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1. Introduction 
 

1.1 Rye 
 

Rye (Secale cereale L.) is an allogamous, annual, cereal crop species in the tribe Triticeae within 

the Poaceae family. Similar to closely related important crop species like barley (Hordeum 

vulgare L.) and wheat (Triticum aestivum L.) the centre of diversity is located in the Fertile 

Crescent (Zohary et al., 2012).  

 

Figure 1. Drawing of Rye - Secale cereale L. (Thomé, 1885). 
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In contrast to direct domestication, rye co-evolved as a weed in barley and wheat fields, which 

is referred to as secondary domestication (Preece et al., 2017) or Vavilovian mimicry (McElroy, 

2014). Domesticated rye (Secale cereale L.) together with the wild or weedy species Secale 

africanum Stapf, Secale anatolicum Boiss., Secale ciliatoglume Boiss., Secale iranicum Kobyl., 

Secale montaneum Guss., Secale segetale Zhuk., Secale sylvestre Host. and Secale vavilovii 

Grossh. forms the genus Secale (Govaerts, 2009). 

Though the economic importance and current production of 15.2 million tones worldwide in 

2017 (FAO, 2019) is not on the same level as for wheat or barley, rye exhibits a range of 

positive and favourable characteristics. In low input environments (soil quality, fertilization) 

rye is relatively high yielding (Madej, 1996), and it is known for an outstanding tolerance to a 

range of abiotic stresses like aluminium (Silva et al., 2012), salt and drought (Geiger and 

Miedaner, 2009), as well as low temperature (Fowler and Limin, 1987). In particular, rye is 

known for its outstanding drought tolerance, which highly influences crop productivity (Toker 

et al., 2007). Some of the genes underlying this favourable characteristics are transferred to 

other species like the man-made cereal triticale (x Triticosecale) or to wheat using 

translocations, e.g. of the short arm of rye chromosome 1 (1RS) (Hoffmann, 2008; Ko et al., 

2002). 

Rye is grown mainly as a winter crop in northern and eastern Europe. Germany, Poland, and 

the Russian Federation are the most important rye producers. The highest yields are achieved 

in Germany and Denmark (FAO, 2019). For details concerning rye production cf. Table 1, Table 

2 and Table 3. 

Table 1. Yield (in t/ha) of rye for important rye growing countries from 2010 to 2017 (FAO, 
2019). 

Year Germany Poland Russia China Denmark Belarus Ukraine 

2010 4.6 2.6 1.1 3.1 4.8 2.1 1.6 

2011 4.1 2.3 1.9 3.7 5.1 2.4 2.0 

2012 5.4 2.7 1.4 3.4 5.9 2.7 2.2 

2013 5.9 2.8 1.8 3.4 6.0 2.0 2.3 

2014 6.1 3.1 1.7 3.0 6.3 2.7 2.6 

2015 5.6 2.7 1.6 3.2 6.3 3.0 2.6 

2016 5.5 2.8 2.0 3.6 5.8 2.7 2.7 

2017 5.0 3.0 2.1 3.7 6.5 2.6 2.9 
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Table 2. Total production (in thousand tones) of important rye growing countries from 2010 
to 2017 (FAO, 2019). 

Year Germany Poland Russia China Denmark Belarus Ukraine 

2010 2900 2851 1635 570 254 734 464 

2011 2520 2600 2970 750 294 800 578 

2012 3878 2888 2131 650 384 1082 676 

2013 4689 3359 3359 620 526 648 637 

2014 3854 2792 3280 520 677 867 478 

2015 3487 2013 2086 1311 771 752 391 

2016 3173 2199 2541 930 577 650 391 

2017 2737 2673 2547 1332 723 669 507 

 

Table 3. Total area harvested (in thousand ha) of important rye producing countries from 2010 
to 2017 (FAO, 2019). 

Year Germany Poland Russia China Denmark Belarus Ukraine 

2010 627 1059 1367 180 52 342 279 

2011 613 1085 1524 200 57 326 279 

2012 708 1042 1422 190 64 392 297 

2013 784 1172 1774 180 87 323 279 

2014 629 886 1858 170 106 319 185 

2015 616 725 1250 409 121 250 150 

2016 570 775 1249 255 99 241 143 

2017 537 873 1174 352 111 255 171 

 

Rye is used mainly for human nutrition (bread), animal feed and as a source of biomass for 

renewable energy production (Miedaner et al., 2012b). Studies indicate that rye has several 

positive effects for humans, e.g. decreased risk of diabetes, cardiovascular disease and certain 

cancers as well as an improved regulation of blood glucose level, especially if whole grain 

products are used (Jacobs et al., 1998a, 1998b; Liu et al., 2000; Liukkonen et al., 2003; Pereira 

et al., 2002). On the other hand, some of these components, especially pentosanes, which 

confer the positive health effects for humans are detrimental in animal feed, e.g. in pigs 

(Patience et al., 1992) or poultry (Lázaro et al., 2004). A selection of rye ingredients can be 

obtained in Table 4. 
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Table 4. Selected ingredients of rye (Secale cereale L.) (Souci et al., 2003). All data is the 
average content in relation to 100g eatable rye grain. 

overview  minerals  vitamins  amino acids  

Water 13.7 g Sodium 4.0 mg Vit. B1 360 µg Tryptophan 110 mg 

Protein 8.8 g Potassium 
510.0 

mg 
Vit. B2 170 µg Threonine 360 mg 

Fat 1.7 g Magnesium 
90.0 

mg 
Vit. B3 

1800 

µg 
Isoleucine 390 mg 

Carbohy

drates 
60.7 g Calcium 

35.0 

mg 
Vit. B5 

1500 

µg 
Leucine 370 mg 

Dietary 

fiber 
13.2 g Manganese 2.9 mg Vit. B6 235 µg Lysine 400 mg 

Minerals 1.9 g Iron 2.8 mg 
Folic 

Acid 
145 µg Methionine 140 mg 

  Copper 0.4 mg Vit. E 
2000 

µg 
Valine 530 mg 

  Zinc 2.9 mg   
Phenylalani

ne 
470 mg 

  Phosphorus 
335.0 

mg 
  Tyrosine 230 mg 

      Arginine 490 mg 

      Histidine 190 mg 

 

The genome of rye (R) is diploid with 2n = 2x = 14 chromosomes and of rather large size with 

8.1 giga bases (gb) (Dolezel et al., 2007), contains large amounts of repetitive sequences 

(Flavell et al., 1974) and shows a high degree of synteny with the genomes of barley and wheat 

(Bauer et al., 2017). 

As a cross-pollinating (wind) and self-incompatible species, rye cultivars are bred by means of 

population breeding (open-pollinated varieties, synthetic varieties) (Schnell, 1982) and since 

1985 by hybrid breeding (Geiger and Miedaner, 1999). The later breeding scheme aims to 

improve crop productivity by exploiting the heterosis in terms of general combining ability 

(GCA) and special combining ability (SCA) using crosses between genetically distant heterotic 
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groups. Hybrid rye breeding was facilitated and promoted by three important factors, (i) the 

development and definition of “Carsten” and “Petkus” as two distinct gene pools followed by 

the assignment as seed parent and pollinator pool for line development, respectively (Geiger 

and Schnell, 1970; Hepting, 1978), (ii) the presence of dominant self-fertility genes to 

overcome the rye self-incompatibility (Wolski, 1970; Wricke, 1969) and (iii) the availability of 

a cytoplasmatic male sterility (CMS) system (Geiger and Schnell, 1970). For CMS two major 

groups, namely the V-type (Vavilov) and the P-type (Pampa) are known (Lapiñski and 

Stojalowski, 2003). Most commercial rye hybrid varieties are based on the P-type cytoplasm 

(Geiger and Miedaner, 1999). The traits targeted by breeding mainly depend on the potential 

use of new cultivars and are partially contrasting. Grain yield accompanied by a high protein 

content is by far the most important trait for livestock feed and human consumption 

(Miedaner et al., 2012a). On the other hand, a maximized dry matter yield is targeted for 

biomass production, combined with an optimized methane output per unit dry matter for 

biogas production (Roux et al., 2010). Furthermore, the previously discussed abiotic stress 

tolerance of rye (Gallego and Benito, 1997; Hubner et al., 2013), enables production on light 

soils with marginal fertility, not suited for other crops like maize or wheat (Hoffmann, 2008). 

 

1.2 Molecular tools available in rye 
 

Rye has a large and highly repetitive genome and is less economically important than the 

closely related species barley and wheat. Therefore, also the molecular information generated 

and available for rye is relatively sparse in comparison to barley and wheat. Nevertheless, a 

range of different types of molecular techniques and molecular markers are available ranging 

from allozyme to single nucleotide polymorphism (SNP) as well as sequence information 

(Bauer et al., 2017; Bolibok et al., 2006; Bolibok-Bragoszewska et al., 2009; Chikmawati et al., 

2005; Martis et al., 2013; Matos et al., 2001; Saal and Wricke, 1999). A wide range of those 

genetic features are also integrated in genetic maps (Korzun et al., 2001; Loarce et al., 1996; 

Milczarski et al., 2011, 2007). 

The first available molecular markers were allozyme assays followed by the assignment of 

these to specific chromosomes (Adam et al., 1987; Salinas and Benito, 1985, 1983; Wehling et 

al., 1985). These were followed by restriction fragment length polymorphisms (Devos et al., 

1992; Plaschke et al., 1993) and after the availability of robust polymerase chain reaction (PCR) 

protocols, by randomly amplified polymorphic DNA (RAPD) (Loarce et al., 1996), or amplified 
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fragment-length polymorphism (ALFP) markers (Saal and Wricke, 2002). These markers can be 

used without previous knowledge on the genome sequence, which greatly reduces the time 

and cost of marker development and some of them, e.g. AFLPs, allow analysing a high number 

of loci at the same time. The set of available marker systems was further extended with simple 

sequence repeat (SSR) markers, which are still used extensively in many plant species and 

were also employed in rye (Feuj et al., 2018; Li et al., 2018; Targońska et al., 2016). Respective 

markers were used for different purposes, e.g. genetic diversity and phylogenetic analysis 

(Shang et al., 2006), construction of genetic maps (Schlegel et al., 1998), tagging the 1RS rye-

wheat translocation (Kofler et al., 2008) or detection of quantitative trait loci (QTL) (Börner et 

al., 1999) to name just a few. Favourable characteristics, like high reproducibility and 

robustness in data generation, as well as the multi-allelic nature of SSR markers conferring 

superior information content per data-point (Saal and Wricke, 1999), made SSR markers a very 

valuable tool. Also, the high abundance, covering the whole genome leads to an extensive use 

of SSR markers until very recently. Nevertheless, SSR assays exhibits often a relatively low rate 

of multiplexing compared to single nucleotide polymorphisms (SNPs) (Rafalski, 2002) resulting 

in a potentially higher price per data-point and a potentially higher amount of time needed 

for data generation. Furthermore, valid sequence information is needed in order to create SSR 

markers (Robinson et al., 2004). 

The advent of so called Next Generation Sequencing (NGS) techniques (Schuster, 2007), which 

is also termed massive parallel sequencing or second generation sequencing, allows the 

generation of sequence information for large genomes in a short period of time with 

previously unmatched low costs. Despite challenges, like assembling short NGS sequence 

reads to large genomic DNA information called contigs and scaffolds, the chromosomal 

assignment or the difficulties to cover highly repetitive genomic regions, NGS proved to be an 

excellent tool (Michael and VanBuren, 2015). A detailed and frequently updated list of all 

sequenced plant species can be obtained at Usadel, B. (2019). NGS was employed to detect 

SNPs, which are the most simple and most common class of genetic variation (Varshney et al., 

2007a). SNPs were detected and used in rye already in the beginning of this century (Varshney 

et al., 2007a), but the massive number of detected SNPs by sequencing provides information 

to generate two large scale, highly multiplexed hybridization based SNP arrays (Bauer et al., 

2017; Haseneyer et al., 2011), which are valuable resources for both rye research and rye 

breeding. To avoid high sequencing costs and the challenges of assembling the highly 
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repetitive rye genome, the study presented in this thesis, as well as the study that generated 

the first SNP array (Haseneyer et al., 2011) focused on the sequencing of expressed genes via 

sequencing expressed sequence tags (EST). This transcriptome sequencing approach reduces 

the number of nucleotides, which needs to be sequenced and assembled down to only the 

proportion of expressed genes after transcription and splicing. It also allows inducing and 

quantifying the expression level of transcripts using defined and controlled treatments and 

sampling expressed sequences from defined tissues. On the base idea of ribonucleic acid 

(RNA) sequencing a set of different technologies and methodologies arise, e.g. SuperSAGE 

(Matsumura et al., 2005), DeepSuperSAGE (Matsumura et al., 2012) which was used in this 

study or MACE (Zawada et al., 2014). Although the EST resources available for rye were 

increased by a transcriptome study (Haseneyer et al., 2011) and a draft genome sequence was 

published (Bauer et al., 2017), the knowledge on transcripts or molecular markers directly 

associated with drought stress responses in rye is still scarce. 

Beside the possibility to directly sequence RNA, also so called exome capture methods are 

available (Chilamakuri et al., 2014), which omit sequencing of intergenic or repetitive DNA 

sequences using filtering methods. As a downside of this later methods, a quantification of 

gene expression is not directly possible. Furthermore, polymorphisms like SNPs are detected 

by sequencing multiple genotypes. A set of methods also uses the basic idea of reducing the 

genome representation and were also used in rye, like Diversity Array Technology (DArT) 

markers (Bolibok-Bragoszewska et al., 2009) and Genotyping-by-Sequencing (GBS) (Schreiber 

et al., 2018). As these methods in general can be applied and used without the availability of 

a high-quality reference genome, and respective annotations, the use of the resulting data is 

limited to some extend as e.g. physical mapping cannot be conducted directly. To address 

some of these challenges so called ‘Genome Zippers’ (Mayer et al., 2009; Spannagl et al., 2013) 

may be employed. As toolboxes, which support the reconstruction of large and complex cereal 

genomes, ‘Genome Zippers’ integrate the information on genes, genetic maps, sequence data 

and synteny in the Triticeae into a virtual gene order of barley (Mayer et al., 2011), rye (Martis 

et al., 2013) and wheat (Hernandez et al., 2012). These resources promote a wide range of 

applications, e.g. fine mapping and marker saturation (Silvar et al., 2013) or phylogenetic and 

evolutionary analysis (Martis et al., 2013), especially in species and crops with no complete 

high quality standard reference sequence like rye. This resource makes use of the high degree 

of synteny between related species like barley, wheat, rice, brachypodium, sorghum, and rye 
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(Martis et al., 2013) facilitating the alignment of genes into a virtual linear order, which may 

be seen as an early kind of pan-genomic approach (Tettelin et al., 2005; Vernikos et al., 2015) 

covering several species within the Poaceae. For some of the previously listed species high 

quality reference genome sequences (Appels et al., 2018; Mascher et al., 2017; Ramírez-

González et al., 2018), gene annotations and additional data are available, today. This 

information may be used in studies on species like rye with still limited genomic information. 

As sequencing techniques evolve and the overall price for sequencing projects is dropping, the 

generation of a gold-standard reference sequence for rye comes into reach (Bauer et al., 

2017). Currently available and new technologies like long-range third generation sequencing 

(Rusk, 2009) and optical mapping (Burton et al., 2013) will be used in rye most probably, as it 

was already done for wheat, to generate a high quality reference genome (Appels et al., 2018). 

On a long-term perspective, a pan-genome approach (Tettelin et al., 2005) covering the 

sequence diversity within the rye primary gene pool may be envisioned (Monat et al., 2019; 

Montenegro et al., 2017). 

 

1.3 Detection and mapping of quantitative trait loci and underlying genes 
 

In plant science, as well as in medicine and biology in general, a very common task is to identify 

genes, which influence a target trait. This knowledge may be used to gain insight into gene 

functions, metabolic pathways or to develop molecular markers to predict characteristics of 

an organism without the need for phenotyping (Agarwal et al., 2008). Furthermore, it saves 

time and resources for breeding and allows e.g. risk assessment in medicine (Hedenfalk et al., 

2001). In the era of 2nd and 3rd generation sequencing, a common way to identify single genes 

encoding a trait of interest is to conduct a bulked segregant analysis (BSA) based on massive 

sequence data which is derived from two pools of individuals, which contrast with respect to 

the trait of interest (Magwene et al., 2011). Nevertheless, this approach is highly depended 

on a high-quality annotation of the reference genome to reduce the number of potential 

candidate genes. This is common for model organisms which usually have smaller genomes 

(Wenger et al., 2010) and for economically important crop plants (Appels et al., 2018; Mascher 

et al., 2017; Monat et al., 2019) which genomes often are composed of tens of thousands of 

genes, large intergenic regions and repetitive sequences. This increases the costs for 

sequencing and potentially hampers the identification of candidate genes, particularly in 

species with multiple sub-genomes like wheat (Appels et al., 2018). 
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Many traits are influenced by multiple genes, potentially scattered over the whole genome 

and further controlled by transcription factors located in genomic positions distant to the 

encoding gene (Agarwal et al., 2008; Lander and Botstein, 1989). Other types of challenges to 

find gene-trait-associations comprise gene by gene interactions (Gauderman, 2002), 

presence/absence variation versus allelic variation (Springer et al., 2009), alternative splicing 

of transcripts (Barbazuk et al., 2008), epigenetic factors (Mirouze and Paszkowski, 2011) or 

duplication of genes resulting in copy number variations (Schiessl et al., 2017). All these types 

of variation can hamper the detection of potentially causal genes by means of a genome 

sequencing based bulked segregant analysis as well as other analysis approaches. 

This gives reasons why even today methods like linkage mapping and association mapping are 

commonly used, as they detect genomic regions with causal influence on a target trait based 

on the co-occurrence of genotypic and phenotypic alterations within a set of genotypes, most 

often in combination with respect to positional information of the used molecular markers 

(Mackay et al., 2009). For linkage mapping of QTL, a special mapping population with a large 

progeny of defined parents is needed. While the classical approach uses two contrasting 

parents (Lander and Botstein, 1989) to generate a bi-parental population, a set of new multi-

parent approaches like nested association mapping (NAM) (Yu et al., 2008) or multiparent 

advanced generation intercross (MAGIC) (Cavanagh et al., 2008) are available (Bandillo et al., 

2013) in the meantime. Furthermore, the employed statistical methods were further 

developed to account for issues like co-founding factors (Zeng, 1994). As a downside of these 

methods, the mapping resolution in such a population is directly dependent on the number 

of recombination events, which is a function of population size and the number of meiosis. As 

both factors are increasing the resource demand for population development and data 

generation, QTL mapping suffers from low resolution, indirectly (Mackay et al., 2009). 

Furthermore, some QTL detected in one population, are reported to be not stable and 

reproducible in other populations, most presumably caused by genetic background effects 

(Kang et al., 2009). These disadvantages, together with the need to construct dedicated 

populations are surmounted by genome wide association studies (GWAS). GWAS methods 

were developed in the context of medical research, as the construction of defined, large 

populations is not applicable in humans. The available GWAS methods make use of the 

massive number of historic recombination events in a natural population, enabling a much 

higher mapping resolution, which, on the other hand needs a higher marker saturation of the 
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genome (Hirschhorn and Daly, 2005). The detection precision, especially by reducing the risk 

of false positive marker-associations was further increased by considering the population 

structure, also called stratification (Price et al., 2006). Although both, GWAS and bi-parental 

QTL studies are successfully used for traits controlled by a small to medium number of genes 

(oligogenic traits), the currently available statistical methods perform quite poor for highly 

polygenic traits with a high number of genes involved (Xu and Crouch, 2008). To further 

increase the prediction accuracy for highly polygenic traits, most important yield (Goddard 

and Hayes, 2007; Heffner et al., 2009) and to integrate all available molecular marker data 

even for loci with no or very small effects on the target trait so called genomic selection (GS) 

was implemented in both, animal- and plant breeding. Genomic selection methods proof their 

value in the context of breeding (Jannink et al., 2010; Shikha et al., 2017; Zhao et al., 2015), 

but are not directly usable to generate knowledge and insight for research on gene functions 

and metabolic pathways (Heffner et al., 2009). 

A methodology often applied in agricultural research is RNA sequencing (Wang et al., 2009), 

which enables to capture both, the expressed portion of genes in terms of transcripts, as well 

as the expression level of those transcripts. This may be combined with the sampling of 

specific tissues or organs and with the exposure to a specific treatment to provoke specific 

expression profiles (Kakumanu et al., 2012). The combination of these techniques and 

datasets may be used to achieve several goals within a single experiment. This can comprise: 

genome complexity reduction of large crop genomes (Haseneyer et al., 2011); recording of 

gene expression profiles with respect to a specific genotype, tissue, organ, or treatment 

(Kakumanu et al., 2012); detection of polymorphisms in the gene–space (Kumar et al., 2012) 

as well as splice variants (Loraine et al., 2013) or antisense RNA (Lu et al., 2012). This 

combination of factors makes RNA sequencing experiments an extremely economical 

technique for a range of applications including agricultural research. 

In the future, with the prospect of a largely increased knowledge on functions and interactions 

of genes, as well as genotype by environment interaction, mechanistic approaches like 

Pathway Breeding, seems to be in reach on the mid- to long term view, even in crops with 

complex genomes (Reguera et al., 2012). Holistic approaches like system biology, aiming to 

deterministically modelling the complete organism with all bio-chemical reactions are 

currently only applicable to extremely simple model microbes like E. coli within completely 

controlled environments like bioreactors (Chubukov et al., 2016). The usage of those models 
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seems far away from practical breeding applications. Another set of mathematical methods, 

so called machine learning algorithms (Goldberg, 1989), are available for the general task of 

modelling (Almeida, 2002). A subset of these methods, so called deep learning approaches; 

most predominantly deep convolution neural networks (CNN) (LeCun et al., 1998), are used 

massively in a wide range of applications like speech recognition and generation (Collobert 

and Weston, 2008), image analysis (Krizhevsky et al., 2012), data mining and predictive 

analytics in general. They provide a framework to automatically learn a model underlying a 

specific, real world process, by incrementally adjusting the response of artificial neuronal 

networks to given observations (Bishop, 2006). This process is often referred to as “training” 

which has similarities to the animal and human learning process to some extent. These 

methods mathematically enable the integration of gene-environment interactions, 

environmental data like sequential weather data and can model higher order gene-gene 

interactions (Ma et al., 2018; Uppu et al., 2016a, 2016b). This approach further increases the 

detection power and sensitivity of respective methods for gene identification in comparison 

with classical approaches which only take limited information into account (Liang et al., 2014). 

The downside of the currently available tools is the need for a massive amount of data for the 

training set, which can be hardly generated in one scientific research project. Also some 

algorithms are lacking interpretability, meaning they are so called “black-box” algorithms, 

which did not allow a direct extraction of the learned underlying model (Zeiler and Fergus, 

2014). To sum up, a range of methods is available to detect QTL and underlying genes, as well 

as to predict phenotypes out of given genotypes, but the choice for a method greatly depends 

on the trait of interest, the genome structure of the target species and the resources available 

for the analysis (Jain et al., 2010; Moose and Mumm, 2008). 

 

1.4 Drought stress response in plants on a molecular level 
 

Drought stress and the negative impact on plant performance and yield is a very active field 

of research, as prognoses on the global climate change suggest an elevated temperature and 

alterations in precipitation. Therefore, the number and severity of drought stress periods will 

increase for many regions (Arneth et al., 2019; Lobell et al., 2011). The impact of drought on 

yield due to global warming has been simulated for major crops (Lobell et al., 2011; Osborne 

et al., 2013), predicting significant yield losses also in rye. This holds especially true since, even 

if the overall precipitation is not reduced, alterations in time, duration or intensity of 
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precipitation can cause drought stress (Serraj et al., 2005). To meet the goal of global food 

security for an increasing human population, improving drought stress tolerance is of prime 

importance in plant breeding. The plant reaction to surmount drought stress can be divided 

into escape, avoidance and tolerance strategies (Levitt, 1972; Turner, 1986), which are often 

combined in stress resistant plants (Ludlow, 1989). Furthermore, drought stress often comes 

along with other abiotic stresses, e.g. higher temperatures, oxidative stress caused by high 

amounts of reactive oxygen species (ROS), or intense light irradiation (Chaves et al., 2003; 

Gupta et al., 2013). These factors disguise and superimpose the plant response to drought 

stress on the molecular level making drought tolerance a complex trait which is controlled by 

a putatively large number of QTL with small individual effects and often cofounded by 

differences in plant phenology (Fleury et al., 2010). Several studies focused on drought stress 

tolerance using different strategies (Mir et al., 2012). These strategies ranged from 

physiological approaches (Sinclair, 2011) and genetic engineering (Yang et al., 2010) to 

genomic approaches (Cattivelli et al., 2008; Varshney et al., 2011) in different crop species, 

e.g. rice (Bernier et al., 2007), wheat (Fleury et al., 2010) or canola (Wan et al., 2009) resulting 

in a deeper knowledge on the reaction of plants to drought stress (Wehner et al., 2016). In 

many studies, QTL for drought stress tolerance-related traits in some major crop species were 

detected (Mir et al., 2012). Further investigations identified phytohormones, transcription 

factors, and respective genes as well as pathways involved in drought stress tolerance. Well 

known key factors of the reaction to biotic and abiotic stresses are for instance salicylic acid, 

jasmonic acid, ethylene, ROS and abscisic acid (ABA) (Fujita et al., 2006; Krasensky and Jonak, 

2012). Some drought stress responsive genes are already used for practical breeding 

purposes, e.g. the “stay green” leaf senescence associated gene (Gous et al., 2013; Jiang et al., 

2007). Most of these studies made use of molecular information available for model but also 

crop species (Hou et al., 2007; Mir et al., 2012; Raney et al., 2014; Vaseva et al., 2010). On the 

molecular level multiple mechanisms and molecules are known which are involved in the plant 

reaction to drought stress. As a first important group protein kinases and transcription factors 

are heavily involved in triggering the biosynthesis of osmolytes or proteins for macromolecular 

protection (Agarwal et al., 2006). For crops like barley (Hordeum vulgare L.) it was shown that 

the accumulation of sucrose and malate may serve as osmolytes as they are stronger 

accumulated as a response to drought stress (Templer et al., 2017). Other studies detect the 

accumulation of the amino acid proline as a reaction to abiotic stresses like drought in barley 
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(Wehner et al., 2015), wheat (Keyvan, 2010) and also crop species like chickpea (Mafakheri et 

al., 2010). Furthermore, polyamines are frequently found as osmolytes involved in the plant 

drought stress reaction complex, like reported for barley (Montilla-Bascón et al., 2017) in 

dependency of an altered nitric acid oxide level which promotes drought stress tolerance, as 

well as in rice (Capell et al., 2004) or in the model plant species Arabidopsis thaliana (L.) Heynh. 

(Yamaguchi et al., 2007). Fructans as soluble carbohydrates are also referred to as 

osmoprotectants in the context of drought and salinity stress (Kerepesi and Galiba, 2000; 

Murakeözy et al., 2003; Pilon-Smits et al., 1995), but there are also studies which found 

fructans to be converted to fructose and mobilized at a higher level as a response to drought 

stress, e.g. for wheat in the kernel filling stage (Wardlaw and Willenbrink, 2000). Furthermore, 

glycinebetaine is a very extensively studied compatible solute which was found in bacteria, 

plants and animals with regard to abiotic stresses in general and drought stress (Farooq et al., 

2009). Besides the direct effect as osmoprotectant, glycinebetaine was found to be involved 

in the signalling transduction pathways in pigeon pea (Subbarao et al., 2000). An elevated 

synthesis of Trehalose as another compatible solute was also found throughout many 

kingdoms, i.e. bacteria, fungi, animals and lower plants as a response to stress (Wingler, 2002). 

Although genes for Trehalose biosynthesis were suspected to be absent from higher plants, 

newer studies found evidence for Trehalose synthesis in cotton (Kosmas et al., 2006), tobacco 

(Goddijn et al., 1997) and Arabidopsis thaliana (L.) Heynh. (Wingler, 2002). 

Aquaporins, as membrane proteins which are highly conserved, are another important group 

of drought stress tolerance related molecules in plants (Tyerman et al., 2002), as they are 

reported to be involved in soil water uptake efficiency (Javot et al., 2003) as well as membrane 

water permeability and protein mediated water transport in general (Maurel and Chrispeels, 

2001). 

As drought stress is often accompanied with other stresses, e.g. heat stress and oxidative 

stress, other classes of proteins and molecules are directly and indirectly involved in the plant 

stress reaction to drought (Wang et al., 2003). Well known and studied molecules are for 

example heat shock proteins (HSP), which were discovered back in 1962 (Ritossa, 1962) and 

are key components of thermotolerance at the molecular level (Wang et al., 2004). HSP can 

be distinguished into six major groups with regard to their molecular mass, e.g. small Heat 

Shock Proteins (smHSP), HSP60, HSP70, HSP90, HSP100 and HSP110 (Kotak et al., 2007). There 

are multiple effects of the HSP on molecular mechanisms, e.g. acting as chaperones in protein 
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folding (Miernyk, 1999), protein assembly (Vierling, 1991) or protein aggregation prevention 

(Kotak et al., 2007), which is of prime importance in the frame of a reduced turgor and cytosol 

water content which is an effect of water deficiency that can lead to unintended protein-

protein interaction, aggregation and denaturation (Hoekstra et al., 2001). Nevertheless, HSPs 

are reported to be induced by several different stresses and factors, which are not limited to 

heat or drought stress - like chilling and freezing stress or low oxygen (Coca et al., 1994). An 

elevated transcription of HSP genes is reported to start at 32°C-33°C tissue temperature for 

wheat (Vierling, 1991).  

Late embryogenesis abundant (LEA) proteins in particular the dehydrin family, known as group 

2 LEA proteins (dos Reis et al., 2012; Gupta et al., 2013) are also known to be expressed at a 

higher level in response to drought stress among others stresses (Mahajan and Tuteja, 2005). 

These proteins were shown to confer a faster recovery after salt stress and drought stress as 

well as an elevated osmotic stress tolerance as shown in rice and wheat (Sivamani et al., 2000).  

Besides these proteins and metabolites, also the underlying genes, networks, transcription 

factors and other players like micro-RNA or epigenetic factors have been described in various 

studies (Agarwal et al., 2006; Ahuja et al., 2010; Bartels and Sunkar, 2005; Golldack et al., 2011; 

Hadiarto and Tran, 2011; Yamaguchi-Shinozaki and Shinozaki, 2006). Also, alterations in the 

leaf carbon metabolism are reported in the context of drought stress tolerance as for exotic 

barley accessions from Mediterranean locations (Templer et al., 2017). 

 

1.5 Applications of molecular markers in rye 
 

A very widely used application of molecular markers in agricultural science is the identification 

and localization of quantitative trait loci, which was also conducted for various traits in rye, 

e.g. preharvest sprouting (Masojć et al., 2007), in vitro culture response (Bolibok et al., 2007), 

flowering time (Börner et al., 2000), plant height (Börner et al., 1999; Miedaner et al., 2018), 

yield, yield components, agronomic traits (Hackauf et al., 2017a) as well as quality parameters 

(Falke et al., 2009; Miedaner et al., 2012a; Wricke, 2002) and α-amylase activity (Myśków et 

al., 2012), or morphological traits (Myśków et al., 2014). Beside the extensive use of molecular 

markers in research projects, also commercial breeding programs are depended on cost 

efficient genotyping platforms or may benefit substantially from the incorporation of genomic 

data, especially in the context of hybrid breeding (Eathington et al., 2007; Tanksley, 1983; 

Zhao et al., 2015). Although modern highly multiplexed genotyping platforms with very low 
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costs per data point are available also for rye (Bauer et al., 2017; Bolibok-Bragoszewska et al., 

2009; Haseneyer et al., 2011) the overall price per sample is challenging for many small to 

medium sized breeding programs which are common in rye breeding. This is further 

emphasized, as factors like ascertainment bias (Moragues et al., 2010) or clustering of multiple 

markers in close genomic neighbourhood (Milczarski et al., 2011) can decrease the overall 

benefit of these tools for plant breeding (Würschum, 2012) or even have negative impact on 

results (Stange et al., 2013). 

 

1.6 Objectives 
 

Genomic resources in rye are still scarce compared to wheat and barley and drought stress is 

gaining increasing importance also in rye. Based on the hypothesis that there is variation in 

rye with respect to drought stress tolerance which can be related to variation in gene 

sequence and expression, the aim of this study was the development of a mid-plex genotyping 

platform for rye. This is based on genomic information generated by sequencing and 

quantification of drought stress induced transcripts followed by an in silico mapping approach 

using a virtual linear gene order model of the Triticeae. This aims to optimize the genome 

coverage of the platform in terms of an equidistant marker distribution and comprises the 

validation of this platform by conducting a QTL mapping. 

 

In detail this comprises the following steps: 

i) Sequencing and quantifying of drought stress induced transcripts in rye. 

ii) In silico mapping of drought stress induced transcripts. 

iii) Detection of single nucleotide polymorphism (SNPs) within the transcripts. 

iv) Creating a mid-plex genotyping platform with optimized genome coverage. 

v) Integrate the newly developed markers in the genetic map of rye, including 

multiple published molecular markers of different types to allow comparisons to 

other linkage maps of rye. 

vi) To proof the quality and usability of the generated marker set by mapping QTL for 

agronomic traits in a population derived from a commercial hybrid rye breeding 

program. 



22 

 

2. Material and Methods 
 

2.1 Identification and in silico mapping of drought responsive transcripts 
 

The overall strategy of the identification of drought responsive transcripts and the later in 
silico mapping of those as well as the workflow for analysing this data is given in Figure 2. 
 

 
Figure 2. Pipeline for the generation of transcript sequence information and mapping of 
drought induced transcripts. 
 

2.1.1 Plant material and stress application 
 

Six plants each of two elite inbred lines (Hyb201 and Hyb202) derived from the hybrid 

breeding program of the HYBRO Saatzucht GmbH & Co. KG (Kleptow, Germany) were 

vernalized for eight weeks at 4 °C and subsequently planted in a peat substrate. Then, the 

seedlings were cultivated at short day conditions (12 h light per day, 15 °C day-temperature, 

12 °C night-temperature, 40% relative air humidity) in a growth chamber in a complete 
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randomized design with 6 replications. At the end of tillering (EC 29), growing conditions were 

changed to long day (16 h light per day, 18 °C day-temperature, 12 °C night-temperature, 30% 

relative air humidity). After vernalization, plants of the stressed variant were not watered until 

soil water capacity reached 25%. This soil water capacity was maintained until the end of the 

experiment. For the well-watered group (control variant) the water capacity was kept at 55% 

throughout the whole experiment. The water capacity was measured gravimetrically. All 

stressed and well-watered plants were grown under the same environmental conditions. 

Sampling was conducted at two time points: (i) when 25% water capacity was reached, bulked 

leaf samples from 6 individual plants per genotype were harvested from the stressed and well-

watered variant, respectively, (ii) after a further cultivation until the beginning of heading (EC 

51) all watering of the stressed variant was stopped for 96 h. At this time point first wilting 

symptoms became visible. Then a bulked sample of ear, shoot and flag leaf was harvested 

from six plants each per stressed variant and well-watered control. All samples were frozen in 

liquid nitrogen and stored at -80 °C until use. 

 

2.1.2 RNA isolation 
 

Total RNA (Figure 2 step A) was isolated following the standard protocol of the NucleoSpin 

RNA plant kit (MACHEREY-NAGEL GmbH and Co., KG, Düren, Germany). From total RNA, 

poly(A)-RNA was purified with the Oligotex mRNA Mini Kit (QIAGEN GmbH, Germany) 

according to the manufacturer’s protocol. 

DNA traces were removed by digestion with Baseline-ZERO DNase (Biozym Scientific GmbH, 

Hessisch Oldendorf, Germany). The quality of the total RNA was checked on a Bioanalyzer with 

a 2100 expert Plant RNA Nano chip (Agilent Technologies, USA). 

RNA quality, i.e. RNA Integrity Index (RIN) values (standard developed by Agilent Technologies 

and Quantiom Bioinformatics) and amount of total RNA used for DeepSuperSAGE and 

complementary deoxyribonucleic acid (cDNA) library preparation were determined with an 

Agilent 2100 Bioanalyzer with an expert Plant RNA Nano chip (Agilent Technologies, USA). For 

the SNP quality analysis, the sequence data sets of control and drought stress were combined. 

The stress application, as well as the RNA isolation was conducted by the group of Dr. Bernd 

Hackauf, Julius Kühn-Institute, Institute for Breeding Research on Agricultural Crops, Groß-

Lüsewitz, Germany. 

 



24 

 

2.1.3 cDNA-library preparation and normalization 
 

10 µg of total RNA of each bulk were used for cDNA synthesis. Full-length-enriched cDNA was 

normalized using the duplex-specific nuclease (Shagin et al., 2002) Trimmer-2 cDNA 

normalization kit from Evrogen (Moscow 117997, Russia) as described by Zhulidov et al. (2005, 

2004) based on nucleic acid hybridization kinetics (Young and Anderson, 1985). After 

optimization, the cDNA libraries were prepared for Illumina 100 base pairs (bp) paired-end 

sequencing (Figure 2 step C) on an Illumina HiSeq2000 following standard procedures 

(Illumina, Inc., San Diego, CA, USA) (Bentley, 2006). 

 

2.1.4 De novo assembly of ESTs and SNP discovery 
 

After Illumina paired-end sequencing, raw sequence reads were passed through quality 

filtering also removing sequencing adapters and cDNA synthesis primers. This quality filtered 

reads were assembled using the Trinity (Grabherr et al., 2011) RNA-Seq de novo assembly tool 

(Version: trinityrnaseq_r2012-06-08) (Figure 2 step D). The resulting contigs were compared 

with publicly available sequence resources and annotated via blastx (Altschul et al., 1990) to 

the Swiss-Prot and TrEMBL database from Uniprot. All plant sequences were retrieved using 

the web interface. SNPs between the different bulks of the two elite lines were discovered 

using an in-house tool developed by GenXPro. Only SNPs with a minimum coverage of 5 raw 

sequencing reads were considered for further analysis. 

 

2.1.5 DeepSuperSAGE library preparation and analysis 
 

DeepSuperSAGE (Matsumura et al., 2012) was conducted with the Standard Operating 

Procedure protocol of GenXPro GmbH (Frankfurt am Main, Germany) including specific 

software tools. The detailed workflow is given below. DeepSuperSAGE captures one distinct 

26-28 bp long tag each from a defined position of all polyadenylated transcripts, so that the 

total number of tags is similar to the total number of transcripts examined. Artificial tags 

eventually arising from PCR steps during sample preparation are eliminated by the TrueQuant 

technology (also known as unique molecular identifier) developed by GenXPro. 

The basic principle of the procedure follows the methodology described in Matsumura et al. 

(2012, 2010, 2005). For the analysis out of each RNA bulk, 5-10 µg total RNA was used (Figure 
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2 step B). High-throughput sequencing was performed with the Illumina 50 base fluorescent 

nucleotide-based system (50 bp reads, Illumina, Inc., San Diego, CA, USA). 

Sequences were processed using GenXPro’s in-house analysis pipeline. Briefly, libraries were 

sorted according to their respective index followed by elimination of PCR-derived tags 

identified by the TrueQuant technology. Distinct DeepSuperSAGE tags were quantified and 

combined to tag clusters of common origin (UniTags) according to Akmaev and Wang (2004). 

After TrueQuant removal of artifacts, UniTags were subsequently annotated via blast (Altschul 

et al., 1990). The DeepSuperSAGE tags were annotated in several rounds at decreasing 

stringency of homology. The most stringent blast-bitscore for annotation was 52 

corresponding to a perfect match between tag and reference sequence in the first step of 

annotation. Any tag that did not reach this score was re-annotated by lowering the required 

score in a next annotation step by two points, until in the last step the least stringent 

acceptable homology score of 44 was reached.  

To quantify transcript expression, normalized values of each tag in relation to one million tags 

were calculated (tpm = tags per million) for all UniTags in the eight libraries. This allowed exact 

quantification and comparison of mRNA expression in drought stress and control libraries of 

Hyb201 and Hyb202. 

To detect transcripts with significant differences in expression of drought stress and control 

libraries Fishers-exact test was conducted using an alpha threshold of 0.05. 

The preparation, sequencing and analysis of the DeepSuperSAGE libraries was conducted by 

GenXPro GmbH, Frankfurt am Main, Germany. 

 

2.1.6 In silico mapping 
 

The Trinity (Grabherr et al., 2011) assembly identified transcripts, which showed high quality 

SNPs between both inbred lines. In addition the DeepSuperSAGE (Matsumura et al., 2012) 

analyses disclosed those transcripts that were significantly differentially expressed under 

stress. For the later transcripts (Figure 2 step E & F) the putative position in the rye genome 

was predicted by in silico mapping. For mapping, the Sce_Assembly03 (Haseneyer et al., 2011) 

was converted by the “makeblastdb” tool from the blast+ toolbox (Camacho et al., 2009) 

version 2.2.29 and used as the database resource for the following blast. Subsequently, a 

blastn with standard parameters was performed, using the previously selected transcripts as 

query (Figure 2 step G) and the converted Sce_Assembly03 as database. The information out 
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of the resulting significant alignments was used to predict the genomic position of the 

transcripts identified in our study. The genomic position of the Sce_Assembly03 contigs in a 

virtual linear order is given in the RyeZipper (Martis et al., 2013). To create a link between the 

information given in the RyeZipper (Martis et al., 2013) and the sequence information from 

our study, the map position of the non-redundant, stringently selected ESTs, which are 

presented in the RyeZipper (Martis et al., 2013), was used. This was combined with the 

information of the significant alignments of the blastn analysis, using an automated in-house 

tool (available from M. Enders on request), to predict the genomic position of the transcripts 

in the rye genome (Figure 2 step H). Furthermore, a functional annotation of all transcripts 

which were used in the in silico mapping approach was conducted using the Blast2Go (Conesa 

et al., 2005) v2.7.0 Gene Ontology pipeline. This comprises a blastx with standard parameters 

against the non-redundant (nr) protein database followed by GO-Mapping using the 

b2g_sep13 (Conesa et al., 2005) database. 

 

2.2 Development of a SNP array for QTL detection 
 

2.2.1 Population description 
 

The population used for the following analysis of this study consists of a mapping population 

with 271 F2 plants used for genotyping and the derived S2:3 lines for field testing and 

assessment of phenotypic data (Hackauf et al., 2017a). All progenies are derived from a cross 

of Hyb201 and Hyb202, two rye elite inbreed lines from the pollinator pool (Carsten) of the 

commercial hybrid rye breeding program of the Hybro Saatzucht GmbH & Co KG (Kleptow, 

Germany). This population was developed to allow for an integration of newly developed 

molecular markers together with already known and published markers into a dense genetic 

map. As this population was also phenotyped, a solid base for QTL detection of the per-se 

performance was generated. Besides the analyses of this study, another distinct study was 

conducted (Hackauf et al., 2017b; Haffke, 2015a) which addressed QTL detection in test-

crosses using a closely related population. This allows to track QTL detected in both studies, 

which may have implications for line testing in the scope of hybrid rye breeding. 
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2.2.2 SNP-array development and genotyping 
 

The dataset generated as described in 2.1 of this work in was used as starting point for the 

development of a rye SNP array. In brief, the parental genotypes used also in this study 

(Hyb201 and Hyb202) were exposed to artificial drought stress under controlled conditions. 

Using an RNA sequencing approach, i.e. DeepSuperSAGE (Matsumura et al., 2010), 4,437 

contigs characterized with at least one SNP were identified. Furthermore, an in silico mapping 

was conducted to predict the localization of the contigs in the rye genome. 

A stepwise procedure was conducted to select for high quality and well distributed SNPs out 

of these. In the first step, all contigs with a coverage of less than 20 reads at any position were 

excluded. The remaining set was further condensed by excluding SNPs closer to each other 

than 50 bp up- or downstream. The predicted mapping position was used to select a set of 

500 SNPs with an optimized coverage of the rye genome. This was achieved by selecting SNPs 

with a putative equidistant coverage of the complete genome, also considering the relative 

chromosomal length to adjust the total number of selected SNPs per chromosome. The 

resulting SNP set was further evaluated using the Illumina Assay Design Tool (Illumina, 2013). 

The quality scores assigned by the design tool, reflecting e.g. chemical restrictions of the 

Illumina detection technology, were used to rank the SNPs. The 384 top-scoring SNPs were 

selected to create a 384-plex GoldenGate/VeraCode® SNP array by Illumina. These 384 SNP 

will be referred further as RSQ marker (Rye SNP Quedlinburg) and numbered from RSQ_001 

to RSQ_384. 

The complete F2 mapping population, including the parental lines, was genotyped using the 

previously described RSQ markers, following the standard protocol provided by Illumina using 

the BeadXpress® plate reader for signal detection and the GenomeStudio Software v2011.1 

for data assessment, manually adjusted cluster assignment and generating allele scores per 

genotype. 

The previously described population was further genotyped using 60 SSR markers (Bolibok et 

al., 2006; Hackauf and Wehling, 2003, 2002; Korzun et al., 2001; Saal and Wricke, 1999), 73 

Conserved Ortholog Set markers (COS) (Hackauf et al., 2012, 2009) and 3,117 Diversity Array 

Technology® markers (DArT) (Bolibok-Bragoszewska et al., 2009). The genotyping was 

conducted strictly following the producers or published protocols. 

The resulting datasets of all marker types were filtered in a very stringent manner, discarding 

all markers with allele scores in the negative control (purified water without DNA), 



28 

 

heterozygous allele scores or missing data for one or both parental genotypes or more than 

10% missing data. Also, markers with significant deviations from the expected ratio of 

homozygotes and heterozygotes by means of a Chi-Square Goodness-of-fit test in the F2 

mapping population for co-dominant marker types were excluded from further analysis. 

To verify the quality of the genotyping, as well as the population itself a principal coordinate 

analysis was conducted and a respective plot generated (Figure 5) using the Darwin Software, 

Version 6.0.20 (Perrier and Jacquemoud-Collet, 2006). 

 

2.2.3 Field experiments 
 

Field trials in the years 2011 and 2012 were conducted at the locations Wulfsode (29565 

Wriedel, 53°03'46.30''N; 10°14'02.22''O), Groß Lüsewitz (18190 Sanitz, 54°04'15.32''N; 

12°20'19.79''O) and Kleptow (17291 Schenkenberg, 53°21'59.73''N; 14°00'07.19''O) all located 

in Northern Germany. In total 271 S2:3 lines derived from the parental genotypes Hyb201 and 

Hyb202 were evaluated and scored for the trait plant height (cm) at three developmental 

stages: EC 32, EC 52, and EC 89. Furthermore, the thousand-kernel weight (g), number of 

spikes and the heading date were assessed as a rating score from one to nine (1=very early, 

9=very late). The number of spikes was counted for one row for each entry and normalized to 

the number of spikes on 50 cm. All field trials were conducted using a randomized incomplete 

block design (alpha design) with two replicates at each location/year combination 

(environment). About 15% of check genotypes were included throughout the trials. In all trials 

the entries were sown in single rows with a sowing density of 25 germinating seeds per row. 

Plant protection and fertilization was carried out according to local practice. 

 

2.2.4 Statistical analysis 
 

To estimate variance components the following model was used in which the observed 

phenotype y is composed of the genotypic effect (G), the environmental effects (E), the 

interaction of both effects (GxE) and residual variance (e). 

 
Y = G + E + GxE + e 

 



29 

 

A false positive rate of alpha=0.05 was assumed throughout the statistical analysis of 

phenotypic data to detect significant deviations from the H0 hypotheses (no effect on the 

target trait). 

Heritability (h2) was calculated as the ratio of genotypic variance - Var(G) to phenotypic 

variance – Var(P) (Fehr, 1987).  

 

ℎ2 =  
𝑉𝑎𝑟(𝐺)

𝑉𝑎𝑟(𝑃)
 

 

All phenotypic statistical analysis were conducted using the software R in Version 2.15 (Ripley, 

2001). Furthermore, the R packages 'lme4' and 'arm' were used to calculate adjusted entry 

means. All field experiments were carried out by Hybro Saatzucht GmbH & Co. KG, 

Schenkenberg Germany and the Group of Dr. Bernd Hackauf, Julius Kühn-Institute Germany, 

which also conducted the analysis of variance for the phenotypic data. 

 

2.2.5 Map construction 
 

Out of the 3,250 available markers, 1,395 segregated between both parental genotypes and 

were used for genetic map construction. This set comprises 1,028 dominant markers. 

Furthermore, 367 co-dominant markers, comprising 254 newly developed RSQ marker after 

quality filtering, were integrated in the mapping procedure, following a 2-step approach 

(Mester et al., 2003) to get a reliable estimate of recombination frequencies and the correct 

order of the markers along the linkage groups. To achieve this, three datasets (i) a dataset 

comprising all co-dominant marker information, (ii) a dataset comprising all marker 

information in coupling phase (iii) a dataset comprising all information in the repulsion phase 

were created (Hackauf et al., 2017a). Datasets ii and iii were used to create a genetic map for 

the paternal and the maternal genotype each. These two maps were integrated into one 

complete map using the dataset derived from the co-dominant markers. The JoinMap® 

Software Version 4 (Van Ooijen, 2006) was used to construct the genetic map using the 

Kosambi mapping function (Kosambi, 1943) to calculate genetic distances in centimorgan (cM) 

from the observed segregation ratios. In total seven linkage groups were created and assigned 

to rye chromosomes using previously published mapping information of SSR and COS markers. 
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A plot was generated using the MapChart Software (Voorrips, 2002). The map construction 

was supported by Dr. Bernd Hackauf, Julius Kühn Institute, Germany. 

 

 

2.2.6 QTL analysis and validation 
 

The software MapQTL Version 5 (Van Ooijen, 2009) was used for QTL identification. For this 

purpose, co-segregating markers and those being closer linked than 1 cM were removed from 

the genetic map (Piepho, 2000a). This skeletal map was the basis for QTL detection together 

with the adjusted entry means for all six traits to avoid the detection of environmental 

depended QTL. QTL detection was conducted using the multiple-QTL model (MQM) (Jansen, 

1994, 1993; Jansen and Stam, 1994) method with markers as cofactors, integrating additive 

and dominance effects. Only detected QTLs with peak values exceeding a logarithm of the 

odds (LOD-score) of 4 were considered as statistically significant. 

To get information on the reliability of the QTLs detected in this study a comparison with QTLs 

known from literature was conducted. To achieve an unequivocal assignment of QTLs 

between multiple studies, all molecular markers of the QTLs known from the external studies 

were used to determine their positions in the genetic map created in this study. If at least one 

marker mapped on the same chromosome as reported in the literature and was located less 

than 10 cM (Piepho, 2000a) away from a QTL for the same trait on the genetic map of this 

study, both QTLs were considered as potentially identical in both studies. In total 12 studies 

were included in the QTL comparison: (Bolibok et al., 2007; Börner et al., 2000, 1999; Falke et 

al., 2009; Korzun et al., 2001; Masojæ and Milczarski, 2005; Masojć et al., 2017; Masojć and 

Milczarski, 2009; Miedaner et al., 2018, 2012a; Myśków et al., 2014; Wricke, 2002). 

In another study (Haffke, 2015b) a population closely related to the one analysed in this study 

was used for QTL mapping. To obtain information on the distance of the QTLs identified in 

both studies, the flanking markers for each QTL reported by Haffke (2015) were integrated in 

the genetic map generated in this study. In a second step the smallest distance between this 

mapping position and the QTL interval of this study was calculated based on the genetic map 

calculated within this study. Only QTLs with distances between intervals less than 10 cM are 

reported (Piepho, 2000a). 
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2.2.7 In silico mapping quality assessment 
 

The quality of the in silico mapping approach is accessed by comparing predicted mapping 

positions with the genetic mapping calculated from recombination ratios in a bi-parental 

mapping population (Kosambi, 1943; Van Ooijen, 2006). Three different categories were 

analysed to access the precision and quality of the in silico mapping.  

 

i) At a genome wide scale, the ratio of markers mapped on the same chromosome 

by both methodologies was determined. 

 

ii) The number of markers, concordantly mapped by both approaches on the same 

chromosomic region (short-arm, centromeric region, long-arm) was compared 

with the number of markers mapped on different regions. 

 

iii) On a local scale, the marker order on a specific chromosome given by both 

approaches was correlated by means of a Spearman rank correlation coefficient, 

as well as the positioning itself using the Pearson correlation coefficient. 
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3. Results 
 

3.1 Stress application, RNA extraction and de-novo Assembly 
 

The stress application was successfully applied, as the stressed plants showed a reduction in 

tillers per plant with respect to the first sampling and symptoms of wilting become visible in 

the cause of no water supply before the second sampling date. 

 
Quality of the RNA used for cDNA library preparation and DeepSuperSAGE is given in Table 5 

and quantities of raw sequence reads before and after trimming in Table 6. 

 
Table 5. RNA quality (RIN values) after RNA extraction for genotype (Hyb201 / Hyb202), 
treatment (well-watered / drought-stressed) and tissue (leaf / ear, shoot, flag leaf). 

Genotype Treatment Tissue RNA quality 
(RIN) 

Hyb201 Stress Leaf 7.2 – 8.1 

Hyb201 Control Leaf 7.0 – 7.8 

Hyb201 Stress Ear, Shoot, Flag Leaf 8.4 – 9.4 

Hyb201 Control Ear, Shoot, Flag Leaf 7.3 – 8.7 

Hyb202 Stress Leaf 7.2 – 7.6 

Hyb202 Control Leaf 7.2 – 7.5 

Hyb202 Stress Ear, Shoot, Flag Leaf 6.4 – 8.4 

Hyb202 Control Ear, Shoot, Flag Leaf 6.4 – 8.6 

 
 
Table 6. Raw read count before and after quality filtering. Number of raw reads of eight 
normalized cDNA libraries for genotype (Hyb201 / Hyb202), treatment (well-watered / 
drought-stressed) and tissue (leaf / ear, shoot, flag leaf). 

Genotype Treatment Tissue Number of Raw 
Reads 

Number of 
Filtered Reads 

Hyb201 Stress Leaf 5,805,456 5,697,014 

Hyb201 Control Leaf 4,192,729 2,676,136 

Hyb201 Stress Ear, Shoot, Flag Leaf 39,582,362 21,976,219 

Hyb201 Control Ear, Shoot, Flag Leaf 40,603,478 22,460,746 

Hyb202 Stress Leaf 9,902,974 5,442,251 

Hyb202 Control Leaf 10,022,771 3,580,975 

Hyb202 Stress Ear, Shoot, Flag Leaf 40,440,781 18,931,776 

Hyb202 Control Ear, Shoot, Flag Leaf 42,322,804 21,783,558 

 

After quality trimming the Trinity assembly was conducted, resulting in a total of 128,010 

contigs, with a length between 150 bp and 5,410 bp. The mean contig length was 326 bp 
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(median 257 bp), the N50 of the assembly was 352 bp. All raw sequences are deposited in the 

NCBI short read archive under the Bioproject ID PRJNA421405. 

Assembled sequences are given in supplementary data S1. Detailed statistics are given in Table 

7 and a histogram of the contig length distribution is shown in Figure 3. 

 

Table 7. Statistical measures on a Trinity Assembly of short sequence reads derived from rye 
(Secale cereale L.) RNA. 

Statistic Value 

GC Content 47.4% 

N50 352 

Longest Contig 5,410 bp 

Contig Length (mean) 326 bp 

Contig Length (median) 257 bp 

Shortest Contig 150 bp 

Total Number of Contigs 128,010 

Total Number of base pairs 41,847,269 bp 

Number of Adenine 10,989,000 bp (26.2%) 

Number of Thymine 11,041,394 bp (26.4%) 

Number of Cytosine 10,003,620 bp (23.9%) 

Number of Guanine 9,813,255 bp (23.5%) 

Number of N (any base / ambiguous) 0 

 

 
Figure 3. Histogram of the contig length distribution, as a result of a de novo assembly of 
drought induced transcripts in rye (Secale cereale L.). 
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3.2 SNP-Mining and DeepSuperSAGE 
 

Out of in total 128,010 contigs, 7,227 contigs (5.64%) contained at least one SNP resulting in 

19,844 SNPs distinguishing both rye genotypes at a rate of 2.74 SNPs per contig. Out of these 

7,227 polymorphic contigs, 1,019 derived from leaf tissue cDNA libraries, whereas the 

remaining 6,208 contigs derived from cDNA libraries from the combined ear, shoot and flag 

leaf tissues. All high-confidence bi-allelic SNPs together with their flanking sequences are 

listed in supplementary data S2. 

 

The DeepSuperSAGE analysis revealed expression levels of 408,915 annotated tags in four 

different treatments (stress/control x leaf/bulk of shoot, ear, flag leaf) for each of the two elite 

lines. Details on the number and proportion of annotated tags are given in Table 8. 

The DeepSuperSAGE information on differential expression and transcript abundance was 

used jointly together with the hits against the Trinity contigs to predict the expression level of 

47,842 contigs in four different treatments for each of the two elite lines. This allows 

addressing both, the common abundance of the transcripts as well as changes in expression 

levels after different treatments in both genotypes. The expression levels for all 47,842 contigs 

per library is given in supplementary data S3. In general, the expression level of all transcripts 

was higher (1.3 times) in the drought stressed variant than in the well-watered reference 

genotypes. 

 

Table 8. TAG statistics of DeepSuperSAGE libraries. Statistics include eight different libraries 
(Hyb202 / Hyb201) x (control /stress) x (leaf / flag leaf, ear, shoot) and are calculated without 
singletons. 

Library 
Number of 26 

bp Tags 

Number of 
antisense 

Tags 

Antisense 
Tags 

annotated 

Number of 
sense Tags 

Sense Tags 
annotated 

Hyb201 
Leaf 

Control 
18,119,661 12,648 3,595 169,561 45,651 

Hyb201 
Leaf 

Stress 
33,751,543 15,108 3,738 210,119 50,417 

Hyb202 
Leaf 

Control 
19,010,951 11,518 3,051 162,816 41,247 
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Table 8. continued 

Library 
Number of 26 

bp Tags 

Number of 
antisense 

Tags 

Antisense 
Tags 

annotated 

Number of 
sense Tags 

Sense Tags 
annotated 

Hyb202 
Leaf 

Stress 
22,507,986 13,474 3,361 184,681 45,400 

Hyb201 
Ear, Shoot, 
Flag Leaf 
Control 

19,143,799 14,177 4,132 184,057 48,538 

Hyb201 
Ear, Shoot, 
Flag Leaf 

Stress 

23,146,377 15482 4,138 219,609 52,178 

Hyb202 
Ear, Shoot, 
Flag Leaf 
Control 

16,707,100 12395 3,881 178,249 46,283 

Hyb202 
Ear, Shoot, 
Flag Leaf 

Stress 

19,672,699 15441 3,904 208,188 49,401 

 

3.3 In silico mapping 
 

Mapping to the rye genome zipper was conducted for contigs containing SNPs between the 

elite lines for which, according to Fishers-exact test (p<0.05), DeepSuperSAGE determined 

significantly different expression levels (Figure 2 step E & F). This filtering resulted in 4,437 

polymorphic, stress-responsive contigs. All transcript log-foldchanges, the test statistics for 

differential expression and the indication of the 4,437 filtered contigs, which are used for 

further analysis, are given in supplementary data S4. By combining the information deposited 

in the RyeZipper (Martis et al., 2013) and the significant alignments, the position of 2,754 

transcripts in the rye genome was predicted. The resulting in silico map is shown in Figure 4 

and all mapping positions are deposited in supplementary data S5. With respect to the genetic 

map of rye given in the RyeZipper (Martis et al., 2013) all seven chromosomes were covered 

with transcripts. 
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Figure 4. Putative position of 2,754 drought-induced transcripts in the rye genome. 
Bold bars indicate the mapping of multiple transcripts in close neighbourhood. Transcripts 
which revealed high degrees of homology with genes known to be involved in drought stress 
response are named. 
 
Gene Ontology (GO) mapping of the 4,437 transcripts resulted in 768 transcripts (38.3%) 

without any hit against the NCBI non-redundant protein (nr) database, which may indicate the 

presence of interesting new genes, potentially involved in drought stress response. For 737 

sequences (16.6%) at least one hit was detected but could not be mapped to any GO term. In 

total 445 (10.0%) transcripts were mapped to GO-ID 0006950 (response to stress) and are 

listed in supplementary data S6. 
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3.4 Genotypic analysis and map construction 
 

As described in 2.2.2 a mid-plex genotyping assay which was build up comprising 384 SNP 

markers which were used to genotype a set of rye genotypes to assess the quality of the 

platform. Out of the 384 initially available RSQ markers integrated in the platform, 254 (66%) 

passed the quality check. 19 out of the 384 markers (5%) showed signals in the negative 

control, 39 (10%) had missing data in at least one parent, 29 (7.5%) showed significant 

deviations from the expected segregation ratio and for 3 loci (0.8%) both parental genotypes 

were scored heterozygous and 40 loci (10.4%) were scored with more than 10% missing data. 

No monomorphic allele calls were recorded. The remaining dataset contains 1.65% missing 

data. A principal coordinate analysis (PCoA) using the RSQ marker dataset is shown in Figure 

5 revealing the population structure of the mapping population, which is in very good 

accordance with the expected structure. 

 

Figure 5. Principal coordinate analysis plot of the bi-parental rye population Hyb201 x Hyb202. 
Both parents are indicated in red while progenies are displayed as black dots. Results are 
based on 254 RSQ markers after quality filtering and the PCoA explains 18.36% of the variance. 
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Out of the 3,117 DArT markers 1,008 markers (32.3%), as well as all 60 SSRs and 73 COS 

markers passed the quality filtering criteria as described for the RSQ markers. 

In total 1,201 of the available 1,395 segregating high-quality markers (86%), including 214 of 

the 254 RSQ markers, were integrated in a genetic map with a total length of 928.5 cM and 

assigned to one of the seven linkage groups ranging in length between 80.1 cM and 191.7 cM. 

Figure 6 shows the resulting complete map, highlighting newly developed RSQ markers. The 

mapping position of all RSQ markers can be obtained in Appendix 1. 

 

Figure 6. Genetic map of the bi-parental rye population Hyb201 x Hyb202 considering 1,201 
molecular markers and 271 individuals. The scale indicates the length of the linkage groups in 
cM. The localization of newly developed RSQ markers is indicated in red. Black lines indicate 
the position of other, previously described markers, whereas bold black lines indicate clusters 
of co-localized previously described markers. 
 

The distribution of DArT markers over the genome is characterized by clusters of multiple 

markers mapping in close neighbourhood, emphasized by a mean mapping distance (median) 
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of 0.27 cM between two neighbouring markers. In contrast the RSQ markers were 

equidistantly distributed, covering a large proportion of the calculated linkage groups with 

minor gaps on chromosomes 1RS, 4RL and 7RS. A median of 2.31 cM between neighbouring 

markers was calculated. The genetic mapping positions of all markers is given in 

supplementary data S7. Descriptive statistics of the genetic map are given in Table 9. 

 

Table 9. Summary of a genetic map of rye integrating 214 newly developed RSQ markers. 

Chr. Length (cM) DArT SSR COS RSQ Sum 

1R 157.4 117 10 11 27 165 

2R 89.0 83 7 4 34 128 

3R 80.1 82 5 4 17 108 

4R 130.7 194 7 21 39 261 

5R 191.7 92 16 17 38 163 

6R 164.5 179 11 7 43 240 

7R 115.1 107 4 9 16 136 

Sum 928.5 854 60 73 214 1201 

 

3.5 Phenotypic Performance 
 

The descriptive statistics for all six measured traits of the adjusted and corrected entry means 

of the mapping population are listed in Table 10. Box-Whisker-Plots visualizing measures of 

central tendencies and probable outliers of this data are given in Figure 7. Furthermore, 

histograms of the same data displaying the frequencies of the respective phenotypes are 

shown in Figure 8 together with the phenotypes of both parental genotypes. 

In general, plant height increases in the course of the three measured developmental stages 

as expected (Table 10, Figure 8). Furthermore, the ranking of both parental genotypes was 

persistent throughout all three stages, i.e. Hyb201 was always shorter than Hyb202. Also, an 

increasing standard deviation was observed from EC 32 via EC 52 to EC 89, which is expected 

as elevated absolute measures also entail an elevated standard deviation (Pearson, 1894). 

For all traits except heading date both parental genotypes showed different phenotypes. As a 

probable result, major deviations from normal distribution of the adjusted entry means per 

trait are detected for heading with a Shapiro-Wilk test-statistic resulting in a p-value of   

5.669e-13 rejecting the H0 hypothesis of a normal distribution. As heading date was measured 

as a discrete rating score, deviations from a normal distribution by means of the Shapiro-Wilk 
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test could also arise because of the non-metric character of this trait. All other five traits 

showed no statistically significant deviation from a Gaussian distribution. 

For both yield components, i.e. thousand kernel weight and number of spikes, the 

performance of the parental genotype Hyb201 was in the same range as the population mean, 

while Hyb202 revealed a higher thousand kernel weight but a lower number of spikes (Figure 

8). 

 

 

Figure 7. Box - Whisker Plots of adjusted entry means for six traits, measured in the bi-parental 
rye mapping population (Hyb201 x Hyb202) in two years and three locations per year. 
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Table 10. Descriptive statistics for six traits (adjusted entry means) for the bi-parental mapping 
population Hyb201 x Hyb202 including both parents in six environments. 

Trait Min. 1st Qu. Median Mean 3rd Qu. Max. Std. 
Deviation 

Plant Height at EC 
32 

13 20 22 21.83 24 29 2.67 

Plant Height at EC 
52 

42 51 54 53.78 57 65 4.46 

Plant Height at EC 
89 

73 88 93 92.69 97 113 5.95 

Heading 2 5 5 5.44 6 8 0.89 

Thousand kernel 
weight 

20.14 25.23 26.74 26.66 28.23 33.02 2.25 

Number of spikes 49 82 89 89.80 96 136 12.23 

 

 

Figure 8. Histograms, showing adjusted entry means for the bi-parental rye population 
Hyb201 x Hyb202 tested together with the parental genotypes for six different traits in two 
years and three locations per year. The mean (Ø), as well as the performance of the parental 
genotypes Hyb201 (P1) and Hyb202 (P2) are indicated at the top of the plots. 
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A statistically significant correlation at alpha=0.05 was found for all trait combinations expect 

the combinations plant height at EC 32 versus number of spikes and heading versus number 

of spikes. The correlation coefficients as well as p-values for each trait combination are given 

in Table 11 and Table 12, respectively. A scatterplot visualizing the data can be obtained in 

Figure 9. All correlations are computed as Pearson’s r and the p-values according to the 

underlying t distribution. 

 

Table 11. Person´s r correlation coefficients of six traits measured in the mapping population 
Hyb201 x Hyb202 of rye. 

 Plant Height 
at EC 32 

Plant Height 
at EC 52 

Plant Height 
at EC 89 

Heading 
Thousand 

kernel 
weight 

Number 
of 

spikes 

Plant Height 
at EC 32 

1.000 0.788 0.401 0.594 0.448 -0.035 

Plant Height 
at EC 52 

0.788 1.000 0.718 0.618 0.653 -0.119 

Plant Height 
at EC 89 

0.401 0.718 1.000 0.370 0.604 -0.132 

Heading 0.594 0.618 0.370 1.000 0.440 -0.058 

Thousand 
kernel 
weight 

0.448 0.653 0.604 0.440 1.000 -0.230 

Number of 
spikes 

-0.035 -0.119 -0.133 -0.058 -0.230 1.000 

 

Table 12. Respective p-values of the correlation coefficients given in Table 11.  

 Plant Height 
at EC 32 

Plant Height 
at EC 52 

Plant Height 
at EC 89 

Heading 
Thousand 

kernel 
weight 

Number 
of 

spikes 

Plant Height 
at EC 32 

- 0.000 6.6e-12 0.000 9.3e-15 0.562 

Plant Height 
at EC 52 

0.000 - 0.000 0.000 0.000 0.050 

Plant Height 
at EC 89 

6.6e-12 0.000 - 3.3e-10 0.000 0.029 

Heading 0 0.000 3.3e-10 - 3e-14 0.337 

Thousand 
kernel 
weight 

9.3e-15 0.000 0.000 3e-14 - 0.000 

Number of 
spikes 

0.562 0.050 0.029 0.337 0.000 - 
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Figure 9. Matrix of scatterplots, visualizing the correlation between the traits measured in a 
bi-parental rye mapping population Hyb201 x Hyb202, tested together with their parental 
genotypes in two years and three locations per year. Displayed datapoints are adjusted entry 
means of the respective measured phenotypes, as described Chapter 3.5. 
 

For all analysed traits, a significant genotypic effect at alpha=0.05 was recognized. 

Furthermore, all traits except number of spikes showed significant genotype by environment 

(GxE) interactions. The heritability of the traits ranged from 0.62 to 0.91. Detailed results of 

the analysis of variance for all six traits can be obtained in Table 13. 
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Table 13. Analysis of variance of six traits measured on the bi-parental mapping population 
Hyb201 x Hyb202 including both parents in six environments. Displayed are the parental and 
population means, the components of variance for genotype (σ2

G), genotype by environment 
interaction (σ2

GXE), model error (σ2
e) as well as the heritability. Asterisks indicate significant 

effects at an alpha level of 0.05. 

Trait Hyb201 Hyb202 pop. mean σ2
G σ2

GXE σ2
e h2 

Heading 6.43 5.68 5.42 0.58* 0.39* 0.59 0.84 

Number of 
spikes 

95.02 75.05 90.02 74.18* 0.00 538.00 0.62 

Thousand 
kernel weight 

26.71 30.15 26.90 4.69* 1.17* 2.48 0.91 

Plant height EC 
32 

22.49 28.13 23.29 5.21* 1.59* 10.09* 0.83 

Plant height EC 
52 

56.35 57.96 53.71 15.81* 5.99* 20.65 0.85 

Plant height EC 
89 

99.47 94.11 93.65 31.99* 9.74 25.41 0.90 

 

3.6 Identification of QTL 
 

In total 21 QTLs located on all 7 rye chromosomes were detected as reported in Table 14. 

The number of significant QTLs at a LOD > 4 ranged between two for heading date to six for 

thousand kernel weight. For all traits except plant height at EC 52 QTLs on multiple 

chromosomes were detected. 

Two QTLs were discovered for heading date, one located on chromosome 2R and the other 

located on chromosome 7R explaining 6% and 13.65% of the phenotypic variance, 

respectively. The QTL on chromosome 2R is located in very close neighbourhood (1.6 cM) to 

a QTL for plant height at EC 89. Also, the QTL on chromosome 7R is neighbouring a QTL for 

plant height at EC 52 with a distance of 1.2 cM. Furthermore, four QTLs for the number of 

spikes were located on chromosomes 1R, 3R and 5R. The QTL for number of spikes is the only 

one detected on chromosome 1R. Six QTLs were detected for thousand kernel weight located 

on chromosome 2R, 4R, 5R and 7R. On chromosome 4R three QTLs for this trait were detected, 

two QTLs on the short arm of chromosome 4R with a distance of 8.4 cM between them and 

another QTL on the long arm of chromosome 4R. No QTL of any other trait was detected on 

chromosome 4R. It is interesting to note, that the QTL on chromosome 7R is located in the 

same interval as a QTL for plant height at EC 89 and at a distance of 3.2 cM to a QTL for plant 

height at EC 32. With regard to LOD score and explained phenotypic variance the QTL for 
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thousand kernel weight on chromosome is the most prominent one out of the six QTLs 

detected (Table 14). One QTL was detected for plant height at EC 32 on chromosome 5R and 

in addition two QTLs on chromosome 7R. Although all three measurements of plant height 

are positively and significantly correlated to each other, no common QTL was detected. 

However, the only QTL detected for plant height at EC 52 on chromosome 7R is in close 

neighbourhood (0.6 cM) to a QTL for plant height at EC 32. With regard to plant height at EC 

32 three QTLs were detected, one on chromosome 5R and two on chromosome 7R. One of 

the QTLs on chromosome 7R is located close to the QTL at EC 32 and the other one close to a 

QTL for plant height at EC 89 at a distance of 3.2 cM. Five QTLs for plant height at EC 89 on 

chromosomes 2R, 3R, 6R and 7R were discovered with LOD scores between 4.09 and 6.94 and 

the mean variance explained was estimated between 2.50 % and 5.85 %.  

  
Table 14. Summary of QTLs detected in the population Hyb201 x Hyb202. 

*If multiple markers mapped within one QTL interval, the mean of the explained variance of 
the respective markers was calculated to correct for overestimations. 

Trait Chr. Interval in cM 
max. LOD of 

the QTL 
Mean explained 
variance in %* 

Peak Marker 

Heading 
2R 67.7 - 69.3 6.25 6.0 RSQ_225 

7R 61.5 – 66.4 13.01 13.7 XrPT-399361 

Number of 
spikes 

1R 62.8 – 63.0 4.06 5.0 Xgwm112-3B 

3R 42.5 – 44.3 6.13 5.8 RSQ_461 

5R 4.0 – 13.3 4.89 7.6 Xscm224 

5R 53.3 – 55.4 5.92 5.8 XrPT-509684 

Thousand 
kernel 
weight 

2R 88.7 – 89.0 4.04 4.5 XrPT-390369 

4R 30.6 – 31.6 4.03 4.7 Xhvpdia 

4R 44.0 – 48.7 6.08 6.6 XrPT-400322 

4R 129.6 – 130.7 4.71 5.3 RSQ_197 

5R 125.7 – 130.9 5.38 5.5 XrPT-411320 

7R 24.3 – 29.1 9.13 9.6 XrPT-509401_r 

Plant height 
EC 32 

5R 95.3 – 96.3 4.09 4.4 Xscm74-5R 

7R 32.3 – 36.4 5.15 5.8 XrPT-402607 

7R 70.4 – 74.9 5.99 5.9 RSQ_029 

Plant height 
EC 52 

7R 67.6 – 69.8 5.09 4.2 RSQ_232 

Plant height 
EC 89 

2R 29.5 – 32.2 5.05 2.5 RSQ_090 

2R 62.8 – 66.1 6.01 5.3 RSQ_289 

3R 29.82 – 33.0 6.94 4.7 Xscm84-3R 

6R 31.4 – 36.0 6.05 3.4 Xscm176-6R 

7R 24.3 – 29.1 6.36 4.9 XrPT-509401_r 
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As an example, the LOD-scores for the plant height QTLs at EC 32, EC 52 and EC 89 located on 

chromosome 7R are shown in Figure 10. 

 

 

Figure 10. QTLs detected for plant height at different developmental stages located on 
chromosome 7R. The used threshold (LOD Score 4), to detect significant QTLs is indicated by 
a bold horizontal black line. 
 

3.7 In silico mapping quality assessment 
 

The quality of the in silico approach was determined in three different categories: the genome 

wide level, the intra chromosomal level and on a local scale. In the genome wide assessment 

111 of 124 SNP (89.5%) were mapped to the same chromosome by both techniques.  

As a next evaluation step, it was observed that 97 of 124 SNP (78%) were mapped to the same 

region (short-arm, centromeric region, long-arm) of a given chromosome. 

Both, the local ordering and positioning of mapping approaches were accessed using suitable 

correlation coefficients as described hereafter. Therefore, for each chromosome, the 

Spearman rank correlation coefficient and the Pearson correlation coefficient were calculated. 

Results can be obtained in Table 15 and visually inspected using Figure 11. 
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Figure 11. Comparison of an in silico map derived from positional information deposited in a 
synteny based linear virtual gene order of Matris et al. (2013) (left chromosomes) and the 
genetic map derived from the bi-parental mapping population in rye analysed in this study 
(right chromosomes). 
 
Table 15. Pearson (r) and Spearman (p) correlation coefficients per chromosome, comparing 
the ordering and position of genetic markers per chromosome between the map derived from 
in silico mapping and the genetic map based on the population Hyb201 x Hyb202. 

Chromosome Number of Markers Spearman Pearson 

1R 14 0.82 0.85 

2R 17 0.45 0.40 

3R 10 0.31 0.50 

4R 17 0.87 0.81 

5R 16 0.56 0.69 

6R 27 0.67 0.92 

7R 9 0.59 0.66 
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4. Discussion 
 

4.1 Assessment of differential expression 
 

In accordance with previous studies (Haseneyer et al., 2011; Molina et al., 2008) our dual-

purpose transcriptome sequencing approach turned out to be a valuable tool for both, the 

assessment of gene expression and the detection of sequence variants. In our study the 

application of the DeepSuperSAGE technology allowed the parallel determination of the 

relative transcript abundance as well as the level of their differential expression. The raw 

sequence data in our study is in line with other studies in rye (Haseneyer et al., 2011) as well 

as other crops (Draffehn et al., 2013; Jain et al., 2014; Trick et al., 2012). The high number of 

4,437 SNPs in drought-induced transcripts indicates genetic diversity between both elite 

inbred lines. Therefore, the DeepSuperSAGE approach proved to be useful to overcome the 

problem of lacking resources in non-model organism and neglected crops, as has been shown 

already for chickpea (Molina et al., 2008). 

 

4.2 Drought stress responsive genes in rye 
 

The relatively small rate of transcripts (10%) which were mapped to the GO term “response 

to stress” in this study exceeds the number of roughly 1% (350 out of 35,356) reported by 

Haseneyer et al. (2011). The different mode of stress induction used in both studies may be 

one major factor influencing this finding. Nevertheless, this finding gives an indication for a 

successful stress application in our study. 

A full list of all gene ontology mapping results can be obtained in supplementary data S6. As 

shown in Appendix 2 several transcripts that were differentially expressed in our study were 

homologs to proteins known to be involved in the reaction to stress. For example, four 

homologs to 6-phosphogluconate dehydrogenase gene family proteins (6PGDH, EC 1.1.1.44; 

NADP+ -dependent (decarboxylating)) were identified which are rate limiting enzymes of the 

pentose phosphate pathway (PPP) (Kruger and von Schaewen, 2003). As reviewed by Hou et 

al. (2007), 6PGDH-genes enzymatic activity and/or mRNA expression is significantly increased 

in response to a wide range of abiotic stresses (salt, zinc, cadmium, aluminium, drought). 

Specifically, it was shown that Os6PGDH1 (Os06g0111500) is up-regulated in rice seedlings 

after salt and drought stress. Interestingly, a transcript with homology to the Os6PGDH1 was 

expressed at a low level in the inbred line Hyb201 but did not respond to stress in any tissue. 
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However, the same transcript was 44 times more abundant in the genotype Hyb202 already 

under well-watered conditions. Under drought stress conditions, the transcript was further 

up-regulated 3.2 times in Hyb202. Another transcript was identified as an Os6PGDH2 

(Os11g0484500) homolog. The increase of Os6PGDH2 expression is a reaction to cold and ABA 

treatment, but especially to salt and drought stress (Hou et al., 2007). This putative regulator 

of PPP was not detected in Hyb201 but expressed in Hyb202 and in accordance with the known 

expression pattern of Os6PGDH1 as it was up-regulated in the library of ear, shoot and flag 

leaf as a reaction to drought. The expression pattern resembles previous findings, which 

stated that drought-responsive genes are often expressed at a constant high level already 

prior to the onset of drought. These genes may be controlled by higher endogenous ABA levels 

(Ingram and Bartels, 1996; Iuchi et al., 2001). This hypothesis is supported by the expression 

pattern of other transcripts, as well indicating genetic differences between both genotypes in 

their stress response. The LEA 14A homolog observed in our study and mapped on rye 

chromosome 1 revealed a minor up-regulation on drought stress in Hyb202 and a strong up-

regulation in Hyb201. But, the expression level of the LEA 14A homolog before stress 

application was 2.25 times higher in Hyb202 which is significantly higher than the detected 

up-regulated expression in Hyb201. 

Three further transcripts homologous to the zeaxanthin epoxidase (ZEP) are of special interest 

as an elevated ABA level before stress application is assumed to increase drought stress 

related protein synthesis. ZEP catalyses the conversion of zeaxanthin to violaxanthin which is 

a main step of the ABA synthesis in the xanthophyll cycle, and therefore may be connected to 

the plant reaction to drought stress (Agrawal et al., 2001; Audran et al., 1998). All three 

identified transcripts in our study showed high degrees of sequence homology to each other, 

and therefore are presumably transcripts of one gene. As a result of the in silico mapping, all 

three transcripts were accordingly mapped at the same position (chromosome 2R, 118.87cM). 

The transcription patterns of these transcripts in both genotypes are highly similar to the 

previously described LEA 14A homologous transcript. Hyb201 showed a low abundance of the 

transcripts before stress and a strong up-regulation after drought stress application. Hyb202 

showed no significant up-regulation on drought stress, but exhibits a significantly higher 

expression rate of the transcripts before stress application in comparison to Hyb201. Thus, 

ABA synthesis may be an important factor to understand the observed high expression levels 

of drought stress related genes in Hyb202. 
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ABA-independent drought stress responses are known as well (Zhu, 2002), e.g. for genes 

encoding heat shock proteins (HSP) and early-responsive to dehydration stress proteins (ERD), 

which are up-regulated in response to drought and other abiotic stresses before a significant 

ABA increase is detected (Kiyosue et al., 1994). We observed six transcripts homologous to 

HSP90 and one ERD7 homologous transcript, which revealed a differential expression pattern 

in both rye genotypes. The six HSP90 homologous transcripts mapped to two different loci on 

rye chromosomes 4R and 6R, respectively, whereas the ERD7 homologous transcript was 

mapped at chromosome 6R closely linked to one HSP90 homolog. Transcripts of this group 

show a different expression pattern in comparison to the ABA-dependent group described 

before. The expression pattern of these transcripts is not significantly different between both 

genotypes. Both share the same expression level before stress application and the transcripts 

are up-regulated on drought stress application with the same intensity in both inbred lines. 

These findings suggest that differences in response to drought stress observed in this 

experiment may be due to the elevated stress-independent ABA level of Hyb202. 

 

4.3 Fast track SNP-array development 
 

The in silico mapping approach presented in this study makes use of information on inter-

species syntenic genome regions. This information is based on a broad range of species, 

particularly of the family of the Poaceae comprising major crop species like barley (Hordeum 

vulgare L.), sorghum (Sorghum bicolor L.), rice (Oryza sativa L.) and the model species 

Brachypodium distachyon L. (Pfeifer et al., 2013; Spannagl et al., 2013). The information 

gathered from this in silico mapping can be useful for different purposes. Primarily, it can 

support the scientific and breeding community to conduct further studies to understand the 

drought stress tolerance of rye and the underling mechanisms. Furthermore, the resources 

generated in this study can be used for the selection of molecular markers derived from 

sequences based on the mapping information to create high density arrays with a low number 

of co-segregating markers. 

Out of the 4,437 SNPs identified in drought-stress related transcripts, the flanking sequences 

of 1,006 SNPs (22.5%) showed significant homologies with sequences represented on the 

publicly available high density 5K rye SNP array (Haseneyer et al., 2011). Furthermore, 2,654 

SNPs (59.8%) showed significant homologies with the 600k Rye SNP Array (Bauer et al., 2017). 

Now a set of 1,783 novel SNPs in drought stress-regulated transcripts as well as about 18,000 
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SNPs in rye ESTs not differentially responding to drought are available for breeding and 

research in rye and triticale. 

Elite rye genotypes are likely pre-selected for drought stress tolerance, as this small grain 

cereal crop is traditionally grown on light soils with low water capacity (Hubner et al., 2013). 

Due to the controlled and uniform environment used in this study, the detected expression 

level variation is very likely caused by genetic differences. In this study known drought stress 

related transcripts were observed, supporting the validity of our approach. Furthermore, 

many transcripts showed high homology to previously described sequences with unknown 

function. For 768 (17.3%) transcripts, no known homologs were identified. These are 

eventually specific to rye and thus may contribute to the high stress tolerance of this crop in 

comparison to other cereals. For the generation of interspecific hybrids with increased 

drought stress tolerance especially those transcripts/genes showing pre-stress overexpression 

or post-stress-up-regulation are of utmost interest. 

The data presented here on stress-related gene expression led to a better understanding of 

the response of rye to drought stress whereas the sequence information and resulting SNPs 

may be directly used for marker-assisted breeding for drought stress tolerance as the 

underlying genes are already embedded in elite rye breeding material. 

 

4.4 SNP array evaluation 
 

The main aim of the presented work was the development of a high quality mid-plex SNP array 

optimized for QTL detection in rye including the assessment of quality parameters with special 

emphasis on the use in commercial rye breeding. 

The usability and value of genotyping platforms like the presented 384-plex SNP array are 

influenced by a wide range of parameters like costs per data point, reproducibility, time 

needed for generating the results or information content in relation to the analysed plant 

material. The importance of these parameters may vary to a large extend for different uses 

ranging from scientific studies to the application in commercial breeding programs. Therefore, 

the quality evaluation will focus on parameters which are of general importance (Edwards and 

McCouch, 2007). 

The overall proportion of usable markers, i.e. 66% after very stringent filtering, of the newly 

developed SNP-Array is in very good accordance with other non-optimized SNP arrays based 

on Illumina technologies, like the 60k Canola SNP array (Edwards et al., 2013; Snowdon and 



52 

 

Iniguez Luy, 2012), the 9k Barley SNP array (Comadran et al., 2012) and the 90k Wheat SNP 

array (Wang et al., 2014). 

The total length of the constructed genetic map is in the same range as previously published 

maps developed on different rye populations (Devos et al., 1993; Hackauf et al., 2017a, 2009; 

Korzun et al., 2001; Ma et al., 2001; Miedaner et al., 2012a). But, it is in contrast to a map 

constructed using DArT markers with a total length of 2,349 cM (Bolibok-Bragoszewska et al., 

2009). This large deviation could be a result of an overestimation of the length due to not 

applying a separate map calculation (Mester et al., 2003), which corrects for the different 

phases as it was conducted in this study. There are small regions with poor marker saturation 

like on the short arm of chromosome 5R (Figure 6) which is also known from literature 

(Milczarski et al., 2011). 

The results of the conducted mapping revealed the success of the previously conducted 

marker selection based on the in silico mapping information. On each chromosome, the first 

marker with a positional information is a newly developed RSQ marker except for 

chromosome 7R. Also, the last marker on each chromosome is an RSQ marker except for 

chromosome 2R (Figure 6). Furthermore, the markers show no major patterns of clustering, 

which in contrast is common for DArT markers as reported before (Milczarski et al., 2011). The 

equidistant distribution of the RSQ markers is of high value for QTL studies, in which 

oversaturation or an uneven distribution of marker density does not increase mapping 

precision (Piepho, 2000a). In contrast, it can reduce detection power (Liu, 1997). Especially for 

QTL mapping in breeding populations with large extends of linkage disequilibrium at loci under 

selection, the equidistant genomic distribution is very favourable to not underestimate the 

variance explained by the QTL (Würschum, 2012). Furthermore, analysis like genetic distance 

calculations, which are of prime importance for hybrid breeding may benefit from the 

observed genomic distribution, as individual haplotype blocks or specific sections of the 

genome are not overrepresented by means of high marker saturation in contrast to other 

underrepresented genomic regions. On the other hand, the usage of molecular markers in the 

gene space only, could bear disadvantages for the calculation of the genetic distance in the 

scope of hybrid breeding. 
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4.5 QTL regions in rye 
 

As both parental genotypes are elite rye inbred lines derived from the same gene pool of one 

breeding company, many traits and the overall phenotype is not as contrasting as in many 

other traditional QTL mapping studies (Bolibok et al., 2007; Masojæ and Milczarski, 2005; 

Masojć and Milczarski, 2009). This is very likely a result of fixation of major genes influencing 

traits targeted by multiple selection cycles in the breeding process (Würschum, 2012). This is 

further supported by the observed phenotypic data for the mapping population and the low 

differences between both parental genotypes. Therefore, the detection of QTLs with low to 

medium LOD scores and small amounts of variance explained was expected for this study. As 

assumed, no major QTL of the investigated traits like the Ddw1 locus for plant height on 

chromosome 5RL (Börner et al., 1999; Korzun et al., 1996) or other QTLs for plant height 

(Börner et al., 2000), thousand kernel weight (Wricke, 2002) or number of spikes (Börner et 

al., 1999) were detected in this study. Nevertheless, some QTLs, described in literature may 

be potentially assigned to the QTL regions detected in this study. For details see Table 16. 

 

Table 16. Comparison of QTLs detected in the population Hyb201 x Hyb202 to those known 
from literature. 

Trait 

Chromosome / 
Interval (cM) 

detected in this 
study 

Reference of 
QTL study 

Marker Distance 

Plant height EC 
89 

2R 
29.5 – 32.2 

(Myśków et al., 
2014) 

XrPT-506926 7.85 cM 

Plant height EC 
89 

2R 
29.5 – 32.2 

(Myśków et al., 
2014) 

XrPT-509630 7.55 cM 

Plant height EC 
89 

6R 
31.4 – 36.0 

(Myśków et al., 
2014) 

XrPT-401305 0.00 cM* 

Plant height EC 
32 

5R 
95.3 – 96.3 

(Myśków et al., 
2014) 

XrPT-506172 8.27 cM 

Plant height EC 
32 

7R 
32.3 – 36.4 

(Myśków et al., 
2014) 

XrPT-400783 4.55 cM 

Number of 
spikes 

1R 
62.8 – 63.0 

(Myśków et al., 
2014) 

XrPT-411519 2.30 cM 

Number of 
spikes 

3R 
42.5 – 44.3 

(Myśków et al., 
2014) 

XrPT-400319 1.71 cM 

Number of 
spikes 

5R 
125.7 – 130.9 

(Myśków et al., 
2014) 

XrPT-411109 0.00 cM* 

*The marker given in the external QTL study was mapped within the QTL interval in our study. 
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Table 16. continued 

Trait 

Chromosome / 
Interval (cM) 

detected in this 
study 

Reference of 
QTL study 

Marker Distance 

Plant height EC 
89 

2R 
29.5 – 32.2 

(Masojć et al., 
2017) 

XrPT-509630 7.55 cM 

Plant height EC 
89 

3R 
29.8 – 33.0 

(Masojć et al., 
2017) 

XrPT-509013 0.00 cM* 

Plant height EC 
32 

5R 
95.3 – 96.3 

(Masojć et al., 
2017) 

XrPT-399462 1.80 cM 

Plant height EC 
89 

7R 
24.3 – 29.1 

(Masojć et al., 
2017) 

XrPT-505798 0.00 cM * 

Plant height EC 
32 

7R 
70.4 – 74.9 

(Masojć et al., 
2017) 

XrPT-400732 6.34 cM 

Plant height EC 
52 

7R 
67.6 – 69.8 

(Masojć et al., 
2017) 

XrPT-509108 5.27 cM 

Heading 
7R 

61.5 – 66.4 
(Masojć et al., 

2017) 
XrPT-399878 0.00 cM* 

Thousand 
kernel weight 

4R 
44.0 – 48.7 

(Masojć et al., 
2017) 

XrPT-508446 0.00 cM* 

Heading 
7R 

61.5 – 66.4 

(Myśków and 
Stojałowski, 

2016) 
XrPT-509108 0.00 cM* 

Plant height EC 
89 

3R 
29.8 – 33.0 

(Miedaner et 
al., 2012a) 

XrPT-400480 4.51 cM 

Plant height EC 
32 

5R 
95.3 – 96.3 

(Miedaner et 
al., 2012a) 

Xrms1115 6.09 cM 

*The marker given in the external QTL study was mapped within the QTL interval in our study. 
 

To further verify the detected QTLs in this study and proof the quality of the newly developed 

RSQ marker, data from a distinct study (Haffke, 2015b) using a highly related QTL mapping 

population was used. In brief, a population of 258 three-way hybrids was generated by 

crossing one CMS line of the Petkus (seed parent) pool with 258 F2:3 single-seed descents of a 

Hyb201 x Hyb202 cross. These inter-pool hybrids were tested at four locations in the same 

years (2011, 2012) as the mapping population in this study. Therefore, QTLs detected in our 

intra-pool mapping population should be also detectable in the described material among 

other QTLs, derived from the Petkus CMS line. The phenotyping of both populations in the 

same years in adjacent geographic regions (data not shown) further promote the 

comparability of both studies by minimizing the possibility of environment-specific QTL 

(Piepho, 2000b). In total, we could clearly assign 4 of the 21 QTLs detected in our study to 
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QTLs found in the study of Haffke (2015b). Furthermore, 9 additional QTLs are mapped in close 

vicinity (<10 cM) to QTLs identified in our study, which are very likely to be the same (Piepho, 

2000a). In total, 13 of the 21 QTLs detected in our study were most likely also detected by 

Haffke (2015b). Detailed information on the QTLs found in both studies can be obtained in 

Table 17. This proves the validity of the QLT mapping approach as well as the veracity of the 

underlying QLTs. 

 

Table 17. QTLs detected in this study, as well as in the QTLs study of Haffke (2015b), using a 
closely related QTL mapping population but considering different phenotypic data. Given are 
the name and the QTL position with respect to the different genetic maps generated in both 
studies as well as the distance of the nearest flanking marker reported by Haffke (2015b) to 
the QTLs found in this study. 

This Study Haffke (2015)  

QTL Interval (cM) QTL Interval (cM) QTL distance 

Heading – 2R 67.7 - 69.3 
QHdt-
2R.2 

83 – 88 
6.31 cM 

(XrPT-402599) 

Heading – 7R 61.5 – 66.4 QHdt-7R 56 – 59 
1.20 cM 

 (XrPT-399686) 

Number of Spikes – 3R 42.5 – 44.3 QSsm-3R 69 - 72 0.00 cM* 

Number of Spikes – 5R 53.3 – 55.4 QSsm-5R 48 – 52 
8.16 cM 

(XtPT—3980) 

Thousand kernel 
weight – 2R 

88.7 – 89.0 QTgw-2R 104 - 107 
4.79 cM 

(XrPT-398612_r) 

Thousand kernel 
weight – 4R 

30.6 – 31.6 
QTgw-
4R.2 

50 - 52 
2.64 cM 

(XrPT-400488) 

Thousand kernel 
weight – 4R 

44.0 – 48.7 
QTgw-
4R.2 

50 - 52 0.00 cM** 

Thousand kernel 
weight – 5R 

125.7 – 130.9 QTgw-5R 118 – 125 
5.30 cM 

(Xtnac1394) 

Plant height EC 32 – 5R 95.3 – 96.3 QPh1-5R 90 – 96 
8.36 cM 

(XrPT-389427) 

Plant height EC 32 – 7R 70.4 – 74.9 QPh1-7R 56 – 60 
8.80 cM 

(XrPT-402149_r) 

Plant height EC 89 – 2R 29.5 – 32.2 
QPh3-
2R.2 

54 – 57 0.00 cM** 

Plant height EC 89 – 2R 62.8 – 66.1 
QPh3-
2R.3 

87 – 90 
3.04 cM 

(Xtcos5085_2RL) 

Plant height EC 89 – 3R 29.8 – 33.0 QPh3-3R 47 - 51 0.00 cM*** 

* QTL in Haffke (2015b) is completely enclosed in the QTL detected in this study. 
** The flanking markers reported by Haffke (2015b) enclose the QTL detected in this study 
completely. 
*** Both QTL are partially overlapping. 
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In conclusion, we created a rye mid-plex SNP-Array with an optimized marker distribution 

covering large proportions of the rye genome in equidistant intervals further expanding the 

genetic toolbox available for scientific studies and rye breeding, especially promoting QTL 

detection and genetic distance analysis for hybrid breeding. 

 

4.6 Breeding for drought resistance 
 

Drought stress itself and the plant response to this stimulus is complex as well as the factors 

influencing drought stress. This complexity starts right at the definition of drought stress, 

which has to take into account the severity of the stress, the time point of onset in relation to 

plant development, the duration of the water deficiency as well as radiation intensity (Farooq 

et al., 2009; Zhu, 2002). Therefore, drought stress is very variable and extremely difficult to 

reproduce in field conditions. In addition, this trait is inherited in a polygenic and quantitative 

manner, which renders breeding for drought stress tolerant genotypes difficult (Blum, 1983; 

Ceccarelli and Grando, 1996; Sinclair, 2011). Therefore, drought stress tolerance is most often 

only assessed as a secondary trait in plant breeding, which influences primary target traits like 

grain yield (Araus et al., 2002; Hubner et al., 2013). During the breeding process, drought 

stress appears occasionally in some environments. As candidates for new cultivars are 

selected for high yield, an indirect selection for drought stress tolerance is applied (Hubner et 

al., 2013). A complex and difficult trait to asses during the breeding process are roots which 

are of prime importance for drought stress tolerance (Paez-Garcia et al., 2015). In contrast to 

the above ground plant parts, the root system architecture, total depth, development over 

time and many other root traits are not easily accessible for phenotyping under field 

conditions for a large number of genotypes, which would be a requirement for phenotyping 

in the context of commercial breeding programs (Atkinson et al., 2019). First scientific 

attempts to uncover the rhizosphere are ongoing, using e.g. rhizotrons (Nagel et al., 2012) to 

get access to root traits. In addition soil sensors to measure e.g. soil water content or soil-

temperature (Baggio, 2005); or using microbiome analysis to unlock the interaction of plant 

roots with soil-borne organisms (Zolla et al., 2013) are used. Furthermore, non-destructive 

imaging techniques for field application are under development like Electrical Resistance 

Tomography (ERT) (Amato et al., 2008; Srayeddin and Doussan, 2009), electromagnetic 

inductance (EMI) (Shanahan et al., 2015; Whalley et al., 2017) or ground penetrating radar 

(GPR) (Liu et al., 2016). Nevertheless, most of this methods are employed in trees, as there is 
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a lack of resolution to be directly useable for cereals or field crops in general (Atkinson et al., 

2019).  

Consequently, a large proportion of factors influencing drought stress tolerance are not or at 

least only indirectly available for efficient selection in plant breeding. This slows down the 

development of new varieties with an improved performance in water deficient 

environmental situations, which will be present in many geographic regions due to elevated 

average temperatures or decreased precipitation forecasted in the context of global climate 

change (Cox et al., 2000; Misra, 2014; Nelson et al., 2014). Even though irrigation may be 

employed in a range of agricultural production systems in theory, some negative factors of 

using artificial irrigation are discussed (Fernández-Cirelli et al., 2009). Therefore, one 

promising target to improve crop performance in environments with limited water availability 

by means of targeted breeding approaches is to study the plant stress response on the 

molecular level in order to identify markers and in a next step favourable genes or alleles 

(Nguyen et al., 1997). The combination of this knowledge with low cost and high throughput 

genotyping platforms enables breeders to conduct time and cost-efficient marker assisted 

selection (MAS), as well as a marker-guided selection of crossing parents to generate 

populations designated for drought prone environments (Hussain, 2006; Reynolds et al., 2010; 

Sinclair, 2011). As RNA sequencing allows the identification of genes and their respective 

expression level depending on a specific treatment at a given time point, it is an efficient tool 

to identify favourable alleles and develop molecular markers in a one-step approach 

(Matsumura et al., 2012; Ozsolak and Milos, 2011). This is further emphasized by the 

possibility to dissect some complex traits into components (Slafer et al., 1996). Similar to yield 

components like kernels per ear or thousand kernel weight, some components of drought 

stress tolerance may be controlled by a limited number of genes, e.g. an elevated water use 

efficiency (WUE) (Blum, 2005) or root architecture (Passioura, 1983). Some of this drought 

stress tolerance factors may be even independent from environmental factors, meaning these 

are favourable in some stress environments and not detrimental in other environments (Blum, 

2005). One component of drought stress tolerance, bearing these features may be a stress-

independent elevated abscisic acid (ABA) level, which was found and described earlier in other 

studies (Shinozaki and Yamaguchi-Shinozaki, 2007; Zhu, 2002) and may also be involved in the 

differential, genotype specific drought stress response reported in this study. 
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Due to the variability of drought stress itself, it is highly plausible to assume that there is not 

one single idiotype, which performs optimal across each environment with limited water 

availability (Blum, 2005). Nevertheless, there are multiple possibilities and methods known 

from literature, which aim to tackle the challenges of water shortage for crops. 

One example is the utilization of the natural symbiosis of plants with fungi, termed mycorrhizal 

symbiosis, which is also present in rye and other cereals (Gollner et al., 2011; Pandey et al., 

2005). Positive effects of arbuscular mycorrhizal symbiosis on drought tolerance was found 

for many crops, e.g. wheat (Al-Karaki et al., 2004), barley (Khalvati et al., 2005) or maize 

(Boomsma and Vyn, 2008), whereas the underlying mechanisms are reviewed by Augé, (2001). 

As a recent study on wheat found genetic variation and associated QTLs for the ability of 

genotypes to create a better mycorrhizal colonization (Lehnert et al., 2017), a MAS breeding 

scheme may be applied to select for genotypes with an elevated drought tolerance, due to an 

elevated mycorrhizal colonization (Lehnert et al., 2017). Although, no QTLs or associations 

with this trait were reported for rye until now, one could assume a high possibility of their 

existence. 

Another method discussed in literature for improving drought stress tolerance, is the use of 

genomic selection in plant breeding (Heffner et al., 2009). First positive results have been 

reported for maize (Beyene et al., 2015; Shikha et al., 2017), wheat (Mwadzingeni et al., 2016) 

or pea (Annicchiarico et al., 2017). Nevertheless, a large proportion of papers apply genomic 

selection on yield as the target trait and include yield data of water limited environments to 

estimate the marker effects. Therefore, the (genomic) selection for drought stress tolerant 

genotypes is indirect or at least mixed with the selection for genomic regions, which confer 

better yield. 

Also, the use of methods to alter the genetic code or incorporate novel genes into the genome 

of a given species, hereafter named genetic engineering, is a possibility to increase drought 

stress tolerance. Most prominently the so called “Stay-green” genes (Borrell et al., 2013) are 

used to increase drought stress tolerance. Despite of some favourable features of genetic 

engineering, like a short time to incorporate a new trait into a variety in comparison to 

conventional breeding (Lusser et al., 2012), there are also challenges for the application, like 

the complex architecture of drought stress tolerance (Mittler and Blumwald, 2010) or legal 

issues, prohibiting or hampering the utilization of these techniques in many parts of the world 

(Hartung and Schiemann, 2014). 
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As a long-term perspective, disruptive technological changes in the fields of genetic 

engineering and the so-called synthetic biology could give rise to other possibilities to cope 

with drought stress, e.g. the exogenous control of plant metabolism on-site by farmers using 

agrochemicals like phytohormones may be employed (Farooq et al., 2009) to adapt the plant 

development according to weather forecasts. This would allow to change the principle of just 

reacting on a stress stimulus after it appears, to a paradigm of anticipation to future events 

like drought stress before it may happen. Basic examples for this idea are already in use, like 

the application of plant growth regulators, conferring an elevated winter hardiness (Carter 

and Brenner, 1985). 

 

4.7 In silico mapping 
 

In silico mapping provides a very cost, labour and time efficient method to select a set of 

polymorphisms with optimized genomic coverage. The differences between both maps 

identified in this study are potentially influenced by many factors; therefore, the precision and 

quality of the mapping approach will be discussed separately for three categories of possible 

causes. The first and most important factor is the extent of synteny of the rye genome with 

the genomes of the other species represented in the genome zipper, which was used as the 

data source for the in silico mapping. The observed 89.5% indicates a high quality of the linear 

virtual gene order data source (Martis et al., 2013). This percentage is slightly higher than 

reported for rye DArT markers (85.4%) by Gawroński et al. (2016) and also higher than 

reported for SSR markers (83.2%) by Li et al. (2018), which both employed a comparable 

methodology for in silico mapping in rye. As a valid chromosomal assignment is not sufficient 

to optimize the genome coverage, the assignment to chromosomal regions and local ordering 

of the predicted mapping positions must be evaluated as a second factor. In total, 97 of 124 

SNP (78%) are assigned to the correct chromosomal region (short-arm, centromeric region, 

long-arm), taking all chromosomes into account. The number of mismatched chromosomal 

assignments may be due to structural variation and chromosomal rearrangements between 

the two genotypes used in our study (Hyb201, Hyb202) and the varieties used to generate the 

draft reference sequence used for the genome zipper (Lo7, Lo225, P87, Lo90, Lo115, L2038-

N, L285, L290) (Martis et al., 2013). Both sets of genotypes are derived from different breeding 

companies (KWS Lochow GmbH, Germany for the genome zipper; Hybro Saatzucht GmbH & 

Co. KG, Germany for Hyb201 and Hyb202). Furthermore, the genotypes used to generate the 
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data for the genome zipper are derived from both breeding pools (Martis et al., 2013). In 

contrast, the genotypes of the current study are members of the seed parent pool, only. 

On the smallest scale the local ordering and mapping, as the last factor for discussing the 

precision of the mapping approach, must be evaluated with caution. It is known that the 

ordering and the distance between polymorphisms within a genetic map can greatly differ 

with respect to the used mapping population, number of individuals in the mapping 

population, the population structure itself and the used mapping algorithm (Qi et al., 1996; 

Ruiz and Asins, 2003). As we used just one mapping population in this study, the quality 

assessment on this small-scale level is just one sample and does not allow the generalization 

of the observed precision to a general estimation of quality statistics. To assess the quality, 

we conducted a correlation analysis per chromosome, using both, the Spearman rank 

correlation coefficient assessing the similarity in the ordering of polymorphisms and the 

Pearson correlation coefficient to assess the similarity in the context of the positional 

information. Of course, both metrics are highly interconnected and correlated, but on the 

other hand both can be used to get a slightly different view on the quality. 

To correctly interpret the results of the correlation analysis, one must keep in mind that only 

markers which are mapped to the correct chromosome (111 of 124 - 89.5%) were considered, 

which leads to an overestimation of the correlation. On the other hand, positional information 

of mapped polymorphisms covering whole chromosomes were used in the analysis. 

Therefore, variations in mapping positions spanning over complete chromosomal regions 

(short-arm; centromere; long-arm) are included. This later source of variation accounts for a 

substantial amount of reduction in mapping quality by means of correlation coefficients. This 

is demonstrated nicely on chromosome 1R, where the altered mapping position of just two 

markers (RSQ_386; RSQ_499, Figure 11) disturbs the otherwise perfectly matched ordering of 

both maps. 

These mismatches, especially for RSQ_386 spanning half of the chromosome, reduces the 

Spearman rank correlation coefficient significantly. This kind of large range mismatches are 

found with various frequencies on all chromosomes. The difference of the order (Spearman) 

as well as in the position (Pearson) is used in a quadratic manner to calculate deviations from 

a perfect correlation, putting high penalties on such large-scale deviations. This results in an 

overall lower correlation, which is masking the quality on a local scale to some extent, when 

just evaluating the correlation coefficients. To sum up, a substantial fraction of the 
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chromosomal assignment was forecasted correctly as well as the mapping distance between 

marker pairs and the ordering itself. Despite the fact that no exact correlation coefficient was 

given, Gawroński et al. (2016) suggest a comparable quality of the in silico mapping 

approaches in both studies on all three discussed levels. Nevertheless, the collinearity of the 

in silico predicted position and the position in the genetic map in this study (r = 0.69) is lower, 

than observed in a barley study (Silvar et al., 2015) (93.2%). This difference potentially results 

from two sources: 

 

i) To calculate the collinearity, Silvar et al. (2015) used a binning based approach, 

neglecting errors in the ordering on a very small scale (< 5cM) and calculating a 

percentage instead of a correlation, minimizing the effect of mismatches, which 

spans long ranges and therefore have large impact on the correlation, as discussed 

previously. 

 

ii) Potentially the in silico mapping of genomic features in barley using the genome 

zipper (Mayer et al., 2011) gives higher quality results, as the integrated data basis 

for barley is of better quantity and quality. Another reason may be the higher 

synteny of barley with the other species included in the genome zipper, compared 

with rye (Martis et al., 2013). 

 

Most important and in accordance with the aim of the in silico mapping approach, the 

coverage of each chromosome with molecular markers with an optimized spacing was 

achieved. This result is further emphasized, when comparing the equidistant genome 

coverage of the mid-plex SNP genotyping platform with the molecular mapping data of other 

platforms like DArT markers, as described earlier in this study. 

 

4.8 Evaluation of the molecular marker resource and genotyping platform 
 

As discussed in the previous section, the RNA sequencing in combination with the in silico 

mapping approach was able to detect large quantities of SNPs, e.g. the study of Haseneyer et 

al. (2011) identified 17,917 SNP candidates after quality filtering using RNA sequencing, which 

is in the same magnitude as the 19,844 SNPs identified in this study. On the other hand, a 

more recent study of Bauer et al. (2017) identified 8,405,856 SNPs in total. This substantially 
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higher number was achieved due to a set of differences used in the approach of their study, 

e.g.: 

 

i) Genotypes from both pools (seed parent and pollinator) were sequenced, as well 

as five Secale vavilovii G. accessions. Taking this into account, a reduced number of 

4,010,067 intra seed parent pool SNPs were detected by Bauer et al. (2017) which 

have to be compared to the number of SNPs detected by our study. 

ii) A whole genome sequencing approach was conducted. Therefore, SNPs in both, 

the genic and intergenic regions were detected, whereas the RNA sequencing 

approach in our study is only able to detect SNPs in expressed genes in terms of 

mature mRNA after splicing and potential post-translational editing. As the gene 

space spans only about 5% of the complete rye genome (Flavell et al., 1974; O’Neill 

et al., 2003), a substantial proportion of variation and polymorphisms is not 

detectable by our approach. 

iii) Bauer et al. (2017) used six rye inbreed lines of the seed parent pool for variant 

detection while in our study only two lines were used. A reduced number of 

detected variants was expected, therefore. 

iv) A set of other parameters is different between both studies, e. g. the length of raw 

reads from sequencing, the sequencing depth or the sequence analysis pipeline. 

These differences will most probably also have impact on the number of detected 

SNPs. 

 

The prediction of the genomic positions of these polymorphisms with sufficient precision, 

enabled the selection of a subset with optimized genome coverage for the generation of a 

mid-plex SNP array genotyping platform in rye. To evaluate the usability of this resource for 

scientific and breeding purposes, a range of indicators can be used (Varshney et al., 2007b). 

Many features are a direct consequence of the technique used to generate the data, in our 

case RNA sequencing. As the procedure uses a protocol to capture polyadenylated messenger 

RNA molecules, only transcripts of genes after splicing and post-processing, so called mature 

messenger RNA, is represented, skipping the complete non-coding sequence information of 

the genome including introns and the vast majority of mitochondrial and chloroplast 

transcripts as poly-adenylated mRNA from both is degraded rapidly in higher plants (Chang 
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and Tong, 2012). Therefore, a large portion of sequence variability is neglected. In a marker 

assisted selection scenario, this setting is favourable, in particular when causal genes and 

variants are represented in the resource itself (Collard and Mackill, 2007). In contrast, 

assuming a marker assisted background selection for backcrossing or a diversity study, a set 

of polymorphisms in non-coding regions, which are neutral in the context of selection showing 

high allelic diversity, would be favourable instead (Servin and Hospital, 2002; Wan et al., 2004). 

Because only two elite rye genotypes of one genetic pool from one breeding company were 

analysed, only a very reduced proportion of the intra–species genetic variability was captured 

by this approach (Geiger and Miedaner, 2009). This is in contrast with the standard procedure 

of SNP array generation for many crops, in which a preferably large set of diverse genotypes 

is sequenced to detect and cover the diversity in this set and therefore in the species itself 

(Ganal et al., 2012). This approach was used for example to develop the 600k Rye SNP Chip 

(Bauer et al., 2017), the 90k Wheat SNP Chip (Wang et al., 2014) or the 50k Barley SNP Chip 

(Bayer et al., 2017). This will result in a reduced quality of the SNP resource generated in this 

study in terms of failed values when applied to distinct and genetically distant genotypes. But, 

on the other hand there is an elevated average quality when applied to closely related 

material, most prominently to genotypes of the same genetic pool of the same breeding 

company (Heslot et al., 2013; Moragues et al., 2010). It was also not possible to identify and 

select for polymorphisms using allele frequencies due to the use of just two genotypes. This 

quality parameter is important to avoid the representation of rare alleles within a genotyping 

array, which would on average result in overall reduced polymorphic information content 

(PIC) (Botstein et al., 1980) of molecular markers representing these loci. This conclusion can 

be easily obtained, given the PIC formula, which has a global maximum of 0.5 for bi-allelic 

markers when exactly half of the analysed individuals exhibit one allele and the other half the 

other one. Deviations from this 1:1 ratio directly lower the PIC value. Another quality 

parameter is the pure number of polymorphisms in combination with the coverage of the 

genome. As reported for some crops, larger genomic stretches so called haplo-blocks, are 

accumulated in current breeding populations (Gupta et al., 2005; Voss-Fels et al., 2019), due 

to genetic bottlenecks introduced by domestication and breeding (Ersoz et al., 2007). For 

many applications in plant breeding, one or a small set of molecular markers addressing each 

single haplo-block would be sufficient, as a higher number will presumably increase the 

genotyping costs, reduce the statistical power of most methods due to multiple testing, and 
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will add little relevant information. This concept is referred to as the haplotype tagging SNPs 

(Sebastiani et al., 2003). A valid proxy for the genome wide average extend of such haplo-

blocks is the decay of linkage disequilibrium (LD) (Hill and Robertson, 1968). As reported for 

inbreeding species like wheat or barley, large proportions of the genome exhibit genetic 

linkage, so in comparison to the rather large genome size of the afore mentioned species, only 

a limited number of molecular markers would be needed in elite material for most breeding 

purposes (Moragues et al., 2010; Thomson, 2014). Unfortunately, for rye a fast decline in LD 

was reported, most likely due to the outcrossing mating scheme (Li et al., 2011), resulting in a 

higher number of polymorphisms needed to access dense genomic information for breeding. 

This number is most presumably not reached by the genotyping platform generated within 

this study. 

To sum up, the sequence resources of rye, i.e. additional single nucleotide polymorphisms, 

were developed, evaluated in terms of quality parameters, and combined with predicted 

positional information, resulting in a resource with high value for downstream applications, 

like the development of drought stress specific molecular markers. 

 

4.9 Prospects on pan-genomes and the virtual linear order of genes 
 

The collinearity of genes and homology in genomic sequences found within the Poaceae, 

combined in a resource termed genome zipper (Martis et al., 2013; Mayer et al., 2011), is a 

valuable resource for several applications, like fine mapping of genes (Hofmann et al., 2013; 

Lüpken et al., 2013) or for predicting genomic positions as shown in this study. This similarity 

in the genome structure of related species may be employed and combined with novel 

approaches of sequence data representations, the so-called pan-genome (Tettelin et al., 2005; 

Vernikos et al., 2015). With the progress in sequencing technologies and the constant cost 

reduction for data generation (Schwarze et al., 2018), high quality, whole genome sequencing 

of large cohorts of genotypes will presumably be achievable in the long term (Monat et al., 

2019). The current state of few high-quality reference genomes per species with little 

connection between this reference sequences will be insufficient to unlock the full potential 

of this data source (The Computational Pan-Genomics Consortium, 2016). Therefore, the use 

of so-called pan-genomes was proposed (Morgante et al., 2007), to i) integrate multi-

genotype sequence information in one resource and ii) to find and separate the so called core-

genome from the dispensable genome. These terms refer to the genes and sequence 
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stretches, which are represented in all individuals of a given species or clade as the core 

genome, whereas the genes found only within a small proportion of the individuals are termed 

dispersible genome. From a bioinformatic point of view, this approach extends the currently 

linear, one-dimensional space of genomic sequence information of one individual genotype 

to a two-dimensional plane, in which multiple genomes are aligned side by side, covering 

multiple individuals, highlighting intra-species variance and diversity in the background of 

stable genomic stretches common to all members of the given species. (The Computational 

Pan-Genomics Consortium, 2016). 

The source of genomic collinearity and synteny, which is exploited by the genome zipper 

approach, is the common ancestry and relatedness of multiple species (Martis et al., 2013; 

Mayer et al., 2011). Like the genome zipper approach, this homology may be applied to the 

pan-genome concept to extend and transfer information from one species to multiple others 

(Vernikos et al., 2015), resulting in a multi-species pan-genome, which is common for 

prokaryotic species (Medini et al., 2005). The resulting data source would integrate large scale 

inter-species genomic rearrangements into the currently discussed intra-species pan-genome 

concept also for higher plants and crops, resulting in a hierarchical, multi-level search space 

that extends the graph based representation presented by The Computational Pan-Genomics 

Consortium (2016). This envisioned resource would put additional value on a large proportion 

of currently species-specific results and in general is not restricted to the Poaceae. QTLs 

identified in one species could be transferred to other species, functional gene annotation 

precision may be greatly increased, and molecular markers linked to genes with causal effects 

in desirable traits could be transferred into other species (Georges, 1997; Parsons et al., 2005). 

To sum up, the extension and combination of genome zippers and pan-genomes, as two 

existing concepts, could result in a resource, which greatly promotes the exchange and 

utilization of biological information and data across species. 
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5. Summary 
 

Rye (Secale cereale L.) is known for its outstanding abiotic stress tolerance within the family 

of the Poacea, especially for its drought tolerance. Nevertheless, there is little knowledge on 

the molecular mechanisms which confer this elevated tolerance compared to related crop 

species like barley or wheat. In this study, we generated a significant amount of sequence 

information to fill this gap by sequencing the transcriptome of two German elite rye genotypes 

grown in a well-watered and a drought stress inducing variant to get specific access to drought 

induced transcripts. Furthermore, the sequencing protocol allowed for transcript 

quantification as a basis for a differential gene expression analysis. Based on this, candidate 

genes were identified. In a next step, sequence data were mined for SNPs. By applying a 

stringent quality filtering using only polymorphisms within previously identified drought 

related transcripts and applying a synteny based in-silico mapping to optimize genome 

coverage, a set of SNPs was defined and used to generate a mid-plex genotyping array. This 

array was used for QTL detection based on phenotypic data for six agronomic traits estimated 

in two years and three locations per year on a population of 271 individuals. Out of the 384 

SNPs on the array, 254 SNPs were integrated into the genetic map of rye and 21 QTLs for plant 

height at three different developmental stages, heading date, spikes per plant and thousand 

kernel weight were detected.  

Using the sequencing data, a deeper insight into drought stress tolerance mechanisms in elite 

rye was achieved on the molecular level. Furthermore, the generated sequence information 

as well as the mid-plex genotyping array may be employed by scientists or breeding companies 

for multiple purposes, like QTL and candidate gene discovery, genetic distance analysis or 

marker assisted selection.  
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9. Appendix 
9.1 Position of 214 newly developed RSQ SNP markers 
 

Linkage Group 1R Linkage Group 2R Linkage Group 3R 

Marker Position (cM) Marker Position (cM) Marker Position (cM) 

RSQ_150 0.000 RSQ_487 0.000 RSQ_407 0.000 

RSQ_271 23.322 RSQ_313 2.488 RSQ_004 2.761 

RSQ_494 52.255 RSQ_057 10.686 RSQ_377 6.729 

RSQ_267 55.920 RSQ_488 12.079 RSQ_252 14.312 

RSQ_481 74.017 RSQ_103 15.125 RSQ_314 15.705 

RSQ_482 76.128 RSQ_478 16.595 RSQ_312 17.923 

RSQ_389 79.698 RSQ_208 17.495 RSQ_496 19.136 

RSQ_386 82.073 RSQ_138 27.913 RSQ_369 34.648 

RSQ_186 83.658 RSQ_144 28.382 RSQ_135 35.297 

RSQ_094 86.354 RSQ_069 28.525 RSQ_412 37.927 

RSQ_403 90.091 RSQ_292 30.453 RSQ_327 39.193 

RSQ_108 93.792 RSQ_035 30.910 RSQ_461 43.378 

RSQ_436 96.536 RSQ_090 31.200 RSQ_397 47.708 

RSQ_499 97.845 RSQ_443 31.909 RSQ_497 50.742 

RSQ_352 99.489 RSQ_428 32.661 RSQ_379 60.405 

RSQ_305 101.509 RSQ_498 36.922 RSQ_257 69.054 

RSQ_226 103.649 RSQ_167 38.063 RSQ_458 80.088 

RSQ_102 105.612 RSQ_489 38.761 

RSQ_395 113.142 RSQ_493 39.962 

RSQ_296 115.637 RSQ_160 41.057 

RSQ_277 120.625 RSQ_089 43.276 

RSQ_396 129.390 RSQ_483 45.796 

RSQ_044 131.971 RSQ_230 48.111 

RSQ_337 134.173 RSQ_491 50.457 

RSQ_173 141.205 RSQ_063 51.856 

RSQ_092 146.778 RSQ_133 52.777 

RSQ_086 157.356 RSQ_475 55.486 

  RSQ_224 57.324 

  RSQ_289 65.108 

  RSQ_037 67.771 

  RSQ_225 68.335 
  RSQ_268 71.656 

  RSQ_276 74.544 

  RSQ_154 79.254 
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Linkage Group 4R Linkage Group 5R Linkage Group 6R 

Marker Position (cM) Marker Position (cM) Marker Position (cM) 

RSQ_300 0.000 RSQ_487 0.000 RSQ_202 0.000 

RSQ_263 1.221 RSQ_313 2.488 RSQ_453 9.599 

RSQ_031 6.838 RSQ_057 10.686 RSQ_452 11.960 

RSQ_156 8.490 RSQ_488 12.079 RSQ_307 16.383 

RSQ_354 9.828 RSQ_103 15.125 RSQ_143 18.428 

RSQ_078 15.146 RSQ_478 16.595 RSQ_359 20.142 

RSQ_205 16.350 RSQ_208 17.495 RSQ_142 21.103 

RSQ_228 16.974 RSQ_138 27.913 RSQ_480 22.395 

RSQ_295 17.861 RSQ_144 28.382 RSQ_109 23.864 

RSQ_254 18.901 RSQ_069 28.525 RSQ_056 24.726 

RSQ_001 19.594 RSQ_292 30.453 RSQ_120 25.107 

RSQ_385 20.504 RSQ_035 30.910 RSQ_074 25.894 

RSQ_316 21.989 RSQ_090 31.200 RSQ_032 26.732 

RSQ_420 22.847 RSQ_443 31.909 RSQ_051 27.440 

RSQ_331 23.674 RSQ_428 32.661 RSQ_378 28.022 

RSQ_023 24.086 RSQ_498 36.922 RSQ_161 29.258 

RSQ_149 25.267 RSQ_167 38.063 RSQ_235 30.659 

RSQ_096 26.665 RSQ_489 38.761 RSQ_187 31.494 

RSQ_147 27.106 RSQ_493 39.962 RSQ_095 32.271 

RSQ_136 28.030 RSQ_160 41.057 RSQ_070 36.135 

RSQ_238 28.956 RSQ_089 43.276 RSQ_076 36.794 

RSQ_041 29.402 RSQ_483 45.796 RSQ_280 39.271 

RSQ_272 35.586 RSQ_230 48.111 RSQ_071 40.308 

RSQ_022 36.334 RSQ_491 50.457 RSQ_033 41.166 

RSQ_048 38.973 RSQ_063 51.856 RSQ_401 47.345 

RSQ_170 39.250 RSQ_133 52.777 RSQ_465 55.383 

RSQ_213 39.982 RSQ_475 55.486 RSQ_148 56.759 

RSQ_381 40.963 RSQ_224 57.324 RSQ_239 59.885 

RSQ_100 41.700 RSQ_289 65.108 RSQ_456 71.177 

RSQ_304 42.388 RSQ_037 67.771 RSQ_175 79.329 

RSQ_007 42.874 RSQ_225 68.335 RSQ_113 84.154 

RSQ_374 44.012 RSQ_268 71.656 RSQ_279 92.170 

RSQ_190 45.338 RSQ_276 74.544 RSQ_380 94.748 

RSQ_391 51.066 RSQ_154 79.254 RSQ_207 97.157 

RSQ_126 72.262   RSQ_188 118.535 

RSQ_104 82.863   RSQ_348 121.345 

RSQ_286 123.062   RSQ_180 130.792 

RSQ_196 126.609   RSQ_302 133.382 

RSQ_197 130.715   RSQ_181 141.244 

    RSQ_464 144.110 

    RSQ_151 148.717 

    RSQ_084 154.084 

    RSQ_046 164.514 
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Linkage Group 7R 

Marker Position (cM) 

RSQ_471 9.225 

RSQ_155 54.238 

RSQ_203 55.535 

RSQ_204 66.677 

RSQ_232 67.874 

RSQ_365 69.298 

RSQ_467 71.342 

RSQ_473 72.857 

RSQ_029 73.917 

RSQ_065 76.506 

RSQ_282 78.405 

RSQ_310 79.634 

RSQ_358 83.231 

RSQ_093 91.696 

RSQ_218 105.96 

RSQ_212 115.064 
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9.2 Filtered Gene Ontology Mapping of contigs generated by sequencing of drought 
stress induced transcripts in rye. 
 

SeqName Hit-Desc 

comp10001_c0_seq1_A map kinase kinase kinase 

comp1010_c0_seq1_A protein os-9-like 

comp1010_c0_seq7_A protein os-9 precursor 

comp10202_c0_seq2_A protein-tyrosine sulfotransferase-like 

comp10220_c0_seq1_A ankyrin repeat and kh domain-containing protein 1-like 

comp1022_c1_seq1_G zeaxanthin epoxidase 

comp10277_c0_seq1_A protein serine threonine kinase 

comp10287_c0_seq2_A isoflavone reductase-like protein 

comp1028_c0_seq1_A map kinase 

comp10338_c0_seq1_A pyridoxal biosynthesis protein 

comp10484_c0_seq1_A peroxidase 21 

comp104_c0_seq1_A tpa: aminomethyltransferase 

comp10512_c0_seq2_A purple acid phosphatase-like protein 

comp1058_c0_seq1_A mlo-like protein 4-like 

comp10655_c0_seq1_A hypothetical protein TRIUR3_12561 

comp10738_c0_seq1_A predicted protein 

comp10789_c0_seq1_A crs2-associated factor mitochondrial 

comp1085_c0_seq1_G 3-beta hydroxysteroid dehydrogenase isomerase family 
protein 

comp1088_c0_seq2_A catalase 

comp11039_c0_seq1_A glutamyl-trna amidotransferase subunit a-like 

comp11039_c0_seq2_A outer envelope protein mitochondrial-like 

comp1108_c0_seq1_A protein cobra-like 

comp1109_c0_seq1_A 3 (2 ) -bisphosphate nucleotidase 

comp110_c0_seq1_A thioredoxin h-type 

comp11310_c0_seq1_A endo- -beta-glucanase 

comp11325_c0_seq1_A presenilin family protein 

comp113_c0_seq2_G serine hydroxymethyltransferase 

comp11538_c0_seq1_A chloroplastic mitochondrial-like 

comp11553_c0_seq1_A chaperone protein dnaj 

comp11553_c0_seq2_A chaperone protein dnaj 

comp1155_c0_seq1_G 20 kda chloroplastic 

comp11638_c0_seq1_A transducin beta-like protein 3-like 

comp11687_c0_seq1_A chaperone protein chloroplastic-like 

comp1184_c0_seq1_A kinesin-like motor protein heavy chain 

comp11988_c0_seq1_A zeaxanthin epoxidase 

comp11988_c0_seq4_A zeaxanthin epoxidase 

comp1201_c0_seq1_A indole-3-glycerol phosphate chloroplastic-like 

comp12030_c0_seq1_A endo- -beta-glucanase 

comp1215_c0_seq6_A 6-phosphogluconate decarboxylating 

comp12283_c0_seq1_A tpa: universal stress protein family protein 
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comp1231_c0_seq1_A anther-specific protein 

comp12345_c0_seq1_A lon protease-like mitochondrial 

comp12378_c0_seq1_A cwf19-like protein 2-like 

comp12405_c0_seq2_A endoribonuclease dicer-like 1 

comp1249_c0_seq1_A protein phosphatase 2c 

comp1249_c0_seq2_A protein phosphatase 2c 

comp12531_c0_seq1_A plasma membrane intrinsic protein 

comp1259_c0_seq1_G cold acclimation protein cor413-pm1 

comp1276_c0_seq2_G heat shock factor-binding protein 1 

comp12924_c0_seq1_A isoflavone reductase-like protein irl 

comp12981_c0_seq1_A non-structural maintenance of chromosome element 4-
like 

comp129_c0_seq1_A calreticulin precursor 

comp13021_c0_seq1_A receptor-like cytosolic serine threonine-protein kinase 
rbk1 

comp13097_c0_seq2_A macpf domain-containing protein cad1-like 

comp1315_c0_seq1_A thioredoxin h-type 

comp1316_c0_seq1_A porphobilinogen deaminase 

comp13203_c0_seq1_A heat stress transcription factor a-1-like 

comp13213_c0_seq1_A dna mismatch repair protein mlh1 

comp13224_c0_seq3_A dihydrodipicolinate reductase chloroplastic 

comp13286_c0_seq1_A er molecular chaperone 

comp1329_c0_seq2_A isoflavone reductase homolog irl-like 

comp13306_c0_seq1_A retrotransposon unclassified 

comp1332_c0_seq1_A bri1-kd interacting protein 112 

comp13375_c0_seq2_A peroxiredoxin-2e- chloroplastic 

comp13431_c0_seq1_A plasma membrane atpase 1-like 

comp13468_c0_seq1_A cipk-like protein 1 

comp1348_c0_seq1_A nadh dehydrogenase 

comp1356_c0_seq1_A skp1-like protein 1b 

comp1356_c0_seq4_G omega-3 fatty acid chloroplastic 

comp13645_c0_seq1_A synaptic vesicle 2-related protein 

comp13689_c0_seq1_A cleavage and polyadenylation specificity factor subunit 2-
like 

comp1368_c0_seq1_A abscisic stress ripening 

comp13811_c0_seq1_A aba-responsive lea-like partial 

comp1381_c0_seq1_A gdp-l-galactose phosphorylase 2-like 

comp1404_c0_seq2_A glyceraldehyde-3-phosphate dehydrogenase 
chloroplastic-like 

comp14071_c0_seq1_A calcium-transporting atpase plasma membrane-type 

comp14086_c0_seq1_A transcription initiation factor iia subunit 2-like 

comp14141_c0_seq1_A laccase-12 13-like 

comp14232_c0_seq1_A protein arginine n-methyltransferase 5 

comp14251_c0_seq2_A dnaj homolog subfamily b member 4-like 

comp142_c0_seq1_G alanine glyoxylate aminotransferase 
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comp1443_c0_seq1_A chlorophyll a-b binding protein cp24 

comp14497_c0_seq1_A laccase 17 

comp1449_c0_seq1_A cell wall invertase 

comp14550_c0_seq1_A phosphoinositide 3-kinase regulatory subunit 4-like 

comp1456_c0_seq1_A inositol -trisphosphate 5 6-kinase 

comp1483_c0_seq1_A zinc-binding alcohol dehydrogenase domain-containing 
protein 2-like 

comp1495_c0_seq2_A glutathione peroxidase 

comp14970_c0_seq1_A plasma membrane atpase 1 

comp1497_c0_seq1_A laccase lac12 

comp15124_c0_seq1_A mitogen-activated protein kinase kinase kinase 1-like 

comp151_c0_seq1_A QTLg3-1 

comp1523_c0_seq1_A gtp-binding nuclear protein ran-3-like 

comp1537_c0_seq1_A ferredoxin--nadp leaf isozyme 

comp1571_c0_seq1_A succinyl- ligase 

comp1583_c0_seq3_G 1-deoxy-d-xylulose 5-phosphate reductoisomerase 

comp1591_c0_seq1_A ferredoxin-nadp oxidoreductase 

comp15_c0_seq1_A annexin p35 

comp15_c0_seq2_A annexin p35 

comp16036_c0_seq1_G 3-oxoacyl- 

comp1626_c0_seq1_A plasma membrane h+-atpase 

comp1641_c0_seq3_A nad h oxidase 

comp16495_c0_seq1_A leucine-rich repeat receptor-like protein kinase family 
protein 

comp16498_c0_seq1_A nadh dehydrogenase complex assembly factor 6-like 

comp16501_c0_seq1_A vacuolar defense protein 

comp1652_c0_seq1_A aspartate chloroplastic-like 

comp1652_c0_seq2_A aspartate aminotransferase 

comp1683_c0_seq1_G glucan water dikinase 

comp1690_c0_seq1_A hypothetical protein TRIUR3_20539 

comp1693_c0_seq1_A peroxidase 16-like 

comp169_c0_seq1_A hydrophobic protein lti6a 

comp169_c0_seq1_G hydrophobic protein osr8 

comp169_c0_seq2_A hydrophobic protein lti6a 

comp17046_c0_seq1_A staphylococcal nuclease domain-containing protein 1-
like 

comp1718_c0_seq1_A peroxisomal acyl-coenzyme a oxidase 1-like 

comp17200_c0_seq3_G chromatin structure-remodeling complex protein syd-
like isoform x1 

comp1726_c0_seq1_A 3-beta hydroxysteroid dehydrogenase isomerase family 
protein 

comp17319_c0_seq1_A elongator complex protein 1-like 

comp17347_c0_seq1_A abc transporter c family member 4-like 

comp1738_c2_seq3_A wd-40 repeat-containing protein msi1 

comp17708_c0_seq1_A indole-3-glycerol phosphate chloroplastic 

comp17734_c0_seq3_A chalcone synthase 
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comp1778_c0_seq1_A splicing factor 3a subunit 3-like 

comp17836_c0_seq2_A nuclear pore complex protein nup85-like 

comp1786_c0_seq1_A v1 subunit a protein 

comp1827_c0_seq1_A oxygen-evolving enhancer protein chloroplastic 

comp1830_c0_seq1_A outer mitochondrial membrane protein porin 

comp18605_c0_seq1_A tumor suppressor 

comp18701_c0_seq1_A ornithine aminotransferase 

comp18805_c0_seq2_A s-norcoclaurine synthase 

comp188_c0_seq1_A transcription factor btf3 

comp19032_c0_seq1_A acyl- synthetase family member 4 

comp1911_c0_seq1_A nadh dehydrogenase 

comp19264_c0_seq1_A low temperature and salt responsive protein 

comp1926_c0_seq2_G cysteine proteinase inhibitor 3 

comp19567_c0_seq1_A transmembrane protein 53-like 

comp1958_c0_seq1_A synaptic glycoprotein sc2 

comp1959_c0_seq1_G dnaj protein 

comp19669_c0_seq1_A p-type h+-atpase 

comp1978_c0_seq1_A hydrophobic protein osr8 

comp19_c0_seq1_G thioredoxin h-type 

comp20038_c0_seq1_A staphylococcal nuclease domain-containing protein 1-
like 

comp20099_c0_seq1_A eh domain-containing protein 1-like 

comp2032_c0_seq1_A universal stress protein a-like 

comp20388_c0_seq1_A nitric oxide synthase-like 

comp20413_c0_seq1_A nucleosome assembly protein 1-like 1-like 

comp2042_c0_seq1_A ribonucleoprotein a 

comp20609_c0_seq1_A dnaj homolog subfamily c member 3 homolog 

comp2069_c0_seq4_G 6-phosphogluconate decarboxylating 

comp2070_c0_seq2_A 6-phosphogluconate decarboxylating 

comp20737_c0_seq1_A protein fluorescent in blue chloroplastic 

comp20835_c0_seq1_A heat shock protein binding protein 

comp20924_c0_seq1_A kynurenine formamidase-like 

comp21340_c0_seq1_A 3-isopropylmalate dehydrogenase 

comp2135_c0_seq1_G fkbp-type peptidyl-prolyl cis-trans isomerase 
chloroplastic 

comp2161_c0_seq2_G probable sucrose-phosphate synthase 2-like 

comp2180_c0_seq1_A aconitate cytoplasmic-like 

comp2193_c0_seq1_G inorganic pyrophosphatase 

comp22110_c0_seq1_A late embryogenesis abundant protein 

comp221_c0_seq1_A dehydrin- lea group 2-like protein 

comp2225_c0_seq1_A anther-specific protein 

comp2232_c0_seq1_A transmembrane protein 208-like 

comp2232_c0_seq2_A transmembrane protein 208-like 

comp2284_c0_seq1_A v-type proton atpase catalytic subunit a-like 

comp2292_c0_seq4_A smc3 protein 
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comp229_c0_seq1_A ru large subunit-binding protein subunit chloroplastic-
like 

comp2307_c0_seq3_A hydroxypyruvate reductase 

comp231_c0_seq1_A tonoplast intrinsic protein 

comp23288_c0_seq3_A fact complex subunit spt16-like 

comp2334_c0_seq1_A phosphopantetheine adenylyltransferase 

comp23364_c0_seq1_A f-box protein pp2-a13-like isoform x1 

comp2336_c0_seq1_A tyrosyl-dna phosphodiesterase 1-like 

comp23406_c0_seq1_A poly(adp-ribose) glycohydrolase 1 

comp2340_c0_seq1_G 26s protease regulatory subunit 6b 

comp2390_c0_seq1_A heat shock protein 90 

comp2390_c0_seq2_A heat shock protein 90 

comp2390_c0_seq5_A heat shock protein 90 

comp2390_c0_seq9_A heat shock protein 90 

comp240_c0_seq3_G phospholipid hydroperoxide glutathione peroxidase 
chloroplastic-like 

comp24136_c0_seq1_A callose synthase 10-like 

comp2415_c0_seq1_A mitochondrial import inner membrane translocase 
subunit tim13-like 

comp2427_c0_seq1_A mlp-like protein 423-like 

comp24330_c0_seq1_A alpha- -glucosyltransferase alg10-a 

comp24359_c0_seq1_A calcineurin b-like protein 4 

comp2440_c0_seq1_A sll1 protein 

comp24522_c0_seq1_A peroxidase 2 

comp2462_c0_seq1_A 3-oxo-delta( )-steroid 5-beta-reductase-like 

comp2476_c0_seq1_A cytochrome c oxidase subunit 

comp2489_c1_seq1_A dna repair protein rad23 

comp24959_c0_seq1_A inner membrane protein albino3 

comp2500_c0_seq1_A aquaporin 

comp2500_c0_seq4_A pip1 protein 

comp2508_c1_seq1_A proteasome chain protein 

comp252_c0_seq1_A elongation factor 2 

comp25347_c0_seq1_A disease resistance protein rpm1 

comp2552_c0_seq1_A glucose-6-phosphate isomerase 

comp255_c0_seq1_A pathogenesis-related protein 1 

comp255_c0_seq2_A pathogenesis-related protein 1 

comp25608_c0_seq1_A thioredoxin h-type 

comp2560_c0_seq2_A actin depolymerizing factor 4 

comp25844_c0_seq1_A histone-lysine n-methyltransferase ashh2 

comp2584_c0_seq1_A serine--glyoxylate aminotransferase 

comp2595_c0_seq1_A bidirectional sugar transporter sweet15-like 

comp2661_c1_seq2_A betaine aldehyde dehydrogenase 

comp266_c0_seq1_A translation initiation factor 5a 

comp2683_c0_seq1_A salt tolerance expressed 

comp2695_c0_seq1_A ribosome recycling factor 
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comp269_c0_seq3_G glyceraldehyde-3-phosphate dehydrogenase 

comp2709_c0_seq1_A atp synthase subunit mitochondrial-like 

comp2728_c0_seq1_A heat shock factor-binding protein 1 

comp2734_c0_seq1_A 20 kda chloroplastic 

comp2741_c0_seq1_A 3-oxoacyl-synthase i 

comp2752_c0_seq1_A er lumen protein retaining receptor 

comp28348_c0_seq1_A delta-1-pyrroline-5-carboxylate synthetase 

comp2882_c0_seq1_A tpa: phospholipase d family protein 

comp2915_c0_seq1_A f1f0-atpase inhibitor protein 

comp29243_c0_seq1_A phospholipase d beta 1-like 

comp2958_c0_seq1_A peptidyl-prolyl cis-trans isomerase pin1-like 

comp29703_c0_seq1_A c-type lectin receptor-like tyrosine-protein kinase 
at1g52310-like 

comp2985_c0_seq1_A fkbp-type peptidyl-prolyl cis-trans isomerase 
chloroplastic 

comp2995_c0_seq1_A transmembrane bax inhibitor motif-containing protein 

comp3003_c0_seq1_G inositol -trisphosphate 5 6-kinase 

comp3016_c0_seq1_A ring-box protein 1a 

comp3016_c0_seq2_A ring-box protein 1a 

comp3044_c0_seq1_G peptidyl-prolyl cis-trans isomerase pin1-like 

comp3048_c0_seq1_A 20 kda chloroplastic-like 

comp3055_c0_seq1_A peroxiredoxin-2e- chloroplastic-like 

comp305_c0_seq1_A cleavage and polyadenylation specificity factor subunit 5-
like 

comp30_c0_seq1_A heat shock protein 90 

comp30_c0_seq3_A heat shock protein 90 

comp31112_c0_seq1_A soluble starch synthase iv-2 

comp3112_c0_seq1_A protein h2a 

comp3138_c0_seq1_A plasma membrane atpase 1 

comp3150_c0_seq2_A tyrosine n-monooxygenase 

comp3152_c0_seq1_G 1-aminocyclopropane-1-carboxylate deaminase 

comp3169_c0_seq1_A probable v-type proton atpase subunit h-like 

comp31908_c0_seq1_A alpha-glucan water chloroplastic 

comp3250_c0_seq1_A ubiquitin-conjugating enzyme e2 36 

comp325_c0_seq1_A fatty acyl coa reductase 

comp3288_c0_seq1_A guanine nucleotide-binding protein beta subunit-like 
protein 

comp3288_c0_seq5_A guanine nucleotide-binding protein beta subunit-like 
protein 

comp3418_c0_seq1_A nad dependent epimerase 

comp3421_c0_seq1_G calcium lipid binding 

comp34226_c0_seq1_A catalase 

comp3433_c0_seq1_A er lumen protein retaining receptor-like 

comp3438_c1_seq1_A atp synthase delta chain 

comp3438_c1_seq2_A atp synthase delta chain 

comp3446_c0_seq4_A proteasome subunit beta type-6 
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comp3462_c0_seq2_A 26s proteasome regulatory complex atpase rpt3 

comp3464_c0_seq1_A cop9 signalosome complex subunit 1-like 

comp3464_c0_seq2_A cop9 signalosome complex subunit 1 

comp3516_c0_seq1_A tumor suppressor 

comp3560_c0_seq1_A dna repair protein rad23 

comp3592_c0_seq1_A 40s ribosomal protein sa 

comp3593_c0_seq1_A delta-1-pyrroline-5-carboxylate dehydrogenase 
mitochondrial-like 

comp3608_c0_seq1_G 6-phosphogluconate decarboxylating 

comp3630_c0_seq1_A protein transparent testa glabra 1 

comp3671_c0_seq1_A stromal cell-derived factor 2-like 

comp3683_c0_seq1_A cold acclimation protein 

comp3724_c0_seq1_A t-complex protein 1 subunit delta-like 

comp3726_c0_seq2_A heat shock factor-binding protein 1 

comp378_c1_seq1_G vacuolar proton-inorganic pyrophosphatase 

comp38000_c0_seq1_A pinus taeda anonymous locus 0_11081_01 genomic 
sequence 

comp3832_c0_seq1_A snw domain-containing protein 1-like isoform 1 

comp3883_c0_seq1_A mpk14 - mapk 

comp3888_c0_seq1_A rna binding protein rp120 

comp3888_c0_seq3_A rna binding protein rp120 

comp388_c0_seq1_A fiber protein fb15 

comp3896_c0_seq2_A peptide methionine sulfoxide reductase b5-like 

comp3951_c0_seq1_A glucan water dikinase 

comp3962_c0_seq1_A f-box protein skip8 

comp3963_c0_seq1_A hsp20-like chaperone domain family protein 

comp3972_c0_seq1_A adp-ribosylation factor-like protein 8a 

comp4007_c0_seq1_A replication factor a protein 2 

comp4018_c0_seq1_A elicitor-responsive protein 1 

comp403_c1_seq1_A transketolase 1 

comp403_c1_seq2_A transketolase 1 

comp4050_c0_seq2_A macrophage migration inhibitory factor homolog 

comp4100_c0_seq1_A phytochelatin synthetase 

comp4100_c0_seq2_G signal recognition particle 54 kda chloroplastic 

comp4185_c0_seq1_A 3-oxoacyl-synthase i 

comp4206_c0_seq1_G serine threonine-protein kinase sapk10 

comp4239_c0_seq1_A cysteine desulfurase chloroplastic 

comp425_c0_seq1_A protein iojap- mitochondrial-like 

comp425_c0_seq2_A protein iojap- mitochondrial-like 

comp4311_c0_seq1_A soluble inorganic pyrophosphatase chloroplastic-like 

comp4351_c0_seq1_G voltage dependent anion channel 

comp4370_c0_seq1_A photosystem ii stability assembly factor chloroplastic-like 

comp439_c0_seq1_A prohibitin- mitochondrial-like 

comp439_c0_seq2_A prohibitin- mitochondrial-like 

comp442_c0_seq1_A cbs domain protein 
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comp442_c0_seq1_G rna-binding protein 

comp442_c0_seq4_G nad dependent epimerase 

comp4431_c0_seq1_A methylmalonate-semialdehyde dehydrogenase 

comp4431_c0_seq2_A methylmalonate-semialdehyde dehydrogenase 

comp4431_c0_seq4_A methylmalonate-semialdehyde dehydrogenase 

comp4494_c0_seq1_A peroxisomal membrane protein pex11-1 

comp4500_c1_seq1_A diacylglycerol kinase 7 

comp4505_c0_seq1_A pyrophosphate--fructose 6-phosphate 1-
phosphotransferase subunit beta 

comp451_c1_seq1_G cysteine proteinase 1-like 

comp4520_c0_seq1_A glyoxalase i 

comp454_c0_seq1_A serine threonine-protein kinase sapk7 

comp4617_c0_seq1_A hypothetical protein F775_07812 

comp4630_c0_seq1_A usp family protein 

comp4659_c0_seq1_A e3 ubiquitin-protein ligase chfr 

comp4682_c0_seq1_A cop9 signalosome complex subunit 6a-like 

comp476_c0_seq2_G tpa: aminomethyltransferase 

comp4783_c0_seq1_A 1-aminocyclopropane-1-carboxylate deaminase 

comp480_c0_seq1_G ferredoxin--nadp leaf isozyme 

comp485_c0_seq1_A calcineurin b-like protein 1 

comp4880_c0_seq1_A coatomer subunit zeta-1-like 

comp4920_c0_seq1_A transmembrane protein 115-like 

comp492_c0_seq1_A cas1 domain-containing protein 1-like 

comp4946_c0_seq1_A chaperone protein dnaj mitochondrial-like 

comp499_c0_seq2_A ap-4 complex subunit sigma-1 

comp5041_c0_seq2_A thioredoxin reductase 2 

comp5052_c0_seq1_A general transcription factor iih subunit 4-like 

comp510_c0_seq1_G copper transport protein atox1 

comp5185_c0_seq2_G hydrophobic protein osr8 

comp5191_c0_seq1_A omega-3 fatty acid desaturase 

comp5191_c0_seq2_A omega-3 fatty acid desaturase 

comp5191_c0_seq4_A omega-3 fatty acid chloroplastic 

comp5280_c0_seq1_A fructan 1-exohydrolase 

comp5288_c0_seq1_A nadh dehydrogenase 

comp5399_c0_seq1_A dnaj protein homolog 

comp5562_c0_seq1_A dna-damage-repair toleration protein drt102 

comp5565_c0_seq1_G pyridoxal biosynthesis protein 

comp5618_c0_seq1_A protein z 

comp5632_c1_seq3_A protein flourescent in blue light 

comp5634_c0_seq1_A tpr repeat-containing thioredoxin tdx 

comp5646_c0_seq1_A charged multivesicular body protein 1-like 

comp565_c0_seq1_A acyl carrier protein 

comp567_c0_seq1_A growth regulator 

comp5686_c0_seq1_A hnh endonuclease 

comp5686_c0_seq2_A hnh endonuclease 
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comp5723_c0_seq1_G heat shock protein sti-like 

comp572_c0_seq1_A nucleosome chromatin assembly factor group a 

comp5756_c0_seq1_A peroxidase 24-like 

comp5757_c0_seq2_A chromatin structure-remodeling complex protein syd-
like isoform x2 

comp5880_c0_seq1_A er6 protein 

comp5923_c0_seq1_A trehalose-6-phosphate phosphatase 

comp5972_c0_seq1_A ribosome production factor 1-like 

comp5990_c0_seq3_G 20 kda chloroplastic 

comp5991_c0_seq1_A universal stress protein a-like protein 

comp6183_c0_seq1_A thylakoid-bound ascorbate peroxidase 

comp6183_c0_seq2_A stromal ascorbate peroxidase 

comp621_c0_seq1_A fructose-bisphosphate aldolase 

comp6252_c0_seq1_A acyl- -binding domain-containing protein 6 

comp6280_c0_seq1_A vesicle-associated membrane protein 713-like 

comp6382_c0_seq2_A calcium-dependent protein kinase 3 

comp6397_c0_seq3_A copper chaperone for superoxide dismutase 

comp6397_c0_seq4_A copper chaperone for superoxide dismutase 

comp6566_c0_seq2_A cold acclimation protein cor413-pm1 

comp6592_c0_seq1_A phospholipid hydroperoxide glutathione peroxidase 
chloroplastic-like 

comp6592_c0_seq2_A glutathione peroxidase 

comp6772_c0_seq1_A late embryogenesis abundant protein lea14-a 

comp6799_c1_seq2_A fe-only nitrogenase accessory protein 

comp6856_c0_seq1_A mpk14 - mapk 

comp6856_c0_seq3_A mpk14 - mapk 

comp6914_c0_seq1_A phosphoenolpyruvate carboxylase kinase 

comp695_c0_seq1_G actin-depolymerizing factor 7 

comp6978_c0_seq2_A xyloglucan endotransglycosylase 

comp6982_c0_seq1_A dna repair helicase xpb1-like 

comp701_c0_seq2_G superoxide dismutase 2 

comp703_c0_seq5_A acetyl-coenzyme a synthetase 

comp7063_c0_seq1_A copper transport protein atox1 

comp7085_c0_seq1_A 1-deoxy-d-xylulose 5-phosphate reductoisomerase 

comp7187_c0_seq1_A nitrate-induced noi protein 

comp718_c0_seq1_A disease resistance rpp13-like protein 1 

comp718_c0_seq2_A disease resistance rpp13-like protein 1 

comp71_c0_seq1_G ferredoxin--nadp leaf chloroplastic 

comp7210_c0_seq1_A transcription factor btf3-like 

comp7244_c0_seq1_A phosphopantothenoylcysteine decarboxylase 

comp730_c0_seq1_A atp synthase subunit mitochondrial-like 

comp730_c0_seq2_A atp synthase subunit mitochondrial-like 

comp730_c0_seq3_A atp synthase beta subunit 

comp730_c0_seq4_A atp synthase subunit mitochondrial 

comp7364_c0_seq1_A glutathione peroxidase 
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comp7502_c0_seq1_A erd7 protein 

comp7535_c0_seq1_A protein 

comp7540_c0_seq1_A myb29 protein 

comp7549_c0_seq1_A predicted protein 

comp754_c0_seq1_A pyrroline-5-carboxylate reductase 

comp7583_c0_seq1_A u-box domain-containing protein 35-like 

comp7652_c0_seq1_A nudix hydrolase 8-like 

comp7687_c0_seq1_A cysteine proteinase inhibitor 

comp7731_c0_seq1_A ethylene receptor 

comp7743_c0_seq1_A slt1 protein 

comp7749_c0_seq1_A fatty acyl coa reductase 

comp778_c0_seq1_A succinate dehydrogenase 5 

comp7835_c0_seq1_A chloroplast processing peptidase 

comp784_c1_seq1_A sucrose synthase 1 

comp784_c1_seq2_A sucrose synthase 

comp7861_c0_seq1_A f-box wd-40 repeat-containing protein at5g21040-like 

comp7888_c0_seq1_A ru large subunit-binding protein subunit chloroplastic-
like 

comp7948_c0_seq1_A dna-binding protein p24 

comp794_c0_seq1_A pathogen induced protein 2-4 

comp799_c0_seq1_A serine hydroxymethyltransferase 

comp8071_c0_seq1_A wrky dna binding domain containing expressed 

comp808_c0_seq1_A caffeic acid o-methyltransferase 

comp8126_c0_seq1_A u-box domain-containing protein 4-like 

comp8145_c0_seq1_A respiratory burst oxidase protein b 

comp8338_c0_seq1_A soluble starch synthase i 

comp8345_c0_seq1_A chloroplast lumen common protein family-like protein 

comp8383_c0_seq1_A dead-box atp-dependent rna helicase 50 

comp838_c0_seq1_A zinc finger a20 and an1 domains-containing protein 

comp841_c0_seq1_A sucrose synthase 2 

comp8453_c0_seq3_A lipoxygenase 2 

comp8469_c0_seq1_A pinus taeda anonymous locus 2_3934_01 genomic 
sequence 

comp8545_c0_seq1_A protein kinase 

comp854_c0_seq1_A superoxide dismutase 2 

comp8613_c0_seq1_A s-adenosyl l-homocystein hydrolase 

comp871_c0_seq2_A ras-related protein rab7 

comp871_c0_seq4_A ras-related protein rab7 

comp876_c0_seq1_A glyceraldehyde-3-phosphate dehydrogenase 

comp877_c0_seq3_A vacuolar atp synthase subunit c 

comp8862_c0_seq1_A morc family cw-type zinc finger protein 4 

comp8959_c1_seq1_A probable gmp synthase 

comp907_c0_seq1_A xyloglucan endotransglucosylase hydrolase protein 23 

comp907_c0_seq2_A xyloglucan endotransglucosylase hydrolase protein 23 

comp9146_c0_seq1_A cryptochrome 1b 
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comp9146_c0_seq2_A cryptochrome 1b 

comp9152_c0_seq1_A receptor-like cytosolic serine threonine-protein kinase 
rbk1-like 

comp9205_c0_seq2_A k(+) efflux antiporter chloroplastic-like 

comp922_c0_seq1_A amino acid selective channel protein 

comp9346_c1_seq1_A 26s proteasome non-atpase regulatory subunit rpn12a-
like 

comp935_c0_seq1_A heat shock protein sti-like 

comp936_c1_seq3_G kynurenine formamidase-like 

comp93_c0_seq1_A ascorbate peroxidase 

comp9430_c0_seq1_A histone 

comp943_c0_seq1_G indole-3-glycerol phosphate chloroplastic 

comp9448_c0_seq1_G bri1-kd interacting protein 112 

comp9517_c0_seq1_A probable dolichyl pyrophosphate glc1man9 c2 alpha- -
glucosyltransferase-like 

comp958_c0_seq1_A protein arginine n-methyltransferase 5 

comp958_c0_seq3_A protein arginine n-methyltransferase 5 

comp9683_c0_seq2_A phosphoacetylglucosamine mutase-like 

comp9714_c1_seq2_A glutamyl-trna amidotransferase subunit a 

comp971_c0_seq1_A cr14_horvu ame: full=cold-regulated protein blt14 

comp976_c0_seq1_A thioredoxin chloroplastic-like 

comp9791_c0_seq2_A geranylgeranyl transferase type-1 subunit beta 

comp9854_c0_seq1_A cryptochrome 2 

comp9875_c0_seq1_A chitinase 2 
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