinakkumulation von Typ IV-Pilusproteinen auch eine gesteigerte Typ IV-Pilus-vermittelte Motilität (Twitching) oder Adhäsion zeigt. Eine gängige Methode zur Analyse der bakteriellen Twitching motility ist das Wachstum bzw. die Bewegung einer Bakterienkolonie für mehrere Tage nach Auftropfen auf niedrigprozentige Agarplatten und wurde beispielsweise für P. aeruginose und Xac beschrieben (Semmler et al., 1999b; Kraiselburd et al., 2012). Diese Vorgehensweise wurde für Xcv adaptiert (Kapitel 2.2.1.4) und festgestellt, dass die sX13-Deletionsmutante im Vergleich zu Xcv 85-10 auf MA-Platten eine reduzierte Twitching motility zeigte. Offenbar hat die Akkumulation von Typ IV-Piluskomponenten und -Regulatorproteinen einen negativen Einfluss auf das Twitching, was mit einer De-Regulation der Twitching-Maschinerie erklärt werden könnte. Ein Hinweis auf die De-Regulation liefern auch die EM-Aufnahmen, die in Kooperation mit G. Hause (Martin-Luther-Universität Halle-Wittenberg) entstanden sind (Abbildung 17 C und D). Hier wurde festgestellt, dass 85-10ΔsX13 ein dichtes, fadenförmiges Netzwerk, das möglicherweise aus Typ IV-Pili besteht, umgab. Es ist naheliegend, dass dieses Netzwerk den bakteriellen Bewegungsspielraum einschränkt, sodass es zu der beobachteten reduzierten Twitching motility kommt. Zur Bestätigung dieser Theorie sollten weiterführende Experimente zum Ziel haben, nachzuweisen, dass es sich bei diesem Netzwerk tatsächlich um Typ IV-Pili handelt. Dies könnte mittels PilA-spezifischem Antikörper untersucht werden. Außerdem könnten Deletionen und Überexpressionen verschiedener Typ IV-Pilus-Komponenten in Xcv untersucht und mit dem Phänotyp der sX13-Mutante verglichen werden. Weiterhin könnte die sX13-Mutante mit verschiedenen sX13-Derivaten komplementiert werden, um zu analysieren, welcher Loop für die Regulation der Typ IV-Pilusgene wichtig ist.

Außerdem wurde eine makroskopisch veränderte Koloniemorphologie der *sX13*-Mutante auf NYGund MA-Platten festgestellt. Die veränderte Koloniemorphologie ähnelt der beschriebenen Koloniemorphologie einer *Xac lov*-Gen Mutante (Kraiselburd *et al.*, 2012). Interessanterweise führte die Infektion suszeptibler Zitruspflanzen mit *Xac* zu schnelleren nekrotischen Phänotypen, wenn *lov* (*Light-Oxygen-Voltage*) in *Xac* deletiert wurde (Kraiselburd *et al.*, 2012). Das *lov*-Gen aus *Xac* ist zu 92% identisch mit *XCV2754* aus *Xcv* und kodiert ein Hybridprotein aus einer Histidinkinase, einem Antwortregulator und einer Lov-Domäne. Bisher wurden keine Hinweise auf eine sX13-abhängige Regulation von *XCV2754* identifiziert, da es weder Informationen zu Transkriptakkumulation noch Proteinakkumulation gibt. Dieses Gen könnte in weiterführenden Analysen gezielt mittels qRT-PCR Analysen untersucht werden. Aus anderen Vertretern der Xanthomonaden ist bekannt, dass Mutationen in *pilA* und *pilQ* eine Reduktion der Virulenz, verminderte Motilität, Biofilmbildung und Adhäsion zur Folge haben (Lim *et al.*, 2008; McCarthy *et al.*, 2008; Das *et al.*, 2009). Weiterhin wurden in Transposon-Mutagenese-Experimenten mit *Xoc* gezeigt, dass die Insertion von Transposons in *pilM, pilQ, pliT* und *pilZ* zu einer moderaten Verminderung der Virulenz in Reis führte (Wang *et al.*, 2007). In *Pseudomonas syringae* pv. *tabaci* 6605 wurde gezeigt, dass die Deletion von Typ IV-Piluskomponenten die verminderte Expression von *hrp*-Genen, Virulenz und Motilität zur Folge hat (Taguchi und Ichinose, 2011), dies könnte ein weiterer Erklärungsansatz für den Einfluss von sX13 in der Virulenz von *Xcv* sein (Abbildung 32). Vermutlich unterliegen Aufbau und Aktivität von Typ IV-Pili strengen regulatorischen Mechanismen, zu denen auch sX13 gehört.

Abbildung 33: sX13-abhängig regulierte Typ IV-Piluskomponenten und deren regulatorisches Netzwerk Schema der Typ IV-Piluskomponenten und des regulatorischen Netzwerkes. rot = Proteine, die sX13-abhängig negativ reguliert sind, grau = Proteine, für die es keine Daten zur Proteinakkumulation gibt, beige = Proteine, welche nicht differentiell synthetisiert sind.

4.2.2. sX13 beeinflusst Signalweiterleitungsprozesse und Zwei-Komponentensysteme in *Xcv*

In der Proteomanalytik dieser Arbeit wurde gezeigt, dass sX13 auf eine Vielzahl von Zwei-Komponentensystem-Proteinen und Signaltransduktionsproteinen wirkt (Kapitel 3.2.). Bakterien besitzen Zwei-Komponentensysteme, Methyl-akzeptierende-Chemotaxisproteine und verschiedene Rezeptoren, um wechselnde Umweltbedingungen zu detektieren und darauf zu reagieren. Zwei-Komponentensysteme bestehen aus einer membranständigen Sensorhistidinkinase, welche sich beim Auftreten eines spezifischen Stimulus autophosphoryliert, und einem zytoplasmatischen Regulatorprotein (Antwortregulator), das von der Histidinkinase phosphoryliert wird und durch eine Effektordomäne die Reaktion des Bakteriums vermittelt. Zwei-Komponentensysteme kontrollieren eine Vielzahl zellulärer Prozesse, wie z. B. Chemotaxis, Zell-Zell Kommunikation, Stoffwechselwege und Virulenz (Qian et al., 2008b). In Xcv und anderen Vertretern pflanzenpathogener Xanthomonaden gibt es eine Vielzahl verschiedener Zwei-Komponentensysteme, so besitzt Xcv 37 Histidinkinasen, 23 Hybridkinasen und 61 Regulatorproteine (Qian et al., 2008a). Die meisten sX13-abhängig regulierten Zwei-Komponentensystem-Proteine werden sX13-abhängig negativ reguliert, wohingegen FleQ, XCV2015, XCV3608, XCV3572 und XCV3574 positiv reguliert werden. In einigen Fällen waren die regulierten Zwei-Komponentensystem-Proteinen Gene von sX13-abhängig und Signaltransduktionsproteinen bereits in der Transkriptstudie von C. Schmidtke ähnlich reguliert, z. B. pilJ, pilG, pilH, XCV2186 und XCV3572.

FleQ gehört zur Familie der NtrC Aktivatorproteine und aktiviert den Sigmafaktor σ^{54} , was zur Expression von Komponenten des Flagellar-Apparates führt (Hu *et al.*, 2005; Yang *et al.*, 2009). *XCV2015* ist direkt neben *fleQ* und *rpoN1* kodiert und kodiert für ein Protein, das zur CheY-Superfamilie gehört und nur aus einer Empfängerdomäne besteht. Proteine mit dieser Architektur werden durch eine korrespondierende Histidinkinase phosphoryliert und können dann, wie am Beispiel von CheY gezeigt, durch Bindung an einen Interaktionspartner dessen Aktivität beeinflussen. Die Phosphorylierung von CheY, erhöht dessen Affinität für FliM, eine Komponente der flagellaren Motorkontrolle, und bewirkt durch die Interaktion mit FliM die Änderung der Drehrichtung des Flagellums (Bren und Eisenbach, 1998; Sourjik und Berg, 2002; Park *et al.*, 2006).

Zu den sX13-abhängig negativ regulierten regulatorischen Proteinen gehörten Pill, PilJ, PilH, PilG, XCV3571, XCV3227 und XCV3228. Pill, PilJ, PilH und PilG spielen bei der Regulation der Biosynthese und Funktion von Typ IV-Pili eine wichtige Rolle. Eine Sequenzanalyse von PilJ hat gezeigt, dass es möglicherweise ein periplasmatischer Rezeptor ist, der in einem Komplex mit PilI und PilL vorliegt (Abbildung 33). Nachdem ein bisher unbekanntes Signal durch PilJ erkannt wird, werden vermutlich die Regulatorprotein PilG und PilH durch Phosphorylierung aktiviert und die Biosynthese der Typ IV-Pili reguliert (Abbildung 33; Darzins und Russell, 1997; Burrows, 2012). Die Proteine XCV3227 und XCV3228 gehören zu der CheB- bzw. CheW-Familie. Mitglieder dieser Familien regulieren die Sensitivität von Rezeptoren durch deren De-Methylierung bzw. Vermittlung der Interaktion zwischen der Kinase CheA und Methyl-akzeptierenden Chemotaxisproteinen (Vu *et al.*, 2012). XCV3571 ist ein Regulatorprotein mit einer modifizierten HD-GYP-Domäne. Proteine mit HD-GYP-Domäne sind bekannt dafür, mit Proteinen zu interagieren, die eine GGDEF-Domäne enthalten. In *Xcc* interagiert das HD-GYP-Protein RpfG mit den GGDEF-Domänen-Proteinen

XC_0249 und XC_0420 und zusammen regulieren diese Proteine einen Teil der RpfG-abhängig regulierten Virulenzfaktoren (Ryan *et al.*, 2010).

In *E. coli* reguliert die sRNA RybC ein Zwei-Komponentensystem, bestehend aus *dpiA* und *dpiB*, welches die durch β -Lactam-Antibiotika (z. B. Penicillin) ausgelöste SOS-Antwort steuert (Mandin und Gottesman, 2009). Die sRNAs OmrA und OmrB aus *E. coli* regulieren das Zwei-Komponentensystem EnvZ/OmpR, das wiederum die Expression der Porine *ompF* und *ompC* sowie der sRNAs *OmrA* und *OmrB* kontrolliert. EnvZ ist eine Sensorhistidinkinase und OmpR ein transkriptioneller Regulator. Es wird vermutet, dass dieses Zwei-Komponentensystem bei der Stressantwort nach veränderter Osmolarität eine Rolle spielt (Goh, 2008; Guillier und Gottesman, 2008). Die Qrr-sRNAs aus *Vibrio cholerae* regulieren das σ^{54} -abhängige Regulatorproteine LuxO in Abhängigkeit von der Zelldichte (Svenningsen *et al.*, 2008). Diese Aufzählung macht deutlich, dass sRNAs unterschiedliche bakterieller Signalwege regulieren können, sodass es nicht verwunderlich ist, dass auch sX13 bakterielle Signalwege beeinflusst. Zusammenfassend wird deutlich das sX13 die Abundanz von zahlreichen Proteinen beeinflusst, die Teil von Zwei-Komponentensystemen und Signaltransduktionsprozessen sind, wodurch sX13 möglicherweise die Anpassung an verschiedene Umweltbedingungen reguliert. In weiterführenden Analysen könnte der Einfluss von sX13 auf die mRNA-Akkumulation weiterer Gene untersucht werden.

4.2.3. sX13 beeinflusst diverse Stoffwechselwege

Die Proteomanalytik hat gezeigt, dass sX13 unterschiedliche Stoffwechselwege positiv reguliert. In den NYG-Proben wird der Lipid- und Kohlenstoffstoffwechsel sowie der Hauptregulator des Eisenstoffwechsels (Fur), positiv reguliert. Der Katabolismus von Makromolekülen war im Gegensatz dazu sX13-abhängig negativ reguliert. In den MA-Proben war hauptsächlich die Biosynthese von Vitaminen sX13-abhängig positiv reguliert (Tabelle 17 und Tabelle 18; Abbildung 39 und Abbildung 40).

sRNAs haben häufig einen regulatorischen Einfluss auf Stoffwechselweg. Ein Wechselspiel zwischen einer sRNA und dem Hauptregulator des Eisenstoffwechsels (Fur) ist beispielsweise für viele enteropathogene Bakterien beschrieben. In *E. coli* wird die Expression der sRNA RyhB Fur-abhängig negativ reguliert und die Translation der *fur*-mRNAs wiederum RyhB-abhängig inhibiert (Massé *et al.*, 2005; Jacques *et al.*, 2006; Večerek *et al.*, 2007). Weitere Beispiele für sRNAs, welche an der Regulation des Eisenstoffwechsels beteiligt sind, sind PrrF1 und PrrF2 aus *P. aeruginosa* und NrrF1 aus *Neisseria meningitidis* (Oglesby-Sherrouse und Vasil, 2010; Oglesby-Sherrouse und Murphy, 2013; Reinhart *et al.*, 2015; Mellin *et al.*, 2007; Metruccio *et al.*, 2009).

Die Regulation des Kohlenstoffstoffwechsels wurde auch für die sRNAs SgrS und Spot42 aus *E. coli* beschrieben (Papenfort und Vogel, 2011; Papenfort *et al.*, 2013; Beisel und Storz, 2011b; Beisel und Storz, 2011a). Weiterhin ist eine Beteiligung an der Regulation von Aminosäurestoffwechsel für GcvB

aus *S. enterica* Serovar *Typhimurium* und VrrB *V. cholerea* bekannt (Sharma *et al.*, 2011; Sabharwal, 2015).

4.2.4. sX13-abhängig negativ regulierte Gene sind auf Transkript- und Proteinebene beeinflusst

Für sX13 existiert sowohl ein Datensatz sX13-abhängig regulierter Proteine als auch sX13-abhängig regulierter mRNAs. Die Analyse von Protein- und mRNA-Akkumulation gibt Aufschluss über verschiedene Aspekte der post-transkriptionellen Regulation, da sX13 zum einen die Transkriptstabilität und zum anderen die Translationseffizienz beeinflussen kann. Bei Betrachtung beider Datensätze wird deutlich, dass in beiden Analysen hauptsächlich Typ IV-Piluskomponenten sX13-abhängig negativ reguliert werden. Ein Vergleich der mRNA-Daten und Proteomdaten mittels Fischer-Exakt Test zeigte, dass die Überschneidungen der sX13-abhängig negativ regulierten mRNAs bzw. Proteine statistisch signifikant sind, wohingegen die Überschneidungen sX13-abhängig positiv regulierter mRNAs bzw. Proteine nicht signifikant sind. Unter Einbeziehung der Ergebnisse der G-Motiv-Suche beider Experimente wird weiterhin deutlich, dass die negativ regulierten Gene statistisch signifikant häufiger eine mögliche sX13-Bindestelle besitzen, als der Durchschnitt aller Gene des Chromosoms. Dies lässt vermuten, dass dies "echte" sX13-Zielgene sind (Abbildung 18; Schmidtke et al., 2013). Überraschenderweise war die Überschneidung von positiv regulierten Genen zwischen beiden Experimenten nicht signifikant. Eine mögliche Erklärung könnte sein, dass sRNAs vornehmlich reprimierend auf ihre Zielgene wirken und dass sX13 durch den Einfluss auf verschiedene transkriptionelle Regulatoren viele Gene indirekt beeinflusst. Eine Aussage über direkte und indirekte Zielgene lässt sich allerdings erst treffen, wenn die Interaktion von sX13 mit ZielmRNAs nachgewiesen werden kann.

4.3. sX13 interagiert nicht mit bekannten RNA-Bindeproteinen

Leider gelang es nicht, die Interaktion zwischen sX13 und Ziel-mRNAs mittels RNA-RNA-EMSA nachzuweisen (Kapitel 3.5.2.). Ein Grund hierfür könnte sein, dass die untersuchten mRNAs keine direkten Ziel-mRNAs von sX13 sind, sondern indirekt reguliert werden. Die Unterscheidung zwischen direkt und indirekt regulierten Genen könnte durch *pulse expression*-Analysen erreicht werden, in denen die Expression von *sX13* durch einen induzierbaren Promotor gesteuert wird. Theoretisch sollten kurz nach Induktion der *sX13*-Expression nur direkt sX13-abhängig regulierte Gene differentiell exprimiert sein, wohingegen indirekt sX13-abhängig regulierte Gene erst später differentiell exprimiert sein sollten. Ein ähnlicher experimenteller Aufbau wurde bereits erfolgreich für die Analyse des RyhB-Regulons angewendet (Massé *et al.*, 2005). Ein weiterer möglicher Grund könnte die kleine Interaktionsplattform zwischen sX13 und den möglichen Ziel-mRNAs sein, welche nur wenige Nukleotide (5-8 Nt) umfasst. Kurze Interaktionsbereiche haben zur Folge, dass die Interaktion nicht sehr stark und stabil ist und deshalb möglicherweise ein Vermittlerprotein zur 80

Stabilisierung oder Etablierung der Interaktion benötigt wird. Deshalb war ein weiteres Ziel dieser Arbeit die Identifizierung proteinogener Interaktionspartner von sX13.

4.3.1. Die sX13-abhängige Regulation ist Hfq-unabhängig

J. Brock hat verschiedene sRNAs, darunter sX5 und sX13, als an Hfq-gebunden identifiziert und untersucht, ob die Hfq-Assoziation die Stabilität dieser sRNAs fördert. Solch ein positiver Einfluss auf die Stabilität geht oft mit der Stabilisierung der Interaktion zwischen sRNA und ihren Ziel-mRNAs durch Hfq einher (Aiba, 2007; Møller et al., 2002; Brennan und Link, 2007). Eine Stabilisierung durch Hfq wurde beispielsweise für sX14 (Schmidtke et al., 2013), nicht aber für sX5 und sX13 gezeigt (Brock, 2013). Hfg scheint damit nicht essentiell für die sX13-Funktion zu sein. Dies wird durch das Ergebnis bekräftigt, dass die Mutation von hfq keinen Einfluss auf die Virulenz von Xcv hat (Schmidtke et al., 2013). Die Deletion von hfg in Xoo hatte ebenfalls keinen Einfluss auf die Virulenz und das sX14-Homolog sRNA-Xoo3 wird Hfq-abhängig stabilisiert (Liang et al., 2011). Im Gegensatz dazu hat die Deletion von hfq in Stenotrophomoas maltophilia (Smal) einen Einfluss auf das Wachstum, Biofilmbildung, Motilität und andere infektionsrelevante Prozesse, wobei auch das sX13-Homolog SmsR39 Hfq-unabhängig stabilisiert wird (Roscetto et al., 2012). Weiterhin hat sowohl die Proteomanalytik dieser Arbeit als auch die Transkriptstudie gezeigt, dass sX13 die Akkumulation der hfq-mRNA und des Hfq-Proteins negativ reguliert (Schmidtke et al., 2013; Kapitel 3.2.1.). In Burkholderia cenocepacia ist ein ähnlicher Mechanismus für die sRNAs h2cR und MtvR beschrieben, welche sowohl in B. cenocepacia als auch in Kreuzkomplementationsversuchen in E. coli die Akkumulation der hfq-mRNA und des Hfq-Proteins negativ regulierten (Ramos et al., 2012; Ramos et al., 2014).

Weiterhin haben Analysen in der *hfq-Frameshift*-Mutante mittels GFP-Reportsystem gezeigt, dass die sX13-abhängige post-transkriptionelle Regulation von möglichen sX13-Zielgenen Hfq-unabhängig ist (Abbildung 22 B). Eine Frage, die diese Ergebnisse aufwerfen ist, ob sX13 direkt an Hfq bindet, auch wenn Hfq für die Funktionalität von sX13 nicht von Bedeutung zu sein scheint. Alternativ dazu könnte sX13 über die Bindung an eine mRNA, welche ebenfalls mit Hfq interagiert, in der Ko-Immunopräzipitation detektiert wurden sein. Zum Beispiel autoreguliert Hfq sich in *E. coli* selbst, indem es an seine eigene mRNA bindet und deren Translation durch Blockieren der Ribosomenbindung hemmt (Večerek *et al.*, 2005). Auch in *Xcv* wurde die *hfq*-unabhängige sRNA komplementiert die *sX13*-Mutante nicht nur hinsichtlich des *in planta*-Phänotyps, sondern ebenfalls in Bezug auf die Regulation der Translation der *hfq*-mRNA. Problematisch ist allerdings möglicherweise die Art der eingeführten *Frameshift*-Mutation in *hfq*, da durch die Nutzung eines internen Startcodons weiterhin möglicherweise funktionales Hfq synthetisiert werden könnte. Diese Möglichkeit wurde allerdings bisher noch nicht näher untersucht. Allerdings war der Grund für die Einführung eines *Framshifts* in *hfq*, dass keine stabilen Mutanten nach Deletion des *hfq* ORFs erhalten wurden (Brock,

2013). In weiterführenden Experimenten könnte die Interaktion zwischen Hfq und sX13 analysiert werden und die *Frameshift*-Mutante näher charakterisiert und überprüft werden.

4.3.2. sX13 und sX5 sind nicht das CsrB-Homolog in Xcv

Sowohl sX5 als auch sX13 wurden durch J. Brock in einer CsrA-Ko-Immunopräzipitation als CsrAgebunden identifiziert, wobei beide sRNAs kaum angereichert waren (J. Brock, 2013). CsrAgebundene sRNAs, wie zum Beispiel CsrB/C und RsmY/Z aus E. coli bzw. Pseudomonas, zeichnen sich durch "GGA"-Motive in zugänglichen Einzelstrangbereichen aus (Schubert et al., 2007). Diese GGA-Motive sind essentiell für die Interaktion zwischen sRNAs und CsrA (Valverde et al., 2004; Babitzke und Romeo, 2007). sX5 und sX13 besitzen jeweils ein für CsrA typisches Bindemotiv in einem doppelsträngigen Bereich. Die Analyse der direkten Interaktion von CsrA mit sX13 und sX5 mittels Filter-Bindungsexperiment hat gezeigt, dass keine der beiden sRNAs unter den getesteten Bedingungen mit CsrA interagiert, wohingegen sX16, welche ebenfalls in der CsrA-Ko-Immunopräzipitation detektiert wurde, Bindung zeigte (Abbildung 22 A, J. Brock und U. Bonas unpubliziert). Eine mögliche Erklärung der Ergebnisse ist, dass die GGA-Motive in den Doppelstrangbereichen gar nicht für die Interaktion mit CsrA zur Verfügung stehen und sX5 und sX13 infolge von Interaktionen mit einem anderen Protein und/oder einer anderen RNA in der Ko-Immunopräzipitation identifiziert wurden. Weiterhin machen diese Ergebnisse deutlich, dass direkte Interaktionen von Interaktionspartnern, die mittels Ko-Immunopräzipitation identifiziert wurden, per direktem Nachweis bestätigt werden sollten.

Die Deletion von *csrA* in *Xcv* führte zum vollständigen Verlust der Pathogenität (J. Brock, U. Abendroth und U. Bonas unpubliziert). Weiterhin hat die Deletion von *csrA* Auswirkungen auf die Koloniemorphologie und generelle Fitness von *Xcv* (J. Brock, U. Abendroth und U. Bonas unpubliziert). Ähnliche Beobachtungen wurden schon in *Xcc* und *Xoo* gemacht, in denen die Deletion von *csrA* ebenfalls pleiotrope Effekte und den Verlust der Pathogenität zur Folge hatte (Chao *et al.*, 2008; Zhu *et al.*, 2011). Generell scheint CsrA/RsmA in unterschiedlichen pathogenen Bakterien eine Rolle in der Virulenz zu spielen. In Vertretern diverser tierpathogener Bakterien, wie *E. coli, S. typhimurium, V. cholerae, Y. pseudotuberculosis, L. pneumophila, P. aeruginoas* und *H. pylori* reguliert CsrA infektionsrelevante Prozesse (Heroven *et al.*, 2012; Lenz *et al.*, 2005; Molofsky und Swanson, 2003; Forsbach-Birk *et al.*, 2004; Kulkarni *et al.*, 2014; Brencic und Lory, 2009; Barnard *et al.*, 2004). Häufig ist allerdings nicht bekannt, ob der Effekt auf die Virulenz der Bakterien durch die Regulation Virulenz-assoziierter Gene durch CsrA, oder den pleiotropen Effekt der Deletion zustande kommt. In weiterführenden Analysen könnte untersucht werden, ob sX5 und sX13 durch die Bindung an ein weiteres Protein oder eine RNA in einem Komplex mit CsrA vorliegen und ggf. zusammen die Virulenz von *Xcv* regulieren.

4.3.3. Gibt es andere RNA-Bindeproteine in *Xcv*?

Die Affinitätschromatographie-Experimente mit Epitop-markierter sX13-RNA waren bislang nicht erfolgreich. Zentrales Problem waren die zahlenreichen Hintergrundsignale in den Negativkontrollen (Abbildung 25 und Abbildung 42), die möglicherweise durch weitere Optimierungsschritte reduziert werden könnten. Für das Vorhandensein eines möglichen Vermittlerproteins spricht, dass die möglichen sX13-Interaktionsplattformen nur wenige Nukleotide umfassen und die Strukturen der Doppelstrangbereiche wahrscheinlich zu stabil sind, um an intermolekularen RNA-RNA-Interaktionen beteiligt zu sein. In Eukaryoten und Prokaryoten gibt es eine Vielzahl verschiedener RNA-Bindedomänen. Neben den RNA-Bindedomänen aus Hfq (SM-Domänen) und CsrA (S1-Domäne) gibt es noch weitere RNA-Bindedomänen, z. B. CRM (CRS1-YhbY-Domäne; Ostheimer *et al.*, 2002; Barkan *et al.*, 2007), S4 (Aravind und Koonin, 1999), THUMP (Aravind und Koonin, 2001), PUA (Pérez-Arellano *et al.*, 2007), und KH (Grishin, 2001). Die große Anzahl verschiedener RNA-Bindedomäne macht deutlich, dass es wahrscheinlich neben diversen RNasen noch weitere RNA-Bindedomäne macht deutlich, deren Rolle während der post-transkriptionellen Regulation untersucht werden könnte.

Ein unerwartetes Ergebnis dieser Arbeit war die Detektion von sX13 in Fraktionen von translationalaktiven Ribosomen (Abbildung 27). Diese Beobachtung könnte durch die Hypothese erklären werden, dass sX13 an mRNAs assoziiert vorliegt, während diese translatiert werden. Gegen diese Theorie spricht, dass sRNAs für gewöhnlich die Bindung von Ribosomen an die Ribosomenbindestelle blockieren und die Translationsinitiation inhibieren. Eine weitere Hypothese ist, dass sX13 mit einem Protein, wenn nicht sogar mit dem Ribosomen selbst, interagiert, welches an translatierte mRNAs bindet. Dies ist bislang noch für keine sRNA beschrieben und könnte eine neue Ebene der posttranskriptionellen Regulation darstellen. Beispielsweise ist es denkbar, dass sX13 die Affinität der Ribosomen zu spezifischen Sets von mRNAs durch direkte Interaktion reguliert. Diese Hypothese könnte beispielsweise durch *in vitro*-Interaktionsexperimente mit Ribosomenuntereinheiten oder rekonstituierten Ribosomen untersucht werden.

4.4. Proteogenomische Analysen zur Reannotation des Xcv-Genoms

Die proteogenomische Analyse des *Xcv*-Genoms hatte die Verbesserung der Annotation zum Ziel. 126.995 Peptide wurden mittels tBlastN 2.581 Proteinen zugewiesen, was einer Abdeckung von 55% des Genoms entspricht. Die Zuweisung der Proteindaten zum Genom von *Xcv* liefert direkte Hinweise über die Qualität der Annotation, da sowohl falsch annotierte als auch neue Proteine identifiziert werden können. Mit Hilfe dieser Methode wurden 29 neue proteinkodierende Gene und 51 falschannotierte proteinkodierende Gene identifiziert, welche N-terminal länger sind als bisher angenommen.

Eine ähnliche Analyse wurde in *Y. pestis KIM* 6+ durchgeführt. Hierbei wurden 30.994 Peptide 1.302 Proteinen zugewiesen, die Abdeckung des Proteoms betrug 31% (Payne *et al.*, 2010). Die Autoren identifizierten vier neue proteinkodierende Gene und fünf Gene mit inkorrekter Annotation des N-Terminus' des Genproduktes. In *Mycobacterium tuberculosis* wurden 394.952 Peptide 3.176 Proteinen zugewiesen, was einer Abdeckung von 80% des annotierten Genoms entsprach (Kelkar *et al.*, 2011). In dieser Studie wurden 41 neue proteinkodierende Gene und 33 N-terminal verlängerte Proteine identifiziert (Kelkar *et al.*, 2011). Weitere Studien wurden mit *Ruegeria pomeroyi, Deinococcus deserti* und *Bradyrhizobium japonicum* durchgeführt. In *R. pomeroyi* wurden 47% der annotierten kodierenden Sequenzen mittels Proteogenomik detektiert, dabei wurden 39 neue proteinkodierende Gene identifiziert und der Translationsstart von neun Genen korrigiert (Christie-Oleza *et al.*, 2012). In *D. deserti* und *B. japonicum* wurden jeweils 32% (vier neue Gene und 63 korrigierte Translationsstarts) und 36% (59 neue Gene und 49 korrigierte Translationsstarts) des annotierten Genoms abgedeckt (Baudet *et al.*, 2010; Kumar *et al.*, 2013). Die prozentuale Abdeckung des in dieser Arbeit beschriebenen Experiments, ist demnach im Vergleich zu ähnlichen Experimenten im oberen Drittel. Auf Verbesserungsvorschläge wird in Kapitel 4.4.4. gesondert eingegangen.

4.4.1. 51 Proteine in Xcv haben einen falsch annotierten Translationsstart.

Die Annotation falscher Translationsstarts ist wahrscheinlich einer der häufigsten Fehler bei der Annotation eines Genoms. Die in dieser Arbeit verwendete Methode, eignet sich zur sicheren Identifikation N-terminal verlängerter Proteine. Sind Proteine N-terminal kürzer als annotiert, so kann dies nicht sicher festgestellt werden. In der proteogenomischen Analyse wurden 51 proteinkodierende Gene in *Xcv* gefunden, welche einen falsch annotierten Translationsstart haben. Die N-terminalen Verlängerungen betragen im Durchschnitt 93 AS.

Für wenige der neuen bzw. längeren Proteine liefern andere Studien experimentelle Daten, aus diesem Grund werden im Folgenden einige ausgewählte Beispiele im Kontext der Literatur diskutiert. Der Translationsstart von InfC ist in *Xcv* als GUG annotiert, die Analyse der Peptiddaten ergab, dass InfC mindestens 6 AS länger ist, wobei es bis zum nächsten stromaufwärts gelegenen Stopcodon kein weiteres gängiges Initiator-Codon gibt. Dies deutet darauf hin, dass die Translation von InfC nicht mit einem der verbreiteten Startcodons AUG, GUG und UUG beginnt. Ähnliche Analysen in *Y. pestis* und *D. deserti* haben gezeigt, dass die Translation von InfC mit dem seltenen Initiator-Codon AUU beginnt (Payne *et al.*, 2010; Baudet *et al.*, 2010). In *E. coli* wurde erstmal 1982 beschrieben, dass AUU als Translationsinitiator-Codon von InfC fungiert (Sacerdot et al., 1982). Weiterhin hat eine Studie gezeigt, dass die Mutation des AUU-Initiator-Codons zu AUG den Verlust der translationellen Autoregulation von InfC zur Folge hat (Butler et al., 1987). Es ist wahrscheinlich, dass auch in *Xcv* AUU als Initiator-Codon von InfC verwendet wird, denn ein AUU-Codon befindet sich 17 Codons vor dem N-terminalen Ende der identifizierten InfC-Proteinsequenz. Die Translation von PcnB beginnt in *E. coli* ebenfalls mit AUU. Dieser ineffiziente Translationsstart wird als zusätzliche regulatorische 84

Ebene zur Kontrolle der Synthese von PcnB genutzt (Binns und Masters, 2002). In der proteogenomischen Analyse von *D. deserti* wurden keine Peptide für PcnB detektiert, aber die Sequenzanalyse des *pcnB* Orthologs aus *Deinococcus thermus* lieferte Hinweise, dass dessen Translationsinitiation mit AUG beginnt (Baudet *et al.*, 2010). In *Xcv* wurden PcnB-spezifische Peptide detektiert, allerdings kann keine klare Aussage zur Annotation des Translationsstarts getroffen werden, da der N-terminale Bereich des Proteins nicht durch Peptide abgedeckt war. In *Xcv* ist *pcnB* mit UUG als Startcodon annotiert.

Ein weiteres Beispiel für ein N-terminal verlängertes Protein ist RaxB. Die Gene des raxSTAB-Operons raxST, raxA und raxB kodieren in Xoo eine Sulfotransferase und mögliche Membranfusionsproteine mit Ähnlichkeit zu ABC-Transportern, womit RaxA und RaxB vermutlich Komponenten eines bakteriellen Typ I-Sekretionssystems (T1SS) sind (Burdman et al., 2004; Da Silva et al., 2004). Eines der am besten charakterisierten T1SS ist der TolC-HlyD/B-Komplex von E. coli, welcher zur Sekretion des Toxins HlyA dient (Delepelaire, 2004). In der proteogenomischen Analyse dieser Arbeit wurde gezeigt, dass RaxB mindestens 200 AS länger ist, als zuvor annotiert (Tabelle 13; Abbildung 31 B). Damit überschneiden sich die Annotationen der CDS von raxA und raxB. Überraschenderweise gibt es zwischen dem ersten RaxB-Peptid und dem nächsten stromaufwärts gelegenen Stopcodon (10 Codons) kein gängiges Translationsinitiator-Codon. Einzig ACG, das normalerweise für Threonin kodiert, könnte als Startcodon infrage kommen. In einer Studie in E. coli konnte gezeigt werden, dass die Mutation des infC-Startcodons (AUU) zu ACG noch zu einer messbaren Translationsrate führt und dass wahrscheinlich die Qualität der Shine Dalgarno Sequenz vor dem Startcodon entscheidend ist für die Translation (Sussman et al., 1996). Es wurden keine Peptiddaten für RaxA in der hier vorliegenden Analyse gefunden, wohingegen Peptide für RaxST identifiziert wurden. Dies ist interessant da in der Regel die Synthese aller Proteine einer polycistronischen mRNA gemeinsam nachgewiesen wurden. In einer Studie in Xoo, konnte die Expression von raxA und raxB mittels Northern-Blot nicht nachgewiesen werden (Burdman et al., 2004). Die Expression des raxSTAB-Operons und die Synthese der Proteine ist scheinbar strikt reguliert, so ist es beispielsweise möglich, dass die Halbwertszeit von RaxA kürzer ist, als die der anderen Proteine. Weiterhin bedeuten die fehlenden Peptide für RaxA nicht zwangsläufig, dass kein Protein vorlag, da durch die hohe Komplexität der Proteinprobe niedrig abundante Proteine übersehen werden können. In weiterführenden Analysen könnten zunächst Transkriptdaten für das raxSTAB-Operon in *Xcv* generiert mittels qRT-PCR werden.

4.4.2. Die Entdeckung 29 neuer proteinkodierender Gene in Xcv

Die Identifizierung neuer proteinkodierender Gene in *Xcv*, dessen Genomsequenz 2005 veröffentlicht wurde, zeigt dass auch in gut untersuchten Organismen die Annotation eines Genoms nicht perfekt ist. 24 der 29 in dieser Arbeit identifizierten neuen Gene besitzen keine Homologie zu bekannten Proteinen bzw. Domänen.

STO_0136836 liegt zwischen XCV0062 und XCV0063 und kodiert möglicherweise eine Serin/Threonin-Proteinphosphatase der 2C-Familie. In *Botrytis cinerea* wurden die zwei Typ 2C Serin/Threonin-Proteinphosphatase BcPtc1 und BcPtc3 identifiziert, die eine Rolle in der Regulation der Virulenz und in der Adaptation an diverse Stressbedingungen spielen. Die Deletion jeweils einer der beiden Serin/Threonin-Proteinphosphatasen hatte reduzierte Virulenz zur Folge (Yang *et al.*, 2013). Diese Ergebnisse sind allerdings kritisch zu betrachten, da bei intensiver Literaturrecherche aufgefallen ist, dass in zwei Publikationen von Yang *et al.* zur Dokumentation der Phänotypen zweier unterschiedlicher Mutanten, Teile derselben Abbildung genutzt wurden. Für die Serin/Threonin-Phospatase Stp aus *Listeria monocytogenes* wurde unter Nutzung einer Phosphoproteommassenspektrometrischen Analyse gezeigt, dass der Translationselongationsfaktor EF-Tu durch Stp phosphoyliert wird und die Deletion von *stp* einen dramatischen negativen Einfluss auf die Virulenz hat (Archambaud *et al.*, 2005). In Folgestudien könnte eine mögliche Virulenzfunktion des neu identifizierten Proteins der 2C Serin/Threonin-Proteinphosphatase Familie (STO_0136836), untersucht werden.

4.4.3. Die Identifikation potentieller neuer Typ III-Effektorproteine

T3E aus pflanzen- und tierpathogenen Bakterien beeinflussen eine Vielzahl von Wirtsprozessen, z. B. Signaltransduktion, Modifikation des Zytoskeletes und Unterdrückung der Immunantwort (Dou und Zhou, 2012; Navarro et al., 2005; Lindeberg et al., 2012) und viele Effektoren gehören einer Effektorfamilie an, welche auch in entfernt verwandten Bakterien konserviert sein kann (McCann und Guttman, 2008). Bei der Identifizierung von Effektoren werden meist bioinformatische und experimentelle Strategien verfolgt. Beispielsweise deutet das Vorhandsein einer PIP-Box auf die Ko-Expression eines Genes mit dem T3SS hin und das Vorhandensein einer NLS (Nuclear localization signal) auf eine Rolle des Proteins im Zellkern des Wirtes. Weiterhin sind Sequenzhomologien zu bekannten Effektorproteinen und ein unterdurchschnittlicher GC-Gehalt der kodierenden Sequenz mögliche Hinweise auf einen Effektor (Burstein et al., 2009; Teper et al., 2015). Experimentelle Ansätze sind meist auf die Analyse von vorhandenen Kandidaten beschränkt und lassen sich unter dem Begriff Translokationsexperimente zusammenfassen. In der Literatur sind verschiedene Report beschrieben, wie z. B. AvrBs3∆2 oder AvrBs2₆₂₋₅₇₄ (Szurek et al., 2002; Noël et al., 2003; Teper et al., 2015). Bei diesen Reportern ist das N-terminale T3SS-Translokationssignal deletiert, welches nun durch die Sequenz eines Effektorkandidaten ersetzt werden kann. Da sich T3SS-Translokationssignale meist im N-terminalen Bereich von Effektoren befinden (Schechter et al., 2004), ist eine korrekte Annotation des N-terminus von Effektorkandidaten besonders wichtig. Die N-terminale Proteinsequenz ist auch bei der Verwendung von T3E-Vorherageprogrammen wie Bean, Gecco und Effective wichtig (Arnold et al., 2009; Samudrala et al., 2009; Dong et al., 2015). Analysiert man beispielsweise die annotierte Proteinsequenz von dem bekannten T3E XCV3785 (XopAA) so sagt lediglich Bean dessen Translokation vorher. Bei der Wiederholung dieser Analysen mit der in dieser Arbeit identifizierten längeren Annotation von XCV3785, wird das Protein von allen drei Programmen als T3E vorhergesagt. Ein weiteres Beispiel ist XCV3419, dessen reannotierte Sequenz von allen Vorhersageprogrammen als T3E vorhergesagt wird, nicht aber die bisher annotierte Sequenz. Diese Ergebnisse zeigen deutlich, dass die Grundlage der Analyse von möglichen T3E die korrekte Annotation dieser ist. Bioinformatische Analysen, wie in Teper *et al.*, 2015, fußen ebenfalls auf einer korrekten Annotation des Genoms, sodass die Reannotation des *Xcv*-Genoms Grundlage zur Identifizierung neuer T3E sein kann.

4.4.4. Chancen und Nutzen der proteogenomischen Analyse

Die korrekte und vollständige Annotation des Genoms von Xcv ist Grundlage für alle molekularbiologischen Arbeiten mit Xcv und ggf. auch verwandter Bakterien und könnte daher weiter intensiviert werden. Die in dieser Arbeit beschriebene Methode und Aufbereitung der Proteinproben für die massenspektrometrische Analyse könnten optimiert werden, um die Abdeckung des Gesamtproteoms zu verbessern und weitere neue bzw. zu korrigierende Proteine zu identifizieren. Die MS-Analyse könnte beispielsweise dahingehend optimiert werden, dass die Komplexität der zu analysierenden Proteinproben reduziert wird. Dies kann zum Beispiel durch die Fraktionierung von Membranproteinen und zytosolischen Proteinen geschehen (Wolff et al., 2006). Außerdem könnte die Nutzung verschiedener Enzyme für die Proteolyse der Proteine weitere Peptide für die massenspektrometrische Analyse liefern und dadurch Bereiche abdecken, welche durch einen Verdau mit Trypsin verloren gehen (Müller et al., 2013). Weiterhin gibt es die Möglichkeit unter Verwendung verschiedener anderer Analysemethoden den N-Terminus eines Proteins zu bestimmen. Beispielsweise kann der N-Terminus intakter Proteine mittels N-Tris (2,4,6-trimethoxyphenyl) phosphonium acetyl succinimide (TMPP) modifiziert werden, wodurch dieser eine dauerhafte positive Ladung erhält. Diese Veränderung erhöht den hydrophoben Charakter eines Proteins und sorgt dafür, dass sich sowohl das Fragmentierungsmuster als auch das Verhalten während der Ionisierung für die massenspektrometrische Analyse ändert (Chen et al., 2007; Baudet et al., 2010). Eine weitere Methode zur Analyse des N-Terminus eines Proteins ist der sogenannte Edman-Abbau, wobei mit dieser Methode nur gereinigte Proteine analysiert werden können (Edman, 1950; Edman und Begg, 1967). Diese Methode würde sich z. B. zur Analyse des RaxB N-Terminus und einiger weiterer Kandidaten eignen.

5. Referenzen

- Abendroth, U., Schmidtke, C. and Bonas, U. (2014). Small non-coding RNAs in plant-pathogenic *Xanthomonas* spp. *RNA Biol* **11**, 457-463.
- Aiba, H. (2007). Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 10, 134-139.
- An, S.Q., Febrer, M., McCarthy, Y., Tang, D.J., Clissold, L., Kaithakottil, G., Swarbreck, D., Tang, J.L., Rogers, J., Dow, J.M. and Ryan, R.P. (2013). High-resolution transcriptional analysis of the regulatory influence of cell-to-cell signalling reveals novel genes that contribute to *Xanthomonas* phytopathogenesis. *Mol Microbiol*, 1058-1069.
- Antal, M., Bordeau, V., Douchin, V. and Felden, B. (2005). A small bacterial RNA regulates a putative ABC transporter. *J Biol Chem* 280, 7901-7908.
- Aravind, L. and Koonin, E.V. (1999). Novel predicted RNA-binding domains associated with the translation machinery. *J Mol Evol* **48**, 291-302.
- Aravind, L. and Koonin, E.V. (2001). THUMP-a predicted RNA-binding domain shared by 4-thiouridine, pseudouridine synthases and RNA methylases. *Trends Biochem Sci* **26**, 215-217.
- Archambaud, C., Gouin, E., Pizarro-Cerda, J., Cossart, P. and Dussurget, O. (2005). Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of *Listeria* monocytogenes. Mol Microbiol 56, 383-396.
- Arluison, V., Mutyam, S.K., Mura, C., Marco, S. and Sukhodolets, M.V. (2007). Sm-like protein Hfq: location of the ATP-binding site and the effect of ATP on Hfq-- RNA complexes. *Protein Sci* **16**, 1830-1841.
- Arnold, R., Brandmaier, S., Kleine, F., Tischler, P., Heinz, E., Behrens, S., Niinikoski, A., Mewes, H.-W., Horn, M. and Rattei, T. (2009). Sequence-based prediction of type III secreted proteins. *PloS Pathogen* 5, e1000376.
- Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M. and Sherlock3, G. (2000). Gene Ontology: tool for the unification of biology. *Nat Genet* 25, 25-29.
- Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., Smith, J., Struhl, K., Albright, L., Coen, D. and Varki, A. (1996). Current Protocols in Molecular Biology 1996 John Wiley & Sons. *New York*.
- Babitzke, P. and Romeo, T. (2007). CsrB sRNA family: sequestration of RNA-binding regulatory proteins. *Curr Opin Microbiol* **10**, 156-163.
- Backman, K., Ptashne, M. and Gilbert, W. (1976). Construction of plasmids carrying the cI gene of bacteriophage lambda. *Proc Natl Acad Sci* 73, 4174-4178.
- Baker, C.S., Eöry, L.A., Yakhnin, H., Mercante, J., Romeo, T. and Babitzke, P. (2007). CsrA inhibits translation initiation of *Escherichia coli* hfq by binding to a single site overlapping the Shine-Dalgarno sequence. J Bacteriol 189, 5472-5481.
- Ballvora, A., Pierre, M., van den Ackerveken, G., Schornack, S., Rossier, O., Ganal, M., Lahaye, T. and Bonas, U. (2001). Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the *Xanthomonas campestris* pv. *vesicatoria* AvrBs4 protein. *Mol Plant Microbe Interact* 14, 629-638.
- Barkan, A., Klipcan, L., Ostersetzer, O., Kawamura, T., Asakura, Y. and Watkins, K.P. (2007). The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein. *RNA* 13, 55-64.
- Barken, K.B., Pamp, S.J., Yang, L., Gjermansen, M., Bertrand, J.J., Klausen, M., Givskov, M., Whitchurch, C.B., Engel, J.N. and Tolker-Nielsen, T. (2008). Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in *Pseudomonas aeruginosa* biofilms. *Environ Microbiol* 10, 2331-2343.
- Barnard, F.M., Loughlin, M.F., Fainberg, H.P., Messenger, M.P., Ussery, D.W., Williams, P. and Jenks, P.J. (2004). Global regulation of virulence and the stress response by CsrA in the highly adapted human gastric pathogen *Helicobacter pylori*. *Mol Microbiol* **51**, 15-32.
- Baudet, M., Ortet, P., Gaillard, J.C., Fernandez, B., Guérin, P., Enjalbal, C., Subra, G., de Groot, A., Barakat, M., Dedieu, A. and Armengaud, J. (2010). Proteomics-based refinement of *Deinococcus deserti* genome annotation reveals an unwonted use of non-canonical translation initiation codons. *Mol Cell Proteomics* 9, 415-426.
- Beisel, C.L. and Storz, G. (2011a). The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in *Escherichia coli*. *Mol Cell* **41**, 286-297.
- Beisel, C.L. and Storz, G. (2011b). Discriminating tastes: physiological contributions of the Hfq-binding small RNA Spot 42 to catabolite repression. *RNA Biol* **8**, 766-770.
- Besemer, J. and Borodovsky, M. (2005). GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. *Nucleic Acids Res* 33, W451-W454.

- Besemer, J., Lomsadze, A. and Borodovsky, M. (2001). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. *Nucleic Acids Res* 29, 2607-2618.
- Binns, N. and Masters, M. (2002). Expression of the *Escherichia coli* pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. *Mol Microbiol* 44, 1287-1298.
- Boch, J. and Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48, 419-436.
- Bohn, C., Rigoulay, C. and Bouloc, P. (2007). No detectable effect of RNA-binding protein Hfq absence in *Staphylococcus aureus*. *BMC Microbiol* **7**, 1-9.
- Boisset, S., Geissmann, T., Huntzinger, E., Fechter, P., Bendridi, N., Possedko, M., Chevalier, C., Helfer, A.C., Benito, Y., Jacquier, A., Gaspin, C., Vandenesch, F. and Romby, P. (2007). *Staphylococcus aureus* RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. *Genes Dev* 21, 1353-1366.
- Bonas, U., Schulte, R., Fenselau, S., Minsavage, G.V., Staskawicz, B.J. and Stall, R.E. (1991). Isolation of a gene cluster from *Xanthomonas campestris* pv. *vesicatoria* that determines pathogenicity and the hypersensitive response on pepper and tomato. *Mol. Plant-Microbe Interact* **4**, 81-88.
- Bonas, U., Stall, R.E. and Staskawicz, B. (1989). Genetic and structural characterization of the avirulence gene avrBs3 from *Xanthomonas campestris* pv. *vesicatoria*. *Mol Gen Genet* **218**, 127-136.
- Bonas, U., Van den Ackerveken, G., Büttner, D., Hahn, K., Marois, E., Nennstiel, D., Noel, L., Rossier, O. and Szurek, B. (2000). How the bacterial plant pathogen *Xanthomonas campestris* pv. *vesicatoria* conquers the host. *Mol Plant Pathol* 1, 73-76.
- Bren, A. and Eisenbach, M. (1998). The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. *J Mol Biol* **278**, 507-514.
- Brencic, A. and Lory, S. (2009). Determination of the regulon and identification of novel mRNA targets of *Pseudomonas aeruginosa* RsmA. *Mol Microbiol* **72**, 612-632.
- Brennan, R.G. and Link, T.M. (2007). Hfq structure, function and ligand binding. *Curr Opin Microbiol* **10**, 125-133.
- Brock, J. (2013). Die Rolle der RNA-Bindeproteine CsrA und Hfq in der Virulenz von Xanthomonas campestris pv. vesicatoria. Dissertation.
- Burdman, S., Shen, Y., Lee, S.W., Xue, Q. and Ronald, P. (2004). RaxH/RaxR: a two-component regulatory system in *Xanthomonas oryzae* pv. *oryzae* required for AvrXa21 activity. *Mol Plant Microbe Interact* 17, 602-612.
- Burrows, L.L. (2012). *Pseudomonas aeruginosa* twitching motility: type IV pili in action. *Annu Rev Microbiol* **66**, 493-520.
- Burstein, D., Zusman, T., Degtyar, E., Viner, R., Segal, G. and Pupko, T. (2009). Genome-scale identification of *Legionella pneumophila* effectors using a machine learning approach. *PloS Pathogen* 5, e1000508.
- Büttner, D. and Bonas, U. (2002). Getting across—bacterial type III effector proteins on their way to the plant cell. *EMBO J* 21, 5313-5322.
- Büttner, D. and Bonas, U. (2010). Regulation and secretion of *Xanthomonas* virulence factors. *FEMS Microbiol Rev* 34, 107-133.
- Büttner, D., Nennstiel, D., Klüsener, B. and Bonas, U. (2002). Functional analysis of HrpF, a putative type III translocon protein from *Xanthomonas campestris* pv. *vesicatoria*. *J Bacteriol* **184**, 2389-2398.
- Büttner, D., Noël, L., Stuttmann, J. and Bonas, U. (2007). Characterization of the nonconserved hpaB-hrpF region in the hrp pathogenicity island from *Xanthomonas campestris* pv. *vesicatoria*. *Mol Plant Microbe Interact* **20**, 1063-1074.
- Camacho, M.I., Alvarez, A.F., Chavez, R.G., Romeo, T., Merino, E. and Georgellis, D. (2015). Effects of the global regulator CsrA on the BarA/UvrY two-component signaling system. J Bacteriol 197, 983-991.
- Canonne, J., Marino, D., Noël, L.D., Arechaga, I., Pichereaux, C., Rossignol, M., Roby, D. and Rivas, S. (2010). Detection and functional characterization of a 215 amino acid N-terminal extension in the *Xanthomonas* type III effector XopD. *PloS one* **5**, e15773.
- Chao, N.-X., Wei, K., Chen, Q., Meng, Q.-L., Tang, D.-J., He, Y.-Q., Lu, G.-T., Jiang, B.-L., Liang, X.-X. and Feng, J.-X. (2008). The *rsmA*-like gene *rsmA_{xcc}* of *Xanthomonas campestris* pv. *campestris* is involved in the control of various cellular processes, including pathogenesis. *Mol Plant Microbe Interact* 21, 411-423.
- Chen, S., Zhang, A., Blyn, L.B. and Storz, G. (2004). MicC, a second small-RNA regulator of Omp protein expression in *Escherichia coli*. J Bacteriol **186**, 6689-6697.
- Chen, W., Lee, P.J., Shion, H., Ellor, N. and Gebler, J.C. (2007). Improving de novo sequencing of peptides using a charged tag and C-terminal digestion. *Anal Chem* **79**, 1583-1590.
- Chevalier, C., Geissmann, T., Helfer, A.-C. and Romby, P. (2009) Probing mRNA structure and sRNA-mRNA interactions in bacteria using enzymes and lead (II). In *Riboswitches*. Springer, pp. 215-232.

- Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction. *Analytical biochemistry* **162**, 156-159.
- Christie-Oleza, J.A., Miotello, G. and Armengaud, J. (2012). High-throughput proteogenomics of *Ruegeria* pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade. *BMC* Genomics 13, 73.
- Consortium, G.O. (2015). Gene ontology consortium: going forward. Nucleic Acids Res 43, D1049-D1056.
- Corredor, M. and Murillo, O. (2014) Identification of Small Non-coding RNAs in Bacterial Genome Annotation Using Databases and Computational Approaches. In Advances in Computational Biology. Springer, pp. 295-300.
- Cui, Y., Chatterjee, A., Liu, Y., Dumenyo, C.K. and Chatterjee, A.K. (1995). Identification of a global repressor gene, *rsmA*, of *Erwinia carotovora* subsp. *carotovora* that controls extracellular enzymes, N-(3oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J Bacteriol 177, 5108-5115.
- Da Silva, F.G., Shen, Y., Dardick, C., Burdman, S., Yadav, R.C., de Leon, A.L. and Ronald, P.C. (2004). Bacterial genes involved in type I secretion and sulfation are required to elicit the rice *Xa21*-mediated innate immune response. *Mol Plant Microbe Interact* **17**, 593-601.
- Daniels, M.J., Barber, C.E., Turner, P.C., Sawczyc, M.K., Byrde, R.J. and Fielding, A.H. (1984). Cloning of genes involved in pathogenicity of *Xanthomonas campestris* pv. *campestris* using the broad host range cosmid pLAFR1. *EMBO J* 3, 3323-3328.
- Darzins, A. and Russell, M.A. (1997). Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using *Pseudomonas aeruginosa* as a model system--a review. *Gene* **192**, 109-115.
- Das, A., Rangaraj, N. and Sonti, R.V. (2009). Multiple adhesin-like functions of *Xanthomonas oryzae* pv. *oryzae* are involved in promoting leaf attachment, entry, and virulence on rice. *Mol Plant Microbe Interact* **22**, 73-85.
- Davis, M., Rott, P., Baudin, P. and Dean, J. (1994). Evaluation of selective media and immunoassays for detection of *Xanthomonas albilineans*, causal agent of sugarcane leaf scald disease. *Plant Dis* 78, 78-82.
- Del Val, C., Rivas, E., Torres-Quesada, O., Toro, N. and Jiménez-Zurdo, J.I. (2007). Identification of differentially expressed small non-coding RNAs in the legume endosymbiont *Sinorhizobium meliloti* by comparative genomics. *Mol Microbiol* 66, 1080-1091.
- Delcher, A.L., Bratke, K.A., Powers, E.C. and Salzberg, S.L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. *Bioinformatics* 23, 673-679.
- Delepelaire, P. (2004). Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694, 149-161.
- Deng, W.-L. and Huang, H.-C. (1999). Cellular locations of *Pseudomonas syringae* pv. *syringae* HrcC and HrcJ proteins, required for harpin secretion via the type III pathway. *J Bacteriol* **181**, 2298-2301.
- Dinger, M.E., Pang, K.C., Mercer, T.R. and Mattick, J.S. (2008). Differentiating protein-coding and noncoding RNA: challenges and ambiguities. *PLoS Comput Biol* **4**, e1000176.
- Dong, X., Lu, X. and Zhang, Z. (2015). BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors. *Database* **2015**, bav064.
- Dou, D. and Zhou, J.M. (2012). Phytopathogen effectors subverting host immunity: different foes, similar battleground. *Cell Host Microbe* **12**, 484-495.
- Edman, P. (1950). Method for determination of the amino acid sequence in peptides. Acta chem. scand 4.
- Edman, P. and Begg, G. (1967). A protein sequenator. Eur J Biochem 1, 80-91.
- Eggenhofer, F., Tafer, H., Stadler, P.F. and Hofacker, I.L. (2011). RNApredator: fast accessibility-based prediction of sRNA targets. *Nucleic Acids Res* **39**, W149-W154.
- Ellermeier, J.R. and Slauch, J.M. (2008). Fur regulates expression of the *Salmonella* pathogenicity island 1 type III secretion system through HilD. *J Bacteriol* **190**, 476-486.
- Figurski, D.H. and Helinski, D.R. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. *Proc Natl Acad Sci* **76**, 1648-1652.
- Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E.L.L., Tate, J. and Punta, M. (2013). Pfam: the protein families database. *Nucleic Acids Res*, gkt1223.
- Forsbach-Birk, V., McNealy, T., Shi, C., Lynch, D. and Marre, R. (2004). Reduced expression of the global regulator protein CsrA in *Legionella pneumophila* affects virulence-associated regulators and growth in *Acanthamoeba castellanii*. *Int J Med Microbiol* **294**, 15-25.
- Friedman, L. and Kolter, R. (2004). Genes involved in matrix formation in *Pseudomonas aeruginosa* PA14 biofilms. *Mol Microbiol* **51**, 675-690.
- Geissmann, T., Chevalier, C., Cros, M.J., Boisset, S., Fechter, P., Noirot, C., Schrenzel, J., François, P., Vandenesch, F., Gaspin, C. and Romby, P. (2009). A search for small noncoding RNAs in *Staphylococcus aureus* reveals a conserved sequence motif for regulation. *Nucleic Acids Res* 37, 7239-7257.

- Geissmann, T.A. and Touati, D. (2004). Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. *EMBO J* 23, 396-405.
- Genin, S. (2010). Molecular traits controlling host range and adaptation to plants in *Ralstonia solanacearum*. *New Phytol* **187**, 920-928.
- Ghosh, P. (2004). Process of protein transport by the type III secretion system. *Microbiol Mol Biol Rev* 68, 771-795.
- Goh, E.-B. (2008). Discovering New Regulon Members of the *Escherichia coli* EnvZ/OmpR Two-component Signal Transduction System. *Dissertation*.
- Gottesman, S. and Storz, G. (2011). Bacterial small RNA regulators: versatile roles and rapidly evolving variations. *Cold Spring Harbor perspectives in biology* **3**, 1-16.
- Grishin, N.V. (2001). KH domain: one motif, two folds. Nucleic Acids Res 29, 638-643.
- Guillier, M. and Gottesman, S. (2008). The 5' end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. *Nucleic Acids Res* **36**, 6781-6794.
- Hartmann, R.K., A. Bindereif, Schön, A. and Westhof, E. (2005) Handbook of RNA biochemistry, Vch Verlagsgesellschaft Mbh.
- Hausner, J., Hartmann, N., Lorenz, C. and Büttner, D. (2013). The periplasmic HrpB1 protein from *Xanthomonas* spp. binds to peptidoglycan and to components of the type III secretion system. *Appl Environ Microbiol* **79**, 6312-6324.
- Hayward, A. (1993) The hosts of Xanthomonas. In Xanthomonas. Springer, pp. 1-119.
- He, S.Y., Nomura, K. and Whittam, T.S. (2004). Type III protein secretion mechanism in mammalian and plant pathogens. *Biochim Biophys Acta* **1694**, 181-206.
- Heroven, A.K., Böhme, K. and Dersch, P. (2012). The Csr/Rsm system of Yersinia and related pathogens: a post-transcriptional strategy for managing virulence. *RNA Biol* **9**, 379-391.
- Heroven, A.K., Böhme, K., Rohde, M. and Dersch, P. (2008). A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of *Yersinia pseudotuberculosis* through RovM. *Mol Microbiol* 68, 1179-1195.
- Hu, R.M., Yang, T.C., Yang, S.H. and Tseng, Y.H. (2005). Deduction of upstream sequences of Xanthomonas campestris flagellar genes responding to transcription activation by FleQ. Biochem Biophys Res Commun 335, 1035-1043.
- Huguet, E., Hahn, K., Wengelnik, K. and Bonas, U. (1998). hpaA mutants of *Xanthomonas campestris* pv. *vesicatoria* are affected in pathogenicity but retain the ability to induce host-specific hypersensitive reaction. *Mol Microbiol* **29**, 1379-1390.
- Hyatt, D., Chen, G.-L., LoCascio, P.F., Land, M.L., Larimer, F.W. and Hauser, L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC Bioinform* **11**, 119.
- Jacques, J.F., Jang, S., Prevost, K., Desnoyers, G., Desmarais, M., Imlay, J. and Massé, E. (2006). RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in *Escherichia coli*. *Mol Microbiol* **62**, 1181-1190.
- Jiang, R.P., Tang, D.J., Chen, X.L., He, Y.Q., Feng, J.X., Jiang, B.L., Lu, G.T., Lin, M. and Tang, J.L. (2010). Identification of four novel small non-coding RNAs from *Xanthomonas campestris* pathovar *campestris*. *BMC Genomics* 11, 1-9.
- Jones, J.B., Lacy, G.H., Bouzar, H., Stall, R.E. and Schaad, N.W. (2004). Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. *Syst Appl Microbiol* **27**, 755-762.
- Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A.F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R. and Hunter, S. (2014). InterProScan 5: genome-scale protein function classification. *Bioinformatics* 30, 1236-1240.
- Kang, D., Gho, Y.S., Suh, M. and Kang, C. (2002). Highly sensitive and fast protein detection with coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. *Bulletin-Korean chemical* society 23, 1511-1512.
- Kelkar, D.S., Kumar, D., Kumar, P., Balakrishnan, L., Muthusamy, B., Yadav, A.K., Shrivastava, P., Marimuthu, A., Anand, S., Sundaram, H., Kingsbury, R., Harsha, H.C., Nair, B., Prasad, T.S., Chauhan, D.S., Katoch, K., Katoch, V.M., Kumar, P., Chaerkady, R., Ramachandran, S., Dash, D. and Pandey, A. (2011). Proteogenomic analysis of *Mycobacterium tuberculosis* by high resolution mass spectrometry. *Mol Cell Proteomics* 10, M111 011627.
- Kery, M.B., Feldman, M., Livny, J. and Tjaden, B. (2014). TargetRNA2: identifying targets of small regulatory RNAs in bacteria. *Nucleic Acids Res* 42, W124-W129.
- Kim, J.-G., Li, X., Roden, J.A., Taylor, K.W., Aakre, C.D., Su, B., Lalonde, S., Kirik, A., Chen, Y., Baranage, G., HeatherMcLane, B.Martin, G. and BethMudgetta, M. (2009). *Xanthomonas* T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. *The Plant Cell* 21, 1305-1323.

- Kim, J.N. and Kwon, Y.M. (2013). Identification of target transcripts regulated by small RNA RyhB homologs in *Salmonella*: RyhB-2 regulates motility phenotype. *Microbiol Res* **168**, 621-629.
- Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jørgensen, A., Molin, S. and Tolker-Nielsen, T. (2003). Biofilm formation by *Pseudomonas aeruginosa* wild type, flagella and type IV pili mutants. *Mol Microbiol* 48, 1511-1524.
- Koebnik, R., Krüger, A., Thieme, F., Urban, A. and Bonas, U. (2006). Specific binding of the *Xanthomonas* campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. *J Bacteriol* **188**, 7652-7660.
- Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M. and Peterson, K.M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibioticresistance cassettes. *Gene* 166, 175-176.
- Kraiselburd, I., Alet, A.I., Tondo, M.L., Petrocelli, S., Daurelio, L.D., Monzón, J., Ruiz, O.A., Losi, A. and Orellano, E.G. (2012). A LOV protein modulates the physiological attributes of *Xanthomonas* axonopodis pv. citri relevant for host plant colonization. PloS one 7, e38226.
- Kröger, C., Colgan, A., Srikumar, S., Händler, K., Sivasankaran, S.K., Hammarlöf, D.L., Canals, R., Grissom, J.E., Conway, T., Hokamp, K. and Hinton, J.C. (2013). An infection-relevant transcriptomic compendium for *Salmonella enterica* Serovar *Typhimurium*. *Cell Host Microbe* 14, 683-695.
- Kulkarni, P.R., Jia, T., Kuehne, S.A., Kerkering, T.M., Morris, E.R., Searle, M.S., Heeb, S., Rao, J. and Kulkarni, R.V. (2014). A sequence-based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in *Pseudomonas aeruginosa*. *Nucleic Acids Res* 42, 6811-6825.
- Kumar, D., Yadav, A.K., Kadimi, P.K., Nagaraj, S.H., Grimmond, S.M. and Dash, D. (2013). Proteogenomic analysis of *Bradyrhizobium japonicum* USDA110 using GenoSuite, an automated multi-algorithmic pipeline. *Mol Cell Proteomics* 12, 3388-3397.
- Larsen, T.S. and Krogh, A. (2003). EasyGene–a prokaryotic gene finder that ranks ORFs by statistical significance. *BMC Bioinform* **4**, 21.
- Lawhon, S.D., Frye, J.G., Suyemoto, M., Porwollik, S., McClelland, M. and Altier, C. (2003). Global regulation by CsrA in *Salmonella typhimurium*. *Mol Microbiol* **48**, 1633-1645.
- Lee, S.Y., Bailey, S.C. and Apirion, D. (1978). Small stable RNAs from *Escherichia coli*: evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. *J Bacteriol* 133, 1015-1023.
- Lenz, D.H., Miller, M.B., Zhu, J., Kulkarni, R.V. and Bassler, B.L. (2005). CsrA and three redundant small RNAs regulate quorum sensing in *Vibrio cholerae*. *Mol Microbiol* **58**, 1186-1202.
- Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y.M., Buso, N. and Lopez, R. (2015). The EMBL-EBI bioinformatics web and programmatic tools framework. *Nucleic Acids Res*, gkv279.
- Liang, H., Zhao, Y.-T., Zhang, J.-Q., Wang, X.-J., Fang, R.-X. and Jia, Y.-T. (2011). Identification and functional characterization of small non-coding RNAs in *Xanthomonas oryzae* pathovar oryzae. BMC Genomics 12, 1-14.
- Lim, F., Downey, T.P. and Peabody, D.S. (2001). Translational repression and specific RNA binding by the coat protein of the *Pseudomonas* phage PP7. *J Biol Chem* **276**, 22507-22513.
- Lim, F. and Peabody, D.S. (2002). RNA recognition site of PP7 coat protein. Nucleic Acids Res 30, 4138-4144.
- Lim, S.H., So, B.H., Wang, J.C., Song, E.S., Park, Y.J., Lee, B.M. and Kang, H.W. (2008). Functional analysis of *pilQ* gene in *Xanthomonas oryzae* pv. *oryzae*, bacterial blight pathogen of rice. *J Microbiol* **46**, 214-220.
- Lindeberg, M., Cunnac, S. and Collmer, A. (2012). *Pseudomonas syringae* type III effector repertoires: last words in endless arguments. *Trends in microbiology* **20**, 199-208.
- Link, T.M., Valentin-Hansen, P. and Brennan, R.G. (2009). Structure of *Escherichia coli* Hfq bound to polyriboadenylate RNA. *Proc Natl Acad Sci U S A* **106**, 19292-19297.
- Lorenz, C. and Büttner, D. (2009). Functional characterization of the type III secretion ATPase HrcN from the plant pathogen *Xanthomonas campestris* pv. *vesicatoria*. *J Bacteriol* **191**, 1414-1428.
- Lorenz, C., Hausner, J. and Büttner, D. (2012). HrcQ provides a docking site for early and late type III secretion substrates from *Xanthomonas*. e51063.
- Lu, X.-H., An, S.-Q., Tang, D.-J., McCarthy, Y., Tang, J.-L., Dow, J.M. and Ryan, R.P. (2012). RsmA regulates biofilm formation in *Xanthomonas campestris* through a regulatory network involving cyclic di-GMP and the Clp transcription factor. *PloS one* **7**, e52646.
- Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T. and Gottesman, S. (1998). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. *Proc Natl Acad Sci* **95**, 12462-12467.
- Mandin, P. and Gottesman, S. (2009). A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. *Mol Microbiol* **72**, 551-565.

- Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S.V., Machado, M.A., Toth, I., Salmond, G. and Foster, G.D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. *Mol Plant Pathol* 13, 614-629.
- Marois, E., Van den Ackerveken, G. and Bonas, U. (2002). The *Xanthomonas* type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. *Mol Plant Microbe Interact* **15**, 637-646.
- Massé, E., Vanderpool, C.K. and Gottesman, S. (2005). Effect of RyhB small RNA on global iron use in *Escherichia coli. J Bacteriol* 187, 6962-6971.
- Masui, Y., Coleman, J. and Inouye, M. (1983) Multipurpose expression cloning vehicles in *Escherichia coli*. In *Experimental Manipulation of Gene Expression*. Academic Press New York, pp. 15-32.
- Mattick, J.S. (2002). Type IV pili and twitching motility. Annu Rev Microbiol 56, 289-314.
- McCann, H.C. and Guttman, D.S. (2008). Evolution of the type III secretion system and its effectors in plantmicrobe interactions. *New Phytol* **177**, 33-47.
- McCarthy, Y., Ryan, R.P., O'Donovan, K., He, Y.Q., Jiang, B.L., Feng, J.X., Tang, J.L. and Dow, J.M. (2008). The role of PilZ domain proteins in the virulence of *Xanthomonas campestris* pv. *campestris*. *Mol Plant Pathol* **9**, 819-824.
- Médigue, C. and Danchin, A. (2008) Annotating bacterial genomes. In *Modern Genome Annotation*. Springer, pp. 165-190.
- Mellin, J.R., Goswami, S., Grogan, S., Tjaden, B. and Genco, C.A. (2007). A novel Fur- and iron-regulated small RNA, NrrF, is required for indirect Fur-mediated regulation of the *sdhA* and *sdhC* genes in *Neisseria meningitidis*. J Bacteriol 189, 3686-3694.
- Ménard, R., Sansonetti, P.J. and Parsot, C. (1993). Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of *Shigella flexneri* entry into epithelial cells. *J Bacteriol* **175**, 5899-5906.
- Metruccio, M.M., Fantappiè, L., Serruto, D., Muzzi, A., Roncarati, D., Donati, C., Scarlato, V. and Delany, I. (2009). The Hfq-dependent small noncoding RNA NrrF directly mediates Fur-dependent positive regulation of succinate dehydrogenase in *Neisseria meningitidis*. J Bacteriol 191, 1330-1342.
- Miller, J.H. (1972). Experiments in molecular genetics.
- Minsavage, G., Dahlbeck, D., Whalen, M., Kearney, B., Bonas, U., Staskawicz, B. and Stall, R. (1990). Genefor-gene relationships specifying disease resistance in *Xanthomonas campestris* pv. *vesicatoria*—pepper interactions. *Mol Plant Microbe Interact* **3**, 41-47.
- Møller, T., Franch, T., Højrup, P., Keene, D.R., Bächinger, H.P., Brennan, R.G. and Valentin-Hansen, P. (2002). Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. *Mol Cell* **9**, 23-30.
- Molofsky, A.B. and Swanson, M.S. (2003). *Legionella pneumophila* CsrA is a pivotal repressor of transmission traits and activator of replication. *Mol Microbiol* **50**, 445-461.
- Morita, T., Maki, K. and Aiba, H. (2005). RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. *Genes Dev* **19**, 2176-2186.
- Morris, C.E., Monteil, C.L. and Berge, O. (2013). The life history of *Pseudomonas syringae*: linking agriculture to earth system processes. *Annu Rev Phytopathol* **51**, 85-104.
- Müller, S.A., Findeiß, S., Pernitzsch, S.R., Wissenbach, D.K., Stadler, P.F., Hofacker, I.L., von Bergen, M. and Kalkhof, S. (2013). Identification of new protein coding sequences and signal peptidase cleavage sites of *Helicobacter pylori* strain 26695 by proteogenomics. *J Proteomics* 86, 27-42.
- Murillo, J., Shen, H., Gerhold, D., Sharma, A., Cooksey, D.A. and Keen, N.T. (1994). Characterization of pPT23B, the plasmid involved in syringolide production by *Pseudomonas syringae* pv. *tomato* PT23. *Plasmid* **31**, 275-287.
- Navarro, L., Alto, N.M. and Dixon, J.E. (2005). Functions of the *Yersinia* effector proteins in inhibiting host immune responses. *Curr Opin Microbiol* **8**, 21-27.
- Nawrocki, E.P., Burge, S.W., Bateman, A., Daub, J., Eberhardt, R.Y., Eddy, S.R., Floden, E.W., Gardner, P.P., Jones, T.A., Tate, J. and Finn, R.D. (2015). Rfam 12.0: updates to the RNA families database. *Nucleic Acids Res* 43, D130-137.
- Noël, L., Thieme, F., Gabler, J., Büttner, D. and Bonas, U. (2003). XopC and XopJ, two novel type III effector proteins from *Xanthomonas campestris* pv. *vesicatoria*. *J Bacteriol* **185**, 7092-7102.
- Oglesby-Sherrouse, A.G. and Murphy, E.R. (2013). Iron-responsive bacterial small RNAs: variations on a theme. *Metallomics* **5**, 276-286.
- Oglesby-Sherrouse, A.G. and Vasil, M.L. (2010). Characterization of a heme-regulated non-coding RNA encoded by the *prrF* locus of *Pseudomonas aeruginosa*. *PloS one* **5**, e9930.
- Oliva, G., Sahr, T. and Buchrieser, C. (2015). Small RNAs, 5' UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. *FEMS Microbiol Rev* **39**, 331-349.
- Ostheimer, G.J., Barkan, A. and Matthews, B.W. (2002). Crystal structure of *E. coli* YhbY: a representative of a novel class of RNA binding proteins. *Structure* **10**, 1593-1601.
- Ouyang, Z., Zhu, H., Wang, J. and She, Z.S. (2004). Multivariate entropy distance method for prokaryotic gene identification. *J Bioinform Comput Biol* **2**, 353-373.

- Padalon-Brauch, G., Hershberg, R., Elgrably-Weiss, M., Baruch, K., Rosenshine, I., Margalit, H. and Altuvia, S. (2008). Small RNAs encoded within genetic islands of *Salmonella typhimurium* show host-induced expression and role in virulence. *Nucleic Acids Res* 36, 1913-1927.
- Papenfort, K., Sun, Y., Miyakoshi, M., Vanderpool, C.K. and Vogel, J. (2013). Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. *Cell* **153**, 426-437.
- Papenfort, K. and Vogel, J. (2011). Sweet business: Spot42 RNA networks with CRP to modulate catabolite repression. *Mol Cell* **41**, 245-246.
- Park, S.Y., Lowder, B., Bilwes, A.M., Blair, D.F. and Crane, B.R. (2006). Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. *Proc Natl Acad Sci U S A* 103, 11886-11891.
- Payne, S.H., Huang, S.-T. and Pieper, R. (2010). A proteogenomic update to Yersinia: enhancing genome annotation. *BMC Genomics* **11**, 460.
- Pérez-Arellano, I., Gallego, J. and Cervera, J. (2007). The PUA domain- a structural and functional overview. *FEBS J* 274, 4972-4984.
- Pernitzsch, S.R., Tirier, S.M., Beier, D. and Sharma, C.M. (2014). A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in *Helicobacter pylori*. *Proc Natl Acad Sci* 111, E501-E510.
- Pérombelon, M. (2002). Potato diseases caused by soft rot erwinias: an overview of pathogenesis. *Plant Pathol* **51**, 1-12.
- Pessi, G., Williams, F., Hindle, Z., Heurlier, K., Holden, M.T., Cámara, M., Haas, D. and Williams, P. (2001). The global posttranscriptional regulator RsmA modulates production of virulence determinants and Nacylhomoserine lactones in *Pseudomonas aeruginosa*. J Bacteriol 183, 6676-6683.
- Pieretti, I., Pesic, A., Petras, D., Royer, M., Süssmuth, R.D. and Cociancich, S. (2015). What makes *Xanthomonas albilineans* unique amongst xanthomonads? *Front Plant Sci* **6**.
- Pitzschke, A. and Hirt, H. (2010). New insights into an old story: *Agrobacterium*-induced tumour formation in plants by plant transformation. *EMBO J* 29, 1021-1032.
- Potnis, N., Minsavage, G., Smith, J.K., Hurlbert, J.C., Norman, D., Rodrigues, R., Stall, R.E. and Jones, J.B. (2012). Avirulence proteins AvrBs7 from *Xanthomonas gardneri* and AvrBs1.1 from *Xanthomonas euvesicatoria* contribute to a novel gene-for-gene interaction in pepper. *Mol Plant Microbe Interact* 25, 307-320.
- Pruitt, K.D., Tatusova, T., Brown, G.R. and Maglott, D.R. (2012). NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. *Nucleic Acids Res* **40**, D130-D135.
- Qian, W., Han, Z.J. and He, C. (2008a). Two-component signal transduction systems of *Xanthomonas* spp.: a lesson from genomics. *Mol Plant Microbe Interact* **21**, 151-161.
- Qian, W., Han, Z.J., Tao, J. and He, C. (2008b). Genome-scale mutagenesis and phenotypic characterization of two-component signal transduction systems in *Xanthomonas campestris* pv. *campestris* ATCC 33913. *Mol Plant Microbe Interact* 21, 1128-1138.
- Qin, D., Abdi, N.M. and Fredrick, K. (2007). Characterization of 16S rRNA mutations that decrease the fidelity of translation initiation. *RNA* **13**, 2348-2355.
- Ramos, C.G., da Costa, P.J., Döring, G. and Leitao, J.H. (2012). The novel cis-encoded small RNA h2cR is a negative regulator of *hfq2* in *Burkholderia cenocepacia*. *PloS one* **7**, e47896.
- Ramos, C.G., Grilo, A.M., Sousa, S.A., Feliciano, J.R., da Costa, P.J. and Leitão, J.H. (2014). Regulation of Hfq mRNA and protein levels in *Escherichia coli* and *Pseudomonas aeruginosa* by the *Burkholderia cenocepacia* MtvR sRNA. *PloS one* 9, e98813.
- Reinhart, A.A., Powell, D.A., Nguyen, A.T., O'Neill, M., Djapgne, L., Wilks, A., Ernst, R.K. and Oglesby-Sherrouse, A.G. (2015). The *prrF*-encoded small regulatory RNAs are required for iron homeostasis and virulence of *Pseudomonas aeruginosa*. *Infect Immun* 83, 863-875.
- Romeo, T. (1998). Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. *Mol Microbiol* **29**, 1321-1330.
- Romeo, T., Gong, M., Liu, M.Y. and Brun-Zinkernagel, A.M. (1993). Identification and molecular characterization of *csrA*, a pleiotropic gene from *Escherichia coli* that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. *J Bacteriol* **175**, 4744-4755.
- Roscetto, E., Angrisano, T., Costa, V., Casalino, M., Förstner, K.U., Sharma, C.M., Di Nocera, P.P. and De Gregorio, E. (2012). Functional characterization of the RNA chaperone Hfq in the opportunistic human pathogen *Stenotrophomonas maltophilia*. *J Bacteriol* **194**, 5864-5874.
- Rossier, O., Van den Ackerveken, G. and Bonas, U. (2000). HrpB2 and HrpF from *Xanthomonas* are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. *Mol Microbiol* **38**, 828-838.
- Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.-A. and Barrell, B. (2000). Artemis: sequence visualization and annotation. *Bioinformatics* **16**, 944-945.
- Ryan, R.P., McCarthy, Y., Andrade, M., Farah, C.S., Armitage, J.P. and Dow, J.M. (2010). Cell-cell signaldependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in *Xanthomonas campestris. Proc Natl Acad Sci U S A* 107, 5989-5994.
- Sabharwal, D. (2015). Regulatory roles of sRNAs in pathogenesis of Vibrio cholerae. Dissertation.
- Sacerdot, C., Fayat, G., Dessen, P., Springer, M., Plumbridge, J.A., Grunberg-Manago, M. and Blanquet, S. (1982). Sequence of a 1.26-kb DNA fragment containing the structural gene for *E.coli* initiation factor IF3: presence of an AUU initiator codon. *EMBO J* 1, 311-315.
- Said, N., Rieder, R., Hurwitz, R., Deckert, J., Urlaub, H. and Vogel, J. (2009). *In vivo* expression and purification of aptamer-tagged small RNA regulators. *Nucleic Acids Res* **37**, e133.
- Salzberg, S.L., Delcher, A.L., Kasif, S. and White, O. (1998). Microbial gene identification using interpolated Markov models. *Nucleic Acids Res* 26, 544-548.
- Samudrala, R., Heffron, F. and McDermott, J.E. (2009). Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. e1000375.
- Sanger, F., Coulson, A.R., Friedmann, T., Air, G.M., Barrell, B.G., Brown, N.L., Fiddes, J.C., Hutchison, C.A., 3rd, Slocombe, P.M. and Smith, M. (1978). The nucleotide sequence of bacteriophage phiX174. J Mol Biol 125, 225-246.
- Santamaría, R. and Pierre, P. (2012). Voronto: mapper for expression data to ontologies. *Bioinformatics* 28, 2281-2282.
- Sauer, E., Schmidt, S. and Weichenrieder, O. (2012). Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. *Proc Natl Acad Sci U S A* **109**, 9396-9401.
- Schechter, L.M., Roberts, K.A., Jamir, Y., Alfano, J.R. and Collmer, A. (2004). *Pseudomonas syringae* type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J Bacteriol 186, 543-555.
- Schmidtke, C., Abendroth, U., Brock, J., Serrania, J., Becker, A. and Bonas, U. (2013). Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen *Xanthomonas*. *PLoS pathogens* **9**, e1003626.
- Schmidtke, C., Findeiß, S., Sharma, C.M., Kuhfuß, J., Hoffmann, S., Vogel, J., Stadler, P.F. and Bonas, U. (2012). Genome-wide transcriptome analysis of the plant pathogen *Xanthomonas* identifies sRNAs with putative virulence functions. *Nucleic Acids Res* 40, 2020-2031.
- Schubert, M., Lapouge, K., Duss, O., Oberstrass, F.C., Jelesarov, I., Haas, D. and Allain, F.H. (2007). Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. *Nat Struct Mol Biol* 14, 807-813.
- Schulze, S., Kay, S., Büttner, D., Egler, M., Eschen-Lippold, L., Hause, G., Krüger, A., Lee, J., Müller, O., Scheel, D., Szczesny, R., Thieme, F. and Bonas, U. (2012). Analysis of new type III effectors from *Xanthomonas* uncovers XopB and XopS as suppressors of plant immunity. *New Phytol* **195**, 894-911.
- Schumacher, M.A., Pearson, R.F., Møller, T., Valentin-Hansen, P. and Brennan, R.G. (2002). Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. *EMBO J* 21, 3546-3556.
- Semmler, A.B., Whitchurch, C.B. and Mattick, J.S. (1999a). A re-examination of twitching motility in *Pseudomonas aeruginosa. Microbiol* **145**, 2863-2873.
- Semmler, A.B., Whitchurch, C.B. and Mattick, J.S. (1999b). A re-examination of twitching motility in Pseudomonas aeruginosa. *Microbiology* 145 (Pt 10), 2863-2873.
- Sharma, C.M., Hoffmann, S., Darfeuille, F., Reignier, J., Findeiss, S., Sittka, A., Chabas, S., Reiche, K., Hackermüller, J., Reinhardt, R., Stadler, P.F. and Vogel, J. (2010). The primary transcriptome of the major human pathogen *Helicobacter pylori*. *Nature* 464, 250-255.
- Sharma, C.M., Papenfort, K., Pernitzsch, S.R., Mollenkopf, H.J., Hinton, J.C. and Vogel, J. (2011). Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. *Mol Microbiol* **81**, 1144-1165.
- Sharma, C.M. and Vogel, J. (2009). Experimental approaches for the discovery and characterization of regulatory small RNA. *Curr Opin Microbiol* **12**, 536-546.
- Sherwood, A.V., Grundy, F.J. and Henkin, T.M. (2015). T box riboswitches in Actinobacteria: Translational regulation via novel tRNA interactions. *Proc Natl Acad Sci* **112**, 1113-1118.
- Sittka, A., Pfeiffer, V., Tedin, K. and Vogel, J. (2007). The RNA chaperone Hfq is essential for the virulence of *Salmonella typhimurium. Mol Microbiol* **63**, 193-217.
- Smith, C., Heyne, S., Richter, A.S., Will, S. and Backofen, R. (2010). Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA and LOCARNA. *Nucleic Acids Res* **38**, W373-W377.
- Solè, M., Scheibner, F., Hoffmeister, A.K., Hartmann, N., Hause, G., Rother, A., Jordan, M., Lautier, M., Arlat, M. and Büttner, D. (2015). *Xanthomonas campestris* pv. *vesicatoria* secretes proteases and xylanases via the Xps-type II secretion system and outer membrane vesicles. *J Bacteriol*, 2867-2878
- Solovyev, V. and Salamov, A. (2011). Automatic annotation of microbial genomes and metagenomic sequences. *Metagenomics and its applications in agriculture, biomedicine and environmental studies*, 61-78.

- Sourjik, V. and Berg, H.C. (2002). Binding of the *Escherichia coli* response regulator CheY to its target measured *in vivo* by fluorescence resonance energy transfer. *Proc Natl Acad Sci U S A* **99**, 12669-12674.
- Storz, G., Vogel, J. and Wassarman, K.M. (2011). Regulation by small RNAs in bacteria: expanding frontiers. *Mol Cell* **43**, 880-891.
- Strom, M. and Lory, S. (1993). Structure-function and biogenesis of the type IV pili. Annual Reviews in Microbiology 47, 565-596.
- Sussman, J.K., Simons, E.L. and Simons, R.W. (1996). *Escherichia coli* translation initiation factor 3 discriminates the initiation codon in vivo. *Mol Microbiol* **21**, 347-360.
- Svenningsen, S.L., Waters, C.M. and Bassler, B.L. (2008). A negative feedback loop involving small RNAs accelerates *Vibrio cholerae's* transition out of quorum-sensing mode. *Genes Dev* 22, 226-238.
- Szczesny, R., Jordan, M., Schramm, C., Schulz, S., Cogez, V., Bonas, U. and Büttner, D. (2010). Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium *Xanthomonas campestris* pv. *vesicatoria*. *New Phytol* **187**, 983-1002.
- Szurek, B., Rossier, O., Hause, G. and Bonas, U. (2002). Type III-dependent translocation of the *Xanthomonas* AvrBs3 protein into the plant cell. *Mol Microbiol* **46**, 13-23.
- Taguchi, F. and Ichinose, Y. (2011). Role of type IV pili in virulence of *Pseudomonas syringae* pv. *tabaci* 6605: correlation of motility, multidrug resistance, and HR-inducing activity on a nonhost plant. *Mol Plant Microbe Interact* 24, 1001-1011.
- Teper, D., Burstein, D., Salomon, D., Gershovitz, M., Pupko, T. and Sessa, G. (2015). Identification of novel *Xanthomonas euvesicatoria* type III effector proteins by a machine-learning approach. *Mol Plant Pathol.*
- Thieme, F., Koebnik, R., Bekel, T., Berger, C., Boch, J., Büttner, D., Caldana, C., Gaigalat, L., Goesmann, A., Kay, S., Kirchner, O., Lanz, C., Linke, B., McHardy, A.C., Meyer, F., Mittenhuber, G., Nies, D.H., Niesbach-Klösgen, U., Patschkowski, T., Rückert, C., Rupp, O., Schneiker, S., Schuster, S.C., Vorhölter, F.J., Weber, E., Puhler, A., Bonas, U., Bartels, D. and Kaiser, O. (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium *Xanthomonas campestris* pv. vesicatoria revealed by the complete genome sequence. *J Bacteriol* 187, 7254-7266.
- Timmermans, J. and Van Melderen, L. (2010). Post-transcriptional global regulation by CsrA in bacteria. *Cellular and molecular life sciences* 67, 2897-2908.
- Torres-Quesada, O., Millán, V., Nisa-Martínez, R., Bardou, F., Crespi, M., Toro, N. and Jiménez-Zurdo, J.I. (2013). Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont *Sinorhizobium meliloti*. *PloS one* 8, e68147.
- Tushemereirwe, W., Kangire, A., Ssekiwoko, F., Offord, L., Crozier, J., Boa, E., Rutherford, M. and Smith, J. (2004). First report of *Xanthomonas campestris* pv. *musacearum* on banana in Uganda. *Plant Pathol* **53**, 802-802.
- Udekwu, K.I., Darfeuille, F., Vogel, J., Reimegård, J., Holmqvist, E. and Wagner, E.G.H. (2005). Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. *Genes Dev* **19**, 2355-2366.
- Urban, J.H. and Vogel, J. (2007). Translational control and target recognition by Escherichia coli small RNAs in vivo. *Nucleic Acids Res* **35**, 1018-1037.
- Valentin-Hansen, P., Eriksen, M. and Udesen, C. (2004). MicroReview: The bacterial Sm-like protein Hfq: a key player in RNA transactions. *Mol Microbiol* **51**, 1525-1533.
- Valverde, C., Lindell, M., Wagner, E.G. and Haas, D. (2004). A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. *J Biol Chem* **279**, 25066-25074.
- Večerek, B., Moll, I. and Blaesi, U. (2005). Translational autocontrol of the Escherichia coli hfq RNA chaperone gene. RNA 11, 976-984.
- Večerek, B., Moll, I. and Bläsi, U. (2007). Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. *EMBO J* 26, 965-975.
- Viegas, S.C. and Arraiano, C.M. (2008). Regulating the regulators: how ribonucleases dictate the rules in the control of small non-coding RNAs. *RNA Biol* **5**, 230-243.
- Viegas, S.C., Pfeiffer, V., Sittka, A., Silva, I.J., Vogel, J. and Arraiano, C.M. (2007). Characterization of the role of ribonucleases in Salmonella small RNA decay. *Nucleic Acids Res* **35**, 7651-7664.
- Vleeshouwers, V.G. and Oliver, R.P. (2014). Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. *Mol Plant Microbe Interact* 27, 196-206.
- Vu, A., Wang, X., Zhou, H. and Dahlquist, F.W. (2012). The receptor–CheW binding interface in bacterial chemotaxis. J Mol Biol 415, 759-767.
- Wahle, E. (1991). A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. *Cell* **66**, 759-768.
- Waldminghaus, T., Gaubig, L.C., Klinkert, B. and Narberhaus, F. (2009). The Escherichia coli ibpA thermometer is comprised of stable and unstable structural elements. *RNA Biol* **6**, 455-463.

- Wang, L., Makino, S., Subedee, A. and Bogdanove, A.J. (2007). Novel candidate virulence factors in rice pathogen *Xanthomonas oryzae* pv. oryzicola as revealed by mutational analysis. *Appl Environ Microbiol* 73, 8023-8027.
- Wassarman, K.M. and Storz, G. (2000). 6S RNA regulates E. coli RNA polymerase activity. Cell 101, 613-623.
- Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. and Barton, G.J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25, 1189-1191.
- Waters, L.S. and Storz, G. (2009). Regulatory RNAs in bacteria. Cell 136, 615-628.
- Weber, E., Berger, C., Bonas, U. and Koebnik, R. (2007). Refinement of the Xanthomonas campestris pv. vesicatoria hrpD and hrpE operon structure. Mol Plant Microbe Interact 20, 559-567.
- Wengelnik, K., Marie, C., Russel, M. and Bonas, U. (1996a). Expression and localization of HrpA1, a protein of *Xanthomonas campestris* pv. vesicatoria essential for pathogenicity and induction of the hypersensitive reaction. *J Bacteriol* **178**, 1061-1069.
- Wengelnik, K., Rossier, O. and Bonas, U. (1999). Mutations in the regulatory gene *hrpG* of *Xanthomonas campestris* pv. vesicatoria result in constitutive expression of all *hrp* genes. *J Bacteriol* **181**, 6828-6831.
- Wengelnik, K., Van den Ackerveken, G. and Bonas, U. (1996b). HrpG, a key *hrp* regulatory protein of *Xanthomonas campestris* pv. *vesicatoria* is homologous to two-component response regulators. *Mol Plant Microbe Interact* **9**, 704-712.
- White, F.F. and Yang, B. (2009). Host and pathogen factors controlling the rice-*Xanthomonas oryzae* interaction. *Plant Physiol* **150**, 1677-1686.
- Wilms, I., Overlöper, A., Nowrousian, M., Sharma, C.M. and Narberhaus, F. (2012). Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen *Agrobacterium tumefaciens*. RNA Biol 9, 446-457.
- Wilms, I., Voss, B., Hess, W.R., Leichert, L.I. and Narberhaus, F. (2011). Small RNA-mediated control of the *Agrobacterium tumefaciens* GABA binding protein. *Mol Microbiol* **80**, 492-506.
- Wilusz, C.J. and Wilusz, J. (2013). Lsm proteins and Hfq: Life at the 3' end. RNA Biol 10, 0--1.
- Wolff, S., Otto, A., Albrecht, D., Zeng, J.S., Büttner, K., Glückmann, M., Hecker, M. and Becher, D. (2006). Gel-free and Gel-based Proteomics in *Bacillus subtilis* A Comparative Study. *Mol Cell Proteomics* 5, 1183-1192.
- Wright, P.R., Georg, J., Mann, M., Sorescu, D.A., Richter, A.S., Lott, S., Kleinkauf, R., Hess, W.R. and Backofen, R. (2014). CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. *Nucleic Acids Res* 42, W119-W123.
- Yakhnin, A.V., Baker, C.S., Vakulskas, C.A., Yakhnin, H., Berezin, I., Romeo, T. and Babitzke, P. (2013). CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. *Molecular microbiology* 87, 851-866.
- Yang, Q., Jiang, J., Mayr, C., Hahn, M. and Ma, Z. (2013). Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of *Botrytis cinerea*. *Environ Microbiol* 15, 2696-2711.
- Yang, T.C., Leu, Y.W., Chang-Chien, H.C. and Hu, R.M. (2009). Flagellar biogenesis of *Xanthomonas campestris* requires the alternative sigma factors RpoN2 and FliA and is temporally regulated by FlhA, FlhB, and FlgM. *J Bacteriol* 191, 2266-2275.
- Zhang, Y. and Inouye, M. (2011). RatA (YfjG), an *Escherichia coli* toxin, inhibits 70S ribosome association to block translation initiation. *Mol Microbiol* **79**, 1418-1429.
- Zhu, P.L., Zhao, S., Tang, J.L. and Feng, J.X. (2011). The rsmA-like gene rsmA_{Xoo} of Xanthomonas oryzae pv. oryzae regulates bacterial virulence and production of diffusible signal factor. Mol Plant Pathol 12, 227-237.
- Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res* **31**, 3406-3415.

В

Abbildung 34: Sequenz- und Strukturvergleich von sX13long-Familienmitgliedern aus der Gruppe der Xanthomonadaceae

A) Nukleotidsequenzvergleich von Rfam-Mitgliedern der sX13long-Familie (Rfam 12.0, Juli 2014) aus Xcv (Xanthomonas campestris pv. vesicatoria 85-10), Xa (Xanthomonas albilineans), Xcc (Xanthomonas campestris pv. campestris B100), Xfa (Xanthomonas fuscans subsp. aurantifolii ICPB 11122), Xg (Xanthomonas gardneri ATCC 19865), Xoo (Xanthomonas oryzae pv. oryzae KACC10331), Xoc (Xanthomonas oryzae pv. oryzicola BLS256), Xp (Xanthomonas perforans 91-118), Xyl (Xylella fastidiosa 9a5c), Ps (Pseudoxanthomonas spadix BD-a59) und Sm (Stenotrophomonas maltophilia K279a). Stark konservierte Nukleotide sind dunkelblau unterlegt. KS Konsensussequenz.

B) Modell der konservierten Sekundärstruktur der sX13long-Familienmitglieder.

LocARNA (Version 1.8.0, Vienna RNA package 2.1.8)-Vorhersage der Konsensussekundärstruktur von sX13long-Familienmitgliedern aus der Gruppe der *Xanthomonadaceae* aufgeführt in der Rfam Datenbank (Rfam 12.0, Juli 2014). Kompensatorische Mutationen, welche die Sekundärstruktur nicht beeinflussen sind mit einem Kreis markiert. Kompatible Basenpaare sind farbig dargestellt. Die Farbe gibt die Anzahl der verschiedenen Basenpaarungen C-G, G-C, A-U, U-A, G-U oder U-G an. Die Farbtiefe nimmt mit der Anzahl inkompatibler Paare ab.

Abbildung 35: Enzymatische Strukturkartierung von sX13 (115 Nt)

In vitro transkribierte 5'-radioaktiv markierte sX13 wurde mit RNase T1 (T1), alkalischem Hydrolysepuffer (OH–) zur Generierung einer Nukleotidleiter und RNase V1 (V1) zur Analyse von Doppelstrangbereichen behandelt. C – unbehandelte sX13-RNA. Das Dreieck kennzeichnet steigende Konzentrationen von RNase V1 und '#G' markiert die ermittelten Guanin-Positionen. Die ermittelte Struktur ist am rechten Rand des Autoradiogramms gekennzeichnet. S – Stem/ Doppelstrangbereich und Loop – Einzelstrangbereich (Schmidtke *et al.*, 2013, Abbildung U. Abendroth).

Abbildung 36: Analyse der Verlässlichkeit der Proteomanalytik der NYG-Proben

Geplottet wurden die log2-fachen Proteinverhältnisse zwischen Probe und Referenz aller detektierten Proteine in den einzelnen Proben. Es wurden die Proben der Stämme 85-10 und 85-10 $\Delta sX13$ gegeneinander und untereinander verglichen. Vergleichbare Muster in den Graphen deuten darauf hin, dass sich die Triplikate untereinander gleich verhalten. MT = 85-10 $\Delta sX13$ WT = 85-10. Die Proben sind entsprechend von 1-3 nummeriert.

Tubene 157 it busierte itorrendungse der i roteomanarytik der rei er toben	Tabelle 15: R-basierte Korrelationsanal	yse der Proteomanalytik der NYG-Proben
--	--	--

	NYG MT1	NYG MT2	NYG MT3	NYG WT1	NYG WT2	NYG WT3
NYG MT1	1,0	0,9609	0,9326	0,8626	0,8553	0,8674
NYG MT2	0,9609	1,0	0,9385	0,8397	0,8503	0,8703
NYG MT3	0,9326	0,9385	1,0	0,8171	0,8299	0,8505
NYG WT1	0,8626	0,8397	0,8171	1,0	0,9329	0,9351
NYG WT2	0,8553	0,8503	0,8299	0,9329	1,0	0,9513
NYG WT3	0,8674	0,8703	0,8505	0,9351	0,9513	1,0

Korrelationswerte nahe 1,0 deute darauf hin, dass sich Proben zu einander gleich verhalten.

Abbildung 37: Analyse der Verlässlichkeit der Proteomanalytik der MA-Proben

Geplottet wurden die log2-fachen Proteinverhältnisse zwischen Probe und Referenz aller detektierten Proteine in den einzelnen Proben. Es wurden die Proben der Stämme 85-10 und 85-10 $\Delta sXI3$ gegeneinander und untereinander verglichen. Vergleichbare Muster in den Graphen deuten darauf hin, dass sich die Triplikate untereinander gleich verhalten. MT = 85-10 $\Delta sXI3$ WT = 85-10. Die Proben sind entsprechend von 1-3 nummeriert.

Tabelle 16: R-basierte Korrelationsanalyse der Proteomanalytik der MA-Proben

	MA MT1	MA MT2	MA MT3	MA WT1	MA WT2	MA WT3
MA MT1	1,0	0,8863	0,8461	0,7161	0,6788	0,6620
MA MT2	0,8886	1,0	0,9508	0,7418	0,6495	0,5044
MA MT3	0,8461	0,9508	1,0	0,6990	0,6618	0,5026
MA WT1	0,7161	0,7418	0,6990	1,0	0,8763	0,5870
MA WT2	0,6788	0,6495	0,6618	0,8763	1,0	0,6410
MA WT3	0,6620	0,5044	0,5026	0,5870	0,6410	1,0

Korrelationswerte nahe 1,0 deute darauf hin, dass sich Proben zu einander gleich verhalten.

Abbildung 38: Heatmap der in MA in 85-10 und 85-10ΔsX13 quantifizierten Proteine

Heatmap-Analyse der 506 in den MA-Proben quantifizierbaren Proteine (P-Wert < 0,05 Student's T-Test). Die Heatmap und die hierarchische Clusteranalyse erfolgten mittels R-basierter Datenanalyse auf Basis der heatmap.2-Funktion. Ausgehend von der komplexen Heatmap und die hierarchischen Clusteranalyse wurden fünf Gruppen identifiziert. Für Gruppe B, C. D und E wurden die Ausschnitte der Heatmap vergrößert und die Gruppenmitglieder gelistet. Die mittels Farbskala dargestellten log2-fachen Änderungen beziehen sich auf das Proteinverhältnis zwischen Probe und Referenz, welches später zur Berechnung der log2-fachen Änderung zwischen den beiden Stämmen herangezogen wurde. Grün bedeutet weniger Protein in der Probe im Vergleich zur Referenz und rot bedeutet mehr Protein in der jeweiligen Probe im Vergleich zur Referenz

Abbildung 39: Voronto-Analyse der quantifizierten Proteine der NYG-Proben Voronto-Analyse (http://vis.usal.es/voronto/Intro.html) der 441 in den NYG-Proben identifizierten, quantifizierbaren Proteine (P-Wert < 0,05 Student's T-Test). Für die Annotation der funktionellen Prozesse wurde ein *Xanthomonas* spezifisches *Gene-Annotation files* (GAF) verwendet. Dargestellt sind die ersten beiden Ebene der zu analysierenden biologischen Prozesse.

85-10ΔsX13/85-10: log2-fach Änderung: MA pH 7

Abbildung 40: Voronto-Analyse der quantifizierten Proteine der MA-Proben

Voronto-Analyse (http://vis.usal.es/voronto/Intro.html) der 506 in den MA-Proben identifizierten, quantifizierbaren Proteine (P-Wert < 0,05 Student's T-Test). Für die Annotation der funktionellen Prozesse wurde ein *Xanthomonas* spezifisches Gene-Annotation files (GAF) verwendet. Dargestellt sind die ersten beiden Ebene der zu analysierenden biologischen Prozesse.

Abbildung 41: Überschneidung regulierter Proteine aus Stämmen, welche in NYG bzw. MA angezogen wurden

Tabelle 17: Quantifizierte Proteine in 85-10*AsX13* und 85-10 in NYG

Protein	Mittelwert ΔsX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
XCV2186	2,04	-3,48	5,52	3,69E-06	Methyl-accepting chemotaxis protein
PilQ	-0,19	-5,42	5,23	3,48E-05	Type IV pilus Secretin PilQ
XCV3927	0,67	-3,62	4,29	6,10E-06	LysM-domain
XCV2185	1,73	-2,52	4,26	4,56E-06	Unbekannt
PilM	1,51	-2,43	3,95	6,56E-06	Type IV pilus assembly protein
XCV0173	0,92	-3,02	3,94	1,04E-03	Putative secreted protein
PilN	1,43	-2,41	3,84	5,71E-06	Fimbrial assembly protein PilN
PilO	1,46	-2,24	3,70	4,60E-06	Type IV pilus assembly protein PilO
PilP	1,43	-2,02	3,45	2,27E-04	Type IV pilus assembly protein PilP
XCV3068	1,22	-2,19	3,41	2,79E-05	Pilus retraction ATPase PilT
PilH	1,85	-1,52	3,38	2,24E-06	Type IV pilus response regulator PilH
XCV3730	1,24	-1,94	3,18	4,56E-06	Pilus retraction ATPase PilT
XCV4142	1,42	-1,53	2,95	4,48E-06	Gram-negative bacterial TonB protein
XCV3227	1,53	-1,28	2,81	3,38E-05	CheW-like protein
Pill	1,58	-1,17	2,75	1,23E-05	Chemotaxis signal transduction protein
PilJ	1,77	-0,95	2,72	1,23E-05	Methyl-accepting chemotaxis protein
AlgR	1,80	-0,90	2,71	1,28E-04	Signal transduction response regulator
XCV4274	2,84	0,17	2,67	2,03E-05	unbekannt
XCV3033	-0,81	-3,40	2,60	4,96E-03	unbekannt
XCV3228	1,68	-0,72	2,40	7,95E-04	Chemotaxis glutamate methyltransferase
PilG	1,28	-1,04	2,32	3,75E-05	CheY-like receiver domain protein
XCV1375	1,89	-0,35	2,24	4,65E-06	Conserved hypothetical protein
ManB	1,63	-0,45	2,08	1,05E-02	Beta mannosidase
CynT1	1,79	-0,17	1,96	3,57E-03	Carbonic anhydrase
XCV3571	0,84	-0,90	1,74	1,49E-06	Signal transduction response regulator
XCV1528	-1,32	-2,96	1,63	2,09E-03	Glycine zipper 2TM domain
XCV4138	1,26	-0,29	1,55	1,24E-05	TonB-dependent receptor
XCV4017	2,49	0,95	1,55	1,03E-04	Putative secreted protein
XCV3685	0,41	-1,04	1,45	2,22E-03	TonB-dependent receptor
XCV1442	0,94	-0,50	1,44	6,37E-05	DUF2147
XCV2991	0,41	-0,94	1,34	2,51E-04	TonB-dependent receptor
PilA	1,30	-0,01	1,31	1,73E-04	Type IV pilin/Fimbrial protein pilin

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
XCV3431	0,70	-0,59	1,29	4,61E-03	alpha-glucosidase
XCV4139	0,80	-0,42	1,22	1,15E-04	SapC-related protein
Hfq	0,47	-0,72	1,19	4,69E-04	RNA-binding protein Hfq
XCV4368	0,67	-0,48	1,15	6,10E-05	Putative secreted protein
XCV3468	0,27	-0,82	1,09	2,68E-02	Conserved hypothetical protein
DapD	0,57	-0,52	1,09	4,13E-03	2,3,4,5-tetrahydropyridine-2,6-carboxylate N-succinyltransferase
XCV0950	1,21	0,22	0,99	7,35E-04	DUF1631, thymidine phosphorylase
XCV4133	1,88	0,93	0,95	1,37E-03	Uncharacterised protein family UPF0145
Pnp	0,63	-0,28	0,91	3,80E-03	Polyribonucleotide nucleotidyltransferase
XCV1707	0,51	-0,36	0,87	2,62E-02	Circadian clock protein kinase KaiC
RpoC	-0,37	-1,21	0,85	8,32E-03	DNA-directed RNA polymerase subunit beta
FtsA	0,76	-0,08	0,83	8,29E-03	Cell division protein FtsA
XCV4282	-0,62	-1,42	0,80	1,74E-03	Aldo/keto reductase
XCV4374	1,40	0,62	0,78	1,07E-04	TonB-dependent transporter oar-like
FadL	0,80	0,01	0,78	1,76E-04	Membrane protein, aromatic hydrocarbon degradation
WxcJ	0,64	-0,14	0,78	4,14E-03	SuccinyI-CoA:3-ketoacid-CoA transferase
XCV2228	1,38	0,60	0,78	5,32E-04	cytochrome C biogenesis protein CcsA
XCV0092	0,51	-0,26	0,77	4,99E-03	TIdD protein
TonB1	0,40	-0,37	0,77	4,61E-02	Cell envelope biogenesis protein TonB
XCV1268	-1,95	-2,71	0,76	6,15E-03	Stomatin family
XCV3206	1,64	0,88	0,76	4,39E-05	TonB-dependent receptor
XCV1261	0,36	-0,38	0,74	2,00E-02	Response regulator with LuxR transcription regulator
XCV3493	0,59	-0,13	0,72	2,58E-02	Putative membrane protein
TrpB	-0,67	-1,38	0,71	5,43E-03	Tryptophan synthase beta chain
XCV3496	0,26	-0,45	0,71	4,65E-03	ATPase chaperone, AAA-type, MoxR
RsbR	0,98	0,28	0,70	8,28E-04	Polyvinylalcohol dehydrogenase
PlsB	0,45	-0,24	0,70	3,77E-02	Glycerol-3-phosphate acyltransferase, PlsB
XCV0209	1,68	0,99	0,69	4,24E-03	Unbekannt
SucA	0,66	-0,03	0,69	4,49E-03	2-oxoglutarate dehydrogenase E1 component
RpfB	0,41	-0,26	0,68	4,89E-03	long-chain fatty acidCoA ligase
XCV2898	1,13	0,46	0,67	2,51E-04	Metallopeptidase M13
AcsA	0,90	0,24	0,66	1,73E-04	Acetate-CoA ligase

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
XCV3075	0,91	0,27	0,64	9,63E-04	DUF1439
FusA	-0,23	-0,87	0,64	4,54E-03	Translation elongation factor EFG/EF2
XCV2822	-0,03	-0,67	0,64	3,11E-06	Cytokinin riboside 5'-monophosphate phosphoribohydrolase LOG
XCV2355	-0,47	-1,10	0,63	2,02E-03	Sulphur relay, DsrE/F-like protein
RmlB	0,67	0,04	0,63	6,29E-03	dTDP-glucose 4,6-dehydratase
RpIU	-0,45	-1,08	0,63	5,18E-05	Ribosomal protein L21
XCV3107	0,97	0,35	0,62	1,97E-02	DUF3108
XCV0091	0,34	-0,27	0,61	1,09E-02	TIdD/PmbA
SdhA	-0,17	-0,78	0,61	2,48E-02	Succinate dehydrogenase/fumarate reductase
PdxJ	1,14	0,56	0,58	3,21E-04	Pyridoxal phosphate (active vitamin B6) biosynthesis
XCV4283	-0,66	-1,23	0,57	8,05E-04	Amidohydrolase 2
XCV3679	0,57	0,00	0,57	1,03E-02	LPS export ABC transporter permease LptG
AccC	0,06	-0,50	0,56	4,17E-03	Acetyl-CoA carboxylase, biotin carboxylase
XCV4285	-0,62	-1,18	0,56	2,29E-04	Fumarylacetoacetase
XCV4455	0,05	-0,50	0,55	1,06E-02	VacJ-like lipoprotein
Era	0,27	-0,28	0,54	9,64E-04	GTP-binding protein Era
XCV4284	-0,60	-1,14	0,54	2,29E-03	Glucose/ribitol dehydrogenase
CelD	-0,25	-0,79	0,54	1,49E-02	Glycoside hydrolase family 3
XCV0780	1,07	0,53	0,53	7,58E-03	Cytochrome c4
XCV0281	1,33	0,81	0,53	9,76E-04	Cytochrome c-like domain
XCV4134	0,48	-0,05	0,52	3,68E-03	DUF885
FtsX	0,52	0,00	0,52	2,38E-03	Cell division protein FtsX
XCV3268	0,35	-0,16	0,50	7,29E-03	Queuosine biosynthesis protein QueC
PepN3	0,50	0,01	0,49	7,88E-04	Peptidase M1, alanine aminopeptidase/leukotriene A4
XCV2505	0,58	0,10	0,49	1,00E-03	Glycogen debranching enzyme
GlnB	-0,65	-1,13	0,48	8,85E-03	Nitrogen regulatory protein PII
XCV2503	0,38	-0,10	0,48	5,93E-03	Pheromone shutdown, TraB, bacterial
XCV2823	-0,20	-0,68	0,48	7,47E-03	TonB-dependent receptor
HtpX	0,49	0,01	0,47	1,03E-02	Peptidase M48, protease HtpX
XCV0685	-0,44	-0,91	0,47	6,37E-05	Peptidase S9A, prolyl oligopeptidase
PetC	1,15	0,68	0,46	2,51E-04	Cytochrome c1
Dcp	0,28	-0,19	0,46	1,73E-04	Peptidase M3A/M3B

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
MucD	-0,27	-0,73	0,45	1,37E-02	Peptidase S1C
RpoB	-0,62	-1,07	0,45	1,53E-02	DNA-directed RNA polymerase subunit beta
XCV2894	-0,08	-0,53	0,44	4,36E-03	TonB-dependent receptor
XCV4322	0,34	-0,10	0,44	2,22E-02	Putative Ysc84 actin-binding domain; DUF500
XCV4287	-0,84	-1,26	0,42	5,84E-03	Mandelate racemase/muconate lactonizing enzyme/methylaspartate ammonia- lyase
XCV2874	0,75	0,34	0,41	1,21E-02	Motility protein FimV
XCV3473	0,16	-0,25	0,41	1,58E-05	S1/P1 nuclease
PepN2	0,26	-0,14	0,41	2,93E-02	Peptidase M1, alanine aminopeptidase/leukotriene A4 hydrolase
XCV4453	0,84	0,44	0,41	4,13E-03	Toluene tolerance Ttg2/phospholipid-binding pr. MlaC
GcvP	1,68	1,27	0,40	5,24E-03	Glycine cleavage system P protein
GumH	0,16	-0,23	0,38	2,35E-03	Glycosyl transferases group
PpsA	-0,06	-0,43	0,37	9,83E-03	Phosphoenolpyruvate-utilising enzyme
NlpD	0,82	0,46	0,37	3,48E-03	LysM-domain and Peptidase M23
Gfo	1,34	0,98	0,36	2,56E-02	Glucose-fructose oxidoreductase, bacterial
PilB	0,44	0,08	0,36	2,66E-03	ATPase, type IV, pilus assembly, PilB
XCV3108	0,82	0,46	0,36	2,63E-03	DUF3108
XCV4246	0,33	-0,03	0,36	7,14E-03	Maltose/galactoside acetyltransferase
XCV1963	-1,94	-2,29	0,35	9,66E-03	Bacterial TonB-dependent receptor
GltB	0,16	-0,19	0,35	4,17E-02	Glutamate synthase
XCV1311	0,69	0,35	0,35	2,32E-02	Peptidase M61
XCV2674	1,11	0,77	0,34	2,80E-02	NAD-glutamate dehydrogenase
XCV3187	0,64	0,30	0,34	2,15E-02	TonB-dependent receptor
AsnS	0,46	0,12	0,34	6,46E-03	Asparaginyl-tRNA aminoacylation
XCV3567	0,65	0,31	0,33	2,20E-03	Putative secreted protein
XCV3071	0,78	0,45	0,33	8,33E-03	Histone-like DNA-binding protein
LysA	-0,66	-0,99	0,33	3,50E-03	Bifunctional diaminopimelate decarboxylase/aspartate kinase
XCV0025	0,52	0,19	0,33	1,99E-02	Peptidase family M23; Members of this family are zinc metallopeptidases
XCV1157	1,16	0,83	0,32	3,04E-02	Citrate synthase-like
RpsC	-0,68	-1,00	0,32	1,25E-02	Ribosomal protein S3, bacterial
XCV4450	0,72	0,40	0,32	5,31E-03	ABC transporter-like
LolA	0,23	-0,07	0,30	1,80E-03	Outer membrane lipoprotein carrier protein LoIA
PtrB	-0,55	-0,85	0,30	4,24E-02	Peptidase S9A, prolyl oligopeptidase

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung ∆ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
XCV3270	-0,81	-1,11	0,30	3,96E-03	Tetratricopeptide repeat-containing domain
PrpB	0,93	0,63	0,29	1,44E-02	2-methylisocitrate lyase
XCV1891	0,22	-0,07	0,29	2,40E-02	FAD-binding protein
DnaB	-0,12	-0,40	0,28	7,47E-03	DNA helicase, DnaB type
Dcp2	0,92	0,64	0,27	4,58E-03	Neurolysin/Thimet oligopeptidase
Wxcl	0,49	0,22	0,26	1,51E-02	Coenzyme A transferase family I
ProC	0,12	-0,13	0,25	3,33E-02	Pyrroline-5-carboxylate reductase
XCV4452	0,80	0,55	0,25	9,18E-03	Probable phospholipid ABC transporter-binding pr. MlaD
GumK	-0,05	-0,30	0,25	3,38E-02	Predicted glycosyltransferases
GlpK	2,10	1,86	0,25	3,80E-03	Glycerol kinase
LpxD	-0,20	-0,45	0,24	1,92E-02	UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase
XCV1161	-2,38	-2,62	0,24	4,69E-02	TonB-dependent receptor
AhpC	0,13	-0,10	0,23	1,81E-02	Alkyl hydroperoxide reductase subunit C
AlaS	-0,02	-0,25	0,23	4,34E-02	Alanine-tRNA ligase, eukaryota/bacteria
XCV0666	0,17	-0,06	0,22	8,64E-04	Metalloenzyme, LuxS/M16 peptidase-like
XCV1386	0,04	-0,18	0,22	9,18E-03	Beta-hexosaminidase, bacterial
XCV0393	1,32	1,10	0,22	4,93E-02	Putative secreted protein
XCV1232	0,24	0,02	0,22	2,90E-03	Alpha/Beta hydrolase fold; WD40-like Beta Propeller
GreA	0,11	-0,11	0,22	9,84E-03	Transcription elongation factor GreA
XCV2708	0,59	0,38	0,21	6,58E-03	Putative secreted protein
XCV3296	-0,38	-0,58	0,21	3,77E-02	ABC transporter-like
UptE	0,71	0,50	0,21	2,57E-02	Outer membrane protein, OmpA/MotB, C-terminal
VacB	-0,16	-0,36	0,20	1,19E-02	Ribonuclease R
MinD	0,10	-0,10	0,20	1,82E-02	ATP binding protein MinD, bacterial-type
XCV1626	-0,19	-0,38	0,19	6,12E-03	Peptidyl-prolyl cis-trans isomerase, FKBP-type
Hns2	0,31	0,13	0,18	1,07E-02	Histone-like protein H-NS
InfB	-0,84	-1,02	0,18	3,60E-02	Translation initiation factor aIF-2, bacterial-like
RmIA	0,20	0,03	0,17	1,82E-02	Glucose-1-phosphate thymidylyltransferase
FadB	0,02	-0,13	0,15	4,83E-02	Crotonase superfamily
MaeB	-0,16	-0,31	0,15	3,83E-02	Malic enzyme, phosphate acetyl/butaryl transferase
XCV1537	0,72	0,57	0,15	2,74E-03	Outer membrane protein, OmpA/MotB, C-terminal
Clp	-0,10	-0,23	0,14	2,70E-02	CRP bacterial regulatory protein HTH signature

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
XCV3240	0,74	0,60	0,14	2,52E-02	Putative secreted protein, Tetratricopeptide-like helical domain
XCV3188	0,02	-0,10	0,12	4,47E-02	TetR family transcriptional regulator
XCV0840	-0,06	-0,17	0,10	2,80E-02	DNA mismatch repair protein MutT
GshB	0,21	0,12	0,09	3,88E-02	Glutathione synthetase
SuhB	-0,18	-0,26	0,07	1,70E-02	Inositol monophosphatase
Dfp	-0,04	0,00	-0,03	2,37E-03	Coenzyme A biosynthesis bifunctional protein CoaBC
XCV2581	0,00	0,08	-0,08	5,99E-03	RNA methyltransferase TrmH, group 1
XCV2882	0,83	0,91	-0,08	2,39E-02	DUF853
SodB	0,14	0,23	-0,09	2,00E-03	Manganese/iron superoxide dismutase
XCV1042	0,70	0,79	-0,09	3,83E-02	Outer membrane protein/outer membrane enzyme
Glk	-0,22	-0,11	-0,10	3,05E-02	Glucokinase
SspA	-0,29	-0,19	-0,11	1,82E-02	Glutathione S-transferase
XCV3726	0,05	0,16	-0,11	3,14E-02	Tryptophan synthase beta subunit-like PLP-dependent enzyme
XCV2203	-0,21	-0,10	-0,11	2,87E-02	Bifunctional kinase-pyrophosphorylase
PurB	-0,02	0,09	-0,11	1,92E-02	Fumarate lyase family
XCV3816	-0,04	0,07	-0,11	2,75E-02	Unbekannt
SecB	0,02	0,13	-0,11	7,86E-03	Bacterial protein export chaperone SecB
PykA	-0,56	-0,44	-0,12	2,57E-02	Pyruvate kinase
PyrB	-0,11	0,02	-0,12	1,16E-02	Aspartate/ornithine carbamoyltransferase
DnaN	-0,19	-0,07	-0,12	5,19E-05	DNA polymerase III, beta chain
LeuS	-0,11	0,03	-0,13	2,04E-02	Methionyl/Leucyl tRNA synthetase
AceE	-0,40	-0,26	-0,13	1,63E-02	2-oxo-acid dehydrogenase E1 component homodimeric type
Hpt	-0,14	-0,01	-0,13	2,55E-02	Phosphoribosyltransferase-like
GuaB	-0,17	-0,03	-0,14	3,55E-02	Inosine-5'-monophosphate dehydrogenase
Pgi	0,00	0,14	-0,14	1,93E-02	Phosphoglucose isomerase
XCV3343	-0,29	-0,15	-0,14	1,47E-02	Outer membrane protein assembly factor BamD
RpsD	-0,93	-0,79	-0,15	2,23E-02	Ribosomal protein S4
PurM	-0,14	0,00	-0,15	2,44E-03	Phosphoribosylformylglycinamidine cyclo-ligase
SmpA	-0,25	-0,11	-0,15	2,08E-02	Outer membrane protein assembly factor BamE
XCV2676	-0,18	-0,03	-0,15	3,59E-02	RND efflux pump, membrane fusion protein
LysS	-0,44	-0,29	-0,15	3,14E-02	Elongation factor P(R)-beta-lysine ligase
Eno	-0,18	-0,03	-0,15	2,72E-02	Enolase

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung ∆s <i>X13</i> /85-10	p-Wert	annotierte Funktion
AtpC	-0,32	-0,17	-0,15	3,53E-02	ATPase, F1 complex, delta/epsilon subunit
RpID	-1,28	-1,13	-0,15	1,39E-02	50S ribosomal protein uL4
PcnB	-0,57	-0,42	-0,15	3,58E-02	Poly(A) polymerase I
RplJ	-1,22	-1,07	-0,15	2,75E-02	Ribosomal protein L10
DacC	-0,06	0,09	-0,15	4,33E-03	Peptidase S11, D-alanyl-D-alanine carboxypeptidase A
HemH	0,13	0,28	-0,15	9,69E-03	Ferrochelatase
RpsB	-1,04	-0,88	-0,16	1,43E-02	Ribosomal protein S2
FtsY	-0,46	-0,30	-0,16	1,55E-02	Signal-recognition particle receptor FtsY
CysS	-0,22	-0,06	-0,16	2,03E-03	Cysteinyl-tRNA synthetase/mycothiol ligase
XCV4379	0,27	0,43	-0,16	3,94E-02	Acid phosphatase (Class B)
XCV1645	-1,04	-0,88	-0,16	1,11E-02	3-hydroxyanthranilic acid dioxygenase
GltA	0,11	0,28	-0,16	1,86E-02	Citrate synthase
XCV2921	-0,07	0,09	-0,16	2,04E-02	Ribosome-associated, YjgA
XCV2642	0,16	0,33	-0,17	3,59E-02	Endoribonuclease YbeY
RpsG	-0,94	-0,78	-0,17	1,76E-02	Ribosomal protein S7
RpIM	-1,32	-1,15	-0,17	3,86E-02	Ribosomal protein L13
Asd	-0,99	-0,82	-0,17	3,23E-02	Aspartate-semialdehyde dehydrogenase
HisS	-0,29	-0,12	-0,18	1,02E-02	Histidine-tRNA ligase/ATP phosphoribosyltransferase regulatory subunit
XCV0977	0,21	0,38	-0,18	5,54E-03	Tetratricopeptide-like helical domain
XCV3787	0,01	0,19	-0,18	2,79E-03	Lipoprotein NlpA family
SerC	0,44	0,62	-0,18	8,94E-03	Phosphoserine aminotransferase
Zwf1	-0,11	0,07	-0,18	7,82E-03	Glucose-6-phosphate dehydrogenase
AspS	0,04	0,22	-0,18	2,10E-03	Aminoacyl-tRNA synthetase, class II
XCV2878	0,02	0,20	-0,19	1,14E-03	Modification methylase HemK
Alr	0,58	0,77	-0,19	4,60E-03	Alanine racemase
GyrB	-0,53	-0,34	-0,19	2,52E-02	DNA topoisomerase, type IIA
RpoA	-0,82	-0,63	-0,19	1,32E-02	DNA-directed RNA polymerase, alpha subunit
AtpD	-0,44	-0,25	-0,19	1,98E-02	ATPase, F1 complex, beta subunit
XCV0184	0,92	1,10	-0,19	2,34E-03	Phosphatidylethanolamine-binding protein PEBP
Rnd	-0,08	0,11	-0,19	1,02E-02	Ribonuclease D
RecN	-0,12	0,07	-0,19	1,82E-02	DNA recombination/repair protein RecN
PitX	0,40	0,59	-0,19	1,66E-02	DUF47

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion
MurA	-0,34	-0,15	-0,19	3,42E-02	UDP-N-acetylglucosamine 1-carboxyvinyltransferase
MtnA	-0,22	-0,03	-0,19	2,27E-02	DUF3011
HemF	0,19	0,38	-0,19	1,54E-02	Coproporphyrinogen III oxidase, aerobic
SppA	0,61	0,80	-0,19	4,04E-02	Peptidase S49, protease IV
XCV2070	0,22	0,41	-0,20	8,38E-03	DUF09976
XCV1838	-0,61	-0,41	-0,20	4,29E-02	Aldehyde/histidinol dehydrogenase
XCV0468	0,16	0,35	-0,20	8,44E-03	Unbekannte Funktion
Ggt2	-0,20	-0,01	-0,20	3,16E-02	Gamma-glutamyltranspeptidase
XCV0498	0,58	0,78	-0,20	3,42E-02	Putative secreted protein
XCV2862	-0,51	-0,31	-0,20	6,63E-03	Isopenicillin N synthase
XCV0274	-0,09	0,11	-0,20	1,37E-03	Tetracycline transcriptional regulator, TetR-like, C-terminal
UppS	-0,01	0,20	-0,21	4,15E-02	Decaprenyl diphosphate synthase-like
RpsK	-0,90	-0,70	-0,21	4,70E-02	Ribosomal protein S11
XCV0690	-0,52	-0,31	-0,21	2,89E-02	DUF484
QueF	-0,51	-0,30	-0,21	3,71E-02	NADPH-dependent 7-cyano-7-deazaguanine reductase QueF
RpsM	-1,00	-0,79	-0,21	2,49E-02	Ribosomal protein S13
PyrF	0,04	0,25	-0,21	2,15E-02	Orotidine 5'-phosphate decarboxylase
PyrE	-0,38	-0,17	-0,21	1,36E-02	Orotate phosphoribosyltransferase
XCV3049	-0,27	-0,05	-0,21	4,39E-02	Primosome PriB/single-strand DNA-binding
PpiD	0,04	0,25	-0,21	1,03E-02	Trigger factor/SurA domain; peptidyl-prolyl cis-trans isomerase, PpiC-type
XCV2045	-0,12	0,10	-0,21	4,17E-02	UPF0274
Frr	0,00	0,21	-0,22	6,88E-03	Ribosome recycling factor
FtsH	-0,56	-0,34	-0,22	2,66E-02	Peptidase, FtsH
MinE	-0,23	-0,01	-0,22	1,47E-02	Septum formation topological specificity factor MinE
FabD	-0,45	-0,23	-0,22	4,28E-02	Malonyl CoA-acyl carrier protein transacylase
XCV0701	-0,59	-0,37	-0,22	1,38E-02	Unbekannte Funktion
BtuE	-0,57	-0,35	-0,22	3,50E-03	Glutathione peroxidase
ExbB2	0,24	0,46	-0,22	3,30E-02	MotA/TolQ/ExbB proton channel
TyrS	-0,51	-0,28	-0,23	1,52E-03	Aminoacyl-tRNA synthetase, class Ic
FabG	-0,54	-0,31	-0,23	1,11E-02	Glucose/ribitol dehydrogenase
XCV2427	0,41	0,64	-0,23	3,26E-02	TonB, C-terminal
RpoD	-1,11	-0,88	-0,23	3,23E-02	RNA polymerase sigma factor RpoD

Protein	Mittelwert ΔsX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion
HslU	-0,83	-0,60	-0,23	7,03E-03	Heat shock protein HslU
SucC	-0,65	-0,41	-0,23	2,23E-02	Succinyl-CoA synthetase, beta subunit
XCV3058	-0,63	-0,39	-0,23	2,95E-02	Phenazine biosynthesis PhzF protein
InfC	-0,87	-0,63	-0,23	9,54E-04	Translation initiation factor 3
MetG	0,03	0,26	-0,24	1,41E-02	Methionyl/Leucyl tRNA synthetase
RibH	-0,43	-0,19	-0,24	4,67E-03	6,7-dimethyl-8-ribityllumazine synthase
XCV0247	-0,35	-0,11	-0,24	4,06E-02	SCP2 sterol-binding domain
GrpE	-0,39	-0,15	-0,24	1,75E-03	GrpE nucleotide exchange factor
RpsH	-1,02	-0,78	-0,24	1,27E-02	Ribosomal protein S8
ArgD	0,14	0,38	-0,24	2,25E-03	Aminotransferase class-III
XCV1580	0,01	0,25	-0,24	6,08E-04	Ribosomal protein L16 Arg81 hydroxylase, contains JmjC domain
XCV2762	0,25	0,49	-0,24	1,34E-02	Acyl-CoA dehydrogenase
Grx	0,30	0,54	-0,24	9,58E-03	Monothiol glutaredoxin-related
XCV0287	-0,14	0,11	-0,24	1,62E-02	Alpha/Beta hydrolase fold
AtpF	-0,40	-0,16	-0,24	2,07E-02	ATPase, F0 complex, subunit B/B', bacterial/chloroplast
ArgG	-0,63	-0,38	-0,25	3,19E-02	Argininosuccinate synthase
lcd	-0,80	-0,56	-0,25	1,30E-02	Isocitrate dehydrogenase NADP-dependent, monomeric
UptA	-1,12	-0,88	-0,25	4,59E-02	Fumarylacetoacetase, C-terminal-related
Rpe	0,20	0,45	-0,25	4,64E-02	Anthranilate synthase component I-like
XCV4380	-0,09	0,16	-0,25	2,47E-02	DUF480
XCV3203	-0,56	-0,31	-0,25	1,90E-02	Ribosomal RNA small subunit methyltransferase E
DapA	-0,42	-0,17	-0,25	1,71E-02	4-hydroxy-tetrahydrodipicolinate synthase, DapA
XCV0844	0,01	0,27	-0,26	4,52E-02	Alcohol dehydrogenase superfamily, zinc-type
Ohr	0,25	0,51	-0,26	3,61E-02	OsmC/Ohr family
XCV1632	-0,98	-0,73	-0,26	7,35E-03	Alpha/Beta hydrolase fold
XCV0778	0,19	0,45	-0,26	3,31E-04	Thioredoxin-like fold
AtpG	-0,41	-0,15	-0,26	1,53E-03	ATPase, F1 complex, gamma subunit
DnaX	-0,38	-0,12	-0,26	3,70E-02	DNA polymerase III, subunit gamma/ tau
Adk	-0,35	-0,08	-0,26	1,17E-02	Adenylate kinase/UMP-CMP kinase
XCV2839	-1,11	-0,84	-0,26	2,63E-02	Ribosome maturation factor RimP
XCV0818	-0,18	0,09	-0,27	1,31E-03	rRNA small subunit methyltransferase I
GInA	-0,51	-0,24	-0,27	1,84E-04	Glutamine synthetase type I

Protein	Mittelwert ΔsX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
EfP2	-0,34	-0,07	-0,27	3,01E-03	Translation elongation factor P/YeiP
XCV0183	0,36	0,62	-0,27	5,34E-03	Tetratricopeptide-like helical domain
XCV2864	-0,66	-0,40	-0,27	1,40E-03	Acetyl-CoA carboxylase carboxyl transferase, beta subunit
SspB	-0,76	-0,49	-0,27	3,49E-02	Stringent starvation protein B
GroEL	-0,82	-0,55	-0,27	9,41E-03	Chaperonin Cpn60/TCP-1 family
ClpA	-0,21	0,06	-0,27	7,02E-03	ATP-dependent Clp protease ATP-binding subunit ClpA
DnaJ	-1,07	-0,79	-0,28	7,64E-03	Chaperone DnaJ
NusB	-0,40	-0,13	-0,28	1,05E-02	NusB antitermination factor
PyrG	0,54	0,82	-0,28	3,29E-02	CTP synthase
PepA	-0,41	-0,13	-0,28	1,29E-02	Leucine aminopeptidase/peptidase B
GlyS	-0,76	-0,48	-0,28	1,17E-04	Glycine-tRNA synthetase, heterodimeric
Tsf	-1,26	-0,98	-0,28	1,26E-02	Translation elongation factor EFTs/EF1B
PheA	-0,15	0,13	-0,28	3,45E-02	Bifunctional P-protein, chorismate mutase/prephenate dehydratase
PurK	-0,07	0,22	-0,28	2,74E-02	Phosphoribosylaminoimidazole carboxylase, ATPase subunit
XCV1033	0,18	0,46	-0,28	2,77E-02	Cyclophilin-type peptidyl-prolyl cis-trans isomerase
HolB	-0,12	0,16	-0,29	4,19E-02	P-loop containing nucleoside triphosphate hydrolase
XCV2586	-0,28	0,00	-0,29	1,34E-03	P-loop containing nucleoside triphosphate hydrolase, ABC transporter like
AtpH	-0,43	-0,14	-0,29	7,39E-04	ATPase, OSCP/delta subunit
XCV3523	-0,46	-0,17	-0,29	3,86E-02	UPF0149
PmbA	-0,66	-0,37	-0,29	7,37E-03	Metalloprotease TldD/PmbA
PurE	0,04	0,32	-0,29	2,14E-02	N5-carboxyaminoimidazole ribonucleotide mutase PurE
UbiG	-0,10	0,19	-0,29	1,93E-02	Ubiquinone biosynthesis O-methyltransferase
XCV1750	0,56	0,85	-0,29	1,69E-02	3-deoxy-8-phosphooctulonate synthase
Gst2	-1,09	-0,80	-0,29	3,45E-02	Glutathione S-transferase
MetN	-0,41	-0,12	-0,30	5,76E-03	Methionine import ATP-binding protein MetN
XCV3779	-0,24	0,06	-0,30	5,62E-03	Biotin/lipoyl attachment; E3-binding domain; Chloramphenicol acetyltransferase-like domain
SerS	-0.27	0,03	-0,30	2,23E-03	Serine-tRNA ligase, type1
GalU	-0,39	-0,09	-0,30	8,90E-04	UTPglucose-1-phosphate uridylyltransferase
HemB	0,63	0,93	-0,30	3,69E-02	Delta-aminolevulinic acid dehydratase
FtsZ	-0,96	-0,65	-0,30	4,60E-02	Cell division protein FtsZ
RbfA	-0,68	-0,38	-0,30	3,78E-02	Ribosome-binding factor A
SdhB	-0,93	-0,62	-0,31	1,98E-02	Succinate dehydrogenase/fumarate reductase iron-sulphur protein

Protein	Mittelwert ΔsX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
MltB	-1,16	-0,85	-0,31	3,72E-03	Lytic transglycosylase MltB
XCV3423	-0,40	-0,09	-0,31	1,18E-02	Fumarylacetoacetase, C-terminal-related
Pcm	-0,41	-0,11	-0,31	3,31E-02	Protein-L-isoaspartate(D-aspartate) O-methyltransferase
XCV0587	0,06	0,37	-0,31	1,77E-03	NADH dehydrogenase/NAD(P)H nitroreductase, putative, RutE
XCV1534	0,70	1,01	-0,31	3,63E-02	NADPH-dependent FMN reductase-like
PepN	-0,17	0,15	-0,31	4,55E-03	Peptidase M1, alanine aminopeptidase/leukotriene A4 hydrolase
XCV0160	-0,10	0,21	-0,31	1,41E-02	Acyl transferase/acyl hydrolase/lysophospholipase
DnaK	-0,90	-0,59	-0,32	2,96E-03	Heat shock protein 70 family
XCV1241	0,34	0,66	-0,32	2,92E-02	Aldo/keto reductase
FabF	-0,09	0,23	-0,32	5,12E-03	Thiolase-like
TreA	-0,87	-0,55	-0,32	1,68E-02	Glycoside hydrolase, family 37
XCV0200	-0,15	0,17	-0,32	3,32E-02	Uroporphyrin-III C-methyltransferase
XCV1696	-1,00	-0,68	-0,32	1,10E-02	Transcription regulator HTH, LysR
LepB	0,13	0,46	-0,32	4,65E-02	Peptidase S26A, signal peptidase I
XCV0963	-0,16	0,16	-0,32	5,18E-04	Asparaginase/glutaminase
Ndk	-0,01	0,31	-0,33	1,34E-03	Nucleoside diphosphate kinase
Argl	0,03	0,35	-0,33	1,23E-03	Ureohydrolase, Arginase
OpdA	-0,12	0,21	-0,33	7,56E-03	Peptidase M3A/M3B
SodM	-0,03	0,30	-0,33	3,99E-03	Manganese/iron superoxide dismutase
XCV1066	-0,44	-0,11	-0,33	2,45E-03	UDP-2,3-diacylglucosamine hydrolase
UbiE	-0,28	0,05	-0,33	1,49E-02	UbiE/COQ5 methyltransferase
HtpG	-0,72	-0,38	-0,33	1,17E-02	Heat shock protein Hsp90 family
XCV0983	-0,29	0,04	-0,33	8,76E-03	Ribosome-binding ATPase YchF/Obg-like ATPase 1
XCV0925	-0,55	-0,21	-0,34	1,85E-02	Cytidine deaminase-like
RecA	-0,44	-0,10	-0,34	2,75E-02	DNA recombination and repair protein RecA
XCV3791	-0,82	-0,48	-0,34	3,04E-03	DUF520
XCV3527	-0,63	-0,29	-0,34	4,81E-04	PUA-like domain; EVE domain
Mdh	1,08	1,42	-0,34	3,40E-02	L-lactate/malate dehydrogenase
NusA	-0,98	-0,63	-0,34	5,35E-03	Transcription termination/antitermination protein NusA, bacterial
XCV0665	0,47	0,81	-0,34	9,57E-03	GAF domain-like
DeaD	-0,73	-0,38	-0,35	1,10E-02	ATP-dependent RNA helicase DeaD
AroE	-0,86	-0,51	-0,35	1,23E-03	Shikimate dehydrogenase family

Protein	Mittelwert ΔsX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion
XCV2196	0,77	1,13	-0,35	4,35E-02	Alpha/Beta hydrolase fold
XCV1928	0,49	0,85	-0,35	1,10E-02	Epoxide hydrolase-like
PanB	-0,37	0,00	-0,36	4,17E-02	Ketopantoate hydroxymethyltransferase
XCV3765	-1,59	-1,22	-0,37	2,54E-02	Chorismate mutase
XCV2493	-0,11	0,26	-0,37	3,93E-03	Lipopolysaccharide assembly protein B
XpsM	-0,11	0,26	-0,37	3,12E-02	Type II secretion system, protein M
Dxs	0,06	0,43	-0,37	5,04E-03	Deoxyxylulose-5-phosphate synthase
XCV4395	0,80	1,18	-0,37	1,15E-02	Aldose 1-/Glucose-6-phosphate 1-epimerase
XCV0280	1,78	2,15	-0,37	6,17E-03	putative secreted protein
XCV0792	-0,17	0,20	-0,38	7,61E-03	ABC transporter, ATP-binding protein, ChvD
XCV0588	-0,10	0,28	-0,38	1,03E-02	Lipid/polyisoprenoid-binding, Ycel-like
CyoA	-0,01	0,37	-0,38	5,38E-03	Cytochrome o ubiquinol oxidase subunit II
XCV1427	-0,29	0,09	-0,38	1,80E-03	YjgF/YER057c/UK114 family
XCV2888	-0,30	0,08	-0,38	1,20E-02	Alpha/Beta hydrolase fold
XCV0208	-0,07	0,32	-0,39	5,51E-03	Sulfation-dependent quorum factor, Ax21 family
DpsA	-0,09	0,31	-0,40	2,38E-02	DNA-binding protein Dps, ferritin-like
XCV3971	-1,00	-0,60	-0,40	6,84E-03	HAD-like domain
XCV4201	0,63	1,03	-0,40	4,34E-02	DUF2782
RsmC	-0,04	0,36	-0,40	9,75E-03	S-adenosyl-L-methionine-dependent methyltransferase
RdgC	-0,70	-0,30	-0,40	1,26E-03	Putative exonuclease, RdgC
FabZ	-0,40	0,00	-0,40	6,49E-03	Beta-hydroxyacyl-(acyl-carrier-protein) dehydratase FabZ
llvC	-1,38	-0,97	-0,41	1,99E-03	Ketol-acid reductoisomerase
XCV3332	-1,49	-1,08	-0,41	6,68E-03	DUF3574
XCV1795	-2,08	-1,67	-0,41	2,62E-02	Senescence marker protein-30 (SMP-30)
PurA	0,19	0,60	-0,41	1,06E-03	Adenylosuccinate synthetase
Pgk	0,04	0,46	-0,42	1,38E-02	3-phosphoglycerate kinase
PrsA	-1,23	-0,82	-0,42	1,36E-03	Ribose-phosphate diphosphokinase
XCV2173	1,63	2,04	-0,42	7,12E-03	DUF4440
PolA	-0,21	0,22	-0,43	4,98E-03	DNA polymerase A
XCV2250	-0,34	0,09	-0,43	1,24E-02	NAD-dependent epimerase/dehydratase, N-terminal domain
PyrH	-0,43	0,01	-0,43	6,75E-04	Uridylate kinase
XCV3086	0,80	1,23	-0,44	1,45E-02	PKHD-type hydroxylase

Protein	Mittelwert ∆ <i>sX13</i>	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion
XCV3992	-0,64	-0,20	-0,44	4,46E-03	Aspartyl/glutamyl-tRNA amidotransferase subunit B-related
XCV1399	2,00	2,45	-0,45	1,86E-03	Putative secreted protein
XCV1515	-0,19	0,26	-0,45	4,01E-04	Riboflavin synthase-like beta-barre; Oxidoreductase FAD/NAD(P)-binding
AcpP	0,09	0,55	-0,46	1,45E-02	Acyl carrier protein (ACP)
XCV2830	-0,32	0,14	-0,46	2,65E-03	UPF0434/Trm112
HsdM2	-1,41	-0,95	-0,46	6,81E-03	S-adenosyl-L-methionine-dependent methyltransferase
XCV4151	-0,30	0,16	-0,47	3,98E-03	Phenol hydroxylase reductase
FabH	-0,63	-0,16	-0,47	1,14E-02	Thiolase-like
SpeE	-0,13	0,34	-0,47	2,23E-02	Spermidine/spermine synthases
GidB	-0,15	0,33	-0,47	6,54E-03	rRNA small subunit methyltransferase G
MrcA	-0,25	0,24	-0,48	4,85E-02	Lysozyme-like domain; Beta-lactamase/transpeptidase-like
XCV1277	-0,16	0,33	-0,49	1,35E-02	DUF2007
CbbFC	0,47	0,95	-0,49	1,51E-03	Fructose-1,6-bisphosphatase class 1/Sedoheputulose-1,7-bisphosphatase
FbaB	-0,31	0,18	-0,49	8,11E-04	Fructose-bisphosphate aldolase, class-l
XCV1400	-0,59	-0,10	-0,49	1,11E-02	Putative secreted protein
GlpD	3,09	3,58	-0,49	2,96E-02	Glycerol-3-phosphate dehydrogenase
TrpS	-0,68	-0,19	-0,49	3,47E-03	Aminoacyl-tRNA synthetase, class Ic
XCV0299	0,34	0,84	-0,50	1,54E-02	Putative membrane protein
XCV0034	0,49	0,98	-0,50	5,00E-04	Alcohol dehydrogenase superfamily, zinc-type
OprO	0,90	1,40	-0,50	1,65E-02	Phosphate-selective porin O/P
XCV0659	-0,52	-0,01	-0,51	4,27E-03	Mitochondrial biogenesis protein AIM24
XCV0295	-0,09	0,43	-0,52	2,60E-02	Alcohol dehydrogenase superfamily, zinc-type
PepA2	-0,60	-0,08	-0,52	2,68E-02	Leucine aminopeptidase/peptidase B
ArgC	-0,87	-0,33	-0,54	2,12E-02	N-acetyl-gamma-glutamyl-phosphate reductase, type 1
XCV1057	-1,08	-0,53	-0,55	3,08E-03	Histidine phosphatase superfamily
SufC	-1,87	-1,32	-0,55	6,03E-03	FeS cluster assembly SUF system, ATPase SufC
XCV4152	-0,32	0,23	-0,55	2,01E-02	P-loop containing nucleoside triphosphate hydrolase
FumC	1,27	1,83	-0,56	4,21E-03	Fumarate hydratase class II
XCV2599	0,26	0,84	-0,57	1,33E-02	Putative regulator of polymer accumulation
KdsB2	-0,72	-0,10	-0,62	2,95E-02	Acylneuraminate cytidylyltransferase
XCV0296	-0,42	0,20	-0,62	4,35E-03	Aldo/keto reductase
Fur	0,59	1,22	-0,63	6,69E-03	Ferric-uptake regulator

Protein	Mittelwert ΔsX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion
XCV3619	-1,47	-0,81	-0,66	3,89E-03	Class I glutamine amidotransferase-like
XCV0217	-1,31	-0,63	-0,68	1,61E-02	Unbekannt
XCV4032	-1,43	-0,74	-0,68	5,53E-03	Glucose/ribitol dehydrogenase
XCV3489	0,11	0,80	-0,69	1,01E-04	TonB-dependent siderophore receptor
XCV0076	-0,02	0,72	-0,74	5,21E-06	NAD-dependent dehydratase
LipA	-2,17	-1,42	-0,75	3,05E-02	Lipoyl synthase
XCV3060	0,73	1,49	-0,76	1,27E-02	Peroxiredoxin OsmC
XCV4079	-0,84	-0,08	-0,76	7,31E-03	HAD hydrolase
OmpW1	0,78	1,55	-0,77	2,57E-02	Outer membrane protein, OmpW
XCV3961	-0,11	0,69	-0,80	1,74E-02	Putative secreted protein
XCV2429	-3,38	-2,46	-0,92	4,66E-02	Fe/S biogenesis protein NfuA
XCV3739	-0,35	0,63	-0,99	1,04E-03	HAD hydrolase/ Phosphoglycolate phosphatase
XCV2647	-0,72	0,30	-1,02	1,64E-03	Aldehyde dehydrogenase
XCV3038	-1,33	-0,29	-1,04	2,18E-02	Putative phospholipase accessory protein
Egl3	1,50	2,55	-1,05	6,58E-03	Cellulase
RpiB	-1,93	-0,86	-1,06	8,46E-03	Ribose-5-phosphate isomerase
XCV3574	-0,06	1,07	-1,13	2,45E-02	Putative regulatory protein
XCV0799	-1,44	-0,29	-1,15	2,60E-03	Putative secreted protein protein
XCV0079	0,54	1,95	-1,41	2,21E-03	Putative host attachment protein
FleQ	0,61	2,03	-1,41	1,04E-05	flagellar sigma-54 dependent transcriptional activator
AsnB	-2,90	-1,48	-1,41	5,91E-04	Asparagine synthase
XCV2015	0,88	2,42	-1,54	2,68E-04	Two-component response regulator
XCV3572	-1,45	0,43	-1,88	1,85E-05	TonB dependent receptor
XCV1420	-1,18	0,71	-1,90	1,44E-02	Conserved hypothetical protein
XCV2510	-3,10	-1,01	-2,09	2,40E-04	TonB-dependent receptor

Tabelle 18: Quantifizierte Proteine in 85-10*AsX13* und 85-10 in MA pH 7

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
XCV2186	3,24	-2,64	5,88	5,66E-05	Methyl-accepting chemotaxis protein
XCV2818	1,53	-3,87	5,40	8,27E-03	Type IV fimbrial biogenesis protein PilX
PilQ	0,36	-4,89	5,24	1,03E-05	Type IV pilus Secretin PilQ
XCV3927	1,09	-3,56	4,65	7,26E-06	LysM-domain
PilM	1,63	-2,86	4,49	1,69E-05	Type IV pilus assembly protein
XCV2185	2,41	-1,92	4,33	1,80E-05	Unbekannt
PilO	1,53	-2,69	4,22	2,35E-05	Type IV pilus assembly protein PilO
PilP	1,52	-2,68	4,20	2,67E-04	Type IV pilus assembly protein PilP
PilN	1,70	-2,47	4,17	2,73E-05	Fimbrial assembly protein PilN
PilH	2,02	-2,00	4,02	3,21E-05	Type IV pilus response regulator PilH
XCV3730	1,38	-2,47	3,85	2,21E-04	Pilus retraction ATPase PilT
Pill	1,95	-1,80	3,76	3,44E-05	Chemotaxis signal transduction protein
XCV3227	1,91	-1,69	3,61	4,03E-05	CheW-like protein
XCV3068	1,07	-2,51	3,58	1,13E-04	Pilus retraction ATPase PilT
PilJ	1,98	-1,53	3,51	3,47E-05	Methyl-accepting chemotaxis protein
PilG	1,59	-1,67	3,26	3,77E-05	CheY-like receiver domain protein
XCV3228	1,93	-1,25	3,18	5,88E-05	Chemotaxis glutamate methyltransferase
XCV4142	1,37	-1,73	3,10	1,44E-05	Gram-negative bacterial TonB protein
PilA	1,93	-0,60	2,53	2,96E-07	Type IV pilin/Fimbrial protein pilin
XCV3571	1,13	-1,23	2,37	5,88E-05	Signal transduction response regulator
XCV2991	0,12	-2,03	2,15	4,70E-04	TonB-dependent receptor
XCV1375	1,56	-0,57	2,13	9,73E-04	Conserved hypothetical protein
CynT1	2,02	-0,05	2,07	1,21E-04	Carbonic anhydrase
XCV4138	0,53	-1,22	1,75	5,33E-04	TonB-dependent receptor
ManB	1,40	-0,34	1,74	1,89E-06	Beta mannosidase
XCV1174	1,22	-0,45	1,67	5,22E-03	Twitching motility two-component system regulator
Hfq	0,65	-0,88	1,53	6,78E-04	RNA-binding protein Hfq
XCV4017	1,91	0,38	1,52	4,58E-04	Putative secreted protein
XCV4139	0,38	-1,07	1,45	2,12E-02	SapC-related protein
RmIB	1,15	-0,17	1,32	2,90E-04	dTDP-glucose 4,6-dehydratase
XCV1804	-1,29	-2,57	1,28	7,26E-04	Glycoside hydrolase
RsbR	0,74	-0,46	1,20	3,12E-04	Polyvinylalcohol dehydrogenase

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion
XCV1511	1,51	0,40	1,11	2,91E-03	DUF4163 and DUF3298
XCV0209	1,39	0,29	1,10	5,38E-05	Unbekannt
XCV2505	0,42	-0,67	1,09	3,63E-06	Glycogen debranching enzyme
XCV3486	1,54	0,50	1,04	1,35E-03	Putative secreted protein
XCV0950	1,22	0,18	1,04	5,69E-04	DUF1631, thymidine phosphorylase
XCV1963	-1,30	-2,30	1,00	1,57E-02	Bacterial TonB-dependent receptor
XCV2272	-0,09	-1,08	0,99	1,82E-03	Putative secreted protein
XCV2822	-0,17	-1,11	0,94	2,10E-04	Cytokinin riboside 5'-monophosphate phosphoribohydrolase LOG
XCV1268	0,13	-0,81	0,94	2,94E-03	Stomatin family
XCV4374	0,75	-0,15	0,90	1,86E-04	TonB-dependent transporter oar-like
GInB	1,21	0,32	0,88	1,12E-03	Nitrogen regulatory protein PII
XCV1442	-0,22	-1,09	0,87	5,25E-05	DUF2147
PrpB	1,03	0,19	0,84	3,67E-03	2-methylisocitrate lyase
XCV4133	1,58	0,75	0,84	5,74E-04	Uncharacterised protein family UPF0145
FadL	0,13	-0,70	0,83	1,21E-04	Membrane protein, aromatic hydrocarbon degradation
XCV1420	2,02	1,20	0,82	4,50E-03	Conserved hypothetical protein
PetC	0,60	-0,20	0,80	4,59E-05	Cytochrome c1
XCV0092	-0,05	-0,84	0,79	6,92E-04	TIdD protein
XCV1528	2,02	1,25	0,77	1,51E-04	Glycine zipper 2TM domain
XCV0091	-0,17	-0,93	0,77	9,69E-05	TIdD/PmbA
XCV3468	-0,75	-1,50	0,75	9,60E-03	Conserved hypothetical protein
XCV4368	-0,10	-0,84	0,73	1,65E-02	Putative secreted protein
XCV2099	1,44	0,73	0,71	1,23E-02	Conserved hypothetical protein
XCV1157	0,85	0,15	0,70	9,79E-04	Citrate synthase-like
RmID	0,23	-0,46	0,69	1,73E-03	dTDP-4-dehydrorhamnose reductase family
XCV2894	-0,78	-1,47	0,69	2,14E-03	TonB-dependent receptor
XCV3487	1,57	0,91	0,66	2,91E-03	Metalloendopeptidase M23
XCV2539	0,37	-0,28	0,66	4,11E-04	CocE/Serine esterase
XCV3489	0,74	0,09	0,65	1,46E-03	TonB-dependent siderophore receptor
XCV4066	0,50	-0,14	0,64	4,12E-04	DUF4142
PdxJ	0,67	0,04	0,63	1,39E-02	Pyridoxal phosphate (active vitamin B6) biosynthesis
XCV1311	0,35	-0,28	0,63	4,53E-04	Peptidase M61

Protein	Mittelwer t Δ <i>sX13</i>	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion
XCV2898	0,67	0,04	0,63	3,71E-04	Metallopeptidase M13
XCV2823	-0,77	-1,40	0,63	6,40E-03	TonB-dependent receptor
XCV0780	0,48	-0,15	0,63	1,20E-02	Cytochrome c4
XCV3299	-1,40	-2,02	0,62	2,08E-02	TonB-dependent receptor
AcnA	0,70	0,11	0,60	4,30E-03	Aconitase/isopropylmalate dehydratase
XCV0162	0,99	0,40	0,59	4,73E-03	Tryptophan RNA-binding attenuator protein-like domain
Era	0,43	-0,16	0,59	3,69E-04	GTP-binding protein Era
XCV0028	1,57	1,01	0,56	1,77E-02	PepSY domain, protease inhibition
XCV2874	0,59	0,03	0,55	9,69E-04	Motility protein FimV
XCV0281	0,54	0,00	0,54	1,72E-03	Cytochrome c-like domain
DapA2	6,70	6,17	0,53	1,87E-02	Dihydrodipicolinate synthase
XCV4073	0,51	-0,02	0,53	1,91E-03	Unbekannt
XCV2335	0,14	-0,38	0,52	4,71E-02	Cu(I)-responsive transcriptional regulator
XCV4431	0,22	-0,30	0,51	8,47E-03	DUF1348
XCV1684	0,61	0,10	0,51	1,18E-02	Poly granule associated
Wxcl	-0,16	-0,67	0,51	1,05E-03	Coenzyme A transferase family I
DapD	1,10	0,60	0,50	7,77E-03	2,3,4,5-tetrahydropyridine-2,6-carboxylate N-succinyltransferase
XCV4453	0,61	0,11	0,50	1,38E-04	Toluene tolerance Ttg2/phospholipid-binding pr. MlaC
XCV3492	0,78	0,28	0,50	4,94E-04	Aerotolerance-related protein BatD
XCV3206	0,81	0,32	0,49	8,54E-04	TonB-dependent receptor
XCV3496	0,41	-0,08	0,49	3,37E-04	ATPase chaperone, AAA-type, MoxR
CutC	0,21	-0,28	0,49	4,26E-03	Copper homeostasis protein CutC
ProC	-0,21	-0,69	0,48	3,73E-03	Pyrroline-5-carboxylate reductase
WxcJ	-0,14	-0,61	0,46	1,77E-02	SuccinyI-CoA:3-ketoacid-CoA transferase
PepN3	0,06	-0,40	0,46	3,49E-03	Peptidase M1, alanine aminopeptidase/leukotriene A4
XCV3075	0,85	0,39	0,46	8,16E-03	DUF1439
AccC1	-0,43	-0,87	0,44	4,83E-03	Biotin carboxylation domain
XCV3296	-0,69	-1,13	0,44	3,81E-04	ABC transporter-like
XCV2346	-0,05	-0,48	0,44	2,70E-02	DNA binding HTH domain, AraC-type
XCV4452	0,69	0,26	0,44	2,38E-03	Probable phospholipid ABC transporter-binding pr. MlaD
XCV3493	0,61	0,18	0,43	7,02E-03	Putative membrane protein
RmIA	0,29	-0,14	0,43	1,42E-04	Glucose-1-phosphate thymidylyltransferase

Protein	Mittelwer t ΔsX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion
PilB	-0,04	-0,47	0,43	2,97E-03	ATPase, type IV, pilus assembly, PilB
XCV0891	0,69	0,26	0,43	4,19E-03	LemA
XCV3187	-0,18	-0,60	0,42	9,13E-03	TonB-dependent receptor
XCV3775	1,65	1,23	0,42	1,82E-03	Outer membrane protein/outer membrane enzyme
XCV3127	0,70	0,30	0,41	3,05E-02	Alpha/Beta hydrolase fold
XCV0886	1,40	1,00	0,41	4,16E-03	SGNH hydrolase-type esterase domain
XCV4285	-1,14	-1,54	0,41	1,29E-03	Fumarylacetoacetase
XCV4455	0,26	-0,14	0,40	3,36E-03	VacJ-like lipoprotein
XCV4246	-0,14	-0,53	0,40	2,60E-02	Maltose/galactoside acetyltransferase
XCV2355	-0,36	-0,75	0,39	2,23E-02	Sulphur relay, DsrE/F-like protein
XCV3651	0,02	-0,37	0,39	4,67E-03	Unbekannt
RpfB	-0,05	-0,43	0,38	4,35E-03	long-chain fatty acidCoA ligase
XCV0744	0,91	0,53	0,38	6,17E-04	Signal transduction histidine kinase, PAS, CHASE3
MdcA	-0,04	-0,43	0,38	2,73E-02	Malonate decarboxylase, alpha subunit
XCV3648	-0,22	-0,60	0,38	1,07E-02	Glycoside hydrolase superfamily
GumK	0,80	0,42	0,38	1,76E-02	Predicted glycosyltransferases
GumH	1,00	0,63	0,37	7,11E-05	Glycosyl transferases group
XCV3567	0,95	0,58	0,37	1,92E-03	Putative secreted protein
LoIA	1,09	0,72	0,37	3,10E-04	Outer membrane lipoprotein carrier protein LoIA
XCV0887	-0,19	-0,56	0,37	3,17E-03	Response regulator with DNA-binding domain
ExbB1	0,60	0,23	0,37	5,12E-04	MotA/TolQ/ExbB proton channel
XCV0007	-0,25	-0,62	0,37	6,04E-03	Tetratricopeptide repeat-containing domain
XCV0299	0,48	0,12	0,36	5,10E-04	Putative membrane protein
XCV4450	0,60	0,24	0,36	6,68E-04	ABC transporter-like
PlsB	0,20	-0,15	0,36	1,93E-03	Glycerol-3-phosphate acyltransferase, PlsB
XCV2352	0,54	0,18	0,36	1,33E-03	putative carboxymuconolactone decarboxylase
ThrA	0,09	-0,27	0,35	1,94E-02	Bifunctional aspartokinase/homoserine dehydrogenase I
PpsA	1,22	0,86	0,35	1,76E-04	Phosphoenolpyruvate-utilising enzyme
XCV0280	0,84	0,49	0,35	1,95E-02	putative secreted protein
Dcp2	0,47	0,12	0,35	7,00E-04	Neurolysin/Thimet oligopeptidase
ExbD2	0,12	-0,22	0,34	7,62E-04	Biopolymer transport protein ExbD/TolR
ExbD1	0,08	-0,26	0,34	4,15E-05	Biopolymer transport protein ExbD/ToIR

Protein	Mittelwert ΔsX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
XCV0200	-0,28	-0,61	0,33	1,41E-02	Uroporphyrin-III C-methyltransferase
XCV0745	1,08	0,75	0,33	6,62E-05	CheY-like superfamily
XCV2347	1,39	1,06	0,33	1,05E-02	alkyl-hydroperoxide reductase AhpD
Gst7	-0,03	-0,36	0,33	1,31E-03	Glutathione S-transferase
Hns2	1,28	0,95	0,32	1,53E-03	Histone-like protein H-NS
Pal	0,25	-0,07	0,32	1,68E-02	Peptidoglycan-associated lipoprotein
CspA	-0,06	-0,37	0,31	7,15E-04	Cold shock, CspA
XCV3108	1,34	1,04	0,31	1,75E-03	DUF3108
XCV3116	0,79	0,48	0,31	9,27E-04	Lipopolysaccharide export system protein LptA
Guml	0,60	0,29	0,31	4,66E-04	Xanthan biosynthesis glycosyltransferase Guml
XCV2482	0,16	-0,15	0,31	5,01E-03	LuxR family transcriptional regulator
XCV4282	-1,32	-1,63	0,31	3,93E-04	Aldo/keto reductase
GumL	0,18	-0,12	0,30	2,38E-02	Polysaccharide pyruvyl transferase
XCV2762	0,25	-0,05	0,30	1,67E-02	Acyl-CoA dehydrogenase
XCV2595	0,45	0,15	0,30	3,02E-03	Response regulator, GGDEF, EAL, PAS
Gfo	0,25	-0,05	0,30	1,24E-03	Glucose-fructose oxidoreductase, bacterial
XCV3153	0,38	0,09	0,29	4,09E-02	Biofilm formation YgiB
GshB	0,06	-0,22	0,29	2,22E-03	Glutathione synthetase
AcnA1	0,34	0,05	0,29	5,84E-03	Aconitase/isopropyImalate dehydratase
XCV2708	-0,07	-0,35	0,29	6,43E-03	Putative secreted protein
FadB	-0,03	-0,31	0,29	2,76E-04	Crotonase superfamily
Mdh	0,66	0,37	0,29	2,33E-04	L-lactate/malate dehydrogenase
AcsA	0,92	0,64	0,28	1,53E-02	Acetate-CoA ligase
XCV0738	1,08	0,80	0,28	1,89E-02	DUF2242
FadA	-0,22	-0,50	0,28	1,92E-03	Acetyl-CoA C-acyltransferase
XCV4170	1,58	1,30	0,27	2,43E-02	Ankyrin repeat-containing domain
XCV2929	1,24	0,97	0,27	4,83E-03	DUF541
GumB	1,33	1,06	0,27	6,65E-03	Polysaccharide export protein
Clp	-0,34	-0,60	0,27	4,92E-02	CRP bacterial regulatory protein HTH signature
XCV4245	-0,78	-1,04	0,27	7,49E-03	Universal stress protein family protein
GumC	1,09	0,83	0,26	3,03E-03	Lipopolysaccharide biosynthesis
XCV3451	0,91	0,65	0,26	4,96E-02	TonB-dependent receptor

-

-

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion
XCV3059	-0,28	-0,54	0,26	1,26E-02	Glycine zipper 2TM domain
Ohr	0,83	0,58	0,25	2,45E-02	OsmC/Ohr family
PotF	-0,28	-0,52	0,25	2,59E-02	Bacterial periplasmic spermidine/putrescine-binding protein
GcvP	0,58	0,34	0,25	2,81E-03	Glycine cleavage system P protein
XCV3693	0,34	0,09	0,24	5,57E-04	Histone-like protein H-NS
Prc	0,80	0,56	0,24	1,21E-02	C-terminal-processing peptidase S41A
XCV0393	0,91	0,67	0,24	1,36E-03	Putative secreted protein
XCV3157	0,61	0,37	0,24	2,19E-02	PspA/IM30suppresses sigma54-dependent transcription
Рср	1,79	1,55	0,24	1,07E-02	Glycine zipper 2TM domain
XCV0199	0,41	0,17	0,24	6,15E-03	Heme biosynthesis-associated TPR protein
CysK	1,40	1,17	0,23	1,20E-02	Cysteine synthase
XCV1161	-1,10	-1,33	0,23	3,18E-02	TonB-dependent receptor
XCV3071	0,78	0,55	0,23	1,49E-02	Histone-like DNA-binding protein
SecA	0,03	-0,20	0,23	1,39E-02	Protein translocase subunit SecA
McrB	0,98	0,75	0,23	5,82E-03	Penicillin-binding protein 1B
Dcp	-0,30	-0,52	0,23	4,89E-03	Peptidase M3A/M3B
XCV3117	0,80	0,57	0,23	1,71E-02	LPS export ABC transporter, ATP-binding protein LptB
XCV4134	-0,05	-0,28	0,23	4,36E-03	DUF885
XCV3679	1,37	1,15	0,22	1,31E-03	LPS export ABC transporter permease LptG
XCV3268	0,55	0,33	0,22	4,93E-02	Queuosine biosynthesis protein QueC
IunH	0,42	0,20	0,22	4,78E-02	Inosine/uridine-preferring nucleoside hydrolase
XCV3240	0,68	0,46	0,22	7,62E-03	Putative secreted protein, Tetratricopeptide-like helical domain
XCV3107	1,14	0,92	0,22	9,57E-03	DUF3108
XCV1228	1,14	0,92	0,22	1,36E-02	Metal-dependent hydrolase HDOD
AmiC	0,13	-0,08	0,21	5,74E-03	Amin domain; Cell wall hydrolase/autolysin, catalytic
XCV3333	-0,64	-0,85	0,21	4,30E-03	TonB-dependent receptor
CelD	-0,84	-1,05	0,21	8,01E-03	Glycoside hydrolase family 3
ColR	1,18	0,97	0,21	1,67E-02	CheY-like superfamily
FadB	0,13	-0,07	0,20	6,30E-03	Crotonase superfamily
XCV2283	0,08	-0,11	0,20	7,86E-04	Unbekannt
XCV1515	0,38	0,19	0,19	2,24E-02	Riboflavin synthase-like beta-barre; Oxidoreductase FAD/NAD(P)-binding
HtrA	0,78	0,59	0,19	3,45E-03	Peptidase S1C

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung ∆ <i>sX13</i> /85 10	p-Wert	annotierte Funktion
XCV1798	-0,67	-0,87	0,19	4,50E-02	LysR transcription regulator
XCV1134	0,49	0,30	0,19	3,28E-04	ATPase chaperone, AAA-type, MoxR
XCV2168	-0,06	-0,25	0,19	4,02E-02	Polymerase/histidinol phosphatase-like; P-loop containing nucleoside triphosphate hydrolase
XCV1232	-0,10	-0,28	0,18	9,21E-03	Alpha/Beta hydrolase fold; WD40-like Beta Propeller
TolB	0,65	0,47	0,18	2,50E-02	Tol-Pal system beta propeller repeat-containing protein, TolB
PhoP	0,93	0,75	0,18	7,12E-04	CheY-like superfamily, two component system regulator
Pgi	0,24	0,06	0,18	8,73E-04	Phosphoglucose isomerase
CbpA	0,15	-0,03	0,18	1,63E-03	DnaJ-class molecular chaperone with C-terminal Zn finger domain
XCV1537	0,81	0,63	0,17	3,12E-03	Outer membrane protein, OmpA/MotB, C-terminal
MscS	0,78	0,61	0,17	3,31E-02	Mechanosensitive ion channel MscS
XCV2503	1,02	0,85	0,17	1,94E-02	Pheromone shutdown, TraB, bacterial
GndA	0,93	0,76	0,17	4,35E-02	6-phosphogluconate dehydrogenase
DapB	0,45	0,29	0,17	4,39E-02	Dihydrodipicolinate reductase
MucD	0,06	-0,11	0,17	4,51E-03	Peptidase S1C
XCV3680	1,14	0,97	0,17	7,70E-03	Permease LptG/LptF-related
ModA	-0,24	-0,40	0,16	3,10E-02	Molybdenum ABC transporter, periplasmic binding protein
SahH	0,19	0,03	0,16	3,91E-03	Adenosylhomocysteinase
PyrC	0,44	0,28	0,16	9,40E-04	Metal-dependent hydrolase, composite domain
XCV3115	0,92	0,77	0,16	3,04E-03	Lipopolysaccharide assembly, LptC-related
XpsG	-0,92	-1,08	0,16	4,94E-02	Bacterial general secretion pathway protein G-type pilin
ThIA	0,34	0,18	0,15	4,71E-03	Thiolase
PilR	-0,40	-0,55	0,14	4,47E-02	Response regulator with Sigma 54 interaction domain
RaxC	0,17	0,04	0,14	6,20E-03	Outer membrane efflux protein; ToIC-like Type I secretion
Kbl	-0,23	-0,36	0,13	1,98E-02	2-amino-3-ketobutyrate coenzyme A ligase
TolA	0,68	0,55	0,13	1,39E-02	Tol-Pal system, TolA
Ctp	1,11	0,98	0,13	3,56E-02	C-terminal-processing peptidase S41A
XCV2955	-0,17	-0,29	0,12	4,79E-02	DUF885
UptE	0,94	0,82	0,12	6,49E-03	Outer membrane protein, OmpA/MotB, C-terminal
HsIV	0,12	0,01	0,12	4,02E-03	Proteasome, subunit alpha/beta
XCV0666	-0,06	-0,18	0,11	1,29E-02	Metalloenzyme, LuxS/M16 peptidase-like
XCV2676	-0,28	-0,40	0,11	2,49E-02	RND efflux pump, membrane fusion protein
GalU	-0,31	-0,42	0,11	8,17E-03	UTPglucose-1-phosphate uridylyltransferase

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung ∆s <i>X13</i> /85-10	p-Wert	annotierte Funktion
XCV0238	0,61	0,50	0,11	1,53E-02	DUF4156
GcvT	-0,26	-0,36	0,11	6,76E-03	Glycine cleavage system T protein, bacterial
FtsH	-0,19	-0,29	0,10	1,67E-02	Peptidase, FtsH
Slp	1,32	1,22	0,10	2,71E-02	Outer membrane lipoprotein Slp
RrrA	0,06	-0,04	0,10	5,79E-03	Regulator of ribonuclease activity A
GapA	0,06	-0,01	0,07	1,44E-05	Glyceraldehyde/Erythrose phosphate dehydrogenase family
DnaN	-0,05	-0,11	0,05	1,65E-02	DNA polymerase III, beta chain
XCV1580	-0,34	-0,30	-0,04	2,92E-03	Ribosomal protein L16 Arg81 hydroxylase, contains JmjC domain
XCV2900	0,07	0,13	-0,06	4,41E-02	Peptidase M13
LysS	-0,20	-0,14	-0,06	4,75E-02	Elongation factor P(R)-beta-lysine ligase
PepA	-0,44	-0,38	-0,06	1,10E-02	Leucine aminopeptidase/peptidase B
SucB	0,12	0,19	-0,07	1,72E-02	Dihydrolipoamide succinyltransferase
DnaJ	-0,23	-0,16	-0,08	3,53E-03	Chaperone DnaJ
SucC	-0,44	-0,37	-0,08	6,55E-04	Succinyl-CoA synthetase, beta subunit
XCV0481	0,32	0,40	-0,08	3,94E-02	Winged helix-turn-helix DNA-binding domain
Lpd	0,10	0,19	-0,09	8,69E-03	Dihydrolipoamide dehydrogenase
SlyD	-0,24	-0,15	-0,09	1,02E-02	Peptidyl-prolyl cis-trans isomerase, FKBP-type
DsbC	0,49	0,59	-0,09	4,90E-03	Thioredoxin-like domain
lleS	-0,14	-0,05	-0,09	5,37E-03	Isoleucine-tRNA ligase
XCV3992	0,19	0,28	-0,10	1,96E-02	Aspartyl/glutamyl-tRNA amidotransferase subunit B-related
OpdA	-0,32	-0,22	-0,10	1,38E-02	Peptidase M3A/M3B
PurL	0,09	0,19	-0,10	1,03E-02	Phosphoribosylformylglycinamidine synthase
AccA	-0,43	-0,33	-0,10	3,79E-02	Acetyl-CoA carboxylase, alpha subunit
LpdA	-0,23	-0,13	-0,10	5,54E-03	Dihydrolipoamide dehydrogenase
XCV3779	-0,41	-0,30	-0,11	2,65E-02	Biotin/lipoyl attachment; E3-binding domain; Chloramphenicol acetyltransferase- like domain
ТурА	0,05	0,16	-0,11	8,29E-03	GTP-binding protein TypA
lcd	-0,48	-0,37	-0,11	1,60E-02	Isocitrate dehydrogenase NADP-dependent, monomeric
NuoC	-0,50	-0,39	-0,11	4,00E-02	NADH dehydrogenase, subunit C
TktA	-0,30	-0,19	-0,11	2,97E-02	Transketolase, bacterial-like
AtpD	-0,16	-0,05	-0,11	3,27E-02	ATPase, F1 complex, beta subunit
MetK	0,30	0,41	-0,11	1,52E-02	S-adenosylmethionine synthetase
Rpe	0,03	0,14	-0,11	7,38E-03	Anthranilate synthase component I-like

Protein	Mittelwert ΔsX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion
GltD	0,63	0,75	-0,12	7,05E-03	Glutamate synthase, NADH/NADPH, small subunit 2
XCV0330	-0,60	-0,48	-0,12	3,49E-02	Aldolase-type TIM barrel
PurB	-0,27	-0,15	-0,13	3,09E-02	Fumarate lyase family
SerC	0,07	0,19	-0,13	1,61E-02	Phosphoserine aminotransferase
XCV0792	-0,26	-0,13	-0,13	1,46E-02	ABC transporter, ATP-binding protein, ChvD
NusG	-0,23	-0,10	-0,13	1,90E-02	Transcription antitermination protein, NusG
RpsC	0,46	0,59	-0,13	1,76E-02	Ribosomal protein S3, bacterial
HslU	-0,05	0,08	-0,13	1,81E-02	Heat shock protein HslU
SmpA	0,07	0,20	-0,13	6,32E-03	Outer membrane protein assembly factor BamE
XCV3060	0,70	0,83	-0,13	1,69E-02	Peroxiredoxin OsmC
AtpG	-0,13	0,00	-0,13	4,41E-02	ATPase, F1 complex, gamma subunit
Pgk	-0,44	-0,31	-0,13	1,20E-02	3-phosphoglycerate kinase
Ndk	0,87	1,01	-0,14	2,00E-02	Nucleoside diphosphate kinase
XCV2045	-0,20	-0,06	-0,14	2,35E-03	UPF0274
RpIC	0,25	0,39	-0,14	4,20E-02	Ribosomal protein L3, bacterial
AtpH	-0,15	-0,01	-0,14	3,19E-02	ATPase, OSCP/delta subunit
LysA	-0,10	0,04	-0,14	1,58E-02	Bifunctional diaminopimelate decarboxylase/aspartate kinase
XCV0587	-0,19	-0,05	-0,14	2,97E-02	NADH dehydrogenase/NAD(P)H nitroreductase, putative, RutE
XCV1609	-0,37	-0,23	-0,14	1,05E-02	RNA methyltransferase TrmH family
XCV0889	-0,75	-0,61	-0,15	7,43E-03	SGNH hydrolase-type esterase domain
GuaA	0,23	0,37	-0,15	1,44E-02	GMP synthase
NuoD	-0,56	-0,42	-0,15	8,01E-03	NAD(P)H-quinone oxidoreductase subunit D/H
XCV1233	0,29	0,44	-0,15	2,57E-02	Unbekannt
ArgD	-0,14	0,01	-0,15	2,45E-02	Aminotransferase class-III
MetG	-0,22	-0,07	-0,15	2,69E-02	Methionyl/Leucyl tRNA synthetase
Grx	0,18	0,33	-0,15	2,00E-02	Monothiol glutaredoxin-related
RpIP	0,17	0,32	-0,15	1,05E-02	Ribosomal protein L16
Frr	-0,16	0,00	-0,15	3,73E-03	Ribosome recycling factor
MrcA	-0,16	-0,01	-0,15	4,36E-02	Lysozyme-like domain; Beta-lactamase/transpeptidase-like
RpIX	0,07	0,23	-0,15	2,36E-02	Ribosomal protein L24
AspS	-0,17	-0,01	-0,15	7,93E-04	Aminoacyl-tRNA synthetase, class II
RpIJ	0,07	0,22	-0,15	1,79E-02	Ribosomal protein L10

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion
XCV3791	-0,90	-0,74	-0,15	3,77E-02	DUF520
RplF	-0,01	0,15	-0,15	1,73E-02	Ribosomal protein L6
PykA	-0,97	-0,81	-0,16	1,65E-03	Pyruvate kinase
RpsD	0,01	0,16	-0,16	2,80E-02	Ribosomal protein S4
ClpX	-0,20	-0,04	-0,16	1,94E-03	Clp protease, ATP-binding subunit ClpX
MiaB	-0,10	0,06	-0,16	6,79E-03	Methylthiotransferase/radical SAM-type protein
XCV1383	-0,31	-0,15	-0,16	9,22E-03	DSBA-like thioredoxin domain
MurA	-0,35	-0,19	-0,16	2,38E-03	UDP-N-acetylglucosamine 1-carboxyvinyltransferase
LeuS	-0,20	-0,03	-0,17	6,96E-03	Methionyl/Leucyl tRNA synthetase
ТорА	0,31	0,47	-0,17	7,13E-04	DNA topoisomerase, type IA
RpoA	-0,11	0,06	-0,17	4,50E-03	DNA-directed RNA polymerase, alpha subunit
GuaB	-0,03	0,14	-0,17	1,06E-02	Inosine-5'-monophosphate dehydrogenase
GyrA	-0,20	-0,03	-0,17	1,62E-02	DNA gyrase, subunit A
XCV1657	-0,36	-0,19	-0,17	2,91E-02	Unbekannte Funktion
RpsE	-0,02	0,15	-0,17	7,71E-03	Ribosomal protein S5
RplO	0,14	0,31	-0,17	2,39E-02	Ribosomal protein L15
FtsY	0,00	0,17	-0,17	6,57E-03	Signal-recognition particle receptor FtsY i
RpIA	0,10	0,27	-0,17	2,23E-02	Ribosomal protein L1/ribosomal biogenesis protein
XCV1241	0,56	0,73	-0,17	8,41E-03	Aldo/keto reductase
GlyS	-0,52	-0,35	-0,17	7,00E-04	Glycine-tRNA synthetase, heterodimeric
ArgB	0,08	0,26	-0,17	1,17E-02	Acetylglutamate kinase argB
RpIS	0,16	0,34	-0,18	2,82E-03	Ribosomal protein L19
Def1	-0,56	-0,38	-0,18	3,87E-03	Formylmethionine deformylase
GyrB	-0,34	-0,16	-0,18	1,13E-02	DNA topoisomerase, type IIA
XCV4379	-0,13	0,05	-0,18	2,09E-02	Acid phosphatase (Class B)
XCV0183	-0,09	0,09	-0,18	1,43E-03	Tetratricopeptide-like helical domain
PyrG	0,15	0,33	-0,18	2,27E-03	CTP synthase
XCV0468	0,46	0,64	-0,18	1,91E-03	Unbekannte Funktion
HisS	-0,47	-0,28	-0,18	4,92E-03	Histidine-tRNA ligase/ATP phosphoribosyltransferase regulatory subunit
PanC	-0,41	-0,23	-0,19	3,24E-02	Pantoate-beta-alanine ligase
XCV3816	0,11	0,29	-0,19	8,56E-03	Unbekannte Funktion
RpsA	0,04	0,23	-0,19	7,08E-03	Ribosomal protein S1

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion	
UppS	-0,26	-0,07	-0,19	3,99E-03	Decaprenyl diphosphate synthase-like	
XCV0120	-0,41	-0,22	-0,19	1,09E-03	Trans-2-enoyl-CoA reductase	
RpID	0,09	0,28	-0,19	1,23E-02	50S ribosomal protein uL4	
PurE	-0,33	-0,14	-0,19	4,90E-04	N5-carboxyaminoimidazole ribonucleotide mutase PurE	
NuoE	-0,70	-0,51	-0,19	3,36E-02	NADH-quinone oxidoreductase subunit E-like	
InfC	-0,34	-0,15	-0,19	1,01E-03	Translation initiation factor 3	
PepN	-0,43	-0,23	-0,19	1,55E-03	Peptidase M1, alanine aminopeptidase/leukotriene A4 hydrolase	
XCV2881	0,84	1,03	-0,19	3,79E-02	Lysozyme-like;transglycosylase SLT domain I, LysM	
RpsF	0,01	0,20	-0,19	1,24E-02	Ribosomal protein S6	
AtpF	-0,15	0,05	-0,19	2,00E-02	ATPase, F0 complex, subunit B/B', bacterial/chloroplast	
SpeA	0,00	0,20	-0,19	1,21E-02	Ornithine/DAP/Arg decarboxylase	
AtpA	-0,12	0,08	-0,19	3,58E-04	ATPase, F1 complex, alpha subunit	
XCV0588	-0,22	-0,03	-0,20	7,25E-03	Lipid/polyisoprenoid-binding, YceI-like	
XCV1059	0,44	0,64	-0,20	7,28E-03	Sporulation-related domain	
XCV0858	-0,78	-0,58	-0,20	5,06E-03	Phosphoenolpyruvate carboxylase	
RpIV	0,16	0,36	-0,20	7,65E-03	Ribosomal protein L22	
PrfB	-0,37	-0,18	-0,20	6,98E-05	Peptide chain release factor 2	
Pcm	-0,57	-0,37	-0,20	2,24E-03	Protein-L-isoaspartate(D-aspartate) O-methyltransferase	
PyrF	-0,22	-0,02	-0,20	2,37E-02	Orotidine 5'-phosphate decarboxylase	
HolC	-0,62	-0,42	-0,20	3,16E-02	DNA polymerase III chi subunit, HolC	
ArgS	-0,04	0,16	-0,20	4,91E-03	Arginine-tRNA ligase	
Slt	0,22	0,42	-0,20	1,24E-02	Lytic transglycosylase, superhelical U-shaped	
Brf	0,56	0,76	-0,20	1,31E-02	Bacterioferritin	
XCV0034	0,73	0,94	-0,20	4,71E-02	Alcohol dehydrogenase superfamily, zinc-type	
PurM	-0,24	-0,03	-0,20	8,43E-03	Phosphoribosylformylglycinamidine cyclo-ligase	
HemH	-0,17	0,03	-0,20	1,46E-02	Ferrochelatase	
RpIT	0,31	0,51	-0,21	3,98E-02	Ribosomal protein L20	
RpIE	0,07	0,27	-0,21	1,84E-02	Ribosomal protein L5	
RplB	0,05	0,26	-0,21	5,30E-03	Ribosomal protein L2	
FabG	-0,38	-0,17	-0,21	1,62E-03	Glucose/ribitol dehydrogenase	
LepA	0,12	0,33	-0,21	6,04E-03	Elongation factor 4	
EfP2	-0,43	-0,22	-0,21	4,96E-02	Translation elongation factor P/YeiP	
Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	p-Wert annotierte Funktion	
---------	---------------------	---------------------	--	----------	--	--
AroE	-0,65	-0,44	-0,21	1,70E-03	Shikimate dehydrogenase family	
Mfd	-0,24	-0,03	-0,21	1,99E-02	2 Transcription-repair coupling factor	
FabA	-0,48	-0,27	-0,21	1,73E-02	Beta-hydroxyacyl-(acyl-carrier-protein) dehydratase FabA	
RsmC	-0,02	0,19	-0,21	4,14E-02	S-adenosyl-L-methionine-dependent methyltransferase	
RpsG	-0,03	0,19	-0,21	1,10E-02	Ribosomal protein S7	
XCV0607	-0,63	-0,42	-0,22	1,90E-02	Putative secreted protein	
Wzt	0,14	0,35	-0,22	1,12E-02	P-loop containing nucleoside triphosphate hydrolase	
RpsH	-0,04	0,18	-0,22	1,04E-02	Ribosomal protein S8	
Tsf	-0,20	0,02	-0,22	1,72E-03	Translation elongation factor EFTs/EF1B	
XCV1400	-0,20	0,02	-0,22	6,47E-03	Putative secreted protein	
ParC	-0,22	0,00	-0,22	1,15E-03	DNA topoisomerase IV, subunit A, Gram-negative	
RplN	-0,05	0,17	-0,22	1,84E-02	Ribosomal protein L14	
XCV0247	-0,63	-0,41	-0,22	3,66E-02	SCP2 sterol-binding domain	
PheT	-0,15	0,08	-0,22	5,89E-03	Phenylalanine-tRNA ligase, class IIc, beta subunit	
RplW	0,10	0,33	-0,23	1,36E-02	Ribosomal protein L25/L23	
LpxA	0,20	0,42	-0,23	1,14E-02	Acyl-[acyl-carrier-protein]UDP-N-acetylglucosamine O-acyltransferase	
TrpC	-0,01	0,21	-0,23	1,02E-02	Indole-3-glycerol phosphate synthase	
XCV3726	-0,18	0,05	-0,23	2,43E-03	Tryptophan synthase beta subunit-like PLP-dependent enzyme	
PurK	-0,31	-0,08	-0,23	3,55E-02	Phosphoribosylaminoimidazole carboxylase, ATPase subunit	
XCV0837	-0,27	-0,04	-0,23	1,66E-02	DUF721/UPF0232	
Rpll	0,10	0,33	-0,23	5,58E-03	Ribosomal protein L9	
RplY	-0,03	0,20	-0,23	6,12E-03	Ribosomal protein L25	
RpsB	-0,10	0,13	-0,23	4,07E-04	Ribosomal protein S2	
AhpF	0,42	0,65	-0,23	3,76E-02	Alkyl hydroperoxide reductase subunit F	
Dxs	-0,12	0,12	-0,23	1,80E-05	Deoxyxylulose-5-phosphate synthase	
QueF	0,48	0,71	-0,23	2,69E-02	NADPH-dependent 7-cyano-7-deazaguanine reductase QueF	
RplK	0,04	0,27	-0,23	5,23E-03	Ribosomal protein L11	
FbaB	0,05	0,29	-0,23	3,51E-03	Fructose-bisphosphate aldolase, class-l	
ThiG	-0,45	-0,22	-0,24	1,44E-02	Thiazole biosynthesis	
XCV4152	-0,51	-0,27	-0,24	1,92E-02	P-loop containing nucleoside triphosphate hydrolase	
RpsJ	0,01	0,25	-0,24	1,41E-03	Ribosomal protein S10	
XCV2862	-0,07	0,17	-0,24	1,42E-02	Isopenicillin N synthase	

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion	
PurA	-0,17	0,07	-0,24	1,62E-02	Adenylosuccinate synthetase	
UbiE	-0,12	0,13	-0,25	3,74E-02	UbiE/COQ5 methyltransferase	
XCV0480	-0,96	-0,72	-0,25	3,05E-03	Thioredoxin-like fold	
RpoD	-0,33	-0,08	-0,25	1,72E-03	1,72E-03 RNA polymerase sigma factor RpoD	
XCV1646	-0,72	-0,47	-0,25	1,23E-03	Carbonic anhydrase	
FabH	-0,24	0,01	-0,25	1,63E-02	Thiolase-like	
GcvR	-0,02	0,22	-0,25	4,66E-02	Glycine cleavage repressor GcvR	
RplQ	0,03	0,28	-0,25	1,74E-03	Ribosomal protein L17	
ThrS	-0,25	0,00	-0,25	3,13E-03	Threonine-tRNA ligase, class Ila	
TyrS	-0,28	-0,02	-0,26	3,77E-04	Aminoacyl-tRNA synthetase, class Ic	
TrpS	-0,65	-0,40	-0,26	7,08E-04	Aminoacyl-tRNA synthetase, class Ic	
XCV1759	-1,11	-0,85	-0,26	4,07E-02	Protein-L-isoaspartate(D-aspartate) O-methyltransferase	
RpsK	-0,01	0,25	-0,26	5,19E-04	Ribosomal protein S11	
XCV0296	-0,65	-0,38	-0,27	2,73E-03	Aldo/keto reductase	
XCV2878	-0,19	0,08	-0,27	4,17E-04	Modification methylase HemK	
Cdh1	-0,87	-0,60	-0,27	1,13E-02	3-beta hydroxysteroid dehydrogenase/isomerase	
DnaX	-0,22	0,05	-0,27	1,15E-03	DNA polymerase III, subunit gamma/ tau	
ArgC	-0,25	0,02	-0,27	1,84E-02	N-acetyl-gamma-glutamyl-phosphate reductase, type 1	
XCV1750	0,11	0,39	-0,27	3,24E-03	3-deoxy-8-phosphooctulonate synthase	
RdgC	-0,78	-0,51	-0,27	2,42E-02	Putative exonuclease, RdgC	
RplR	0,06	0,34	-0,28	8,30E-03	Ribosomal protein L18	
GlyQ	-0,40	-0,12	-0,28	2,14E-02	Glycine-tRNA synthetase, heterodimeric	
XCV3527	-0,62	-0,34	-0,28	3,23E-03	PUA-like domain; EVE domain	
RpsM	-0,07	0,20	-0,28	1,76E-02	Ribosomal protein S13	
HisIE	-2,21	-1,93	-0,28	2,68E-02	Histidine biosynthesis bifunctional protein HislE	
InfB	-0,10	0,18	-0,28	8,80E-04	Translation initiation factor aIF-2, bacterial-like	
XCV0102	-0,47	-0,19	-0,28	4,67E-03	TonB-dependent receptor	
Ffh	-0,58	-0,30	-0,28	4,66E-03	Signal recognition particle, SRP54 subunit	
DeaD	0,01	0,30	-0,29	6,29E-04	ATP-dependent RNA helicase DeaD	
PolA	-0,34	-0,05	-0,29	1,68E-03	DNA polymerase A	
RluB2	0,17	0,46	-0,29	5,88E-04	Pseudouridine synthase, RsuA/RluB/E/F	
NrdA	1,40	1,69	-0,29	2,40E-03	Ribonucleotide reductase R1, class I	

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δs <i>X13</i> /85-10	p-Wert	annotierte Funktion			
SerS	-0,37	-0,07	-0,30	2,24E-02	Serine-tRNA ligase, type1			
NusA	-0,46	-0,15	-0,30	9,03E-04	Transcription termination/antitermination protein NusA, bacterial			
YidC	0,04	0,34	-0,30	3,36E-04	Membrane insertase OXA1/ALB3/YidC			
NusB	-0,38	-0,07	-0,30	5,94E-03	5,94E-03 NusB antitermination factor			
HsdR1	0,29	0,60	-0,30	1,19E-03	Restriction endonuclease, type I, HsdR			
RpIM	0,09	0,40	-0,30	7,78E-03	Ribosomal protein L13			
llvG	-0,01	0,30	-0,31	2,46E-03	Acetolactate synthase, large subunit, biosynthetic			
SerA	-0,16	0,15	-0,31	4,00E-03	D-isomer specific 2-hydroxyacid dehydrogenase, catalytic domain			
GInB2	-0,08	0,23	-0,31	6,44E-03	Nitrogen regulatory protein PII			
PheA	-0,27	0,04	-0,31	1,35E-04	Bifunctional P-protein, chorismate mutase/prephenate dehydratase			
XCV4158	-0,10	0,21	-0,31	3,54E-03	Thioredoxin-like fold			
Rho	0,33	0,65	-0,31	7,22E-04	Transcription termination factor Rho			
RpsN	-0,08	0,23	-0,32	1,41E-02	Ribosomal protein S14			
PurH	-0,37	-0,05	-0,32	3,03E-04	AICARFT/IMPCHase bienzyme			
MreB	0,55	0,87	-0,32	3,93E-03	Cell shape determining protein MreB/Mrl			
Gst2	-0,67	-0,35	-0,32	6,29E-04	Glutathione S-transferase			
VacB	-0,52	-0,20	-0,32	2,31E-04	Ribonuclease R			
RhlB	-0,51	-0,19	-0,33	2,69E-04	ATP-dependent RNA helicase RhIB type			
RibH	-0,26	0,07	-0,33	8,50E-03	6,7-dimethyl-8-ribityllumazine synthase			
DnaE	-0,26	0,07	-0,33	6,09E-06	DNA polymerase III, alpha subunit			
LeuA	-0,44	-0,11	-0,33	1,03E-02	2-isopropylmalate synthase, bacterial-type			
BgIS	-0,97	-0,64	-0,33	2,75E-03	Glycoside hydrolase family 3			
FabF	-0,32	0,01	-0,34	3,82E-03	Thiolase-like			
XCV1277	-0,12	0,23	-0,34	3,67E-03	DUF2007			
FabD	-0,33	0,02	-0,35	2,92E-03	Malonyl CoA-acyl carrier protein transacylase			
XCV4032	-0,51	-0,17	-0,35	5,56E-04	Glucose/ribitol dehydrogenase			
XCV1491	-0,37	-0,02	-0,35	2,48E-03	Pectin lyase fold/virulence factor			
ArgH	-0,27	0,08	-0,35	6,86E-03	Fumarate lyase family			
XCV3608	-0,95	-0,60	-0,35	4,13E-02	Signal transduction response regulator; CheY-like			
XCV2643	-1,31	-0,95	-0,36	3,27E-03	Putative secreted protein			
XCV0938	0,11	0,47	-0,36	7,74E-03	Class I glutamine amidotransferase-like			
SdhB	-0,97	-0,60	-0,37	6,25E-05	Succinate dehydrogenase/fumarate reductase iron-sulphur protein			

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85-10	p-Wert	annotierte Funktion	
XCV0076	0,21	0,58	-0,37	1,52E-02	NAD-dependent dehydratase	
XCV4079	-0,71	-0,34	-0,37	3,81E-02	HAD hydrolase	
XCV4151	-0,35	0,02	-0,37	1,17E-02	Phenol hydroxylase reductase	
RbfA	-0,20	0,18	-0,37	2,21E-06	Ribosome-binding factor A	
OstB	-0,70	-0,32	-0,38	3,63E-02	HAD-superfamily hydrolase, subfamily IIB	
RhIE	1,42	1,81	-0,38	6,07E-03	P-loop containing nucleoside triphosphate hydrolase	
PurF	-0,10	0,28	-0,38	1,40E-05	Amidophosphoribosyltransferase	
XCV1517	-0,87	-0,48	-0,39	4,50E-03	Iron-dependent fumarate hydratase	
SufC	0,01	0,41	-0,40	2,35E-04	FeS cluster assembly SUF system, ATPase SufC	
PheS	-0,24	0,16	-0,40	3,44E-03	Phenylalanyl-tRNA synthetase, class IIc, alpha subunit	
XCV3971	-0,96	-0,55	-0,40	2,77E-02	HAD-like domain	
XCV3335	-0,36	0,04	-0,40	3,91E-04	Glycoside hydrolase family 15/Phosphorylase b kinase regulatory chain family	
XCV3739	-0,18	0,23	-0,41	2,04E-03	HAD hydrolase/ Phosphoglycolate phosphatase	
CspA1	0,26	0,67	-0,41	3,05E-03	Cold shock, CspA	
XCV0079	0,68	1,09	-0,41	7,64E-03	Putative host attachment protein	
XCV2839	-0,28	0,13	-0,41	2,28E-03	Ribosome maturation factor RimP	
XCV3725	-0,02	0,39	-0,42	1,89E-02	Cys/Met metabolism, pyridoxal phosphate-dependent enzyme	
XCV3058	-0,59	-0,17	-0,42	1,58E-03	Phenazine biosynthesis PhzF protein	
XCV1043	-0,68	-0,26	-0,42	2,80E-04	Putative secreted protein	
MetN	-0,22	0,21	-0,43	7,40E-03	Methionine import ATP-binding protein MetN	
XCV4096	-0,70	-0,27	-0,43	1,27E-03	PA domain, peptidase M28	
XCV0659	-0,89	-0,45	-0,45	1,13E-03	Mitochondrial biogenesis protein AIM24	
ParE	-0,43	0,04	-0,47	2,95E-04	DNA topoisomerase, type IIA	
GInA	0,25	0,72	-0,47	7,82E-05	Glutamine synthetase type I	
MltB	-0,48	-0,01	-0,48	2,07E-02	Lytic transglycosylase MltB	
XCV0847	-2,13	-1,65	-0,48	1,89E-02	NAD(P)-binding domain	
FruK	-1,28	-0,80	-0,48	2,61E-02	Fructose 1-phosphate kinase	
UvrD	-0,05	0,44	-0,48	1,43E-03	DNA helicase, UvrD/REP type	
KdsB2	-0,25	0,24	-0,48	1,26E-02	Acylneuraminate cytidylyltransferase	
XCV1057	-1,06	-0,57	-0,49	2,78E-03	Histidine phosphatase superfamily	
FruB	-1,27	-0,78	-0,49	3,00E-03	Phosphoenolpyruvate-utilising enzyme	
XCV2888	0,04	0,55	-0,52	3,72E-04	Alpha/Beta hydrolase fold	

Protein	Mittelwert ∆sX13	Mittelwert 85-10	log2-fache Änderung Δ <i>sX13</i> /85- 10	p-Wert	annotierte Funktion	
XCV0983	-0,18	0,34	-0,52	1,36E-02	Ribosome-binding ATPase YchF/Obg-like ATPase 1	
AroA	-0,22	0,30	-0,52	4,72E-03	3-phosphoshikimate 1-carboxyvinyltransferase	
Gcd2	0,01	0,54	-0,52	5,44E-04	PQQ-dependent membrane bound dehydrogenase, glucose/quinate/shikimate-related	
PrsA	-0,34	0,19	-0,52	2,70E-05	Ribose-phosphate diphosphokinase	
HisG	-2,36	-1,83	-0,53	1,53E-02	ATP phosphoribosyltransferase HisG	
PepN2	1,00	1,53	-0,53	1,51E-03	Peptidase M1, alanine aminopeptidase/leukotriene A4 hydrolase	
XCV0749	-0,53	0,03	-0,56	3,33E-02	Putative S-adenosyl-L-methionine-dependent methyltransferase MidA	
HrpXv	0,97	1,54	-0,58	1,54E-03	AraC-type DNA-binding domain-containing proteins	
PyrH	-0,36	0,26	-0,62	1,18E-05	Uridylate kinase	
OprB	-1,39	-0,69	-0,69	1,29E-03	Carbohydrate-selective porin, OprB	
XCV0838	-0,36	0,36	-0,73	2,79E-03	Membrane-bound metalloendopeptidase	
XCV4400	0,34	1,08	-0,74	1,16E-04	unbekannt	
TrmE	-1,59	-0,80	-0,79	4,82E-02	tRNA modification GTPase TrmE	
FleQ	-0,43	0,37	-0,80	4,03E-03	flagellar sigma-54 dependent transcriptional activator	
BioB	-1,04	-0,18	-0,87	1,01E-02	Biotin synthase/Biotin biosynthesis bifunctional protein BioAB	
XCV4399	0,29	1,28	-0,99	3,75E-03	P-loop containing nucleoside triphosphate hydrolase	
XCV3765	-1,01	0,02	-1,03	7,35E-05	Chorismate mutase	
Suh	-4,90	-3,79	-1,11	1,12E-02	Glycoside hydrolase	
XCV2015	-0,21	0,92	-1,13	1,17E-04	Two-component response regulator	
AsnB	-0,92	0,24	-1,16	8,92E-05	Asparagine synthase	
XCV1275	-1,81	-0,48	-1,33	1,01E-03	Putative secreted protein	
XCV2510	-3,26	-1,84	-1,42	3,55E-04	TonB-dependent receptor	
XCV0915	-2,29	-0,72	-1,57	1,88E-03	Transcription regulator HTH, LysR	
XCV3572	-1,29	0,29	-1,58	1,13E-06	TonB dependent receptor	
HrpB1	-1,31	0,71	-2,02	1,20E-04	Type III secretion system, HrpB1/HrpK	
ThiC	-10,00	-2,22	-7,78	2,20E-04	Thiamine biosynthesis protein ThiC	

Abbildung 42: *In vivo*-Affinitätschromatographie mit modPP7::sX13 Affinitätschromatographie von *in vivo*-synthetisierter modPP7::sX13. Die Affinitätschromatographie wurde mit Gesamt-Proteinextrakt des Stamms 85-10*Δ*sX13 p_{nat}(*modPP7*::sX13) durchgeführt, welcher in NYG angezogen wurde. Als Negativkontrollen dienten 85-10 pBRM-P. An modPP7::sX13 gebundene Proteine wurden mittels Maltoselösung eluiert, durch SDS-PAGE aufgetrennt und silbergefärbt. Das Dreieck kennzeichnet die vermutete Größe von PP7::MBP::His₆ Protein (55 kDa). Aufgetragen wurden das eingesetzte Gesamt-Proteinextrakt (Input) sowie die Elutionsfraktionen (Elution). Das abgebildete Ergebnis wurde in einem unabhängigen Experiment reproduziert.

STO- Nummer	benachbarte Gene	chromosomale Position ^b	bestätigte Länge ^c	Länge bis zum nächsten	TSS ^d
a			81	ATG/GTG/TTG	
0136836	XCV0062-XCV0063	c7516075885	242	256	(c77193)
0055942	XCV0209-XCV0210	245835246176	114	116	244587
0028571	XCV0214-XCV0215	253397254119	241	306	252996
0056540	XCV0282-XCV0283	328488328718	77	98	-
0065083	parE-pyrG	19716931971767	25	59	1971505
0094126	XCV2618-XCV2619	c29527852953012	76	107	c2953172
0043902	XCV2723-XCV2723	30884333088558	42	70	3087900
0089084	XCV3389-virB6	38751743875506	111	161	-
0020369	XCV3391-XCV3392	38783983878616	73	141	-
0143360	XCV3494	c40051144005254	47	V117/M153	-
0087222	XCV3657-xpsD	42129354213111	59	99	-
0022971	XCV3783-XCV3784	43680374368486	150	191	(4367263)
0050568	rsmC-XCV3801	43862784386670	131	157	4385950
0112004	kefC-XCV4167	c47712314771605	125	148	(c4775972)
0111304	xylB2-XCV4282	49161884916382	65	*	-
0081693	XCV4416-XCV4417	50930105093345	112	141	-
0169438	XCVd0054-XCVd0055	6428364558	92	132	-
0166803	XCVd0124-XCVd0125	135311135631	107	129	-
0173148	vor XCVc0001	632733	34	109	-
0172926	tnpR-XCVc0009	68537056	68	76	-
0174118	XCVc0025-XCVc0026	2031120679	123	138	-
0175626	nach XCVa0002	16941852	53	60	-
0007106	as-gcvP	13968221399281	820	837	-
0152041	as-XCV2096	c23921372392226	30	39	-
0013218	as-glkI	25690512569479	143	162	-
0122029	as-XCV2593	c29225352923308	258	258	-
0080326	as-XCV4209	48326014833200	200	203	-
0166979	as-XCVd0155	165011165133	41	L51/M60	-
0049655	as-xadA1	42278154232425	1552	1612	-

Tabelle 19: Neu identifizierte Proteine - Zusatzinformationen

^a STO-Nummer = Bezeichner des Datenbankeintrages der *in silico* translatierten Proteine ^b chromosomale Position = Koordinaten der Proteine innerhalb des *Xcv*-Genoms ^c bestätigte Länge = Länge des Proteins, welche mit Peptiden abgedeckt wurde ^d TSS = Transkriptionsstarts in der Nähe des möglichen Translationsstarts des Proteins c = komplementärer Strang, () sehr weit entfernter TSS, - kein TSS zuordenbar

138

>STO 0089084

MGAASHNAHAEQGCPPGQYPIGGQQGVAACAPIPQDNPIQQAPRPSGKWLKTWGAIASDGGD NLGVSKGKLKKTEAQEEALEKCRAASGKECTIDFTYENQCASIAEPHLGERAVTGMLAYARG PSKEVASSDVISRCQKDNKGSECRVIYTACSEPIFKPY

>STO_0043902 MNEHSHLVYVDEESRKLLIYRLSEKGKKTLLTDISLPIEQGWSSDLESIAKQLGENLLMDSPAA RRLLDI

MKLKFCGSAAVVLLVGACATHADWLVTKASRADGVIALSYERNEFQRPDLSDQQAIQLAEQ KCRNWGYKEAEPFGSQSTECLSRRGFGNCGSRRVTVEFQCIGSLGK

>STO_0094126 MKLKFCGSAAVVLLVGACATHADWLVTKASRADGVIALSYERNEFORPDLSDOOAIOLAE0

>STO_0065083 MKFKHILMLTLGAAAVAALPAMAQAAPQQTGQGAAAQKADDAKAKTEAERKAERRAAAA

>STO_0056540 MQQAGKFCQAKNGKEAFLLQRDGSEAIPGTINNSGHLRQAARGATGTIYFQCGAPEPVASAS DSAAKYENLAKLKALLDAGAITHGEYDAE

MVHFSADVPLNGTCDEWPRRPGHAGRELLVRTRTLVWASFVHEKQRQARRDHYLHFGTVS GAFPKSVEVADPFAPGSELATPRRQRIEAIDEHVIGSSAVFNHMLWKVLDPQSDLRSCYDHHR SLMRVLDEPDQHDPLRLMHAYGAKPSLDPLGALSARVRLAKHAGDNTTAFAAGRDITKALC YLSLSKEFRGSIEEMVIVVVRTVLAGLGDGSARFAPHVEAYLPFIEVLWKMQENLNSVTGRSP LGFEAHGWHLYVEAFSRLIEAFCQPGAASREELEEAVETALGECWIARHRQDVTPFERV

>STO_0028571

AQKPKADSAPREEEEEKPAR

>STO_0055942 MRQVHPNLIQEGRLWSGAFTPTQKDSGFLSADRSSIITPRDAYERYLKTKLLNQAGGTWAVS VSEFKSIDLLCYSDPVQDNTAHALVDYSSKEPSVRKILGKAAYARASARGRLHP

>STO_0136836 MTKLIECGGFSHPKNQGGVNQDSWLLPRKLGSGYIMAVADGVGSYSGAELASRAVIRYLSEI KTQPSDGLIVSNIMRDCREEISRISEAKPALKDAATTLTFCHLSDKGLLIGHVGDSRAYLRSNN KLIQITKDHTQHQNLFDQGIYTKRELKNHSGENILTSALSSRIEPNFEDIFIPHYALGDLTGVEIF LMSDGAHRFWTSRPQFSISTLASPTRFSSALKRRIDRSGATDDQTLVCGKFVLTSKDAIQDRLF

Proteinsequenzen der neuen Proteine bis zum nächsten Start:

>STO_0020369

MRNFQRTAKVAVGLLGLALSYSAAACCPDVGHSPAAATTGLGASRPSATDLSAVSTLHVYTF ERDGIRYLQVNGPSGDVRTAIGWIDGTRWVMPVGIDADRTTILAAGSRPSGTVVYEGDGMTV LLQTLPRGNSWLIVPKN

>STO_0143360

MSPQSLPLRDVHLPPSPSWWPLAPGWWLVIAVVVLVVGSAWVWWWRRRQCQRRWLAAFD AELARATTPAQRLAAVSVLLRRAARRVDPQADRLQGEAWLQFLDGRKRKDQVFSQGPGRA VLEGGFQRAPTISDLPAVEALARQRFVALMRGRR

>STO_0087222

$MFLGKRFGLGFTLLGFSFFSGNGLAQTYVPVYQDFYGTARWNSLEIALEKAQLNAIGYARVK\\NFGECVFVGYQWWRPNTYDPNYYEVTAAYTCVQYVRG$

>STO_0022971

MTNFLNRSSYFRLAITLLAALIAPSVYANKISAATAADAARTFELAEEISRNLKKSPSEFINSWP GARISTPNLKNEGTYKVSGGILKIGDHLTAKNSSISISADKKNIESVSLNLEGSCVSRQDFKSRY PNYLISNIPRGQSSSETLTLAVVKNQEKMEFSFPETSPDCLSSIRLAPADPQTLKAAEAIN

>STO_0050568

MRYRKYFGLFSATLFLATSAYGQNYRAATTPSSSLVTTQKSLYRAGSNESQSIVAWIKQHSPK YPPLLPTSSLSVSRSIVSTGLISIQSGPDGPPVPLPASGVPGEKITIRNEFPGGAFEQWDYEWAGQ SGGSWQLTGYQFSAPTSKGDNDNPRQPF

>STO_0112004

MRAFLHEILKIFKRNSSLSRLERLVLDSIAGRLPVSERELWSLQVSKINKVQRLPQGVEVNFYR ISRGRPTFDDEIAFKNRTQELMVASLVIKACNQELAAKVWCVRGFIFSIEYEGAPAFFDEILYS DEVITDVRISLHENLSASII

>STO_0081693

MSKGLAATLALVGVAVLPLSSCANADNARTTSTQEDPSMTGASPMFDEIYASQKPVRFEQID VSNIVTKYIPLGTTKASVLETFGKSPTSKVVEDTESKIVVRDNKGQAMLDPDARSVVMTFSLD ADGKVTHVEAVHIKNQ

>STO_0169438

MSLISSEVVKVWQLCDADERLEPIVPKFQLLVDVGKEVARVLGLDYKQDGAEFTLEPVPDSA AQQWKYVYSASGGPTGLYEQLGFESFRIALDIPRRDLPDSAFAPDDVLDRVRDHMAGHVDN LGLVLSPSP

>STO_0152041

VRRRCCSGRVAACTMAAGVLAGKCASNAAASASARRRPM

LRGLAQTGAAHHGHVHPADRQDRGRAVTCSAHHADIAFAAQRLRQIRGQVGLHRTRAHAR AAAAVRNAEGLVQVEVRDVRAPLAGLGDTDQRVHVGAIGIDLAAMRMHRFADRHHVFFEH AVGGRVGDHQRRQAVGIFFRLGADVIHVHIAVGIALGHHHGHAAHLRRRRVGAVRRFGNQA DIAVRFAAGAVIGADRQQAGVFALRAGVGLQAHRVVAGALDQHRFQLVDQLRVAGRLLGR CKRVDRTELRPGHRDHLGGGVELHRATAQRDHGAIHRQVLVGQRAHVAQQLVLAMVGVEY RVGQERGGAQQALRQCVGGGGIERVHIRLRTEQRSQCDHIGARAGFIQADADRFAVDRAQV DAGRTRTRVDGIGIDRLDVQGVEEALADGNAGAAQCRRQDRGQAMGASRNAGQAVGAVV DRIHRRHHRQQHLRGADVGRGFFAADMLLAGLQQQAIRRVAGGIDRHADQTARHRALVGIA AGHERGMRAAETERHAEALRVADHDVGAPFPRGGDQRQCKQIGGHRDQAALCVHGVCQCS VIADMTEAVRVLQQHAEALGLQRFFRRADAQHDVQRLGACAQQFQRLRMHCVMHEERVGP GLGRTLGQRHCLGRGGGFVQQRGVGDLHAGEVGAQGLEVDQRFHAALRNFRLVRCVGGVP GRVFQDVAQDDLRRVGAVVALADEVAEHGVLVGDGADLGQRFFFGDRLGQRQRRRRLDVA

>STO_0175626 MPSDQTRVNLTLPADVVQVLDRLGKVTGAGRATIIREWLIEGRPMFAEMATAAEMAHERQ

MEAEVDQPLGDVLGADAAGLLQRAHVEDALVRHQSVAAGIQRLVVRRQALGDVVGVEQCH

>STO_0174118 MNEEQEIAEARRKRELYEAFWEESSDAIKPFREFWRKSGDTIREEAGKLDAVLGGRTPVSDQ AVADCRQAVMRLHQFAHAISELSVGSIAKIRNDLCQRAMADIVVRAMDAAKKAERDMATIY QWVAAAERPSTSQQ

>STO_0172926 MKVFLHTRSPEHRDWLNEKREFARIPVVGEHVAISSDGPWFKVELVVHTPFPCEFDAEVYAV AVDHLQVLNEALDG

>STO_0173148 MSTLSDNLTARRELLGLNIPQVHAALTLRGVCVAESTVYSWFNGSRGVGKISHLKALCEVLQ TDLNSLTDGTLGKAAGSVAADIVRELAGLSEVQQQAILSTIKAMKAA

>STO_0166803 MSTEPRPLDPEKLLDVLKSIDRSLFQLAAAARLPHVYTDTQTDSLKEELGRLKYADKTAYEDL TEASNEVSKDGLTYDQRVSKLGEPEAERIYAPVRRASQVRRDSSVALAKFREEHPLISALVDG TKS

>STO_0007106

141

LRTDRRTAAEEAGRIAQRLEQLAAIDCIGAGTGNRARTHIDDTARGRAAAAIAAAHRHRIGIV GARARAQCHRIGTAGASVGTQCHGIAAAFADEGVVAQRNAVFADGIGLPAHRGAVHAAGA AIHTHCAGTGGRGTAAGGNRHAACATGGGAGTCRRGAIASGRGHAVAGGLEHAAGGLHIG RQCIQLPLVDRVGGRLAGADVDDAARGRTTAAIAATDRHRVGFVGARARPQCHRIGTGRTRI GTQCHAVDRALAHERVVAHRDCIFADGIHLTTDAGAVDAGRRRIHANRTGADRIGAAAAAQ CQGVVCKRRCALAQGAGIDAVGIGIPADGGGVVRGGPGTGTECRCARAGGTCRDEPEERAA AHGHALVASGFAEFADGDGAGTGGQRNGADGGAVIARRDRAIAQCRRQAAGRFAVTTEGG ATDIGCGTAETRSDVLIVGRHRFAAQRCGVGRNRLRACTICRGADIAGQRVAADRAAVFAQR LGIAAQRCRAGAASQCAHAHGRGVVHHGLRARTQCGGAGTGGIGTLACRQRVIALDVGTCI AIGAAAGLEVFARGCAGFGNGVELVQIHRVGALRAGRHVGDLTLVAGTAHRHREVAIGHRI GTERHAAFAGGLGKITQRSAVETRRPRRATDGSGVIAGGFGRQQTEQGAADRHAVVAAGHT ALAGGNTVGTRSGRIAAHGDGIGAAGSAEITQRGAVETAGAGIPAQGGGVVGRRLGTEAERR GAGAVGNALRADGGGRFAAGAGEIAHRGGFAALRFAQCANCQRPIAIRTGGGAECGALRTG

MLLACRSPLLTGSPAFALRGSALTTRPTGTSTGSAPGNARRSSPSVNLSSSRSTNPRGDW

>STO_0049655

>STO_0166979

>STO_0111304 APPSPARPPPRPGAARWRGCRRGSARRCRAAAARRCSRCPGAAGWSRTPGVRRRRCSRTRH AARPPQNRRARQRRGRRRRRNGRPWSTACSPRAAHRPGHDPDALRSARSRSRARYRNGECR PRTRLRPLPVRLLRPLPCTGCRSGRHRSPVQKAARPCRPDAAAPRRSCAPLREQGAGAGA

LIVTNTPLSGRRGR

>STO_0080326 VRRCAPGACTRASSRPKVRATAPIMRSIGVPSCVPEVKYTPRSNGAGPYALPAKVPSTNCRAR SPSAATCCGNDRIAARRRRSRSRCRRSNRRALSCCCSTPNSSANLRAACPSRVCASANVMPHT WLRCAGVRSSKNSPKPPIRSHLVKIRYTGTLACNCSASSSSRRRRIACMWVSRSASSSSNRSDM

ACFFHQVSVAWPP

>STO_0122029 MAELLGQGIAEAAGPHAGNRQPPGRHDQRLRLHGPLAGLDLEAVAAALDRQHVALGADLH AGRIAFVQQHAHDLLGGDVAEQLAQLFLVIGDGMPFDHLHKIRRAVARQGGFAEMPIGRNE VARRGAGVGEIAAPATGHQDLLADLVGMIDHHHLAATLAGSEGAHQPGSAGADDQHVATH AHSAGACRTIGVRVTLPWSASICTSPSWMITSNRMPRWISAPSASVACESSSITRRLRYRPMAL

>STO_0013218 LIDRRRPPAGAAHLHHVLRAQQADGHGLRGKVVDQMQGTETQHGGGGARARDHPGMVGDA CLVAIHAACHGEHALGGLHADLVEVIARGFAQRTEVHHGKFARGVIQQRHRSVDIGQREARI GSADIGNQHRLGRSGHALFPCASVAGGRKWAADSGPQLPAG RFAFATHGHGIVAAGLAEGAIGHAAKAAGRRVVTGRIGVLRSGAGAAADGHRTDGRGLAAG PERTAVIAVGRGIGAGGGRVFALRIGGAGAGAGAQVQARGIFSGASHGVELVQVHRIGALGAGR NIGNLPLGSGCTHRHRVGTIGERTCTQRNAIVGNCHRTAAEAHAPRARGVGLPAQRDALDTR RIGLAANRRGACTRRKGVSAQGDRIIVVCPRICAYCHRRIVDCPRICAHRRAVATIGHTFGTDR GVAIHARHAFNTDRRSAATGNAGSANGRAEISRRHAVATQRGGVEISGTAVVPHCRGRVGT GAGIAANGRGVRIGLAACAERNSLVAFSLRFPTQRNALIAGRPGLAAERNGTRTICICVGAHR NRAGIGRSRIRAHCRAVVTVGETFGTDGGTTVTPRHTGKTQRGRCSSIADGFVADRRCTAPIG DAGAAHGGAEISRCVAVAAECGGVVIAGTAVETDCSGIGDAGVGIAADGRGAQRSGLTART ERNAVIARCVAGAAQRNGALAEGAAVCADRRGCSAARRGIGAESSAVGTEGHACTTHGGTG VAECHATHTQCRGVRAIGDALVTQRRRAAGGGLARAAHCGAGIARGAAVAAKRRGVLRHR SAVEADCRGVVGGGIGATANGSCTLRRCRAAGTQRGAVVAVGQCVGTGSDAVGALCDRNA IAGCDEGARSGGRHIGHRSELIEIHRIGALGTCRHMGDLALCAISTHRHGIGARGDRVGAQRH

Tabelle 20: Korrigierte Proteine - Zusatzinformationen

STO-Nummer ^a Gen chro		chromosomale	annotierte	bestätigte	Länge bis	TSS ^d
		Position ^b	Länge	Länge ^c	ATG/GTG/TTG	
0027982	XCV0114	130631132112	409	494	526	-
0056329	XCV0252	292545293186	103	214	225	-
0056337	dcp2	295098297215	697	706	727	295006
0162384	XCV0352	c403872404171	98	100	131	c404292
0107340	hrpD6	c469724470224	85	167	239	-
0002631	xopD	486784488823	545	757	760	486511
0057941	hsdS1	576612577958	419	449	457	(573662)-
0003072	trpC	584455585336	265	294	376	(581801)
0106644	XCV0529	c595352597223	532	624	658	(c598012)
0030344	XCV0537	602135603208	308	358	364	-
0133900	XCV0557	c624664625527	247	281	330	-
0003611	XCV0612	693670694671	326	334	*	693668
0105852	pheC	c736187737158	266	324	*	-
0032290	XCV0855	974414975196	260	261	279	973732
0059889	XCV0861	983577986486	660	968	986	-
0061379	XCV1116	12476311248212	193	194	208	-
0034580	raxB	14018391404616	718	926	*	-
0156885	XCV1265	c14236801424381	208	234	265	c1424474
0007939	XCV1378	15583481558917	162	190	206	-
0156077	XCV1397	c15775801578143	185	188	200	-
0036069	dapD	16729041674070	285	389	398	-
0036594	grpE	17613741762582	172	403	*	-
0154666	hutU	c18897841891697	555	638	662	(c1895289)
0099525	XCV1716	c19351131936231	272	373	394	-
0010368	XCV1807	20367522038401	497	550	567	-
0098447	XCV1885	c21320242133079	188	352	385	(c2133276)
0125297	flgG	c23103612311182	261	274	284	-
0125169	trxB1	c23386812339733	322	351	*	-
0040728	exbB2	25840912584648	183	186	209	2583951
0150414	XCV2312	c26458052646305	150	167	172	-
0122465	XCV2513	c28377672838294	89	176	*	c2838360
0094634	cydD	c28575442859259	570	572	578	-
0094553	argB	c28744552876008	426	518	609	-
0149090	XCV2552	c28802762882276	207	667	677	-
0122245	dksA	c28845372885217	147	227	244	c2885613
0093090	gumE	c31629563164299	433	448	487	(c3166096)
0120648	infC	c31739923174486	156	165	182	c3174731
0091857	XCV2971	c33786143379942	375	443	461	c3380658
0073386	cheB2	34424163444254	369	613	*	-
0019248	XCV3212	36575083659298	518	597	*	-
0020234	XCV3377	38627113863067	103	119	122	(3862413)
0075628	XCV3419	39054213907445	557	675	720	-
0114862	xpsM	c42163814217121	217	247	247	(c42230/4)
0114852	xpsK	c42181364219170	301	345	428	-
0114582	rmlD	c42823004283133	2/3	2/8	500	c4283564
0086369	XCV3785	c43694484371499	616	684	688	c43/1//2
0085725	rpoD	c44909004492780	625	627	630	c4492811
0078964	rho	45398944541690	420	599	599	-
0053728	guaA	49666254967413	256	266	275	-
0053999	XCV4380	50427655043472	222	236	253	-
0166278	XCVd0050	5663057289	217	220	228	-

^a STO-Nummer = Bezeichner des Datenbankeintrages der *in silico* translatierten Proteine ^b chromosomale Position = Koordinaten der Proteine innerhalb des *Xcv*-Genoms ^c bestätigte Länge = Länge des Proteins, welche mit Peptiden abgedeckt wurde ^d TSS = Transkriptionsstarts in der Nähe des möglichen Translationsstarts des Proteins c = komplementärer Strang, () sehr weit entfernter TSS, - kein TSS zuordenbar

Proteinsequenzen der korrigierten Proteine bis zum nächsten Start:

>STO_0056337-Dcp2

MSRTVVLAAAITLALAACSGKESSGQESTTVTEKTAPAPAADAASNPLLTASTLPFQAPPFDKI KDADYLPAFEEGMRQHLADIRKIADNPQAPTFDNTIEAMERGGETLTRVSRIFFGLVQADTSD ARQKIQEEIAPKLAAHQDEINLDPKLFARVKTIYDQRDTLNLDPEQKRLVERDYEELVRAGAQ LSDADKDSLRKLNVEETTLSTQFHTRLVAASAAGAVVVDDKAKLDGLSEGDIAAAADAAKA RKLDGKYLLTLQNTTQQPVLASLKDRQLRAEVLKASETRAEKGDANDTRQTIQRLAQLRAQ KAKLLGFDNYAAYSLGDQMAKTPDAALKLLTDTVPAATAKARREVADMQKVIDAQRADAK TGDFKLAASDWDFYAEQVRKAKYDLDEAQIKPYFELDNVLQNGVFYAATQLYGITFKQRTDI PTYHADMKVYEVFDADGTSMALFYTDYFKRDSKSGGAWMDVFVEQDGLTGAKPVVYNVC NFTKPAAGQPALLSFDDVTTLFHEFGHALHGMFSKVKYPSIAGTSTSRDFVEFPSQFNEHWAS DPKVFAHYAKHYQTGAPMPAELVEKIKKAKTFNSGYATTEYLSAALLDLAWHTQPADAPLQ DVSKFEADALKRFKVDLAEVPPRYRSSYFDHIWGGGYSAGYYAYFWSEVLDDDAFEWFKEN GGLTRKNGDTFRAKILSRGNTVDLATLYRDFRGKDPSVKALLENRGLTE

>STO_0162384-XCV0352

MQTFLEPVGSEVQWHEGADVSEIISTSSGLRIVVAAPAGVDRHLEIHFPFVRAFQVMDEGDML EYWESPLTTGHLLYKVISGGWRDRTAGHFLHVTASLDSMQEWLIVSECLCVSVLSAYVPHLR EFGDAS

>STO_0002631-XopD

MDRIFNFDYKKYREMTEAADDYRNSPPHEEQRENHGAGYNMHPLLESLPRRNPTQVHADGS VHQMRAAAPTSRTHRDYLKILELISAYGDGKGIPELQRSFPSFAAFLMDSGLSHVNGRQMLQE LNEDQRDQVIHQIIRRIEYCADPEYREVALSRLESDCSGKITLSQRTLDRIDKAKAKAEAEAEA KAKAKAEAKAEAKARVEAGAQCKINEIMEYIPRYEALEKVPVRVRFHAYLRGDGSFGPGLPG ILRYMTPDQKKRLYLASERRKLALAAPKSKPTPKSKPLKGVFRTLHQKPNLLLEISSKFSNRA YSINDSSSGYLSQADLEEMVDEETGELTRLGEAVISGASQGIQTAIRANFRMRYQQPDLPPYSP PQAFHRPEETWNPHTPAGSSYSSLFPPTPSGGWPQNASGEWHPDTPAGYSHRAWPAQPEASS STFDDLESLDYRQNYGYREFDLNTPQEIEQPGWWQQATPAQSTDSTFDGLSSMSHYGSEFDL NIPQQEEYPNNHGTQTPMGYSAMTPERIDVDNLPSPQDVADPELPPVRATSWLLDGHLRAYT DDLARRLRGEPNAHLLHFADSQVVTMLSSADPDQQARAQRLLAGDDIPPIVFLPINQPNAHW SLLVVDRRNKDAVAAYHYDSMAQKDPQQRYLADMAAYHLGLDYQQTHEMPIAIQSDGYSC GDHVLTGIEVLAHRVLDGTFDYAGGRDLTDIEPDRGLIRDRLAQAEQAPAESSIRQVPARSNE QKKKKSKWWKKF

>STO_0133900-XCV0557

 $MLDPPRSASAATDTRADDGLAATDADDLGHPTARAAPGPSNSAQQRALRASADADLAFQNA\\PGTPKALAETPARQASVATSAASAGSTPAVATAAAATQADTSASERSAGTADGQSHPGRPSS$

HPDPATTDSGAASALAGEHAQSDAGIAQPRTTAVQMQPLPAPALAAPAFARRGVTRPRLRAS GRQWALLVGLVGVLGLQIVIADRAHLAANARWRPLVGAACTLAPCSLPAWREPEALTLLNR EVRPLPGVAGVLQIQASFRNDARWAQAWPWLQLSLSDADGRVIGTRILSPQEYLGPSPPAQD TLAPGQAVQVAFRVREPAASTAAFSFDFR

>STO_0032290-XCV0855

MRRPGWLLRVASDSFAEKGMDASSAHAYDQVSQYYDRLRDHWAAASAAQCAQALAALVG SGTALELGIGTGRIALPLAAGGAAVCGIDNSLGMLDMLRAKPGAERLTLVCADFVDVPVAGP FDLIYSVYSLGYLLTQDDQLRCLRAVRERLATSGVFVLQTMVPQAETLLADGKVRSLEAPAL DEGDVPVMLMCSSADPARQLIQQRIVMIGESATRVFNDRYRYLWPSELDLMARIAGLRLRAR WGDWSGQPYTARSRSQISVYEPAAMDADEASARG

>STO_0034580-RaxB

ETGRRARPTRAYPGAAARAHGLGRCACAGPGRGAAVTVELAPTIGDGRCRPAGGPACGDRA GGRVALGSARAACRACSAATAAARAGGRAGATPGRSAADVDGDRGRVVCALQGRRADRPR HAGATALRCLALPALRSVRRAGGRDRRRARTAACRLGLGKRAVVPRAGAPGRGCRAACRT HGGPATGYARAGHAGIGMAALLAVGIRAAVQFARHAAMSRWWAQLRRASGVRGLPMILQG **QVGECGLAAMAMIAHYHGCHIGLAELRRRFLLSRQGTNLANLVAIAQALGLQARALRLEMD** ALPELOLPCVVHWDLNHFVVLKRVGTRRLOIHDPASGPRSLTPGEFSRHFSGIALELSPAADFR PQAAAPAVALSSLIGRVHGLGRAVWQVLALAFALEVLSLGMPFQLQWIVDQAVPSADIGLIH VLGAGFLLLVVLQSCIALLRGWLIASVSAQLGFQWMGQVFAHLLALPLAYFEKRHLGGIQSR FASIVQVQRTLTTGFTQTLVDGVLVIGTLGLMLVYSVGLSAITLVAVTLYAATRWLWLRRMR EAAAEQLLWDARQHTHLLESVRGIQGVRLFGRQQVRRMDWTHLLAEQTNAQLRLAQGEVW QSSLKRLLFGCERVLVIWLAAFAILRAELSLGMLLAFMAYREQFAMRLSELIDRLVEFRLLRV HLERVADIVHQPREEADQRIDAPAWNDTTIELCGIGFRYADDTPAVLEDVSVRIASGECVAIT GASGCGKTTLVKVILGLLKPSAGHVKIGGRPLSETALTPYRAIVGTVMQDDLLFTGSVSENISF FDPEPDQAQVERCARIAGVHQEVEQMPLGYASLLSEAGTGLSGGQRQRVLLARALYRSPRIL VLDEATSHLDVMNEQRVNRAIQAMQVTRIIVAHRRETVAMAARVITLEQGRVVSDQPIADW **QRLQERSAAAD**

>STO_0156885-XCV1265

MHHLQRVLLNTSAIELWPADLLRARGNADARVLAQADWLLRRKRDGRYLAAHLPQGLMPL IPRLAREHGLDEALDRLQTATGRIGQVRDDTLAIDGLQRRLSQLGLAADDYVQRTGLQLIAEP AALQFAGRDRFGRPLWLSAGAARAWRQMRAAALRADIVIDAISGYRSHDYQLGIFERKFAR GLTLEQVLTVNAAPGFSEHHSGDALDLGTPGEPPAEESFEATHAFAWLCSNAHAFGYRLSYP RDNPHGIVYEPWHWRWSAG >STO_0007939-XCV1378

MAPGGPGVAPTPLCVRDDAASTAAAQPEPDPLKARATAALGMAQMLLSEKAKLASDPNYRR FRDGYWQHFEPRAGSKPGDNCVAAYGNLQGLVTLAGPAGDYRRATMAFTGAGLPQPKKDG VIKVTLDDGDGRPQTVRAFHYLTPGTDLATIAFAVPSAEGLLGGIEDKAHYRLLIDKKQVFEIE WHDGHQARDRLRQCIAADGMS

>STO_0036069-DapD

MATSKKTARKQSATTPTAASKRASATAKAAKVPAVAASKPGAGVGKQGAAAGAVGKKAA ASDAASPKTAARKTGGKSATSAAPRVAKQPTKVVAAPAAKKAAAAKKLPIAEQAVHSAATQ VGSDELKLGIESAFERRATLTMDEIDGSTRAIVNRVIDGLESGQFRVAEPDGQGGWTVNEWL KKAVLLYFRVNEMAVIEAQPAPFWDKVESRFAGFHEAEFRKAGVRVVPGAVARRGSYFGKD VVLMPSFTNIGAYVGEGTMVDTWATVGSCAQIGKHCHLSGGAGIGGVLEPLQASSTIIEDHCF IGARSEVVEGVVIGHHSVIGMGVFIGQSTRIYNRATGEISYGYVPPYSVVVSGQLPSKDGSHSL YCAVIVKQVDAKTRSKTSVNELLRGLAD

>STO_0099525-XCV1716

MPDSSRDILLAVANPLAAPPARAGSSLIGYASSYYGAGQKAAARMDSIKQRYKLREVSAWPI TSLGLYCAVLQPPPGVSRDELVSALADDEGVELVQPVQDFSVFSADASEKTTALSSYNDPYV DMQRGFIDTDAASAQTVTEGRGVVIAVVDTGVDTNHPDLKARIRDVHDLVDDTPVKTSTDP HGTEVAGIIAAGSNNHQGIVGMAPKAMLSIYKACWYAPTVGATARCNTFTLAKALAAIDNSS ARVINLSLGGPADPLLSKMLQQLVQQGRIVVAAMPPNGRLDGFPNDVPGVLVVRSSSATPAM PGVLSAPGKDILTTQPNGRYDFTSGSSMATAHVSGMAALLLSLQPSMDAKALRELMQRTSKV SDGQLQVNAGAAVQALAPHAKHSN

>STO_0150414-XCV2312

MTHVRVKPWQDGDNAPPELLENMQARRPNGELIGIDRVLLKSFPLATGWNGLLGRVRAEFE LPLEYRELIMCRVAVLNRAEFEWNVHKPAYLQAGGTPEKCDAMRADGIASLFDGKERALLE LTDQSTRNVEVDAAVIEKLKAFFGEQQTVEAVATVAAYNMVSRFLVALAI

>STO_0094634-CydD

MRSLQKSDVSQPSVQASETPAQRRQRGHWLDALAASATRAQRLAGVAVALSGVLLLVQSAA IAWLVQAVLVQHLAMAQLRNVGAGLLVALIGRALLNAWAQSLTGDVADVAKRELRARIAQ RLVQHGPLWLRRQRGGELGELSLAHTDALEGYFVGYQLARIEMVLVPPLILIAVFSVDWVVG LVLLLTAPLIPFFMMLVGWGAEAAGREQLGELARMGGHFADRLKGLGLLRVYGRGQAELQ GIAAAAEGVRERSLKVLRIAFLSSTVLEFFASVSVAIVALYFGLSYLGMLHLHGMPSLGAGMF CLLLAPEFFAPLRRLAAHYHDRANALAAVAEAERLLQGFQPDAAAHTAVLPARALEPAQAH APLLQARGLALRPAGAPQVVVQEFALTLEPGQRVAVIGASGSGKSTLLEGLAGWLAPEAGSV

>STO_0085725-RpoD VARALMANERPAQQSDIKLLISKGLEQGYLTYAEVNDHLPDDLVDPEQIEDIISMINGMGIDV

>STO 0086369-XCV3785

QRPSRPEVMPAITPAGDDEGVPDLRSQPARSGASQPCPANPGEARDVESGLLMRDCSSRIAAF LGNLSVVQELRQFDDSEFVDKLRNELVTEPGCREPKTLLAAMGERVNELRSHLNKQASTREE AEFLAEARRYLEPVMTSFETDIHTLQHDASAAKRIYQGAMTLLLYPLPLATLFTQKTGTYAAF NIASYTYTAIQLVSLMRRPTTDAKLFMKHAINRHSLVFFISLIYAVPTFYAKAAPLQRNAGFVA GAAMAQGMMMFGLRLGQDLMDSMRLRFNGAFNRRRDLPDGFRDAIEGVVGDLRAGLSNV NRSVGEFQQDRRITPHMDRQLTFFKQDLSRIVTGLERLVATGTRQESPLAASDDPPGPLEAVR RTLEASFANNPDLKGKLALATVAFAVLGSNIALMRNNGLALPDFIADAVVSSTFLLREALSPH VTHAGMNDSVSDTVGGMTIGLPFSVATVMSGYMDDPRANPSGFIAGTVGYTAAYLLFGRVA GDVLSKGLMATSGALGWGQQQAIRLGSAMALGFELVAGHRSPAAADVHDLAGIEMADVPL EPLCFSPSQRASAERTLVGTLEQIGDEWYDARDEWEGESEGTAGRDAPWVDAPAELPVQPVP QSE

HEVAPDAETLLLNDGNTGNREVDDTAAEEAAAALTALDTEGGRTTDPVRMYMREMGTVEL LTREGEIAIAKRIEEGLSQVQAALGVFPLSTEMLLADYEAHKEGKKRLAEIVVGFNDLIEEADA

>STO_0114582-RmlD MITLVVGASGQVGTELLRALARGGAEVVAATRSGQLPDGTTCETADFDAPETLPGLLDRLQP SCVVNAAAYTAVDRAEQERDAAFRANAEAPAVIAQWCARAGVPLVHYSTDYVFDGQGTHP YRPDDATAPLGVYGQSKLAGEQAVQAAGGRHLIFRTAWVYAAHGHNFLRTMLRVGAERDV LRVVADQIGTPTPAALIADITAHALRQPGEPSGLWHLTAAGQTTWHGFAEAIFAQARARGLL ARAPRVEAISTADYPTPATRPAYSRLDIHSLQDTFGVRLPDWQDGLSQVLDTLAQR

MQIKTAGLGPNAHPHGPVSGDGSSPADRSIEIEAGHGSDTLSRACPQPASETTMGLADLLSISS

>STO_0020234-XCV3377 MEKNILTIGVATIEEVKAQMKAAARGKGDAVPRFTFTSGEDLLRTLNANRWSLLEALAGTGP LGLRELARRVDRDVKGVHTDATALVDCGLINKTEAGALHLPYDGVHVEFEVRAEAEAQAA

>STO_0122245-DksA VASKSVPKPATKPAPAKSVPVKAEKPAPAPVSKAVPAKPAKPATPSSKNPVPVSKSSAKTPTK TEAPAKPAATRPVGKVAVAVTSKPSSAAPKTKYKVVEYKTDEATGRPILPQGYKPSADEEYM NKLQQEYFRQRLQSWRNEMVEESKQTIENLREEVRDIGDEAERATRETENSLELRARDRARK LISKIDSTLKRLEDGDYGYCVDTGEEIGLDRLEARLTAERTIDAQERWEHLQKQQGD

GERGFGLSGGEARRVALARLLLREPEVLLLDEPTAFLDPDTEAELLRTLRIFARGRAVVLATH SAAAMRWADTVIDLRGVPVTLEAP TVARMPRKDFIRSWEGNQTNLEWVEDALKRKQKWSSALRDVKDQIISEQQGSIEMEKANYL TLGEIKEISRAMAYGEAKARKAKKEMVEANLRLVISIAKKYTNRGLQFLDLIQEGNIGLMKA VDKFEYRRGYKFSTYATWWIRQAITRSIADQARTIRIPVHMIETINKLNRISRQMLQQFGREAT PEELAKEMDMPEDKIRKVMKIAKEPISMETPIGDDEDSHLGDFIEDTNVESPIDNTTNINLSETV RDVLAGLTPREAKVLRMRFGIDMNTDHTLEEVGKQFDVTRERIRQIEAKALRKLRHPSRSEQL RSFLDID

>STO_0078964-Rho

>STO_0053728-GuaA

LECRLKKTRRCRLQSGASVVSGSLRMSVLPFLIIETGQPVPEMKRYGRFPHWIRVAAGLAEQE TVAIDVANGDALPDPADFAGIIVSGSAAFVTDRADWSERSAEWLRHAAHQGMPLLGICYGHQ LLAHALGGEVDYNPAGRESGTIALELHPPAEQDPLFAGLPPQFPAHATHLQTVVRAPDGAIVL AHSRQDRCHAFRWGRATWGVQFHPEFATHHMRGYVQARADCIARHGRCARTVAREVTAAP IARKLLRRFVHHARRLQTVSARPAAHT

>STO_0166278-XCVd0050

MLVLYTDRSSAMPLNPKHEIYIVGVNVDRYVVYRGSKSKDANSEPAVVKICQGVYMQNGLD AESVFNRYGLRIAHYLTPSATISFSTAWHKAPKIGRVFVTGQYQYVRPLFGASDRYNIVQSVG KVEPDNPKLHTMETFRDPLGEFTMLCDTPELTLLNMMTATKRHSEKHLNSEEMDELLGHLM KEHGGKAGVASALEEVAVMAERTNELRRLIGLLYSPGKSFVSS

>STO_0027982-XCV0114

VIGLDGHVHREPARQHLDGPHAQCQPAADQGAAGPLQRPRPTLRPVRQAAVGQHHCNGHR RRQHAPQVFQGALIVRATIAGAATAAEQQLIATPDQIERDEQTGSGHGVTPWQRGEWMRPVC ARTAPIPGAAGHRSHLPEVTFCLRTIAERLHGGQHRRMNYSFRHLLHPLRLAAAFTIAAVALS FMPDASAYGAWRWGALAGFTALFVVHTVLPQTHALRTVATLLQAALALLLVWMEPHAGTA PVLLVMLVAQAGMTWPPLRVLLLALVLNAGMYAVLVHAGFDRALLIVSIYAGFQAFAALTA HYARSAERARDTLAYVNADLLATRALLADSARDAERLRLARELHDVAGHKLTAMRINLRLL SADPALAQRNEVAVVEQLSAELLSDIRNVVQSLRDDQGLDLQTALRALAAPFPRPTLRLQIDA DVRVTDARVAELLLRLVQEALTNAVRHADADEVAVHLHCVGAQLHVDICDDGRRAERIREG NGITGMRERLAALHGQLDLGRTPTGGMHLIARLPV

>STO_0056329-XCV0252

MVCAREAASRRLMSASLGACANAAGAATASRADSSSRRPRRRVAVSEWVGVIGASCKRGTG RSIREPAFARASTPLPIQSAHMASDPIQITPSLTIPPSELVERFVRASGAGGQNVNKVSTAVELRF DVAGSPSLPEPLRARLLSRRDRRMTADGVLVIDAQRFRTQDRNRDDARERLVEIISACLSVPK RRVATKPSHGAKLRRLDAKRERSQIKRGRSASHWE

>STO_0057941-HsdS1

LEGAHPGRTGIDARSAAAAAQTCRWARDRRSEGVRGVSMGKQGVKTVVPRLRFPEFRKMAS WPIVPLERIAARISTKNCNGQVTRVLTNSAEFGVLDQRDYFDKDIATAGKVDGYYVVSKGDY VYNPRTSAIAPVGPISRNNLGEGVMSPLYTVFCFSEEKTDFYEHYFKSPGWHSYLRSAASTGA RHDRMSITAGAFMRMPVPSPSREEQQKIADCLTSLEEVIAAQGRKVEALKVHKRGLMQQLFP LEGEALPRLRFPEFRDAPEWAERPLCQVIEVASGQVDPTEAPYCDFPHVGGENIESETGSLVGL KSAREDGVTSGKYLFDEKDVLYSKIRPILNKVAVPDFNGICSADIYPIRPSSSDITRQFLVYLLR SASFVEYATKHSERGKIPKINREALAAYGARLPQQVEQQRIADCLFSVDTAITAESAQLTVLKT HKQGLMQQLFPAQRAG

>STO_0106644-XCV0529

MAARDPVSSTTRDDTATRNRPLRAETPPADHWRRWADEVASPVDTAVPVSAAIIPAPAAAAV PSPAAAVSAPRASAASGSARAAAASAPTALPTSAAATAPHDGEDNVAADAPYRVLIVEDDRS QALFAQSVLHGAGMHAQVEMTAASVPQAIQDYHPDLILMDLHMPELDGIRLTTLIRQQPGQQ LLPIVFLTGDPDPERQFEVLDSGADDFLTKPIRPRHLIAAVSNRIRRARQQALQQAGEQVSARS NPETGLPTRGHVMDLLADALKRKQSGGLFFIEIASALGLRERYGYAAYERLMTQAGHRLASA AQPYPLARLNDNSFLLLAIDMPEASLEQQALEIRQRLSANAFPVREEESVHVRCAIGVAPLGV GFDDTGSALEAVERTALQARLRSDGVQTYLAPSQAEQQEQLRLVEGQLELAYQPIVAVAGG DTAQYQVLLRLRQADGTLLSAGQVIPAAEAAGRIADLDQQVMDHALGLLHLYQHASPPLRL FVSQSPRTLARDAFADWLLKALVERGVAGQSLIVDLRLDDALIHAVTVQQFCAKLMPAGVQ FCLSQFEPGDEANALLAQLPLSFVRMANRFADAHGNAAVRDELRGVIDIAHQRGLLIIGQRIE DPQAAAAMWMSGVDFIQGNLVQTVGKELDFDFTSAVL

>STO_0030344-XCV0537

VTTGERACACMAAPARGPVMGAARPGVNRVPSRWPARAAPASEHAPQARSVECVRWLQAL PIIGRLAPMSESLFSSSGFAFTHAPLDRGDMLRDDPDALARLWPQGRVLLIDAKGAALADADG QPLLLDGAELGDGPEAAIFLGLRDAVGWFCVPADIVAVQAPQRIDLRQAAADWPAEIATAFA YARAMLHWQSRTRFCGVCGGAIAFRRAGFIAHCTQCQTEHYPRVDPAIIVAVSDGARLLLGR QASWAPGRYSVIAGFVEPGESLEQTVAREVFEETRVHVQDCRYLGAQPWPFPGALMLGFTAR AAATEVPQVTGELEDARWVSHAQVSAALAGEGDIGLPPRISIARALIEHWHRAHG

>STO_0003611-XCV0612

GAAQGGGSMSTAEQLRALVQSHRDGDEAHFYAVALQLAAQEARRGHLKLAEEIRQLVDSA KARAKTVALHQPRGELGTLLLASYPATRLSDLVTDPVLERQLQRVIREQRNVSRFVAHGLSPR RKLLLVGPPGTGKTLTATALAGELGLPLFLIRLDVLITKFMGETAARLRQVFDAIGPTRGIYFF DEFDAIGSQRGTPNDVGEARRILNSFLQMLEHDHSQSLIIAATNHPDILDSALLRRFDDVLHYR LPNAEQIEALLRGRLSNFMPSRVPWKTLIRQAESLSYAEIAKAAEDAIKEALMHGDDKVAPKH VGDMLEERKLMRSAWGQLSP

>STO_0105852-PheC

RGAVGMARMITLDIARRTRPSCAVAHPQPQTATSKPVSKPDLARMRRLAAQAAAATAIMPRP RRDHAMRHRICLALLLSCGTAHAATPASRLDAVLQSGVLRVCTTGDYRPYSLLRGDGQFEGS DIDLVQSLAASLDARVRLVRTSWPQLMPDLLADRCDIAVGGISVTLQRQRQASFSAVLDVDG KIPLVRCADQARYRSLEQLNRPEVRLIEPPGGTNEAFAHRQLPQATLRLFADNTTIFQELLAHR ADVMITDASEALYQQARLPGLCAIAPEQPLQYSEKAFLLPRDDHAWKAYVDQWLHLSKASG DYQRIVEGWRQPR

>STO_0061379-XCV1116

LVACAEPSNAHQEKAMQDVTSADLKHEQDRVAAISDAALPPGSAPMMTWDGYPALQPGPEL SPNQLLEQVQAMVKAIRSYGDSAPSKVEQVLGVALPPDAKQERRGVTGRVGKGSYSWAVW KPYPESPGHIVELTLTPDACVAYDAIRAPLEASGFRVYVPTFGDDQRISFDTAVGPSLALFIAVT PDRRESPTCATVVSFELDRRDA

>STO_0156077-XCV1397

LRSDSRPRPLKRGSPMSMWRDQGPNKKDGVPVTPEVPAADGRLFTAEASPAPPVPAAAAPSV APAAAATQRHSEAKESLIAADISIEGKIEGAGHVRLAGRFKGDVNVKGDLTIERGAKLNGGVR ANKVIIAGELEGNIESAAQVELQTSGVLVGDVKAGSLTVASGARMRGQADFGWGDDGGKPV TASKPVVSGDSDAT

>STO_0036594-GrpE

AGDPGVCRQRGAEPRDRAAPRLRAGRAGTGGQLPQCAVCRARAGRHPRLPAARAAHGQER DGTTAGAQRGPGQRGACTGRCRGHGDGRADPADGRAGPVGSGSPARTVRGLRQQARDPAA ARAHHPGAGRAHLHRRGNRHGVAGRRLAGHCTLRRQWPGAGRAGGDRAQTHGLRPADSA GADRRRRAGRGHGVARYAITGIDRRDALLETRAGAHIRGDVGAGVPLARELHMNQDHPEFD SEDLSQNPPETDPLKAEIESLRSEIALVKADALRERADLENQRKRIARDVENARKFANEKLLGE LLPVFDSLDAGLTAAGTEPSPLRDGLDMTYKQLLKVAADNGLTLLDPVGQPFNPDQHQAISQ GEAEGVAPGHVVQVFQKGYLLNDRLLRPALVVVAKHD >STO_0154666-HutU

>STO 0010368-XCV1807 LATRQRARSARAWRRQRGSGMGGRSLAAGTLAQRSWRALSTVLRRADPGPGTGRRPHPAG GTQQQPIGDAMSLYVGLDVGTQSVKLVAYDPQDRAVVATIAAPMELISRDDGTREQQAQW WIDGIVHCFAQLDGEQRARVRGISVSGQQHGFVPVATDGSVTAPVKLWCDTSTALECDEIMD AVGGAAGSVAAAGNPIMAGYTASKLPWTRKHRPEAYAAMTTVMLPHDYINFWLTGERFAE VGDASGTGWLDVRTRQWSERMLSAVDAQRDLRDALPPLVDTGAVYALSDAAAQALNLPAG VRVTTGGGDNMMAAIGTGNVVPGRLTMSLGTSGTLFAYADHPVVDDEARWAAFCSSSGGW LPLICTMNCTVATEAVMRMFSITRDQTEAMIADTAPGADGLVLLPFFNGERTPDLPAARGCLF GMDMHNTTAAHFYRAAMEGATYSLRNGFDAFVAAGLQFDTILLTGGGSKSAQWRQMVADI FNLQVVVPTQPEGAAFGAALQALWACERADGGDAALADVVLEHLQVDDGLAAQPNPQRVA **QYQQHYQTFLKHLHVVSPLYAG**

VIVCDGSEAADKRIERVLWNDPATGVMRHADAGYAIATDCAKEKGLDLPGILR

MRWRACAAAAAPARCATAASRAAGSPATTRSPRMACTPCRWNWPVAATCASPTASRPKTG ORRGSRYTPWCCARYCATCCRPACTSPMRPPPTPRRLRPTADCKEPGMTRHDATRVIRAATG TTLTAKSWLTEAPLRMLMNNLDPDVAEHPQELVVYGGIGRAARDWESFDAIVAALTRLDED **QTLLVQSGKPVGVFRTHADAPRVLIANSNLVPRWANWDHFSELDQKGLAMYGQMTAGSWI** YIGAQGIVQGTYETFVEMGRQHYAGNLAGKWLFTGGLGGMGGAQPLAAVMAGASCLVVEC RRSSIDMRLRTGYLDTWTDSLDEALRLIEESCTAKKPLSVGLLGNVADVLDELLLRGIKPDLL TDQTSAHDPVNGYLPQGWSVEEWDAKRVSARKEVEAAARESMANHIRAMLTFHALGVPTV DYGNNLRQMALEAGIDNAFDFPGFVPAYIRPLFCRGIGPFRWVALSGDPDDIAKTDAKVKELI PDDAHLHRWLDMAAEKIAFQGLPARICWVGLGDRHRLGLAFNAMVRSGELKAPVVIGRDHL DSGSVASPNRETEAMADGSDAVSDWPLLNALLNTASGATWVSLHHGGGVGMGFSQHAGM

>STO_0098447-XCV1885

LDACDQQQFLPPSGRTARGHHRLRPRQGSPGRRKHHGGGLRWPGRRPPVAPVCRNPAAHPA VSPVSGDRLRAAYALAGADDCLPPVCRQRCDSARRLRIAQGLRWQHHPRNRSGSAGVRQYP GHAGAGRAGRCLAGQTEHVGVSHRRTRPVCLGPQHGRGTSSSGSVRIPAALRTRTAETARHA LSTVRPPFVSQTAMSRLRIFADTNPATPEFDSRDGDAIAAQLQKIGVTFERWHASAPVEPGATP EQVMDAYRADIDRISAERGFKTVDVVSIAPDNPKREEMRAKFLDEHFHKEDEVRFFVAGSGL FTLHVDAKVYEIECVKDDLIAVPDGTLHWFDMGPEPHFVAIRFFTEPDGWVGHFTGTEIAKQF **PRYAPEKPHKAS**

>STO_0125297-FlgG

LARHVHIPTRTRNTSPGLTRNRVMNQALWVAKTGLDAQQTRMSVISNNLANTNTTGFKRDR AAFEDLLYQQVRAPGGSTSAQTQLPTGLQLGTGVRVVSTFKGFDQGSQQQTGRALDVMVNG RGFFEVQMPDGTSAYTRDGTFQINAQGELVTNSGYPLQPGIQVPEGAQSLTIGNDGTISVTLA

 $GQAAAQEIGALTLTDFINPSGLQAKGENLFVETTASGPAQNGTPGLNGLGTTVQGALEGSNV\\ NTVEELVSMIETQRAYEMNAKAISTTDSMLGYLNNNV\\$

>STO_0125169-TrxB1

FTGWGPPLYAATGARITSPALPIPRSRVYMSAFSASPAKHSRLLILGSGPAGWTAAVYAARAN LKPVVITGLQQGGQLMTTTEVDNWPGDPHGLMGPDLMSRMQAHAERFETEVIFDHIHTADL SQRPFRLIGDGAEYTCDALIIATGATAKYLGIPTEEAFKGRGVSACATCDGFFYKDQDVVVVG GGNTAVEEALYLSNIARKVYLVHRRDTLRAEKIMQDKLFAKVAAGKIETVWHHAIDEVLGN DAGVTGVRVKSTIDGSTRDIDAHGFFVAIGHHPNTQLFDGQLAMNNGYLEIRSGLNGAATET SVAGVFAAGDVADQHYRQAITSAGFGCMAALDAERYLDKSA

>STO_0094553-ArgB

IALQHRPRRGGHQGQHDRAGSRSALRLSSVAVDGRGWTAGKLCRLRRTGGSAFRRNLPRAE PAVGRHRTRGRTPPGRTRCGRCAGPADRQRSGLLDRGLAVFGRRLYRAGVWSWRHRPGAH RRRIRDAGAVAGLRRIGPSHHQRFALNRHAPGAPFPLSNTAMSPSAQPHKQTRQTIVRLLSSM ASAKEISQYLKRFSQLDAKRFAVVKVGGAVLRDDLDALTSSLSFLQEVGLTPIVLHGAGPQLD AELAAAGIEKHTVNGLRVTSPEALAIVRKVFQASNLKLVEALQQNGARATSITGGVFEAEYL DRDTYGLVGEVKAVNLAPIEASLQAGSIPVITSLGETPSGQILNVNADFAANELVQELQPYKIIF LTGTGGLLDADGKLIDSINLSTEFDHLMQQPWINGGMRVKIEQIKDLLDRLPLESSVSITRPSD LAKELFTHKGSGTLVRRGERVLRATSWDELDLPRLKSLIESSFGRTLVPEYFETTTLLRAYVSE NYRAAVILTDEGQFGAGRLTYLDKFAVLDDAQGEGLGRAVWNVMREETPQLFWRSRHNNQ

>STO_0149090-XCV2552

LLADGVGAGEILGFLRRAAFFHQCGDACIVAGVGAAREPCSRVLLQQPQCHSGTEQLGARRM QLDHARRCLAALHQVAAQCTRIGGDACHDGQGQRRVEIVIQSGLHLGGNRHGYRQIAAAFG FQRSQIPQRSIQAVQRVLGLLDQPIRPVQRLTVVRAQQRIAQRFGRMPGDELVHGFDIAQRLA HLRAAEIEHAVVQPEARKGGTAMRALALRNLVFVMRELQVHTAGVDVDGRPQMGGGHRR AFDMPTRPAAAPGRWPAGQVVAGGFPQHEVAGVALVWRHVHARAGQHFVRVAPRELAVV LEAGDRKQHVAFRGIGMPSGDQLLDHRHDLRDVRGGLRFDVRWNHAKRRHVLPVDRREAV GDRRNRHALRLRGGVDLVVHVGDVARVAQRAVASAQQRGKHIEDHRAASVADMRVVVDG GTADVQGGAGRIERRKRLDPPRQVVVQAQAHRHPKKGNRAILARCGGMANRQPDDGHRMG CVQPRRPQAPYTYVLPGCAFPVLMRPSPFFMLLCTFAGQVIPAYAAEPDPKNRVVVIENVKLD YAQVLNVEPVYQTLRATRIEEQCEAEQAAQAAAPAEDEGRINRMVDSVKEMFSRRPEPAAP AAVPPTSTRRNCKVVEVPREFRRPIAFDVDYVYKGTKYRSRLPEDPGNRLRIRVSVTPYIPDAI

>STO_0019248-XCV3212 SALTMPLEGGRTSADVRAAGRRSWCPAWRCRRRFAARIQKGRPRTGPRLRHRIVHMRQRIVR PHYAHSAHTLYGHRELVMHRSHPQPAGRAALERHWRAGLLSTSKEFQVMHTRRDILQLLGA SAGAGLLASALPAFAAAPATGSSSATGRFVSKRPPRAQRRFVSKAVEQQIAQIKARIADPELA WLFENCYPNTLDTTVETGTRNGKPDTFVITGDIHAMWLRDSSAQVHPYVPLARRDPALRRMF HGLIQRQAACITLDPYANAFLPDGQTQRLKWSLNDITEMKPGVGERKWEVDSLCYPIRIAHEY WRATGDTAPFDDDWRAAMHVVVKTFREQQRKDNRGPYVFQRPSPLATETLVLEGYGQPTK

>STO_0073386-CheB2 QEGDAVRPPGQAPARTSVQHLYAVPAAAGKPPGPQGNPDCDRPAHHQRNLFLPRAQAFRAA AQAGRRTPWRAAVPLLERCKFQRRGSLQHGDGAGRHLAGPPVRGGRHRHQHARAGQGAHG PLRAATHRRHPAGLSQTLLPAWPRRVRRHLAGGAAAARARAVRARQPQCRAAGTGQLRCD LPAQCDDLFQRPDQARSDPARAVQPQAGRALLHRPFGKPERTRHRSGPGGTLDLPQGMTQGF TVSTALHRPAANPTTIKAMVVDDSAVVRQVLVGVLNDAPGIDVIATAADPLLAIEKMRQHWP DVIVLDVEMPRMDGITFLRKIMSERPTPVVICSTLTEKGARVTMDALAAGAVAVVTKPRLGL KQFLTDSADELVATVRSAARANVKRLAARVTAAPLEAEVKHTADIILPAQSGRALAQTTERIV AIGTSTGGTQALEEVLTALPRVCPGIVIVQHMPEKFTAAFAARLNGLCQIAVKEAANNDRVM PGRALIAPGGKHLLLRRSGAQYFVEVLEGPPVNRHRPSVDVLFRSAARAAGSNALGIIMTGM GDDGAAGLLEMRQAGARTVAQDEHTSIVFGMPKEAIKRGGADRILPLGAMAREIVTQLQ

>STO_0091857-XCV2971 VRLPGDATAPGAHRQHQTGCAQAGAVAQPQRCGIARAAAATHRLVSACAGPAASQSGQRSR RFGHGICPRCSAVLPRQMCNVVPGACARCMDHASKYPMPSRAALQRRVRPMVALAGLRHTF TDNSQGAAVIKPELPSNEAERLAALRQYDVLDTPAERAFDDLTMIASTLCETQMAAVVLVDE DRQWFKSAHGAPRSEAPRDISFCAHAILRPDEVLMVDDTLLDPRFHDNPMVVGSGGVRFYAG APLVTSQGLALGSLCVFDQTPAHLREDQREALQALSRQASQLLELRLAGRQLRQQLHEREWY EQQMAGYYAQMDALNADLVEQTRTDPLTGLPNRRAFAVALAAATEQTRAVGQPLSVALLD VDHFKTVNDVHGHDQGDAVLRELSALLRAHMAGAGTIARYGGEEFVLLLPNTDLLQARVQC EYLRQSVAAMTIALPVTVSIGVATLYPQESVEAVIKRADQALYAAKRGGRDQVVALE

LCACSDRRPRTDDGGERASRRVRRRGRLHCSRSFQAGICMLIRMSEETRVRWHNLLIELTLLV GVGYNLVLAFINANVFTVRPVITYAVEFMVYAACFLLGMGSLSRKRIALIVSGLGLIVTLMFV RFLVNWQIDPKFFRDALVVFAFVVLGSAYTGSVPKLFIRMTIIVSLVAAFELAMPVKYGDLINP KSFFVNARGMSAEGFWNEDSNLFVSATRPGERNFLPGSNLPRASSMFIEPVTMGNYICFFTAIV LVFWRWMRPAALILSVGLIGFMIVASDGRLAAGTCVLMVLLTPLLKRLDQRLAFLVFLLVIM SAWLLVWVTGITAYQDTTMGRVFFTVYSMNNLSFESWMGLDFAQAYRYFDSGISYFIASQSI VGVLAFLLAYSFLLLMPSKEGQLFKNLAIFAFALSLLVSNGYFSIKTSALWWFVCGCMWHML PTWSASGAQTALIKDDPTADGAQLPLPAGAAR

>STO_0093090-GumE

153

154

IGQRARPRAGYRGAQRRCCVVRGRRGPQHCRWRAARTRGHRRRLGARAGGRLCRLYPPAC RAGLSHAGNRHAAAITRRRPHRGAGMLRDGAQPRCSTPVLTDNARPPGPDTMSDILNTILAR KADEVAERSARVPLAELIARSADLPLTRGFAAAMQASIAAGDPAVIAEVKKASPSKGVIRPDF

>STO 0003072-TrpC

>STO 0107340-HrpD6 IEAAGLPRSARRTGRHARADRRPGPQQRRCRTLACTGASLSPRRCRQRGGGGGRGRGDAARHP GRPRPHRPLRGQWRFLGFRQQRLRRTRKPPDCRRPQRPGPRGPRAARRDQPARPVHQTTGQL RRGIARRWPALCRNAGWHQAHDIPAAASGAMRDHTMFDAMTDAVTQDMSKILQAKAMDL SGERLRNVETALDATAQQIRVHWSAASDQVARNDFNVLYDGITAARNIVAHIASMP

Q

>STO_0114852-XpsK IADRHGHRYAKPAADPVHRRAATPALCRRRARLPGPRRAVSARPVGRRRWRSAQPADCLDH AAVROVDRRKOPAAAGDPCPRRATGEFSVSRHGSANRAPERVAAAVGMARPPAADGAHRH PORRCRMAADGGGVAAIOOPGGRAMSRSRGAALVLVLWLIALLTAMIGAFALTARVEALOG SMLRNGAQAQEYARSGLEYALFRLQDADTQARWRPDGRRYRWQMDDASVEIRITDESGKV DLNMAEPTLLAGLVRAVGGEQASAGRIAGAIVDWRDGDSLSQPGGGAEDRDYADAGLPYG AKDSPFETLGELRLVLGIDGELYRKLLPNVTLYSGRSRPEARFAPAPVLTAMGLDAQQLLAQR DAPLGLPGSEATVGGSDTYSIESRARLSQGREAVLRAVVSTSASALPGSAYTVLRWEEGAAV

RVGAPLSLIYIVVMVSVINLMFWWAAR

>STO_0075628-XCV3419 MRPPTGPITPNRCGTCSTPPRAWSIAPARAATSNARPGARKPTSKRAARSLGTVCGICFMTGIR ESGIARATARVARITHSARNFRSANSPFPTPHFRPPMDTALTLTNDMKLVLGLVGFTMAMFLF ERIRADVVALIVLVVLGVTGLVAPEELFGGFSGNAVMSIIATTILGAGLERTGALNRLATWLL RRSHGNEORLMMMTLAISGLNSSFMONPSVMALYLPVASRLAARTGLTLORMLLPIAAAIVM GGALTMVGNSPLILLNDLLVSANNNLPSGMASIEPLTMFAPLPIGVALLIAALLYFRFYGDRKL IEEERLINEGVTPSRTESYFAKTYGIDGDVFELTVTAESPLVGMTLGEAEALHDAPLLLALKTGNDTRLAPPADMRIWVGSVLGAMGPRQEVADFAQNQFLRMSSRLRNLGDLFNPSLAGISEALI PPNSRLIGKSAGELRLRKQAGISLLAINRDKQVIREDVRNVPLRAGDMLVFHSIWQDLAQAAE SRDFVPVTDFPKGEQRPHKFKIAMAIFAFTILIALTSRLPVALTLMTGVACMLVSGVLRMDEA YASINWKTIFMMAGLIPLGWAMDSSGTAAWVAGHTIDRLPEGVPVWALEISLALLTTAFSLVI SHVGATIVMVPIAVNLALAANGNPTAFALIVALSASNNLMTASNPVISMVAGPANYQPRELW

PNGMIHSMFRPSDDACVFPLFVPANLFAVTSLRQLATMSTALHRDTAFAAECTALADEVETA TROFGOORDADGOAYWAFEVDGFGNOLFIDDANAPGLLSLAYLGCCDRADPVFLRTROLA WSERNPYFSRGKAAEGVGSPHSGMGTIWPMSIIQYALVSDDDAQLRQCLQWLKTTHAGTGF MHEAFDKDNPSTFTRDWFAWANTLFGELIIDLHQRKPQLLRSA

QPADIAVSYEFGGATCLSVLTDVDFFQGSDAYLRQARDACTLPVLRKDFTVDPYQVYEARVL GADCILLIVSALEDAQLADLSGLAMQLGLDVLVEVHDIDELERAVQVPVPLIGINNRNLRTFE VTLQTTLDMRAAVPRDRVLVTESGIVTQADVQLMRSHDVNAFLVGETFMRAAEPGESLRQL FFAHD

>STO_0059889-XCV0861

MGRPGDLLRTGWQRPRTRRVGGLVVRDGGGSVVGGTSWPRELGPGGHLQRRVRGAGGVV VADAAQPGPRLGRRCRPASAAAGARRHRHPAQRAQLRLAQRDRLCAALGDAPIRSEPPGQR RSCALVLDGPGDRAHAGVVRLRRWFARGVLAGNPQGTWRSVFRVGRILSQFRRNPGRRRRT RHPARAHQRAWRRHVPVSPGDSQGRAAPHVHGICGTGQRTRSQAGVLQHAYQQLHHHCVR AGAATAAHTAAGSSPAAVRLCRPIRLRPSRPDARLSLRHLEAARAFHRACDLRRQGRGFFCA HPCRHAAGAGARRNRDHAAVRPRMPRARAAAFLAGVLATVWLSGCAMVTVQSRNSGDYIA **QTRGDVLSTGELSQSGSETLQVAGLQPKACRAAPLPCLQQLTSEAGIGDERRLATQAELWTA** RAIALSGRNPTTMSDAAVEAWLEAARHAYAYLFFTARAPSARAFENRQSQVRDYYNYAVQQ VVERLFARSQQAGETTPASTTVGRWQLDVDLSAYRLPGDGNTPRAIFAASALRFNGLRSTYR RDGFGAELVAEVDPQVVGDPAGLALQQAVAAGAAPDRPLPTFSEMPYAPATILLRFEGETLA EVLRSHLVTLVPYDPYRQNEVVLHGQRVPLAGNFTAAYGLWLAKSGFADQSLRSMLGSARG IDRPHLYLMQPYDPNRRVLLMLHGLASSPEAWVNVANEVMGDETLRQRYQIWQVYYPTNA PMAINRAEIQSLVERSLQHFDPSGSAIASHDMVLVGHSMGGVIGRLLVSSSGEQLWDSLLQNY RLEGERGARIRAKLWPLLHFSPMPQVDRAIFIAAPHRGTPLAEGGLGRFVSKLVRLPGALLDR FGDVMODLANSERDDPGGAPRRKGRALVPTSIDNLRDTDPFVRATMDLPISPNVOYHTIIGRE KPOVPLADSDDGLVPYRSAHLDGAASELVVTSWHSVOETPOAILEIRRILHVOLOAEOOASH APDR

>STO_0040728-ExbB2

MVPLLLLGVIALAIVLERLWSLRRNEVTPPGLGEEVRQWAARGNLDPTHIESLRRNSPLGALL AAALDVRGRPRDMIRERIEDTGRHVVHRMERYLNALGTIASAGPLLGLLGTVVGMIQMFLGI LDHGVGDVNQLAGGIGKALVCTATGMIIAVPALMAHRFFKGRIAGYIIEMEQEATLLLDTIDG RVVPAAVAPAAAGAKPVTAKG

>STO_0122465-XCV2513

RSGGTAAGAAGASGASADACGRWAVAGGRPVSGHRRRRSGSGRFQRQRRDCRVRRLGGCA RLGRCRPLCGSGRVHAHRGPPIPPGIAMSRVEQIRAALQAALAPTELDVVDDSARHAGHAGA RDGRGHFNVRVVSAAFVGKPPLARHRAVYAAVGEMMQTDIHALSIEAFAPGEVG

>STO_0120648-InfC

IPLGDCNISTTDNKQNRKNQEIRVPRVRVIGSDGEMVGVLSRDEALAKAEEEGLDLVEIQPQA DPPVCKIMDFGKFKFEQQKKANEAKKKTKQVEIKELKFRPVTDEGDYQIKLRNMRRFLEEGD KVKVNIRFRGREMSHQELGREMAARIEADLGDDIVIESRPRLEGRQMVMMIAPKKKV >STO_0114862-XpsM

PACCRAMPAGMSTVSPSPPSLPAPMRRRRPMPRSVKRDRWIALGLLLLVIGVAYLVLVHPWF TQPMIAVQDDLQALRERELRVRVQLQQAPEVSKRLQQARQTLESRPGFLPETSAELASAGLV QRLERAVVEASPGNRSCAISNRSPLQPESKNRFTRVAVQVRLRCGTPELASVLYSLENGTPRLF VDNLNVMAQRYQLSPNESGNGLDIAFELAGYLRPGASAAPLNNEAAPAAPNAAEASNAP

>STO_0053999-XCV4380

MASAALHSVAAEERRQRIGISLCADRLPESSMTETSPPPVLDTAQARVLGCLIEKEATTPDAYP LTVNAAQVAANQKTAREPVLNLQTGVVHHALRQLETLGLVRQQFSSRAERYEHRLGSVLDL TRQQVALIGLLLLRGPQTLGELYARSERLARFNDADDVRHHLERLIQRGLAAQLPRASGQRE DRYMHLLSGELDVEALQAAAARAAPSAPSGSDSSDLDARMQALEATVVELQEALAAVQARL EAAGA

Ergänzung zu Material und Methoden Kapitel: 2.2.2.14 bzw. Kapitel 3.2 und 3.6

Vergleichende Proteomanalyse (Kapitel 3.2)

General workflow for ¹⁴N/¹⁵N quantitation

Relative quantitation based on metabolic labeling of cell extracts by using a ¹⁵N and ¹⁴N amino acids source. Unlabeled cells were grown in NYG or MA pH7. Labeled cell extracts were pooled and used as an internal standard by mixing the pooled reference cell extract with the unlabeled sample extracts. Therefore, virtually all peptides resulting from digested proteins in the samples have a corresponding ¹⁵N isotopologue. Relative quantitation is possible by comparison of the extracted ion chromatograms in the mass traces of the resulting peptides in a GeLC-MS approach.

Bacterial growth and metabolic labelling of reference strains

Xcv-reference strains were grown aerobically at 30°C in MA+ medium supplemented with ¹⁵N (Bioexpress-Medium CGM-1000N as alternative for casamino acdis and ammonium-sulfate NLM-713-10-PK; <u>www.isotope.com</u>). Reference strains were precultured in MA+ and the main culture was inoculated with an OD₆₀₀ of 0,05. The cells were harvested at an OD₆₀₀ of 0,8. The labelling efficiency was ~ 99% and was tested in pilot experiments to see how many generation times are needed to get rid of the unlabelled proteins.

Proteomics measurement

The tryptic digested proteins obtained from the 1D SDS PAGE gel pieces were subjected to a reversed phase column chromatography (Waters BEH 1.7 μ m, 100- μ m i. D. x 100 mm, Waters Corporation, Milford, Mass., USA) operated on a nanoACQUITY-UPLC (Waters Corporation, Milford, Mass., USA). Peptides were first concentrated and desalted on a trapping column (Waters nanoACQUITY UPLC column, Symmetry C18, 5 μ m, 180 μ m x 20 mm, Waters Corporation, Milford, Mass., USA) for 3 min at a flow rate of 1ml/min with 99% buffer A (0.1% acetic acid). Subsequently the peptides were eluted and separated with a non-linear 80-min gradient from 5 –60 % ACN in 0.1 % acetic acid at a constant flow rate of 400 nl/min. MS and MS/MS data were acquired with the LTQ-Orbitrap mass spectrometer (Thermo Fisher, Bremen, Germany) equipped with a nanoelectrospray ion source. After a survey scan in the Orbitrap (r= 30,000) with the lockmass option enabled, MS/MS data were not taken into account for MS/MS analysis.

Data was analyzed by Sorcerer Sequest against the annotated *Xcv* genome (protein database containing 4.726 entries). The following search parameters were used: enzyme type, trypsin (KR); peptide tolerance, 10 ppm; tolerance for fragment ions, 1 Da; b- and y-ion series; a maximum of two modifications per peptide was allowed. Peptide and protein identifications were accepted with a false discovery rate (FDR) below 1%, requiring a minimum of at least two unique peptides for protein identification.

LC-MS/MS measurements and data analysis (2014) – Proteogeomic (Kapitel 3.6)

Anhang

The eluted peptides were subjected to LC-MS/MS analysis performed on a Proxeon nLC 1000 coupled online to an Orbitrap Elite mass spectrometer. In-house self-packed columns (i.d. 100 μ m, o.d. 360 μ m, length 150mm; packed with 1.7 μ m Aeris XB-C18 reversed-phase material (Phenomenex)) were first loaded and subsequently desalted with 10 μ L of buffer A (0.1% (v/v) acetic acid) at a maximum pressure of 750 bar. For LC-MS/MS analysis, elution of peptides took place with a nonlinear 80 min gradient from 1 to 99% buffer B (0.1% (v/v) acetic acid in acetonitrile) at a constant flow rate of 300 nl/min. Spectra for the eluting peptides were recorded in an Orbitrap Velos (Thermo Scientific) at a resolution of R= 30.000 with lockmass correction activated. After acquisition of the Full-MS spectra, up to 20 dependent scans (MS/MS) were performed according to precursor intensity by collision-induced dissociation fragmentation (CID) in the linear ion trap.

Data was analyzed by Sorcerer Sequest against a six-frame translated database of the whole *Xcv* genome (protein database containing 175.698 ($21.627 \le 6$ aa) entries). The following search parameters were used: enzyme type, trypsin (KR); peptide tolerance, 10 ppm; tolerance for fragment ions, 1 Da; b- and y-ion series; a maximum of two modifications per peptide was allowed. Peptide and protein identifications were accepted with a false discovery rate (FDR) of at most 0,4%, requiring a minimum of at least two unique peptides for protein identification and quantification.

Erklärung

Erklärung

Hiermit erkläre ich, dass ich die vorliegende wissenschaftliche Arbeit selbstständig und ohne fremde Hilfe verfasst habe. Ich erkläre weiterhin, dass andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht wurden. Mit dieser Arbeit bewerbe ich mich erstmals um die Erlangung des Doktorgrades.

Halle (Saale), 20.10.2015

Danksagung

An dieser Stelle möchte ich allen danken die zum Gelingen dieser Arbeit beigetragen haben.

Ein besonderer Dank gilt hierbei:

...zuallererst Frau Prof. Dr. Ulla Bonas für die Bereitstellung dieser interessanten und anspruchsvollen Forschungsthemen, ihr damit zum Ausdruck gebrachtes Vertrauen in meine Fähigkeiten und nicht zuletzt ihre Hilfestellungen bei der Bewältigung diverser Probleme.

...für die fleißigen Vorarbeiten und Unterstützung danke ich Cornelius und Juliane.

...den kleinen RNA-Mädels (Evi und Monika), Jens, Felix, Johannes I (geilo) und Johannes II aka Frank the Tank, Ben und Chrissy danke ich für ihr offenes Ohr, die Diskussionsbereitschaft, die tolle und fruchtbare Zusammenarbeit sowie die unzähligen lustigen Momente, welche den Laboralltag bereichert haben.

...Hannelore, Carola und Marina danke ich für ihre technische Unterstützung, die super Sequenzen und dem fast reibungslosen Ablauf im Labor.

...bei Bianca bedanke ich mich für die vielen, vielen Versuchspflanzen, welche im Lauf dieser Arbeit ihr Leben lassen mussten.

...weiterhin danke ich meinen Kooperationspartnern aus Greifswald, dem SPP1258 für die gute Zusammenarbeit und munteren Diskussionen und der gesamten AG Bonas für die tolle Arbeitsatmosphäre.

...zuletzt danke ich meiner Familie, meinen Eltern Rosemarie und Klaus-Peter, meinem Bruder Thomas und meinem Schwager Julian für ihre Unterstützung, ihren Zuspruch und die Geduld.

...und natürlich gilt mein ganz besonderer Dank Norman, der mir in dieser nervenaufreibenden Zeit viel Liebe, Geduld, Verständnis und Unterstützung entgegengebracht hat. Du bist mein Leuchtturm und hast maßgeblich dazu beigetragen, dass ich die Motivation und den Mut in den letzten Monaten nicht verloren habe.

Publikationen

Schmidtke C, <u>Abendroth U</u>, Brock J, Serrania J, Becker A, Bonas U. Small RNA sX13: A multifaceted regulator of virulence in the plant pathogen *Xanthomonas*. PLoS Path 2013; 9:e1003626.

<u>Abendroth U</u>, Schmidtke C, Bonas U. Small non-coding RNAs in plant-pathogenic *Xanthomonas* spp. RNA Biol. 2014;11(5):457-63. Epub 2014 Feb 27.

Brock J, <u>Abendroth U</u>, Schmidtke C, Bonas U. Identification of CsrB-homologs in *Xanthomonas* campestris pv. vesicatoria. Manuskript in Präparation.

<u>Abendroth U</u>, Grüneisen B, Otto A, Löschner E, Becher D, Bonas U. Re-Annotation of the *Xanthomonas campestris* pv. *vesicatoria* genome using proteogenomics and identification of new potential Typ III effectors. Manuskript in Präparation.

Lebenslauf

Persönliche Informationen

Name:	Ulrike Abendroth
Geburtsdatum:	01.02.1986
Geburtsort:	Dessau (Dessau-Roßlau)
Anschrift:	Pfälzer Straße 23, 06108 Halle (Saale)
Staatsangehörigkeit:	deutsch
Ausbildung	
2002 - 2005	Abitur
	Anhaltisches Berufsschulzentrum Dessau-Roßlau
	Hugo Junkers"/BbS I
	Leistungskurse: Biologie und Gesundheit
2005 2011	Studium dor Biologio
2003 – 2011	Martin Luthar Universität Helle Wittenhorg
	Spagialisiarung: Malakularbiologia
	Speziansierung. Molekulaiolologie
2008 - 2009	studentische Hilfskraft am Institut für Biologie, Fachbereich
	Pflanzengenetik der Martin-Luther-Universität Halle-Wittenberg,
	in der Gruppe von Frau Prof. Dr. Ulla Bonas
2010 - 2011	Diplomarbeit am Institut für Biologie. Fachbereich Genetik
	der Martin-Luther-Universität Halle-Wittenberg, in der Gruppe
	von Frau Professor Dr. Ulla Bonas
	Thema: Verifizierung der Interaktion von sX13 mit möglichen
	Ziel-mRNAs.
2011 - 2015	Promotionsarbeit am Institut für Biologie. Fachbereich
	Genetik der Martin-Luther-Universität Halle-Wittenberg, in der
	Gruppe von Frau Professor Dr. Ulla Bonas
	11