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“Perhaps a suitable analogy to explain the short-falls of Dawkins’s account of evolution is to think of an oil

painting. In this analogy Dawkins has explained the nature and range of pigments; how the extraordinary

azure colour was obtained, what effect cobalt has, and so on. But the description is quite unable to account

for the picture itself. This view of evolution is incomplete and therefore fails in its side-stepping of how

information (the genetic code) gives rise to phenotype, and by what mechanisms. Organisms are more

than the sum of their parts, and we may also note in passing that the world depicted by Dawkins has lost

all sense of transcendence.”

Simon Conway Morris, 1998
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Dissecting and Modeling the Phenotypic Components of Plant Growth and

Drought Responses based on High-Throughput Image Analysis

Abstract

Recent technological advances and remarkable successes have led to high-throughput phenotyping becom-

ing a tool of choice for quantifying the phenotypic traits or components of plant growth and performance.

Efficient analysis and interpretation of huge and high-dimensional phenotypic data sets obtained from

such studies remain enormous challenges due to lack of a standard analytical framework. In this thesis, I

present a comprehensive framework for high-throughput phenotype data analysis in plants, which enables

the extraction and dissection of a high-dimensional list of phenotypic traits from non-destructive plant

imaging over time.

As a proof of concept, I first investigate the phenotypic components of the drought responses of 312 plants

from 18 different barley cultivars during vegetative growth. I define a core set of 54 phenotypic traits that

are highly reproducible and representative, and have greatly extended the trait list from previous studies.

I further analyze dynamic properties of trait expression over growth time based on these phenotypic

features. I observe that different trait groups show largely different patterns of genotype and environ-

mental effects during plant growth. The data are highly valuable to understand plant development and

to further quantify growth and crop performance features. I then test various growth models to predict

plant growth patterns and identify several relevant parameters that support biological interpretation of

plant growth and stress tolerance. These image-based traits and model-derived parameters are promis-

ing for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Finally,

several models are constructed to predict biomass from image-based features in three consecutive barley

experiments. It is observed that plant biomass can be accurately predicted from image-based parameters

using a random forest model. The prediction accuracy remains high across experiments. The relative

contribution of individual feature from the model reveals new insights into the phenotypic determinants

of plant biomass outcome.

Taken together, I anticipate that the analytical framework and analysis results presented in this thesis will

be useful to advance our views of phenotypic trait components underlying plant development and their

performance, and possess great potential applications in plant breeding under the context of phenomics.
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Chapter 1

Introduction — current knowledge on high-

throughput plant phenotyping and its appli-

cations

In the coming decades, crop production must be significantly increased to meet the predicted production

demands of the global population that is expected to grow to more than 9 billion by 2050 under changing

climates1 (Tilman et al., 2011). However, achieving this goal will be a tremendous challenge for plant

scientists and breeders because the average rate of crop production increase (1.3% per year) cannot

keep pace with the expected demands (2.4% per year) (Ray et al., 2013, 2012). But at the same time,

extensive breeding and agronomic efforts provide potential to select and breed high yielding and stress-

tolerant plants far more rapidly and efficiently than is currently possible (Pingali, 2012). High-throughput

genotyping platforms support the discovery and analysis of genome-wide genetic markers (genotypes)

in populations in a routine manner (Davey et al., 2011; Edwards et al., 2013), offering the potential

to increase the rate of genetic improvement (Phillips, 2010). However, our capabilities for systematic

assessment and quantification of plant phenotypes have not kept pace (Furbank and Tester, 2011; Houle

et al., 2010), limiting our ability to dissect genetic basis underlying plant growth, yield and adaptation

to stress (Araus and Cairns, 2014). Commonly used conventional phenotyping procedures are labor-

intensive, time-consuming, lower-throughput and costly, and frequently destructive to plants (e.g. fresh

or dry weight determination), whereas measurements are often taken at certain times or at particular

developmental stages, a scenario known as the “phenotyping bottleneck” (Furbank and Tester, 2011).

Recently, the introduction of techniques for high-throughput phenotyping (HTP) has boosted the

area of plant phenomics, where new technologies such as non-invasive imaging, spectroscopy, robotics and

high-performance computing are combined to capture multiple phenotypic values at high resolution, high

precision, and in high throughput. This will ultimately enable plant scientists and breeders to conduct

numerous phenotypic experiments in an automated format for large plant populations under different

environments to monitor non-destructively the performance of plants over time (Eberius and Lima-

1http://www.unpopulation.org/

1



1.1. Aim of the thesis 2

Guerra, 2009). Various automated or semi-automated high-throughput plant phenotyping platforms have

been recently developed and are applied to investigate plant performance under different environments

(Arvidsson et al., 2011; Biskup et al., 2009; Golzarian et al., 2011; Granier et al., 2006; Jansen et al., 2009;

Nagel et al., 2012; Walter et al., 2007). The huge amounts of image data routinely accumulated in these

platforms need to be efficiently managed, processed and finally mined and analyzed. Thus, we are now

facing the “big data problems” (Schadt et al., 2010) brought about by such real-time imaging technologies

in the phenomics era. Consequently, the major challenge for image analysis is the automated extraction

of important phenotypic parameters to be used in genetic analyses (such as association mapping), in

breeding (efficient phenotypic selection), or in industrial screening (e.g. large collections of transgenic or

genetically modified plants).

1.1 Aim of the thesis

HTP has been subjected to development for over ten years and technical advancements in HTP make

the system-wide quantifying of plant phenomics feasible. Several studies have been applied to study very

specific aspects of plant phenomics based on several well-investigated phenotypic traits from traditional

phenotyping approaches. These studies have clearly shown that HTP is an ideal replacement of traditional

phenotyping in plants. However, a comprehensive investigation of plant phenomics as well as its dynamics

and performance based on an extended list of phenotypic traits is still missing. The general aim of

this thesis is to close this gap. More specifically, I aim to investigate the phenotypic components and

dynamics of plant growth and drought responses based on high-dimensional phenotypic trait analyses,

and to elucidate the relationship between plant biomass and image-derived parameters. The following

questions will be addressed in this thesis:

1. How many informative phenotypic traits can be extracted from a HTP experiment?

2. How about the dynamics nature of these informative traits during plant growth?

3. Can HTP data be used to model plant growth?

4. Which parameters are important to determine plant growth?

5. Which image-derived parameters can be used to describe plant performance, such as drought re-

sponses?

6. To what extent that image-derived parameters are predictive of complex phenotype, such as plant

biomass?

7. How about the heritability of these candidate phenotypic traits?

Answering these questions will definitely enhance our view of HTP application for the dissection

of plant growth and performance. For a first impression herein, I have provided and used a general

analytical framework for dissecting and modeling of HTP data in plants. I made a comprehensive analysis

of a high-dimensional list of phenotypic traits extracted from huge image datasets. I characterized and
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compared the growth patterns of different plant species based on time-lapse image data. I showed that

plant performance can be solely predicted from image-derived parameters, shedding light on several novel

traits of importance underlying plant growth. Overall, the methods and results presented in the thesis

will provide new starting points for future works addressing crop improvement.

1.2 Structure of the thesis

In the present thesis, the introductory chapter provides a general overview of the currently developed HTP

infrastructures, an introduction of existing image processing pipelines designed for HTP data analysis, a

brief outlook of emerging applications based on HTP.

The results section consists of three independent chapters:

4 Chapter 2 describes various strategies used for high-dimensional phenotypic trait analysis in barley

(Hordeum vulgare);

4 Chapter 3 presents growth modeling of barley and maize (Zea mays) plants based on time-lapse

image data;

4 Chapter 4 shows how to use image-derived parameters to predict plant performance in barley and

maize;

4 Chapter 5 encompasses brief remarks, conclusions and an outlook on future research in HTP data

analysis.

1.3 High-throughput phenotyping in plants

Creation of the desirable phenotype is the ultimate goal of crop improvement. The term phenotype

includes the ensemble of an organism’s observable traits or characteristics such as its morphological,

developmental, physiological, pathological or biochemical properties, phenology and behaviour that can

be monitored, quantified, and/or visualized by some technical procedure (Mahner and Kary, 1997; Varki

et al., 1998). Phenotypes are always results of the expression of genetic constitution under the influence of

environmental factors. Phenomics is defined as the study of all the phenotypes of an organism (phenome)

that are result of genetic code (G), environmental factors (E) and their interactions (G×E). In contrast

to genotypes, which are essentially single one-dimensional as merely determined by the linear DNA code,

phenotypes are usually multi-dimensional and are frequently capricious in different spatial and temporal

situations. An important field of research today is trying to improve, both qualitatively and quantitatively,

the capacity to measure phenomes. We have relatively well developed technologies of measurements, in

vivo or in destructive manners, of physiological states and other internal phenotypes (endophenotypes),

such as gene expression, protein and metabolite levels, whereas our ability to measure external phenotypes

(exophenotypes) is rapidly evolving.
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We will never be able to come even close to a complete characterized of the phenome due to its highly

dynamic and high-dimensional properties. However, increasing the quantitative information obtained by

phenotypic measurements is an important goal for phenomics (Houle et al., 2010). Phenotypic variation,

a fundamental prerequisite and the perpetual force for evolution by natural selection, results from the

complex interactions between genotype and environment (G×E). Phenome-wide data are essential and

necessary for enabling us to trace causal links in the genotype-phenotype map (G-P map Waddington,

1968) as they define the space of all possible phenotypes (P space; Figure 1.1).

Figure 1.1: The genotype-phenotype map (G-P map)

The left panel shows the relationship of the genotype space (G space) and the phenotype space (P space)

(Houle et al., 2010). The corresponding information that transmits from G space to P space is shown in

the right panel. Genotypes could gain mutation and recombination over generations. Phenotypes can be

broadly classified into internal and external phenotypes. These internal phenotypes include properties

from molecular, cellular or tissue levels, which in turn shape external phenotypes such as morphology and

behaviour. Upon the environmental stimuli, the epigenetic process creates the phenotypes using genotype

information. External phenotypes can in turn shape the environment that an individual occupies, creating

complex feedback relationships between genes, environments and phenotypes. Natural selection act in the

P space to change the average phenotype of parents away from the average phenotype of the generation.

The importance of the environment suggests that we should explicitly broaden the G-P map to the

genotype-environment-phenotype (G-E-P) map. g : genotype; p: phenotype; ip: internal phenotype.

This figure was taken from Chen et al. (2014a). �

Plant phenotyping is intended to measure complex traits related to growth, yield and adaptation to

stress with a certain accuracy and precision at different scales of organization, from organs to canopies.

High-throughput automated imaging is the ideal tool for plant phenomic studies, which enables compre-

hensive and quantitative measurement of plant phenotypes in terms of extensive phenotyping (measuring
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more phenotypic information at the same time) and intensive phenotyping (characterizing a phenotype in

great detail, e.g., at population-wide and through plant growth cycle) (Houle et al., 2010). Owing to the

recent increased availability of high-precision robotic handling machinery, many imaging-based technolo-

gies that span molecular to organismal spatial scales have been or are being established and enable us to

extract multiparametric phenotypic information in great details. Generally, these noninvasive methods

can be used to measure plant phenotypes related to growth and performance by the way to look over a

range of the electromagnetic spectra far beyond human vision (Figure 1.2; Table 1.1; reviewed in Berger

et al. (2010), Fiorani and Schurr (2013) and Li et al. (2014)).

For example, visible imaging is used to mimic human perception to provide information regarding

plant growth and development features (Fiorani and Schurr, 2013; Li et al., 2014), including shoot biomass

and morphology (Arvidsson et al., 2011; Golzarian et al., 2011; Jansen et al., 2009; Leister et al., 1999;

Tackenberg, 2007), yield traits (Duan et al., 2011), panicle traits (Ikeda et al., 2010), imbibition and

germination rates (Dias et al., 2011), leaf morphology (Bylesjo et al., 2008; Hoyos-Villegas et al., 2014;

Weight et al., 2008), seedling growth (Walter et al., 2007, 2012), seed morphology (Chern et al., 2007;

Joosen et al., 2012), root architecture (Clark et al., 2011; Iyer-Pascuzzi et al., 2010) and stress tolerance

(Berger et al., 2010; Golzarian et al., 2011; Rajendran et al., 2009). Fluorescence imaging offers a rapid

way to detect plant photosystem II status in vivo (Baker, 2008; Maxwell and Johnson, 2000) and is widely

used in monitoring the effects of plant pathogens/disease (Balachandran et al., 1997; Bürling et al., 2010;

Chaerle et al., 2004; Lohaus et al., 2000; Rolfe and Scholes, 2010; Scholes and Rolfe, 2009; Swarbrick et al.,

2006) and early stress responses to abiotic and biotic factors (Baker, 2008; Berger et al., 2010; Chaerle

et al., 2007a,b; Chen et al., 2014b; Harbinson et al., 2012; Jansen et al., 2009; Konishi et al., 2009; Lenk

et al., 2007; Woo et al., 2008), and other physiological phenomena that are related to photosynthesis

status. Near-infrared (NIR) imaging (900˜1700 nm spectral range) can be used to study leaf and canopy

water status (Seelig et al., 2008, 2009), as water has highly absorbing bands between 1450 and 1550

nm. This technique can thus used to detect drought stress (Berger et al., 2010; Chen et al., 2014b;

Harshavardhan et al., 2014; Munns et al., 2010; Saint Pierre et al., 2012), although the exploitation of

NIR imaging is still in its infancy. Thermal infrared (IR) imaging (8˜14 µm spectral range) can be used

to measure leaf and canopy temperature to study stomatal conductance (Jones et al., 2009), allowing a

reliable way to detect changes in the physiological status of plants in response to biotic or abiotic stress

(Li et al., 2014). In practice, IR imaging has successfully been used in real breeding programs to select

traits for drought resistance in dry environments (Fiorani and Schurr, 2013).
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Table 1.1: Key imaging techniques used in high-throughput plant phenotyping.

Imaging techniques† Principle Targeted traits Applications

RGB/visible light [C,F] The RGB (visible light) camera can be used to mea-

sure visible (VIS) reflectance having a wavelength

in a range of 390 nanometres (nm) to 750 nm, re-

sulting in gray or colour value images.

Image-based projected area /

volume, dynamics growth,

colour, shape / architecture /

morphology descriptors

This imaging technique can be used to asses plant growth

status, biomass accumulation, nutritional status or health

status (Camargo et al., 2014; Golzarian et al., 2011; Yang

et al., 2014).

Near-infrared [C] The near-infrared (NIR) sensor uses non-visible light

components in the NIR region of the spectrum

(900˜1700 nm), resulting in gray images.

Plant characteristics such as

moisture content (related to

water status, maturity or

ripeness)

This imaging technique allow to detect drought stress (Chen

et al., 2014b; Harshavardhan et al., 2014), and can also be

applied to study water movement in soil (e.g., root’s water

extraction efficiency).

Fluorescence [C,F] Through fluorescence cameras, any fluorescence ex-

citable by blue light with sufficient emission

(420˜500 nm) can be captured both in 2D and 3D

systems under backlight or reflective conditions. It

offers a fleet way to probe photosystem II status in

vivo.

Chlorophyll and other flu-

orophores signal, plant

health/disease status

Chlorophyll fluorescence imaging is used as a diagnostic tool

in plant physiology studies, such as detection of photosyn-

thetic activity and stress responses (Chen et al., 2014b;

Fiorani and Schurr, 2013; Hairmansis et al., 2014).

Infrared [C,F] Infrared (IR) cameras use light in the thermal infrared

region of the spectrum (8˜14 µm).

Leaf and canopy temperature

and insect infestation

IR imaging provide a novel technique to measure the leaf or

canopy temperature and thus to assess plant transpiration

rate under highly controlled conditions (Jones et al., 2009;

Munns et al., 2010).

3D imaging [C,F] Stereo camera systems; laser scanning instruments

with widely different ranges, time-of-light cameras.

Shoot structure,leaf angle dis-

tributions, canopy structure,

root architecture

3D imaging has been used to measure structural parameters

in various plant species (Biskup et al., 2007; Busemeyer

et al., 2013a; Klose et al., 2009; van der Heijden et al.,

2012).

CT [C] X-ray computed tomography (CT) and X-ray digital

radiography, a technology to produce tomographic

images of specific areas of a scanned object, allow-

ing to see inside the object without cutting.

Morphometric parameters in

3D, tillers, and grain quality

CT imaging has been used to measure tiller numbers and

grain quality in rice (Yang et al., 2014), and cereal 3D root

analysis (Flavel et al., 2012).
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Table 1.1 (continued)

MRI [C] Magnetic resonance imaging is able to visualize plant

internal structures and metabolites.

Morphometric parameters in

3D, water content

MRI can be used to study plant physiology and metabolism

“in vivo” (Borisjuk et al., 2012; Granier and Vile, 2014),

and 3D root analysis (Hillnhütter et al., 2011; Rascher

et al., 2011)

PET [C] Positron emission tomography; positron emission de-

tectors for short-lived isotopes.

Water transport, sectorality,

flow velocity

PET is used to visualize distribution and transportation of

radionuclide-labelled tracers involved in metabolism relat-

ed activities (Granier and Vile, 2014; Jahnke et al., 2009).

† Techniques are currently used in controlled (C) or field (F) environments.

This table was adapted from Fiorani and Schurr (2013), Araus and Cairns (2014) and Li et al. (2014).

Table 1.2: Automated or semi-automated plant phenotyping platforms.

Name Description Reference

Controlled environment-based phenotyping platforms†

GlyPh A low-cost, automatic platform for high-throughput measurement of plant growth and water use in

soybean (Glycine max). GlyPh allows the evaluation of up to 120 plants growing in individual pots.

(Pereyra-Irujo et al., 2012)

GROWSCREEN An in-house system used in the Jülich Plant Phenotyping Centre (JPPC) to study leaf growth and

fluorescence and root architecture in large plant populations. GROWSCREEN 3D is a pioneered

solution developed for 3D analysis of leaves in tobacco (Nicotiana tabacum). It enables more accurate

measurements of leaf area and extraction of additional volumetric traits.

(Biskup et al., 2009; Jansen et al., 2009; Nagel et al.,

2012; Walter et al., 2007);

http://www2.fz-juelich.de/icg/icg-3/jppc/

growscreen/

GROW Map Setup for monitoring of leaf/root growth via digital image sequence processing at JPPC http://www.fz-juelich.de/ibg/ibg-2/EN/

methods jppc/methods node.html

http://www2.fz-juelich.de/icg/icg-3/jppc/growscreen/
http://www2.fz-juelich.de/icg/icg-3/jppc/growscreen/
http://www.fz-juelich.de/ibg/ibg-2/EN/methods_jppc/methods_node.html
http://www.fz-juelich.de/ibg/ibg-2/EN/methods_jppc/methods_node.html
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Table 1.2 (continued)

HRPF High-throughput rice (Oryza sativa) phenotyping facility (HRPF) designed with two main section:

rice automatic phenotyping (RAP) and yield trait scorer (YTS). This high-throughput platform

developed for automatic screening rice germplasm resources and populations throughput the growth

period and after harvest.

(Yang et al., 2014)

LemnaTec Scanalyzer An robotic greenhouse system that uses non-destructive imaging to monitor plant growth under fully

controlled conditions in high-thoughput. The LemnaTec platform aims to visualise and analyse the

biology beyond human vision through imaging automatisation.

(Arvidsson et al., 2011; Brien et al., 2013; Camargo

et al., 2014; Chen et al., 2014b; Golzarian et al., 2011;

Hairmansis et al., 2014; Harshavardhan et al., 2014;

Honsdorf et al., 2014; Junker et al., 2015);

http://www.lemnatec.com/

Plant Scan A novel automated screening platform and mesh-based technique developed for high-throughput 3D

plant analysis. It was initially used for the analysis of aerial-parts in cotton (Gossypium hirsutum)

and demonstrated highly accurate when comparing with with manual measurement data.

(Paproki et al., 2012);

http://www.csiro.au/Outcomes/

Food-and-Agriculture/HRPPC/PlantScan.aspx

Phenodyn An platform to measures growth rate and transpiration rate every minute, together with environmental

conditions (current throughput: 480 plants).

(Sadok et al., 2007);

http://bioweb.supagro.inra.fr/phenodyn/

PHENOPSIS An automated platform developed by Optimalog (France) for reproducible phenotyping of plant re-

sponses to soil water deficit in Arabidopsis (Arabidopsis thaliana). The PHENOPSIS platform allows

to weight, irrigate precisely and take a picture of more than 500 individual plants in rigorously con-

trolled conditions.

(Granier et al., 2006);

http://bioweb.supagro.inra.fr/phenopsis/

Phenoscope This automated phenotyping platform is an integrated device allowing simultaneous culture of 735

individual Arabidopsis plants and high-throughput acquisition, storage and analysis of quality phe-

notypes.

(Tisne et al., 2013);

http://www.observatoirevegetal.inra.fr/

observatoirevegetal eng/Scientific-platforms/

Phenoscope

QubitPhenomics Qubit Systems provides Conveyor and Robotic PlantScreenTM Systems for plant phenomics analysis.

The conveyor system can be configured for single pots, multiple pots or trays, providing flexibility

of use with numerous different species, or with a single species throughout its growth cycle.

http://qubitphenomics.com/

TraitMill A high-thoughput gene engineering system developed by CropDesign that enables large-scale plant

transformation and automated high resolution phenotypic evaluation of crop performance in rice.

(Reuzeau, 2007; Reuzeau et al., 2005);

http://www.cropdesign.com/tech traitmill.php

http://www.lemnatec.com/
http://www.csiro.au/Outcomes/Food-and-Agriculture/HRPPC/PlantScan.aspx
http://www.csiro.au/Outcomes/Food-and-Agriculture/HRPPC/PlantScan.aspx
http://bioweb.supagro.inra.fr/phenodyn/
http://bioweb.supagro.inra.fr/phenopsis/
http://www.observatoirevegetal.inra.fr/observatoirevegetal_eng/Scientific-platforms/Phenoscope
http://www.observatoirevegetal.inra.fr/observatoirevegetal_eng/Scientific-platforms/Phenoscope
http://www.observatoirevegetal.inra.fr/observatoirevegetal_eng/Scientific-platforms/Phenoscope
http://qubitphenomics.com/
http://www.cropdesign.com/tech_traitmill.php
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Table 1.2 (continued)

WIWAM Similar to PHENOPSIS, WIWAM is an automated imaging platform handling a large number of plants

simultaneously and measuring a variety of plant growth parameters with automatic watering and

imaging system at regular time intervals

(Skirycz et al., 2011);

http://wiwam.be/

Field-based phenotyping platforms§

BreedVision A multi-sensor field-based phenotyping platform for small grain cereals. BreedVision has been applied

to measure various agronomic traits in triticale.

(Busemeyer et al., 2013a,b; Liu et al., 2014; Würschum

et al., 2014)

PhenoField A mobile multispectral imaging platform for precise field phenotyping. The PhenoField system has

been used to study canopies in wheat (Triticum spp.).

(Svensgaard et al., 2014)

http://www.plantphenomics.org.au/services/

phenomobile/

Phenomobile Phenomobile was developed at the High Resolution Plant Phenomics Centre, Canberra and is a mul-

tispectral imaging platform

(Deery et al., 2014)

Pheno-Copter A high-throughput field-based phenotyping system. Pheno-Copter was applied to study ground cover

in sorghum, canopy temperature in sugarcane and three-dimensional measures of crop lodging in

wheat.

(Chapman et al., 2014)

NA A plant phenotyping system during field deployment in Maricopa, Arizona. Three types of sensors

were deployed for measuring plant canopy height, temperature and reflectance in cotton.

(Andrade-Sanchez et al., 2014)

NA A semi-automatic system for high throughput phenotyping wheat cultivars in-field conditions. Four

identical spectrometers and two digital cameras were deployed.

(Comar et al., 2012)

† This part was adapted from Chen et al. (2014a).

§ More field-based phenotyping platforms were reviewed in White et al. (2012) and Deery et al. (2014). NA: official name is not available.

http://wiwam.be/
http://www.plantphenomics.org.au/services/phenomobile/
http://www.plantphenomics.org.au/services/phenomobile/
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Figure 1.2: The spectral regions

A diagram of the electromagnetic spectrum, showing the range of wavelengths (λ; modified fromWikipedi-

a, http://en.wikipedia.org/). The spectral regions (called “region of interest”, ROI) of visible and

near-infrared (VNIR), with the wavelengths ranging from 400 nanometers (nm) to 1700 nm, can be

detected by LemnaTec system. UV: ultraviolet; IR: infrared; NIR: near infrared. �

1.3.1 High-throughput phenotyping facilities

Thanks to the developed of robotics and new imaging sensors, various automated or semi-automated

HTP systems are being developed and used to examine plant function and performance under controlled

conditions or field-based environments (Table 1.2). A HTP infrastructure consists of its “hard” and

“soft” parts (Figure 1.3) and is generally implemented for specific plant species due to their different

architecture. The hard part of a HTP installation is generally fixed while its soft part is rather flexible

for different experimental designs. For example, the same phenotyping system can be used to study either

a mapping population or a mutant population of plants, and at the same time, different treatments (e.g.,

normal watering or drought stress) can be applied to the population.

Fully controlled environment-based phenotyping platforms are deplyed in growth chambers or green-

houses with robotics, precise environmental control and remote sensing techniques to assess plant growth

and performance. These platforms are designed for large-scale phenotyping of a limited set of plan-

t species, including small rosette plants such as Arabidopsis (Arvidsson et al., 2011; Granier et al.,

2006) and several important cereal crops (e.g. Golzarian et al., 2011; Reuzeau et al., 2005). PHENOP-

SIS (Granier et al., 2006) is one of the pioneering platforms that was developed to dissect genotype-

environment effects on plant growth in Arabidopsis. GROWSCREEN (Biskup et al., 2009; Jansen et al.,

2009; Nagel et al., 2012; Walter et al., 2007) was designed for rapid optical phenotyping of different plant

species. Among the advancing solutions, the state-of-the-art phenotyping platform developed by Lem-

naTec (http://www.lemnatec.com/) is a robotic greenhouse system that uses non-destructive imaging

to monitor plant growth under controlled environmental conditions (e.g., controlled supply of nutrition,

http://en.wikipedia.org/
http://www.lemnatec.com/
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Figure 1.3: High-throughput phenotyping infrastructure

The high-throughput phenotyping infrastructure includes hard and soft parts. The hard infrastructure

consits of the “hardware” of the phenotyping system. The soft infrastructure denotes the system capa-

bility and experimental design above the system. HT, high-throughput. �

water availability, irradiation and temperature) over a period of time. LemnaTec Scanalyzer platforms

have been deployed in growth chambers or greenhouses at various facilities around the world (Figure 1.4).

For example, an increasing number of phenotyping centers with installations of LemnaTec systems are

now emerging in Europe, Australia, America, China and India. Owing to its ingenious sensors, such as

visible, fluorescence, thermal and near-infrared imaging cameras, The LemnaTec platform can be used to

assess a range of phenotypic traits, including the physical and physiological status of plants (such as plant

geometric properties, pigment or photosynthetic activity / chlorophyll, canopy temperature and water

content). This system was successfully used in the prediction of biomass accumulation for Arabidopsis

(Arvidsson et al., 2011) and cereal plants (Golzarian et al., 2011), and the detection of abiotic stress

(Chen et al., 2014b; Hairmansis et al., 2014; Harshavardhan et al., 2014; Honsdorf et al., 2014).

Although controlled environment-based phenotyping platforms enable detailed, non-invasive infor-

mation to be captured throughout the plant life cycle, results from controlled environments are difficult

to extrapolate the field (Araus and Cairns, 2014; Fiorani and Schurr, 2013), as field conditions are noto-

riously heterogeneous. For example, the soil volume, solar radiation, wind speed and evaporation rates

are hard to control in the field, making results difficult to interpret. Thus, large-scale phenotyping under

field environmental conditions remains a bottleneck for future breeding advances (Araus and Cairns,

2014; Araus et al., 2008; Cabrera-Bosquet et al., 2012; Cobb et al., 2013). Given field-based phenotyping

platforms are the only tool to be of use in the selection of genotypes that will perform well in farming

practice (White et al., 2012), future efforts on development of high-throughput phenotyping should re-

ceive much more attention. In this regard, several custom-designed devices for field phenotyping have

been established in the past few years (Table 1.2), including the system designed in Maricopa (Arizona)

(Andrade-Sanchez et al., 2014), the Avignon system (France) (Comar et al., 2012), the “BreedVision”

system from Osnabrucke (Busemeyer et al., 2013a), and the “Phenomobile” designed at the High Res-

olution Plant Phenomics Facility in Canberra (Deery et al., 2014). The current technical developments

in field-based phenotyping are reviewed in Araus and Cairns (2014), Cobb et al. (2013), Li et al. (2014)
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Figure 1.4: A global stronghold of high-throughput phenotyping facilities

This map was built with the Google Maps API (https://goo.gl/Fa6zNo) based on data collected from

the websites of IPPN, EPPN, DPPN and LemnaTec. A hotspot is observed in Europe. �

and White et al. (2012).

However, it is notable that it is still generally too expensive to set up automated phenotyping facilities,

especially when the hardare required (robotics, camers, conveyor system, monitoring systems) (Fiorani

and Schurr, 2013). To meet the demand of data access, exchange and sharing existing phenotyping in-

stallations, several international/local communities in the context of consortia (Table 1.3), such as the

International Plant Phenotyping Network (IPPN; http://www.plantphenomics.com/), European Plant

Phenotyping Network (EPPN; http://www.plant-phenotyping-network.eu/), the German Plant Phe-

notyping Network (DPPN; http://www.dppn.de/) and the Australian Plant Phenomics Facility (APPF;

http://www.plantphenomics.org.au/), have been established by forming network of facilities.

1.3.2 Large-scale image processing and analysis

Raw data acquired from HTP systems are subjected to storage and subsequent image analysis. Image

data can be either analyzed immediately after imaging or analyzed at later time for all plants when

a phenotyping experiment is completed, or even reanalyzed in future when new request arises. To

aviod time-consuming performance problems and to ensure an optimal configuration adjusted for the

whole dataset in the image processing software, image storage and analysis are often separated. Images

generated from various cameras in different imaging compartments are generally analyzed in parallel to

extract up to hundreds or thousands of parameters per image. Furthermore, additional parameters (for

example, projected area and digital volume) can be derived from image-based parameters (Klukas et al.,

2014).

Image processing and analysis plays a significant role in plant phenotyping. Image processing is a

https://goo.gl/Fa6zNo
http://www.plantphenomics.com/
http://www.plant-phenotyping-network.eu/
http://www.dppn.de/
http://www.plantphenomics.org.au/
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Table 1.3: Plant phenomics community.

Project Description URLs

IPPN International Plant Phenomics Network. IPPN is an international consortium that will boost plant phenotyping science by

developing novel technologies and concepts used for the application of plant production and the analysis of ecosystem

performance.

http://www.plant-phenotyping.org/

EPPN European Plant Phenotyping Network. This project will establish the network that integrates European plant phenotyping

efforts and builds a competitive community to the goal of the understanding of the link between genotype and phenotype

as well as their interaction with the environment.

http://www.

plant-phenotyping-network.eu/

DPPN German Plant Phenotyping Network. DPPN is a Germany funded project that partners undertake a joint research program

and share their phenotyping infrastructure within networking activities.

http://www.dppn.de/

JPPC The Jlich Plant Phenotyping Centre. This project is with aims to elucidate the functional role of gene networks under

natural conditions with the aid of the development of non-invasive phenotyping tools and methods as well as the existing

genetic resources.

http://www2.fz-juelich.de/icg/

icg-3/jppc/phenotyping/

PHENOME PHEOME, launched in 2012, is a project funded by French investment for the future. It will provide France with an up-to-

date, versatile, high throughput infrastructure and suite of methods allowing characterization of panels of genotypes of

different species (important crop species) under scenarios associated with climate changes.

http://urgi.versailles.inra.fr/

Projects/PHENOME/

APPF The Australian Plant Phenomics Facility. APPF is developed to alleviate the “phenotyping bottleneck” by utilizing high

throughput plant phenotyping and “reverse phenomics” approaches with aims to probe and improve plant function and

performance.

http://www.plantphenomics.org.au/

This table was adapted from Chen et al. (2014a).

http://www.plant-phenotyping.org/
http://www.plant-phenotyping-network.eu/
http://www.plant-phenotyping-network.eu/
http://www.dppn.de/
http://www2.fz-juelich.de/icg/icg-3/jppc/phenotyping/
http://www2.fz-juelich.de/icg/icg-3/jppc/phenotyping/
http://urgi.versailles.inra.fr/Projects/PHENOME/
http://urgi.versailles.inra.fr/Projects/PHENOME/
http://www.plantphenomics.org.au/
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form of signal processing that transforms a digital image into a set of characteristics or parameters related

to the image. In plant phenotyping, the extracted image-based parameters can be considered as proxies

of a set of plant phenotypes for direct use. A typical image processing pipeline consists of four key steps:

(1) pre-processing, (2) segmentation, (3) feature extraction and (4) post-processing (Figure 1.5).

Figure 1.5: The typical workflow of a image-processing pipeline

Figure shows the IAP image processing pipeline applied to a maize dataset generated by the LemnaTec

system. Image and metadata are imported via IAP functionalities (the above panel) and subjected to

image processing, including (1) pre-processing prepare the images for segmentation, (2) segmentation

divide the image in different parts which have a different meaning (foreground plant, background imaging

chamber and machinery), (3) feature extraction classify the segmentation result and get a trait list.

Examples include images from visible-light, fluorescence and near-infrared (NIR) cameras and (4) post-

processing summarize calculated results for each plant, optionally analysis results can be marked in the

images. Finally, result images are exported. Numbers in parentheses indicate the percentage of overall

processing time for each analysis step. �

With the rapid advances of HTP, a massive list of software tools (reviewed in Lobet et al., 2013, http:

//www.plant-image-analysis.org/) for plant image analysis are being developed to extract a wide

http://www.plant-image-analysis.org/
http://www.plant-image-analysis.org/
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range of measurements, such as plant height, leaf length, width, shape, projected area, digital volume,

compactness, relative growth rate and colorimetric analysis. These developments enable the phenotyping

of specific organs (e.g., leaf, root and shoot) or of whole plants, and are even used for three-dimensional

plant analysis. However, the trait information gained from these tools is still very limited. In addition,

these analytical tools are individually designed to address specific questions (Sozzani and Benfey, 2011)

and software tools that are capable of processing multispectral images are still underdeveloped. LemnaTe-

c offers its own software solution called LemnaGrid (http://www.lemnatec.com/product/lemnagrid),

which is based on the visual programming concept (Burnett, 2001), to analyze plant images from Sc-

analyzer 3D system with different cameras. LemnaGrid is quite handy for rapid prototyping and was

successfully used in the prediction of biomass accumulation for Arabidopsis (Arvidsson et al., 2011; Ca-

margo et al., 2014) and cereal plants (Golzarian et al., 2011; Hairmansis et al., 2014). However, as a

commercial solution, LemnaGrid has the limitations of extensibility and automatization and is not in-

tended to be further developed or significantly modified by the user (Berger et al., 2012). Thus only

predefined functionalities are accessible. To meet these challenges, our IAP software (Figure 1.6; Klukas

et al., 2014) has been developed to support a broad set of functionalities including data management, im-

age processing and possible extensions via plugins and add-ons. Importantly, several essential yet tightly

interdependent components of the IAP system have been implemented: (1) elaborate bioimage toolkits

(such as ImageJ, Schneider et al., 2012) used to extract comprehensive and quantitative measurement

from imaging datasets; (2) reusability and extension of algorithms into analysis workflows; (3) flexibility

and interoperability of data management tools; (4) automated pipelines for data analysis; (5) seam-

less integration of other data visualization and analysis systems like (VANTED, Junker et al., 2006);

and (6) specific graphical user interfaces (GUIs) for end users regardless of their scientific background

and programming skills. These highlighted features make IAP as a full and extendable image-analysis

framework for high-throughput phenotyping.

1.3.3 Applications of high-throughput plant phenotyping

The applications of HTP can be broadly categorized at two different levels: to gain deep insight into

plant phenotypes and to dissect genetics underlying of these phenotypic traits by using genetic mapping

approaches. In the first case, HTP is being applied to measure diverse phenotypic traits and their

dynamics that are related to plant growth and performance. On the other hand, increase in the genetic

information now puts more pressure on plant scientists and breeders for providing ample and accurate

phenotypic data, with the goal of developing new variety or hybrid superior to existing one. Most breeding

techniques, such as genetic mapping (including marker assisted selection, linkage-based QTL mapping and

association mapping) and analysis of mutant populations, require proper phenotypic analysis. Manually

collecting massive phenotypic data is time consuming and labor intensive. HTP is the ideal tool to

alleviate this phenotyping bottleneck by dissecting the phenotypic components of complex traits. For

example, several recent GWAS studies (Meijon et al., 2014; Slovak et al., 2014; Topp et al., 2013; Yang

et al., 2014) were performed by using pheotypic traits derived from HTP data, revealing that HTP can

http://www.lemnatec.com/product/lemnagrid
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Figure 1.6: IAP: integrated analysis platform

(legend on next page).

replace traditional phenotyping techniques for gene identification. In the near future, integrating HTP

and genetic mapping will bring on the revolution in the rate of trait discovery and the vast improvement

of phenotypic prediction (Brown et al., 2014).
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1.3.4 A proposed general framework for high-throughput phenotyping data

analysis

Although there is an explosion of HTP systems developed for plant phenomics, the phenotypic components

underlying dynamic processes in plants such as growth, development, or responses to environmental

challenges and their properties remain unexplored. For these reasons, there is increasing demand for

software tools that are capable of efficiently analyzing large image data sets and subsequent statistical

methods to investigate comprehensively collected phenotypic data.

In this thesis, I present a general framework for high-throughput plant image data analysis (Figure

1.7), which was developed alongside currently available high-throughput image processing pipelines, such

our IAP system (Klukas et al., 2014), and was extended from our published post-processing pipeline for

high-throughput image analysis (Chen et al., 2014b). The core components of this framework consist of

five parts: sample preparation, image acquisition, data management, image processing and data mining

(Figure 1.7). Briefly, experimental setup can be controlled and optimized to minimize the influence of

external environment in the robotic greenhouse system. The intensity of stress, the level of irrigation

and the content of nutrient can be defined and controlled during a phenotyping experiment. Various

types of image data, such as near-infrared (NIR)-, visible (color)- and fluorescence (FLUO)-images, can

be acquired daily/hourly from different views (top view and side views from different angles) in the

phenotyping platform (reviewed in Chapter 1.3). Consequently, timely retrieved data from imaging

system are organized into data management system and subjected to the automated image processing

pipeline (reviewed in Chapter 1.3.2) that extracts a large number of phenotypic trait values. Finally, by

I Figure 1.6 (continued). (A) The graphical user interface (GUI) of the IAP system. Several windows

can be opened by the user in parallel as shown in the screenshot: (1) the main window showing the

overview of experiment data (browsing and processing images), (2) monitoring status of analysis jobs

and grid-computing nodes, (3) the panel of system settings, and (4) the buttons of the main menu.

This figure part was taken from Klukas et al. (2014). (B) Architecture and design of IAP. IAP uses

the flexible and high-performance Mongo database (MongoDB; http://www.mongodb.org/) for image

storage and management, ImageJ toolkit (Schneider et al., 2012) for image processing, R software (http:

//www.r-project.org/) for comprehensive statistical analysis, and the data structures of VANTED

(Junker et al., 2006) for manipulating the experiment data. The IAP project provides three types of

interfaces for a broad range of end users including developers, bioinformaticians and biologists. Developers

can modify and extend existing software libraries provided by IAP, or implement and integrate new

algorithm to meet specific requirements. Bioinformaticians can conduct image-processing pipelines and

adjust some parameters under specific situations when necessary (using desktop-based GUI). Biologists

can retrieve the analysis results from the web-based GUI. (C) IAP pipeline consisting of several sequential

analysis modules, which enable an automated workflow for phenotyping data analysis. IAP automatically

extracts phenotypic features from the images, only requiring users to modify default values of a few

parameters. The parametric adjustment steps could be simply done though a GUI. This automated

analysis workflow enable detecting plant growth in time and to change experimental conditions if needed

based on the real-time observation. Besides, due to the huge amount of imaging data daily generated,

IAP was implemented as a distributed storage and computing platform to speed up analysis. �

http://www.mongodb.org/
http://www.r-project.org/
http://www.r-project.org/
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Figure 1.7: A comprehensive framework for high-throughput phenotyping in plants

The framework consists of five main steps (indicated in boxes). Firstly, plants are cultured under con-

trolled environmental conditions in robotic greenhouse systems (sample preparation). Each plant with

special treatments (such as abiotic stress and/or induced genetic mutation) is located in a container

with controlled nutrient supply which is retrieved as needed by the conveyor belt. Secondly, different

types of digital cameras (for example, imaging cameras in near infrared (NIR)-, fluorescence (FLUO)-

and visible (VIS)-spectra) can be adopted to capture images in real time from different perspectives (for

example, from the top and side views; image acquisition). During the imaging, plants are subjected to

watering and weighting to ensure phenotyping in a non-invasive way. Next, “big data” acquired from

the imaging system should be efficiently managed (such as image storage, annotation and backup) and

transferred when needed (data management). Finally, image-processing methods are used to derive a

representative set of phenotypic traits from image data (image processing) and data mining methods are

used to decide the values of the extracted features or to mathematically model phenotypic data (data

mining). Note that the first two steps have been implemented in automated phenotyping systems such

as LemnaTec (http://www.lemnatec.com/), and the next two steps have the solutions in our IAP system

(http://iap.ipk-gatersleben.de/, Klukas et al., 2014). This paper focuses on the last step to develop

efficient post-processing methodology to interpret high-throughput plant phenotyping data. �

applying well-established statistical models (for example, Chen et al., 2014b), the extracted phenotypic

traits can be used to assess plant growth and performance features. Furthermore, by integrating data from

other domains, these imaged-based traits and model-derived parameters are promising for subsequent

genetic mapping (in mapping populations) and functional analysis (in large collections of transgenic or

genetically modified plants).

1.4 Publications on which this thesis is based

Parts of this thesis include results from the following publications that are the result of my work conducted

as Doctoral Student at the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK).

4 Klukas, C., Chen, D., and Pape, J. M. (2014). Integrated analysis platform: An open-source in-

formation system for high-throughput plant phenotyping. Plant Physiol, 165(2):506–518 (Chapter

1)

4 Chen, D., Chen, M., Altmann, T., and Klukas, C. (2014a). Bridging Genomics and Phenomics,

chapter 11, pages 299–333. Springer Berlin Heidelberg (Chapter 1)

http://www.lemnatec.com/
http://iap.ipk-gatersleben.de/
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4 Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., and Klukas, C. (2014b).

Dissecting the phenotypic components of crop plant growth and drought responses based on high-

throughput image analysis. Plant Cell, 26:4636–4655 (Chapters 2 and 3)

4 Chen, D. (2016). Htpmod: an r package for modeling plant growth and its phenotypic components

in the era of plant phenomics. in preparation (Chapter 3)

4 Chen, D., Shi, R., Pape, J.-M., and Klukas, C. (2015). Predicting plant biomass accumulation from

image-derived parameters. submitted (preprint doi: 10.1101/046656) (Chapter 4)



Chapter 2

Dissecting the high-dimensional phenotypic

components of plant growth and drought re-

sponses

2.1 Introduction

Plant breeding is currently meeting the tremendous challenge for crop improvement in the face of a grow-

ing human population and global environmental change. While recently developed genotyping methods

promise to identify additional genes and variants of interest used in agronomic improvement (Takeda and

Matsuoka, 2008), plant breeders are seeking efficient phenotyping approaches to select traits with the

greatest potential for yield improvement to speed up the crop breeding progress (Tester and Langridge,

2010). The “phenotyping bottleneck” (Furbank and Tester, 2011) — our ability of depiction and quan-

tification of plant phenotypes largely lagging behind that of genotypes — can now be alleviated by the

introduction of high-throughput phenotyping (HTP or phenomics) using non-invasive image technologies

as well as high-performance computing. Several structural and functional imaging techniques (such as

visible, infrared, hyperspectral and chlorophyll fluorescence imaging) are employed to study plant archi-

tecture, growth and physiological status (Berger et al., 2010; Yang et al., 2013; Zhu et al., 2011). Such

multifunctional phenotyping tools enable us to accurately measure increasingly large numbers of plants

and phenotypic traits over a long period of plant growth. Altogether, these advances have made it pos-

sible to deeply investigate the phenotypic components of complex traits and to study their influence on

crop yield.

Automated non-invasive precise HTP is especially interesting in the context of dissecting the complex

genetic architecture of biomass development and of drought stress tolerance. Impact of stress, such as

drought, depends heavily on timing and intensity of the dry period and on environmental conditions

(Araus et al., 2002; Calderini et al., 2001) hampering heritability as a pre-requisite for genetic mapping

of quantitative trait loci (QTL) (Painawadee et al., 2009; Ribaut et al., 1997; Sellammal et al., 2014).

20
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Drought tolerance has been investigated in various QTL studies since the start of the molecular marker

age (Lilley et al., 1996; Nezhad et al., 2012; Szira et al., 2008; Xiong et al., 2006). Adequate controlled

phenotyping and daily phenotypic observation of drought stress development has a huge potential to

boost the understanding of the genetics of drought tolerance.

Here, several algorithms were implemented in a pipeline for efficient analysis and interpretation of

huge and high-dimensional phenotypic data sets to support understanding plant growth and performance.

The pipeline was applied to a core set of 18 different barley cultivars, which were daily imaged under

well-watered and drought-stress conditions. A list of representative phenotypic traits were extracted and

quantified from the digital imaging data. Linear mixed models were used to dissect variance components

of phenotypic traits and showed that the traits revealed variable genotypic and environmental effects and

their interactions over time. Key parameters such as trait heritability and genetic trait correlations were

assessed, indicating image-derived traits are valuable in genetic association studies.

2.2 Results

2.2.1 Extraction of phenotypic traits from high-throughput image data

I applied the methodology to a compendium of ˜50,400 images (˜100 GB of data) collected for 18 barley

genotypes from four agronomic groups (Table 2.1), with six (for double haploid [DH] lines) or nine (for

non-DH lines) replicated plants per genotype per treatment. Over a course of seven weeks plants were

monitored in a noninvasive way under control and drought-stress conditions using an automated plant

transport and imaging system (Figures 2.1 and 2.2; see Chapter 2.4.1). Three types of image data,

near-infrared (NIR)-, visible (color)- and fluorescence (FLUO)-images, were acquired daily from different

views (top view and side views from different angles) in the phenotyping system, and were used for trait

extraction (reviewed in Chapter 1.3.2). Data retrieved from the imaging platform were organized into

the IAP system (Klukas et al., 2014) and processed through an analysis pipeline specifically adjusted

for mid-sized important crop species such as barley, resulting in values of nearly 400 phenotypic traits

extracted from images of each individual plant (Figure 2.2A,C).

These phenotypic measurements can be classified broadly into four categories: plant geometric traits

(measuring shape descriptors of plants), color-related properties, NIR-signals and FLUO-based traits

(Figure 2.2C). Quantitative traits were first evaluated based on their reproducibility among replicated

plants (see Chapter 2.4.3; Figure 2.3A-B) against random plant pairs, to avoid introducing low quality or

weak phenotypic traits into the analysis. 173 (44.6%) traits showed high reproducibility among replicate

samples after removing outliers (Pearson correlation coefficient r > 0.8 and one-sided Welchs t-test

P < 0.001; Figure 2.2A). It was found that 87.0% of traits that showed genotypic effects or 93.1% of

traits that showed treatment effects (adjusted P < 0.01; see below) passed this filtering (Figure 2.4),

indicating that most of the informative traits were still covered though the stringent applied criteria.

Clustering analysis of these highly reproducible traits showed that large sets of traits were excessively
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correlated with each other (Figure 2.5), indicating that these traits might be highly redundant descriptors

of plant properties within the investigated cultivar set. To get an optimal set of phenotypic traits for a

statistical model, the indicator of variance inflation factors (O’Brien, 2007) (V IF > 5) was applied to

remove redundant and non-informative features (see Chapter 2.4.4). After manual checking, 54 (31.2%)

traits were selected from the entire set of reproducible measures and used them in the remaining analysis

(Figures 2.2A and 2.3C, and Supplemental Table S1). However, it is notable that this barley collection

is relatively small, and some of the excluded phenotypic traits might be considered when applying the

model to larger plant populations.

Figure 2.1: Experimental design for high-throughput phenotyping in barley

(A) The growth stages of spring barley. (B) High-throughput phenotyping of barley plants in a LemnaTec

system (http://www.lemnatec.com/). (C) Plants were monitored in a noninvasive way under control and

drought-stress conditions. Drought stress (in dash box) was treated at the stage of “stem extension” as

indicated in (A). This figure was taken from Chen et al. (2014b). �

2.2.2 Image-derived parameters reflect drought stress responses

Many of the phenotypic changes (such as changes of biomass) were readily detectable upon stress treat-

ment, whereas others (such as dynamics of water content) were less obvious or too subtle to be discerned

http://www.lemnatec.com/
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Figure 2.2: Pipeline for analysis of high-throughput phenotyping data in barley

(A) The workflow used for barley phenotyping data analysis. High-throughput imaging data from the

LemnaTec system were imported and processed using the barley analysis pipeline in the IAP system.

The extracted phenotypic traits were further processed and evaluated (see Chapters 2.4.3 and 2.4.4).

(B) Input (left) and result (right) images in the analysis pipeline. Shown are images from 44-day old of

plants (the last day of stress phase) captured by VIS-. FLUO- and NIR-cameras from the side view. (C)

Classification of phenotypic traits. Traits are classified into four categories: color-related, NIR-related,

FLUO-related and geometric features, based on images obtained from three types of cameras and two

views. (D) Phenotypic traits revealing the stress symptom. Left: An example shows a NIR-related trait

over time. Right: heatmap shows NIR intensity difference, measured by the ratio value between control

and stress plants. Blue indicates low difference, whereas red indicates high difference. Note that plants

from different genotypes show different patterns, indicating their different stress tolerance. This figure

was taken from Chen et al. (2014b). �
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Figure 2.3: Reproducibility of phenotypic traits

(A) Highly reproducible analysis of phenotypic traits based on control (left) and stressed plants (right).

Replicate plants with the same genotype and treatment were used to assess the reproducibility of traits

based on Pearsons correlation (r > 0.8). Besides, the correlation in replicate plants is considered to be

significant higher than by chance (P < 0.001; see Chapter 2.4.3). Filled dots represent the filtered traits

with high reproducibility (r > 0.8 and P < 0.001). The median values of Pearsons correlation for each

trait categories are indicated. The number of traits with non-empty values is provided as well. The

trait reproducibility is consistence between control and stressed plants. (B) The reproducibility of the

54 filtered traits. (C) An example of highly reproducible traits: the NIR-intensity trait. This figure was

taken from Chen et al. (2014b). �

by eye (Figures 2.2B and 2.6). Previous studies have suggested that plant water stress might be mon-

itored effectively using NIR imaging (Berger et al., 2010; Knipling, 1970; Munns et al., 2010; Tucker,

1980). It was shown that the highly reproducible NIR-intensity trait is an effective feature for monitoring

plant responses to drought (Figures 2.2D and 2.3C). Plants showed a rapid decrease of the NIR signal
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Figure 2.4: Assessment of trait reproducibility analysis

For all the plots, each point represents one trait. Filled circles indicate the final 54 traits used in this study.

The dash lines indicate the corresponding cut-offs. (A) Scatter plot showing genotype effect (median

negative log-transformed p-values) versus heritability (H2). (B) Scatter plot of trait reproducibility (the

maximum correlation value in either control or stress treatments) and H2. (C) Scatter plot of genotype

effect and trait reproducibility. (D) Scatter plot of treatment effect and trait reproducibility. This figure

was taken from Chen et al. (2014b). �

Table 2.1: Overview of 18 barley genotypes used in this study.

Group† Genotype§ Release Breeder Pedigree

DH BarkeDH 1996 Breun Libelle × Alexis

DH MorexDH 1978 MN AES Cree × Bonanza

1 Ackermanns

Bavaria

1910 Ackermann Selection from Bavarian landrace
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Table 2.1 (continued)

1 Heils

Franken

1895 Heil Selection from Franconian landrace

1 Isaria 1924 Ackermann Danubia × Bavaria

1 Pflugs Inten-

siv

1921 Pflug Selection from Bavarian landrace

2 Apex 1983 Lochow Aramir × (Ceb.6721 × Julia × Volla × L100)

2 Perun 1988 Hrubcice/NKGNord HE 1728 × Karat

2 Sissy 1990 Streng (Frankengold × Mona) × Trumpf

2 Trumpf 1973 Hadmersleben Diamant × 14029/64/6 ((Alsa × S3170/Abyss) ×

11719/59) × Union

3 Barke 1996 Breun Libelle × Alexis

3 Beatrix 2004 Nordsaat Viskosa × Pasadena

3 Djamila 2003 Nordsaat (Annabell × Si 4) × Thuringia

3 Eunova 2000 Probstdorf H 53 D × CF 79

3 Streif 2007 Saatzucht Streng Gmb-

H & Co. KG

Pasadena × Aspen

3 Ursa 2001 Nordsaat (Thuringia × Hanka) × Annabell

3 Victoriana 2007 Probstdorfer/

Saatzucht

(LP 1008.5.98 × LP 5191) × Saloon

3 Wiebke 2000 Nordsaat Unknown

† Agronomic group. The DH-population parents are indicated with “DH”. Cultivar Morex is a six-rowed, spring barley

from US. All other cultivars are two-rowed spring barleys released in Germany. Genotypes are grouped according to the

year of release (except for DH lines): Group 1 (< 1950), Group 2 (1950-1990) and Group 3 (> 1990).

§ bold indicates the short name used in all the figures. This table was taken from Chen et al. (2014b).

after about six days of drought stress. Restoration of the NIR signal was seen after re-watering. The

NIR-based indicator also provides a measure of the different abilities to recover among different genotypes

(Figure 2.2D).

To explore more comprehensively the ability of these traits to reflect the responses to the external

treatment, a support vector machine (SVM)-based approach (Iyer-Pascuzzi et al., 2010; Loo et al., 2007)

was used, in which “optimal” hyperplanes separate treated and untreated samples (Figure 2.7A). It was

found that accuracy in distinguishing between stressed and control plants reached over 90% after one

week of drought stress and nearly 100% separability after ten days of stress (Figure 2.7B). Besides, the

“phenotypic direction” (the normal vector of the hyperplane in SVM) of greatest separation between

the two groups of plants revealed three grouped patterns over time, corresponding to the three different

treatment periods: growth before onset of drought treatment, during drought stress, and in the recovery

phases (Figure 2.7C). These results suggest that the treatment effects of these traits changed dynamically

according to the external treatment and growth stage (see below).
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Figure 2.5: Trait similarity

Canonical correlation analysis of phenotypic traits based on control (left) and stressed plants (right).

Heatmap plot is organized by hierarchical clustering with the tree (top). Traits are listed on the right.

This figure was taken from Chen et al. (2014b). �

2.2.3 Plant phenomic map and phenotypic similarity

To gain a global plant phenotypic map across the entire cultivar set, clustering approaches were performed

on the comprehensive phenome-wide data (Figure 2.8A-B). This map provides important information

regarding plant phenotypic similarity or dissimilarity and supports further evaluation of the defined

traits. From a cluster analysis with complete linkage applied to the normalized dataset, it was found

that stressed plants were clearly distinguished from controls plants irrespective of genotype, but plants

of the same genotype or among agronomic groups tended to be grouped together (Figure 2.8A, upper

panel), supporting the idea that similar genotypes lead to similar phenotypes. For the 54 investigated

traits, correlation coefficients of trait profiles between pairs of genotypes of the same agronomic groups

were significantly higher than pairs of different groups (P < 2.2 × 10−16, one-sided Mann-Whitney U-

test; Figure 2.8A, lower panel). Similar results were observed in a large genome-wide association study

(GWAS) mapping population, in which 34 traits were investigated across 413 diverse rice accessions in

the field (Zhao et al., 2011). To fine visualize phenotypic similarity revealed by genotype similarity, a

self-organizing map (SOM) (Kohonen, 1990) clustering analysis was performed on the dataset (Figure

2.8B). The SOM plot showed that plants from the same genotype were concentrated at certain locations

in the map, and stressed plants were clearly separated from the control plants.

Next, a neighbor-joining tree (termed “phenotypic similarity tree”) was deduced based on the 54

informative traits to reveal the phenotypic similarity of plants of different origins (see Chapter 2.4.6).

The phenotypic similarity trees were constructed for plants cultivated under control and stress conditions,

respectively (Figure 2.8C). It was observed that members of the same agronomic groups belonged to closed
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Figure 2.6: Phenotypic traits revealing the stress symptom

Related to Figure 2.1D. Top: Examples show the trait of (A) “digital volume” and (B) “fluorescence

intensity” over time. Bottom: heatmap shows the difference in traits, measured by the ratio values,

between control and stressed plants. Blue indicates low difference, whereas red indicates high difference.

Note: plants from different genotypes show different patterns. This figure was taken from Chen et al.

(2014b). �

branches of the tree (Figure 2.8C, left), reflecting the domestication and breeding history of these cultivars.

The phenotypic similarity tree reshaped following the drought stress although the relative relationship of

most cultivars within the same groups was unchanged (Figure 2.8C). Consistent with this observation,

the phenotypic distance matrices of these two trees are positively associated (Pearsons coefficient r = 0.71

and P < 0.001, Mantel test; Figure 2.8D). However, it was observed that barley cultivars such as Apex,

Djamilia, and Heils Franken showed least robustness in maintaining their phenotypic relationship when

they were exposed to drought stress (Figure 2.8C-D), suggesting that the phenotypic plasticity of these

cultivars in response to stress treatment is different.

2.2.4 Phenotypic profile reflects global population structure

To further explore the phenotypic relationships of these plants, principal component analyses (PCA)

were carried out to capture global phenotypic variation in the whole population and to extract specific

phenotypic traits relevant for the discrimination of agronomic groups (Figures 2.9 and 2.10). The top
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Figure 2.7: Classification of plants based on the SVM methodology

(A) An SVM-based methodology used for classification of plants with different treatments. Measure-

ments of multidimensional traits (the highly reproducible traits) were used to represent plants in a

high-dimensional feature space. An SVM-based classifier was used to determine the optimum hyperplane

which separated plants into control and stress groups for each genotype from every daily imaging data

(for example, in 40 days after sowing, DAS 40). Hyperplane orientation represented its weight vector

(W40 for DAS 40), indicating the “phenotypic direction” of greatest separation between the two plant

groups. (B) Classification accuracy to evaluate the performance of classification. Dashed line indicates

classification accuracy of 90%. Stress period is indicated. Error bars, s.e.m. (n = 18). (C) Multidimen-

sional scaling (MDS) plot showing the patterns of phenotypic direction over time. Each point represents

the phenotypic direction for a specific genotype from a specific time point. Three distinct patters were

observed, corresponding to three different phases to the experiment. This figure was taken from Chen

et al. (2014b). �

six principal components (PCs) explain at least 60% of the total phenotypic variation (Figure 2.9A).

Notably, the accumulative variance explained by these PCs increases with plant growth, having a slight

peak at the end of stress phase, accounting for 83.3% of total variation. The increasing accumulative

variance over time was observed for control and stressed plants, respectively (Figure 2.11A-B), indicating

that plants showed more phenotypic differences at the later growth stage.

At the end of the stress period, the first PC (PC1) explains more than half (52.9%) of the pheno-

typic variation, which perfectly separated stressed plants from control plants (Figure 2.9B). Accordingly,

geometric and NIR-intensity traits are the main factors in the trait space separating these two groups

of plants. Meanwhile, PC1 gradually increases along the stress phase while it decreases when plants

recovered with watering, suggesting that more phenotypic variance can be observed between control and
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Figure 2.8: Phenotypic similarity revealed by genotype similarity

This figure was taken from Chen et al. (2014b) (legend on next page).

stressed plants under more serious stress. Other PCs with smaller proportions of explained variance

generally distinguish plants of different agronomic groups from each other. For example, PC2 was mainly

driven by the phenotypic difference in groups 2 (released before 1990) and 3 (released after 1990) (Figure

2.9B), corresponding to the main PCs as observed in control (Figure 2.11C) and stressed plants (Figure

2.11D). Interestingly, more diversity in color-related traits was observed in plants of agronomic group

2, likely revealing the human selection of breeding of these cultivars. The third principal component

(PC3) mainly distinguishes plants of agronomic group 1 from the DH group (Figures 2.9B and 2.11C-D).
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However, the different patterns in the PCA from control and stress plants (Figure 2.11A-B) can be ex-

plained in part by complex genotype-treatment interactions. Overall, the observations that the first PC

separates control and stress plants and that the other PCs separate agronomic and genotype groups are

in agreement with the results of the clustering analysis, which showed that plants had larger phenotypic

dissimilarity between treatments than between genotype groups (Figure 2.8A), further indicating that

the environment (drought stress treatment) shows dramatic effects on plant growth and development.

2.2.5 Dynamic genotypic and environmental effects on phenotypic variation

A linear mixed model was used to decompose phenotypic variance (P) into different causal agents: ge-

netic (G) and environmental (E) sources, and their interaction effects (G×E). The mixed-effects model

was fitted using a restricted maximum likelihood approach and the statistical significance of variance

components was estimated by the log-likelihood ratio test (log-LR test; see Chapter 2.4.8). It was found

temporal dynamics of genotypic and environmental influences on overall trait development (Figure 2.12A-

B). In the early growth phase, phenotypic variance was mostly the result of unknown environmental effects

(residual effects). As plants grew, genotypic factors became more important. The increasing genetic ef-

fect on phenotypic variance was observed up to about six days after the onset of stress treatment, after

which the environmental factors (e.g. drought stress) became progressively more important, while the

genetic effect became relatively less important. Although less obvious, the opposite pattern was seen in

the recovery phase (Figure 2.12A), likely due to the decline in phenotypic differences between control

and stressed plants. The decline in error variance and increase in environmental variance are reflected by

a dynamic change of the total experimental coefficient of variation (CV) over time based on the inves-

tigation of geometric traits (Figure 2.12B). The total experimental CV increased as the drought stress

I Figure 2.8 (continued). (A) and (B) Clustering analysis of phenomic profiling data. (A) Hierarchical

clustering analysis (HCA) and (B) a six-by-six self-organizing map (SOM) were used to reveal the

phenotypic similarity of all the investigated barley plants based on the highly reproducible traits. In

(A), Coloured bars along the top of the heatmap reflect the sampled agronomic group assignment (group

1-3 and DH) as labeled. Coloured bars along the left indicated the corresponding genotypes of individuals

as listed in the key. The lower panel shows the median correlation values among individual plants from

the same agronomic groups and different groups. In (B), plants with similar genotypes or treatments

tend to be at nearby map locations. Control and stress plants are coloured and indicated in blank and

filled points, respectively. The numbers in the key show the number of plants from the same genotypes

belonging to the control or stress group. (C) Phylophenetic trees showing the phenotypic relationship

of plants from agronomic groups 1-3 under control (left; blank shapes) and stress (right; filled shapes)

conditions. The trees were constructed from overall phenotypic distance matrices (see Chapter 2.4.6).

(D) Scatter plot indicating the degree of correlation of phenotypic distance between genotypes under

both control (x axis) and stress conditions (y axis). Mantel test was performed to examine whether

the phenotypic distances in the two conditions correlate with each other. p-value was calculated with

Monte-Carlo simulation (with 10,000 permutations). Genotype pairs that are far away from the regressed

line (red) are labeled and coloured (orange, small distances in control and large distances in stress; blue,

otherwise). �
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Figure 2.9: Phenotypic profile reflects global population structures in the temporal scale

(A) Projections of top six principal components (PCs) based on principal component analysis (PCA) of

phenotypic variance over time. The percentage of total explained variance is shown. The stress period

is indicated by the dashed box. (B) Scatter plots showing the PCA results on DAS 44 (explained the

largest variance). The first six PCs display 83.3% of the total phenotypic variance. The component scores

(shown in points) are coloured and shaped according to the agronomic groups (as legend listed in the

box). The component loading vectors (represented in lines) of each variable (traits as coloured according

to their categories) were superimposed proportionally to their contribution. See also Figures 2.10 and

2.11. DAS, day after sowing. This figure was taken from Chen et al. (2014b). �

became more severe and declined during the recovery phase. However, the genetic CV across the cultivars

was relatively constant upon drought treatment. The genetic CV in stressed plants became less than

that in control plants after the onset of treatment (Figure 2.12B), indicating that plants showed more

phenotypical diversity under normal growth conditions than in stressed conditions. Genetic CV peaked

at the beginning of plant growth, revealing heterogeneity of plant growth at the initial growth stage. A

moderate level of G×E interaction effects (with the proportion of explained phenotypic variance ranging
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Figure 2.10: PCA performed over time

Related to Figure 2.9B. Scatter plots show the top six PCs on (A) DAS 22, (B) 27, (C) 45 and (D) 58.

The proportion of variance explained by the PCs is shown in parentheses. The component scores (dots)

are coloured and shaped according to agronomic groups of plants. The loadings (lines) of each variable

(traits) are coloured according to their categories. This figure was taken from Chen et al. (2014b). �

from 2.6% ˜15.4%; Figure 2.12A) was also observed, indicating that there are genetic differences in the

response to drought among different cultivars. It was found that the G×E effects progressively increased

with plant development, independent from external environment changes.

To gain a deeper insight into traits that could shed light on the genotype and treatment effects as well

as their interaction, the likelihood estimation (the LOD score Joosen et al., 2013) was calculated from

the linear mixed models to determine whether the G, E, and G×E effects have statistical significance on
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Figure 2.11: PCA performed on control and stressed plants, respectively

Related to Figure 2.9. Principal component analysis (PCA) of phenotypic variance over time for control

(A) and stressed plants (B). The percentage of total variance explained by the top six principal compo-

nents is shown. The stress period is indicated by the dashed box. (C) and (D) Scatter plots showing the

PCA results on DAS 44 (to compare the results of Figure 2.9). The first six PCs display 74.9% and 73.6%

of the total phenotypic variance for control (C) and stressed plants (D), respectively. The component

scores (shown in points) are coloured and shaped according to the agronomic groups (as legend listed

in the box). The component loading vectors (represented in lines) of each variable (traits as coloured

according to their categories) were superimposed proportionally to their contribution. This figure was

taken from Chen et al. (2014b). �

phenotypic variance for each trait. The G effect showed dynamic behavior during plant growth (Figure

2.12C). In general, color and FLUO-related traits revealed strong G effects with high LOD scores over

time. In contrast, geometric and NIR-related traits displayed strong G effects mostly in the middle stage

of plant development. However, most of the phenotypic traits exhibited the E effects with significant LOD

scores at the late period of drought stress or/and after the stress (Figure 2.12C). For example, traits such

as fluorescence intensity, NIR intensity, area and volume were strongly affected by the E effects, agreeing

with the known observations of decreased photosynthetic activity (Baker, 2008; Jansen et al., 2009; Woo

et al., 2008), leaf water content (Seelig et al., 2008, 2009) and biomass accumulation (Berger et al., 2010;

Rajendran et al., 2009) for plants under drought. In general, geometric traits, such as leaf length, plant
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Figure 2.12: Dissection of the sources of phenotypic variance

This figure was taken from Chen et al. (2014b) (legend on next page).

height and projected area, showed strong and durable E effects, while only earlier E effects were seen for

color-related traits. Nearly all traits were observed to have significant G×E effects (P < 0.001, log-LR

test) at the recovery stage (Figure 2.12C), indicating that the impact of genetic factors for most traits is

highly influenced by drought stress.
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2.2.6 Change of heritability and trait-trait genetic and phenotypic correla-

tions over growth time

Heritability of a trait and genetic correlations among traits are two key parameters that are used in

plant breeding for making decisions concerning the design and selection of breeding schemes (Chen and

Lubberstedt, 2010; Holland et al., 2003). It has been speculated that the dynamic change of heritability

over time for a population is a consequence of changes in the magnitude of G and E effects (Visscher

et al., 2008). However, most estimates of heritability are based on very few measures taken within

specific growth stages (Busemeyer et al., 2013b; El-Lithy et al., 2004; Van Poecke et al., 2007). Recently,

Zhang et al. (2012) used a HTP approach to document dynamic patterns of heritability of growth-related

traits over growth time in Arabidopsis. Here, the change of broad-sense heritability (H2) (Nyquist,

1991) was first investigated over barley growth time and with treatment. Consistent with the results of

Zhang et al. (2012), the investigated traits showed dynamic changes in heritability during the entire plant

growth stage (Figure 2.13A, left), as exemplified in the growth-related trait digital volume (Figure 2.13A,

bottom right). Traits from different categories showed distinct patterns of heritability over time. It was

found that heritability of E-sensitive traits, such as height, projected area, digital volume, leaf length

and leaf numbers, decreased during drought stress, in agreement with previous findings that quantitative

traits reflecting the performance of crops under drought conditions tend to have low to modest heritability

(Tuberosa, 2012). Furthermore, it was found that geometric traits showed significantly higher heritability

than physiological traits such as FLUO- and NIR-related traits (P < 2.2× 10−16, Welch’s t-test; Figure

2.13A, top right), indicating that variation in morphological traits during plant growth is governed in

large part by genetic factors, rather than environmental factors.

Next, trait-trait genetic (rg) and phenotypic correlations (rp) were calculated during plant growth.

The genetic correlations were calculated from a bivariate model (see Chapter 2.4.10) which allows testing

of the genetic overlap between different traits, while the phenotypic correlations measure the observed

phenotypic similarity of different traits. A correlation network was used to visualize the structure of ge-

I Figure 2.12 (continued). (A) Dissecting the phenotypic variance over time by linear mixed models.

For phenotypic data before stress treatment, σ2
G×E is confounded with σ2

e . Filled circles represent average

variance of each component computed over all traits and solid lines represent a smoothing spline fit to

the supplied data. Error bars represent the s.e.m. with 95% confidence intervals. The numbers of traits

with significance at P < 0.001 are indicated above the bars. The stress period is indicated in dashed box.

(B) The total experimental coefficient of variation (CV; coloured in grey) and genetic CV across lines

(green for control, orange for stressed and blue for the whole set of plants) over time. Data points denote

the average CV value over all geometric traits. Solid lines denote the loess smoothing curves and shadow

represents the estimated standard error. (C) Statistical significance of genotype effect (left), treatment

effect (middle) and their interaction effect (right), as detected by linear mixed models. The shading plot

indicates the significance level (Bonferroni corrected p-values) in terms of LOD scores (-log probability

or log of the odds score). Traits are sorted according to their overall effect patterns. Trait identifiers are

listed on the right, which are given according to Figure 2.13A. G, genotype; E, environment (treatment);

DAS, day after sowing; FLUO, fluorescence; NIR, near-infrared. �
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Figure 2.13: Trait heritability and trait-trait genetic and phenotypic correlations

This figure was taken from Chen et al. (2014b) (legend on next page).

netic and phenotypic correlations at the harvesting period (DAS 58/59), where the manual measurements

(such as fresh weight [FW], dry weight [DW] and tiller number [TN]) were included as well (Figure 2.13B).

As expected, these two correlation matrices correlated well with each other (r = 0.73 and P < 0.001,

Mantel test; Figure 2.13C). Traits of the same category showed strong and positive genetic and pheno-

typic correlations. However, color-related traits were either not correlated or negatively correlated with

other traits (Figure 2.13B), indicating that the variation in these traits has an independent genetic basis
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from other traits. FW and DW showed the highest correlation with the predicted volume trait, both

genetically and phenotypically (rg = 0.94 and rp = 0.97 for FW; rg = 0.79 and rp = 0.95 for DW),

suggesting that the volume trait is a good image-derived estimate of plant biomass. Intriguingly, TN and

plant compactness detected from top view images showed significant genetic and phenotypic correlations

(rg = 0.77 and rp = 0.52), suggesting pleiotropy between barley TN and compactness. Finally, genetic

and phenotypic correlations were computed over time (Figure 2.13C). The correlation pattern dynamical-

ly changed according to the intensity of the external stress, with decreasing correlation during the drought

period and the lowest correlation (r = 0.31) at the end of stress period. This observation indicates that

the extent of genetic influence on most traits was low when plants faced serious stress, thus supporting

the hypothesis that plants exhibit extensive phenotypic plasticity in response to environmental stress

(Sultan, 2000).

2.3 Discussion

High-throughput, automated digital imaging is a powerful tool to help alleviate the phenotyping bot-

tleneck in plants (Furbank and Tester, 2011), as demonstrated by recent studies of plant/root growth

and development using a variety of HTP systems (Meijon et al., 2014; Moore et al., 2013; Slovak et al.,

2014; Yang et al., 2014; Zhang et al., 2012). In the emerging era of plant phenomics, we urgently need

automated, rapid and robust analytical methods for large-scale processing of image data and extraction

of extended features, as well as appropriate analysis frameworks for data interpretation (Fiorani and

Schurr, 2013). A general framework was herein developed to meet these requirements, both in terms

of image processing and post-processing of phenotypic data. As proof of concept, the methodology was

validated by using phenotypic data of barley cultivars collected in an automated plant transport and

imaging platform. This framework is readily extensible to the analysis of other plant species (such as

Arabidopsis, maize and wheat) and other sensors (such as visible, NIR, FLUO cameras).

Plants reveal complex phenotypic traits which are expected to be extremely highly dimensional (D-

hondt et al., 2013; Houle et al., 2010). Increasing the number of phenotypic measurements by image

feature extraction is an important goal in phenomics. As reported here, the pipeline presented here is

capable of parallel processing of image data from multiple sensors, and supports the extraction of a large

I Figure 2.13 (continued). (A) Heatmap showing broad-sense heritability (H2) of the investigated

phenotypic traits over time (left), as exemplified by the digital volume (bottom right). Box plot (top

right) shows the average heritability of phenotypic traits from the four categories (right). Error bars,

s.e.m. with 95% confidence intervals. (B) Network visualizing significant phenotypic (rp; left) and genetic

(rg; right) correlations among the 54 image-derived traits and three manual measurements (brown nodes).

For visualization purpose, only significant correlations are shown (P < 0.01 for rg and rp, and rp > 0.5).

Trait identifiers are given as in (A) and coloured according to their classification as indicated. Positive

correlations are shown by solid lines in red and negative correlations are shown by dashed lines in blue.

(C) Pearsons correlation of rg and rp over time. The test of relationship between matrices of rg and rp

was performed using Mantels test, as exemplifying on the right panel. �
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number of relevant traits (Klukas et al., 2014). The number of traits, including image-based features and

model-derived parameters, extracted from the pipeline greatly exceeds existing pipelines (Camargo et al.,

2014; De Vylder et al., 2012; Green et al., 2012; Hartmann et al., 2011; Paproki et al., 2012; Wang et al.,

2009; Zhang et al., 2012). Sophisticated methods were applied to select a list of representative traits

that are powerful in revealing descriptive phenotypic patterns of plants. It was shown that (1) there

are clearly different patterns of phenotypic profiles for plants from different treatments (Figure 2.8A),

individual genotypes (Figure 2.8B) and also from different agronomic groups (Figure 2.9 and 2.11); and

(2) most of the traits reflected variable treatment effects (Figure 2.12) and even individual traits revealed

genotypic differences in the response to drought and in the recovery process (Figure 2.2D).

Furthermore, the dynamic patterns of various phenotypic traits provided a snapshot of the complex

dynamic process of plant growth (Figure 2.13), implying dynamic genetic control underlying phenotypic

plasticity of plant development. The time-lapse phenotypic data provides a solid basis for functional

mapping of dynamic QTLs underlying trait formation, by incorporating development features (estimated

from mathematical models; see Chapter 3) of trait formation into the statistical framework for QTL

mapping (Wu and Lin, 2006). Indeed, the pipeline is flexible enough to use in large panels of mapping

populations and is easy to integrate into existing pipelines (as developed in R) for association mapping

(Aulchenko et al., 2007; Kang et al., 2008; Lipka et al., 2012).

Dissecting phenotypic components of complex agronomic traits such as those associated with crop

yield and stress tolerance can be achieved by model-assisted methods (called “the dissection approach”),

in which complex phenotypes are dissected into more simple and heritable traits (Tardieu and Tuberosa,

2010). Such attempts have been made previously to dissect the sensitivity of flowering time to environ-

mental conditions (Reymond et al., 2003; Yin et al., 2005a,b). In this study, as a further step towards

biological insights from such image-derived parameters, genetic correlations were calculated between trait-

s, such as might be considered for selection of desired phenotypic trait combinations in breeding programs

(Chen and Lubberstedt, 2010; Porth et al., 2013; Stackpole et al., 2011). The identification of a concerted

negative genetic correlation of an indicator of water content/drought tolerance (NIR signal; Figure 2.2D)

with plant height (Figure 2.13B) appears to be highly advantageous for breeding strategies: breeding for

higher drought tolerance could simultaneously select lower plant height, and vice versa. From a practical

perspective, genetically correlated traits can be considered as proxies of the target trait in association

genetic analyses, when measurements of the target trait are more time and/or labor intensive. In this

case, the image-derived parameters plant volume and compactness are potential proxies for biomass and

tiller numbers, respectively (Figure 2.13B).

Altogether, the analysis framework presented here will help to bridge the gap between plant phenomics

and genomics aiming at a methodology to efficiently unravel genes controlling complex traits.

2.4 Materials and methods
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2.4.1 Plant materials and growth conditions

The methodology was applied on a barley panel and produced a phenotypic map for barley plants from

18 genotypes (Table 2.1) under control and drought-stress conditions over time. A LemnaTec HTS-

Scanalyzer 3D platform was used to screen 16 German two-rowed spring barley cultivars (cv.) and two

parents of a Double Haploid (DH)-mapping population (cv. Morex and cv. Barke) for vegetative drought

tolerance. The 16 genotypes can be divided into three agronomic groups according to their breeding

history: group 1 (released before 1950), group 2 (released between 1950 and 1990) and group 3 (released

after 1990). The parental cultivars are considered as an independent group (DH group). Nine plants per

genotype and treatment for the 16 German cultivars and 6 plants for the DH-parents were investigated

during one experiment from May to July 2011. Plants grew under controlled greenhouse conditions and

were phenotyped on a daily basis over the entire experimental phase using the fully automated system

consisting of conveyer belts, a weighing and watering station and three imaging sensors. The growth

conditions in the greenhouse were set to 18◦C during day time and 16◦C at night. The day light period

lasted about 13 hours starting from 7 am.

Two seeds of each cultivar were sown per pot (two litre in volume; 19.5 cm in height; 14.5 cm in

diameter; http://www.berryplastics.com), and the pots were kept at a field capacity (FC) level of

90% by using the automated target-weight watering option of the system. After seven days, plants were

thinned out to one plant per pot. Subsequently, 200 g of blue coloured quartz sand was added to each pot

as a cover layer, reducing the evaporation and providing a uniform blue background for image analysis.

Blue-coloured supports were used to stabilize plants and prevent leaf damage during automatic shunting

of the pots. The FC was determined by filling 10 pots with 970 g of substrate (“Klasmann Substrate

no. 2”, http://www.klasmann-deilmann.com) and watering carefully to saturation and weighing 2 days

after saturation. Substrate of each pot was then dried for one week at 80◦C and weighed again, thus

representing the weight of soil alone. Field capacity was calculated as the difference in weight between

dry and soaked soil.

Drought stress was applied four weeks after sowing by withholding water. Control plants remained

well-watered at a FC of 90%. After a stress period of 18 days plants were re-watered to 90% FC and kept

well-watered again for another two weeks. For each plant, top and side cameras were used to capture

images daily at three different wavelength bands: visible light, fluorescence and near-infrared (Figure

2.2B-C). In this manner, thousands of images were acquired for each genotype and treatment during the

whole phenotyping period.

In addition, several manual measurements were collected for each plant. Above-ground biomass of

each plant was measured as plant fresh weight and dry weight at DAS 58. Tiller number was counted

manually for each plant at three time points: DAS 27, DAS 45, and DAS 58.

http://www.berryplastics.com
http://www.klasmann-deilmann.com
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2.4.2 Image analysis

The barley analysis pipeline that was implemented in the IAP software (v0.94; Klukas et al., 2014)

was used to perform the image processing operations (Figure 2.2A). Briefly, image datasets and the

corresponding metadata were automatically loaded into the IAP system from the LemnaTec database

by using the built-in IAP functionality. The structured image data analysis was performed using the

barley analysis pipeline with optimized parameters. Image processing included four main steps: (1) pre-

processing – to prepare the images for segmentation, (2) segmentation – to divide the image into different

parts which have different meanings (for example, foreground the plant part; background – imaging

chamber and machinery), (3) feature extraction – to classify the segmentation result and get a trait list,

and (4) post-processing – to summarize calculated results for each plant. The analysis was performed in

a grid-computing mode to speed up image processing. Analyzed results were exported in csv file format

via IAP functionalities, which can be used for further data inspection (see Online Data Set 1 in Appendix

C). The resulting spreadsheet includes columns for different phenotypic traits and rows for data from

different time points. The corresponding metadata is included in the result table as well. Depending on

the computing resource available, IAP can process large-scale image data in a reasonable time ranging

from a few hours to a few days (Klukas et al., 2014). An image dataset of the size used in this study can

be processed within three days on a local PC with 6 gigabytes (GB) of system memory using four central

processing unit (CPU) cores.

Each plant was characterized by a set of 388 phenotypic traits, also referred to as features, which were

grouped into four categories: 60 geometric features, 100 fluorescence-related (FLUO-related) features,

182 color-related features, and 46 near-infrared-related (NIR-related) features. These traits were defined

by considering image information from different cameras (visible light, fluorescence and near infrared)

and imaging views (side and top views). See the IAP online documentation for details about the trait

definition.

2.4.3 Feature preprocessing

The preprocessing of phenotypic data involves outlier detection and trait reproducibility assessment.

Defects may be introduced during the imaging period or in the image processing steps. Grubbs test

(Grubbs, 1950) was first adopted to detect outliers based on the assumption of normal distribution of

phenotypic data points for repeated measures on replicated plants of a single genotype for each trait.

Grubbs test can be used to detect if a particular sample contains one outlier (P < 0.01) at a time. The

outlier was expunged from the dataset and the test was iterated until no outliers were detected.

Next, it was reasoned that phenotypic information should be robust and informative enough (rather

than noise) to infer differences in genotype or treatment in terms of higher reproducibility over replicated

plants in comparison to random samples of plants. The reproducibility of phenotypic traits was evaluated

by the Pearson correlation coefficient. The correlation coefficient values were computed over each pair of

replicated plants (from the same genotype) for each treatment. For comparison, correlation values over

http://iap.ipk-gatersleben.de/documentation.pdf
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two sets of plants (with the same size) were calculated from two randomly selected genotypes. The traits

were considered as highly reproducible if (1) the median correlation coefficient over genotypes was larger

than 0.8, and (2) the coefficients were significantly higher in replicates than in random plant pairs (Welch’s

t-test P < 0.001). The above criteria should be satisfied in at least one treatment condition. Therefore,

the original 388 traits were reduced to 217 highly reproducible ones. After removing redundancy, 173

high-quality traits (Figure 2.2A) were retained and used for further analyses.

Plants with empty values were discarded for analysis. A phenotypic matrix (whose rows represented

phenotyped plants over time and whose columns indicated highly reproducible traits) was obtained. The

phenotypic profile was further normalized (if necessary) to zero mean and unit variance, computed for

all phenotyped plants over time.

2.4.4 Feature selection

The resulting datasets may contain many redundant features (phenotypic traits) which are correlated

with each other. To reduce the excessive correlation among explanatory variables, the so-called “multi-

collinearity”, a method was implemented to select an optimal set of explanatory variables for a statistical

model. This process is accomplished with stepwise variable selection using variance inflation factors

(VIF s), which is defined as

V IFi =
1

1−R2
i

where the VIF for variable Xi is obtained using the coefficient of determination (R2) of the regression of

that variable against all other explanatory variables. Specifically, a VIF value is first calculated for each

variable using the full set of explanatory variables,and the variable with the highest value is removed.

Next, all VIF values with the new set of variables are recalculated, and the variable with the next highest

value is removed, and so on. The above procedure is repeated until all values are below the desired

threshold. As a general rule, VIF < 5 was considered as a cut off value for the high multicollinearity

problem. The “VIF” function was implemented in the fmsb R package to calculate VIF.

2.4.5 Hierarchical clustering analysis and PCA

Hierarchical clustering analysis (HCA) and principle component analysis (PCA) were carried out to

visualize the data globally. HCA builds a hierarchy from individuals by progressively merging clusters,

while PCA is a technique used to reduce dimensionality of the data by finding linear combinations

(dimensions; in this case, the number of traits) of the original data.

To identify plants from the same genotype or agronomic groups with similar phenotypic composition,

HCA was performed with the normalized data based on the list of highly reproducible traits. All analyses

were conducted with the complete linkage hierarchical clustering method and Euclidean distances and

were visualized as a heatmap with a dendrogram by using the “heatmap.2” function of the corresponding

R package.
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PCA was carried out to characterize each plant based on phenotypic composition and to indicate

the affiliations within the phenotypic diversity of four agronomic groups. PCA was performed using

Bayesian principal component analysis (the “bpca” function) as implemented in the R package pcaMethods

(Stacklies et al., 2007). The first six principal components (PCs 1-6) and the corresponding component

loading vectors PCs 1-6) were visualized and summarized in scatter plots, in which principal components

are coded in color and in shape according to genotypes of origin (control plants in blank points and

stressed plants in filled points) and component loadings (indicated in lines) are coloured according to

phenotypic classification. PCA was performed for control, stress, and the total list of plants, respectively

(Figures 2.9, 2.10 and 2.11).

2.4.6 Phenotypic similarity tree and Mantel test

As phenotypic traits are derived from heritable characters, the influence of environmental factors and

their interactions, it is possible to measure the phenotypic relationship of different genotypes based on the

available traits. A “phenotypic similarity tree” was constructed to show the phenotypic relationship from

a global perspective. Phenotypic similarity trees can be used to quantitatively describe the relationship

of genotypes and phenotypes and to compare the differences of phenotypes under different conditions

(Zhao et al., 2011). Genotypes from the DH groups were excluded from the phenotypic similarity tree

analysis.

First, a phenotypic profile for each genotype was calculated as the average value from replicated

plants. Next, a phenotypic distance (based on the Euclidean measure) matrix of pairwise comparisons

between genotypes was estimated based on the normalized phenotypic profile. The above analysis was

performed for control and stressed plants, respectively. For stressed plants, only data after DAS 34

were taken into consideration because from that time point stressed plants showed differences in their

phenotypes from control plants (see the below SVM method). Finally, the phenotypic similarity trees

were generated based on the distance matrices using the function “plot.phylo” implemented in the R

package ape (Paradis et al., 2004).

A Mantel test (Mantel, 1967) was performed to examine the extent of correlation of the phenotypic

distances between the control and stress plant sets. A positive correlation would be expected in the

case that plants maintain their phenotypic similarity in different environments. The phenotypic distance

matrixes from above was used to conduct the analysis. The Mantel test was computed using the func-

tion “mantel” in the corresponding R package with 10,000 permutations (Monte-Carlo simulation) and

selecting Pearsons correlation method.

2.4.7 Plant classification using SVM

Based on their phenotypic traits (features), plants from the same genotype were classified into control

and stress groups (Figure 2.7A), using the pairwise classification strategy of the support vector machine

(SVM) algorithm as provided by the libsvm library (Chang and Lin, 2011) via the R package e1071.
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The SVM classifier was used to find “optimal” hyperplanes separating two groups of plants in the multi-

dimensional feature space. Using a linear kernel, the SVM parameters were optimized through 2-fold

cross-validation to maximize the accuracy rate for classification and to minimize the mean squared error

for regression. Specifically, a classifier was trained on a randomly chosen subset of half of the images (˜9

images) from one specific genotype or treatment from one specific day (the training set) and then used

the classifier to validate the other half of the images (the validation set).

2.4.8 Analysis of phenotypic variance

The observed variance in a particular phenotypic variable (trait) can be partitioned into components

attributable to different sources of variation, for example, the variation of genotype (G), environment

(E) and their interaction (G×E). The analysis of variance was performed by using linear mixed model

(LMM) for each phenotype trait measured in each day, as defined:

y = Xβ + Zµ+ ε

where y denotes a vector of individual plant observations of a given trait; X and Z are incidence matrices

associating observations with fixed effects (in vector β) and random effects (in vector µ), respectively; ε

is the vector of random residuals assuming ε ∼ (0, Iσ2
ε) (I is the identity matrix). Variance components

for each trait, such as genotypic effect g ∼ (0, Iσ2
G), environment effect e ∼ (0, Iσ2

E) and their interaction

effect ge ∼ (0, Iσ2
GE), were estimated in the LMM using residual maximum likelihood (REML), as im-

plemented in ASReml-R v.3.0 (Gilmour et al., 2009). The statistical significance of variance components

was estimated by the log-likelihood ratio test (log-LR test). The statistic for the log-LR test (denoted

by D) is twice the difference in the log-likelihoods of two models:

D = 2 (log(Lalt)− log(Lnull))

where log(Lalt is log-likelihood of the alternative model (with more parameters) and log(Lnull is log-

likelihood of the null model, and both log-likelihoods can be calculated from the ASReml mixed model.

Under the null hypothesis of zero correlation, the test statistic was assumed to be χ2-distributed with

degrees of freedom equal the difference in number of covariance parameters estimated in the alternative

versus null models. Resulting p-values from LMM were corrected for multiple comparisons with the

Benjamini-Hochberg false discovery rate (FDR) method (Benjamini and Hochberg, 1995). The LOD (log

of odds) scores were further calculated as the log probability (corrected p-value) (Joosen et al., 2013).

Hierarchical clustering was applied to the matrix of LOD scores consisting traits as rows and imaging

days as columns.

As a relative indicator of dispersion, the coefficient of genetic variance (CVg) was calculated as

the ratio of the standard deviation (square root of the among-genotype variance) to the mean of the

corresponding trait value across all genotypes. This analysis was respectively performed for control plants,

stress plants and the whole set of plants (based on the mean value of control and stress plants). Similarly,

the total experimental CV (CVe) was calculated as the sum of the square root of the experimental

variance, including controlled (i.e., treatment effect) and uncontrolled variation, to the mean of trait
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value for one specific genotype. Since CV is only reasonable to be calculated for data measured on a ratio

scale (rather an interval scale), only geometric traits were considered in this calculation.

2.4.9 Broad-sense heritability

The broad-sense heritability (H2) of a trait is the proportion of the total (phenotypic) variance (σ2
P ) that

is explained by the total genotypic variance (σ2
G) (Nyquist, 1991), which was calculated as follows:

H2 =
σ2
G

σ2
G + σ2

GE/2 + σ2
e/2r

where r is the average number of replications.

2.4.10 Estimation of genetic and phenotypic correlations

A bivariate LMM was used to estimate genetic correlations between each pair to traits (the proportion of

variance that two traits share due to genetic causes) in each day. Assuming Yi =

Y 1
i

Y 2
i

 as the response

vector for the subject i with Y k
i the vector of measurement of the trait k (k = 1, 2), the bivariate model

is defined as follows:

yi = Xiβ + Ziµi + εi with

µi ∼ N(0, G)

εi ∼ N(0, R)

where the genetic covariate matrix G =

 σ2
g1 covg1g2

covg1g2 σ2
g2

 and the covariance matrix of measurement

errors R =

 σ2
ε1 covε1ε2

covε1ε2 σ2
ε2

. With the assumption that µi and εi are mutually independent, it is

apparent that V ar(Yi) = ZiGiZ
T
i + R. The genetic correlation between pairs of traits was estimated

as rg =
covg1g2√
σ2
g1

σ2
g2

. The significance of the genetic correlation was estimated using the log-LR test by

comparing the likelihood of the model allowing genetic co-variance between the two traits to vary and

the likelihood of the model with the genetic co-variance fixed to zero. The above analyses were performed

in ASReml-R v.3.0 (Gilmour et al., 2009).

Phenotypic correlations rp among different traits were calculated by Pearson correlation. The signif-

icance of the correlations was tested using the “cor.test” function in R.

To test the relationship between matrices of genetic and phenotypic correlations, a Mantel test (Man-

tel, 1967) was performed for the correlations in each day. The genetic and phenotypic correlations were

visualized in networks. For visualization purpose, only significant correlations were shown (P < 0.01).



Chapter 3

Plant growth modeling based on time-lapse

image data

3.1 Introduction

The most attractive advantage of non-destructive automated imaging techniques is the possibility to

repeatedly measure the same plants over time, allowing novel insights into the high dynamics of plan-

t growth (Schunk and Eberius, 2012). In this way, plants can be phenotyped extensively (towards

comprehensive measurement) and intensively (e.g., population-wide, time-lapse). In high-throughput

phenotyping (HTP), each plant is measured repeatedly. Through image analysis, various image-derived

parameters (phenotypic traits) can be obtained for a single plant at one time point, allowing the detec-

tion of significant phenotypic differences among plants with varied genetic background or under different

environmental conditions. From these measurements, distinct, biologically relevant parameters may be

determined. For example, it is now possible to study plant biomass accumulation (e.g., dry weight)

and growth rate in various growth phases. The advances in HTP in turn help in the development and

application of growth models for plants by taking the environmental influence into consideration.

The complexity of plant growth has been long recognized (Blackman, 1919; Erickson, 1976; Gompertz,

1825; Hunt, 1982; Karkach, 2006). Many mechanistic growth models have been established to model

the laws of plant growth (Archontoulis and Miguez, 2013; Karkach, 2006; Paine et al., 2012; Thornley

and France, 2007), which aim to provide the simplest description that accurately captures the growth

dynamics of individuals. It is well known that plant growth follows a sigmoidal growth curve (Damgaard

and Weiner, 2008; Hunt, 1982; Vanclay, 1994). Several sigmoidal growth models, such as the logistic and

Gompertz models (Karadavut et al., 2008, 2010), with biologically interpretable parameters have been

proposed to probe the growth of individual plants. These advances in plant growth modeling have allowed

a deeper understanding of relationships between plants and their abiotic environment (Paine et al., 2012).

In the following chapter, several linear and nonlinear functions were used to model biomass accu-

mulation for barley and maize plants under control and/or stressed conditions. The established growth

46
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models allow biological interpretation of parameters. Model-based parameters revealed several important

aspects regarding plant development, and provide a solid basis for subsequent QTL (quantitative trait

locus) analysis aimed at understanding the genetic control of plant growth.

3.2 Results

3.2.1 Modeling barley plant growth under normal conditions

Time-lapse phenotypic data generated by HTP provide valuable information to study plant growth. Of

all the phenotypic traits investigated, the image-based volume, which combined information from both

side and top views of cameras, had the best correlation with manual measurements of biomass, such as

fresh weight (FW) and dry weight (DW; Figure 3.1). The image-derived volume estimate was thus used

to model plant growth and considered it as a proxy measure of plant above-ground biomass.

Firstly, time-lapse phenotypic data were used to model and predict plant growth under normal growth

conditions in barley. It has been shown that the growth of Arabidopsis plants follows the logistic model

(Paul-Victor et al., 2010; Tessmer et al., 2013; Zust et al., 2011), while the growth of maize kernels

prefers to fit the Gompertz model (Meade et al., 2013). However, the pattern of barley growth is

poorly investigated. In order to determine a suitable growth curve of biomass accumulation for barley

plants under control conditions, five nonlinear mechanistic models including exponential, monomolecular

(Richards, 1959), logistic (Verhulst, 1977), Gompertz (Gompertz, 1825) and Weibull (Weibull, 1951)

curves (Table 3.1) were compared. Of these models, logistic, Gompertz and Weibull models are sigmoid

functions (with an S shape and an inflection point) and are often applied to describe plant growth as

a function of time (Archontoulis and Miguez, 2013). To implement these models in an efficient way,

the nonlinear relationship of the models was transformed into linearized forms (Table 3.1) and fitted

these linearized models based on the existing linear regression approach. The fitting quality of models

was determined based on the criteria of (1) the coefficient of determination (R2; based on the linearized

model), (2) the root mean squared relative error (RMSRE), and (3) the Pearson correlation coefficient

(r) between the predicted values and the observed values (see Chapter 3.4.3).

The results indicated that the Weibull model y = K− (K − y0) e
−rtm has performed better than the

other models to simulate biomass accumulation over time (Figure 3.2A), in terms of the lowest RMSRE,

the highest R2 as well as r (Figure 3.3A-C), and the best predictability of real biomass (Figure 3.3D). It

was found that the predicted digital biomass from the Weibull model and the image-based digital volume

showed about the same correlations with FW (r = 0.891 versus 0.892; Figure 3.2B).
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Figure 3.1: Correlation analysis of manual measurements with phenotypic traits

Correlation of all phenotypic traits with fresh weight and dry weight for control plants (A) and stressed

plants (B). The digital volume has the best correlation with manually measured biomass. For (A) and

(B), traits are coloured according their classification. Correlation analysis of digital volume with biomass

for control plants (C) and stressed plants (D). For (C) and (D), data points are coloured according

to the genotype origin of plants. The correlation coefficients are indicated for stress and control plant,

respectively. This figure was taken from Chen et al. (2014b). �
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Table 3.1: Mechanistic models used for modeling biomass accumulation in this study.

Model Differential equation† Analytical solution† Linearized form†

Control plants

Exponential
dy

dt
= ry(t) y = y0e

rt ln(y) = ln (y0) + rt

Monomolecular
dy

dt
= r (K − y(t)) y = K − (K − y0) e

−rt ln
1

K − y
= ln

1

K − y0
+ rt

Gompertz
dy

dt
= ry(t) ln

K

y(t)
y = K

(y0

K

)e−rt

− ln
(
− ln

y

K

)
= − ln

(
− ln

y0

K

)
+ rt

Logistic§
dy

dt
= ry(t)

(
1−

y(t)

K

)
y =

Ky0

y0 + (K − y0) e−rt
ln

y

K − y
= ln

y0

K − y0
+ rt

Weibull¶
dy

dt
= rmtm−1 (K − y(t)) y = K − (K − y0) e

−rtm ln

(
ln

K − y0

K − y

)
= ln(r) +m ln(t)

Stressed plants

Quadratic
dy

dt
= b− 2at y = c+ bt− at2 y = c+ bt− at2

Bell-shaped 1
dy

dt
= 2Aa (t− tmax) e

a(t−tmax)2 y = Aea(t−tmax)2 ln(y) = ln(A) + a (t− tmax)
2

Bell-shaped 2
dy

dt
= A (b/t− a) tbe−at y = Atbe−at ln(y) = ln(A) + b ln(t)− at

Bell-shaped 3
dy

dt
= A(b− 2at)ebt−at2 y = Aebt−at2 ln(y) = ln(A) + bt− at2

Linear‡
dy

dt
= r y = y0 + rt y = y0 + rt

† y is biomass; t denotes time; r is intrinsic growth rate for control plants or re-growth rate for stressed plants; K is upper asymptote of biomass for control plants in monomolecular,

Gompertz, logistic and Weibull models; m determines the slope of growth in Weibull model; tmax =
b

2a
is the time point (the center of the peak in bell-shaped curves) at which plant

under stress shows the asymptotic maximum biomass (determined by A). Other parameters are constants.

§ Only the three-parameter version of logistic model was considered. In this model, the lower asymptote is fixed at 0 and the inflection point falls strictly at y = K/2.

¶Weibull model with three parameters was considered, where y0 = 0. The model can thus be simplified as y = K
(
1− e−rtm

)
. It is reasonable in most cases. For example, at planting,

the plant biomass is very close to zero (Archontoulis and Miguez, 2013).

‡ Linear growth for stressed plants is only modeled in the recovery phase.
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Table 3.2: Calculation of absolute growth rate and relative growth rate.

Model AGR, time basis† RGR, time basis† RGR, biomass basis†

Control plants

Exponential ry0e
rt r r

Monomolecular r (K − y0) e
−rt r (K − y0)

y0 +K (ert − 1)

r(K − y)

y

Gompertz rK ln

(
K

y0

)
e−rt

(y0

K

)e−rt

r ln

(
K

y0

)
e−rt r ln

(
K

y

)
Logistic

ry0K (K − y0) e−rt

(y0 + (K − y0) e−rt)2
r (K − y0) e−rt

y0 + (K − y0) e−rt
r
(
1−

y

K

)
Weibull rm (K − y0) t

m−1e−rtm rm (K − y0) tm−1

Kert
m

− (K − y0)
rm

(
1

r
ln

K − y0

K − y

)m−1
m K − y

y

Stressed plants

Quadratic b− 2at
b− 2at

c+ bt− at2
±
√

b2 + 4a(c− y)

Bell-shaped 1 2Aa (t− tmax) e
a(t−tmax)2 2a (t− tmax) ±2

√
a ln

y

A

Bell-shaped 2 A (b/t− a) tbe−at b/t− a NA

Bell-shaped 3 A(b− 2at)ebt−at2 b− 2at ±
√

b2 − 4a ln
y

A

Linear r
r

y0 + rt

r

y

† AGR: absolute growth rate (dy/dt); RGR: relative growth rate (dy/dt/y). RGR can be expressed either as a function of biomass or as a function of time. For Quadratic and Bell-shaped

models, the sign of RGR (biomass basis) is determined by “+” when t ≤ tmax and “-” when t > tmax. Refer to Table 3.1 for explanations of other symbols. NA: not available.
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Figure 3.2: Growth modeling of barley plants under normal conditions

(legend on next page).

Once the best growth curve has been selected, two forms of growth rates, absolute growth rate (AGR)
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and relative growth rate (RGR), can be calculated on the basis of time or biomass (Table 3.2). In the

investigation of barley growth, estimating plant growth rate as a free parameter from the Weibull model

seems biologically reasonable since there is no general accepted approach that measures the plant growth

rate over time. Furthermore, it is much easier to compare plant growth rates (whether AGR or RGR)

among different genotypes by comparisons of time (or biomass)-specific functions, rather than comparing

time-point estimates of growth rates (Paine et al., 2012). Using function-derived growth rates, we can

test the degree to which plants differ in terms of the timing and magnitude of AGR or RGR peaks. When

plotting AGR as functions of time, it was found that genotypes show distinct patterns of AGR along

plant growth and their differences in timing and magnitude are significant (Figure 3.2C).

The Weibull model can also be used to determine the inflection point (tIP =

(
m− 1

rm

) 1
m

) at which

individuals exhibit their maximum AGR (RIP ). The mean values of RIP within genotypes ranged from

2.59 × 105 px3/day (Eunova) to 5.17 × 105 px3/day (BarkeDH). The inflection point splits the growth

curve into two stages with opposite growth dynamics, initially exponential growth and gradually reduced

relative growth rate as plants reach their asymptotic maximum growth capacity (Figure 3.2C; Zeide,

1993). Notably, it was observed that the maximum growth rate is highly correlated with FW (r = 0.88;

Figure 3.2B), indicating its significant impact on crop biomass yield. However, the exact inflection time-

point has less impact on the biomass accumulation (r = 0.52).

3.2.2 Modeling barley plant growth under drought stress conditions

Modeling plant growth under stress conditions is more complex. To my knowledge, there are no previous

studies attempting to model stressed plant growth. It would be very attractive to study plant stress

response based on growth model-derived parameters. According to the observations of plant growth

patterns from image data, plant growth can be divided into two parts describing the stress period (bell-

shaped growth curve) and the recovery phase (linear re-growth model) (Tables 3.1 and 3.2). Of the

three tested bell-shaped curves, the bell-shaped model y = Aebt−at2 (model 3) fitted best for stressed

plants that underwent wilting with a concomitant decrease in estimated volume (Figures 3.4A and 3.5).

I Figure 3.2 (continued). (A) Plant growth prediction based on fitting of the digital volume by using

five different mechanistic models. The best-fitted model — Weibull model — can be considered as the

growth curve of barley plants. Several Weibull-model derived parameters such as the “inflection point”

(tIP , a time-point with the maximum absolute growth rate) and “maximum biomass” (the maximum

growth capacity; parameter K) are indicated. Dots in green represent data points derived from images

and curves represent the least-squares fit to the observed data. Shown is the result of fitting for a Beatrix

plant. See also Online Data Set 2 in Appendix C for growth modeling for all plants. tH : the time

point for harvesting. (B) Pairwise comparison of model-derived parameters, image-derived data and

manually determined fresh weight or dry weight for control plants. Each point in the dot plots (bottom-

left quadrants) represents one plant from a specific genotype as coloured and labeled in (C). Pearson’s

correlation coefficients are indicated in top-right quadrants. (C) The absolute growth rate (AGR) derived

from the Weibull models, which were fitted at the genotype level. The tIP time points are indicated by

dots. Different genotypes are indicated by different colors. �
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Figure 3.3: Evaluation of the performance of growth curves for control plants

The quality of fit for each model is evaluated by (A) the root mean squared relative error of prediction

(RMSRE; the lower value, the better prediction), (B) the adjusted the coefficient of determination (R2;

the higher value, the better prediction), and (C) the Pearson correlation coefficient (PCC; r) between

the predicted values and the observed values (the higher value, the better prediction). In (A), (B) and

(C), bar height denotes the average value for all control plants; error bars denote s.e.m.. (D) Scatter plot

representing the predicted biomass and manual measurements (fresh weight [FW] and dry weight [DW]).

(E) Scatter plot showing pairwise comparison of the maximum growth capacity (Kmax) derived four

asymptotic growth models and the manual measurements (FW and DW) when plants were harvested. �

This bell-shaped curve reveals a time point (tmax =
b

2a
) when plants showed the maximum estimated

volume under stress and two inflection points (tIP1 and tIP2) aside tmax (Figure 3.4A). These parameters

may be indicative for plant stress responses. However, the volume at tmax was not a good indicator of

final biomass (r = 0.27; Figure 3.4B). Plants showed rapid growth after re-watering in a relatively short

recovery phase, which could be quantified with a simple linear model (y = y0 + rt; median adjusted

R2 = 0.98). The re-growth rate (Rrec = r) was determined from the model to show the speed of recovery

in different individuals (Figure 3.4C), with mean values over genotypes ranging from 8.72× 104 px3/day

(MorexDH) to 2.44×105 px3/day (Isaria). Interestingly, the recovery growth rate was strongly correlated
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Figure 3.4: Growth modeling of barley plants under drought stress conditions

(legend on next page).
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I Figure 3.4 (continued). (A) Plant growth prediction based on fitting of the image-derived volume

in drought stress conditions. Plant growth before re-watering is modeled by one quadratic function and

three different bell-shaped functions. Growth in recovery phase is modeled by a linear function. The

quality of fit (R2) of each model is given. Five vertical lines from left to right: the start of stress period

(grey), the left inflection point (tIP1 estimated from the best-fitted bell-shaped model 3, orange), the

time of maximum biomass under stress (tmax = b
2a , orange), the end of stress period (grey) and the right

inflection point (tIP2, orange). Shown is the result of fitting for a Beatrix plant. See also Online Data

Set 3 in Appendix C. tH , time for harvesting. (B) Pairwise comparison of model-derived parameters,

image-derived data and manual measurements for stressed plants. (C) The absolute growth rate (AGR)

derived from the bell-shaped model 3 models (under stress) and linear models (in recovery phase). The

time tmax is indicated by dots. Each genotypes were fitted independently and differently coloured. �

Figure 3.5: Evaluation of the performance of growth curves for stressed plants

The quality of fit for each model is evaluated by (A) the root mean squared relative error of prediction

(RMSRE; the lower value, the better prediction), (B) the adjusted the coefficient of determination (R2;

the higher value, the better prediction), and (C) the Pearson correlation coefficient (PCC; r) between

the predicted values and the observed values (the higher value, the better prediction). Bar height denotes

the average value for all stressed plants; error bars denote s.e.m.. �

with FW (r = 0.87; Figure 3.4B).

3.2.3 Model-derived parameters describing plant growth patterns and per-

formance

Model parameters are the intrinsic factors that determine the shapes of growth curves. Therefore, model-

derived parameters can be used to describe plant growth patterns when a specific growth model is applied

to fit plant growth. Namely, plants differ from each other in their growth patterns by those model-derived

parameters. Here, the Weibull model-derived parameters were first calculated for control plants based

on the above mentioned core set of barley cultivars (Table 3.3). In Weibull model, parameter K is the

limiting value of growth potential (i.e., the final biomass Kmax), r is a shape parameters that determines

the spread of the curve along the time and governs the rate at which plant growth approaches its potential

maximum Kmax, while m is the allometric constant (Fekedulegn et al., 1999). It was found that Kmax
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is highly correlated with harvested biomass (r = 0.89; Figure 3.2B), revealing a reasonable estimation

of plant growth potential. Each parameters were evaluated in terms of repeatabilities. Interestingly, all

these parameters showed relatively high repeatabilities. Meanwhile, The bell-shaped model 3 and linear

model-based parameters were also derived for stressed plants (Table 3.3).

Figure 3.6: Comparison of stress elasticity and several drought tolerance indexes

(legend on next page).

As a further step toward interpretation of the model-derived parameters, combined parameters could
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I Figure 3.6 (continued). (A) Scatter plot showing pairwise comparison of stress elasticity (ϵstress)

and eleven drought tolerance indexes. The drought tolerance indexes were calculated based on biomass

of fresh weight. Pearson‘s correlation coefficients of these indexes are indicated in top-right quadrants.

YP: biomass under control condition (Yp); YS: biomass under stress condition (Ys); stress suscepti-

bility index SSI = 1 − (Ys/Yp)/SI, where SI = 1 − (Y s/Y p), Y p and Y s are the means of Yp and

Ys, respectively (Fischer and Maurer, 1978); mean productivity MP = (Ys + Yp)/2 (Hossain et al.,

1990; Rosielle and Hamblin, 1981); stress tolerance TOL = Yp − Ys (Hossain et al., 1990; Rosielle and

Hamblin, 1981); stress tolerance index STI = (Yp × Ys)/(Y p)
2 (Fernandez, 1992); geometric mean pro-

ductivity GMP =
√

Yp × Ys (Fernandez, 1992); yield index Y I = Ys/Y s (Gavuzzi et al., 1997; Lin

et al., 1986); yield stability index Y SI = Ys/Yp (Bouslama and Schapaugh, 1984; Fereres et al., 1986);

yield reduction ratio Y R = 1 − Y SI = 1 − Ys/Yp (Araghi and Assad, 1998); relative performance

RP = (Ys/Y s)/(Yp/Y p) (Abo-Elwafa and Bakheit, 1999). (B) Comparison of plant growth rates be-

tween control and stress conditions. RIP represents the growth rate (px3/day) at the inflection point

of control plants. Rrec denotes the recovered growth rate (px3/day) in recovery phase of stress plants.

stress, referred to “stress elasticity” and calculated as the ratio of Rrec and RIP . Two drought tolerance

indexes, Y SI and SSI, are provided for comparison. This figure was adapted from Chen et al. (2014b). �

be derived from the normal plant growth and stressed plant growth models. Since RIP (denoting the

maximum growth rate for plants under control conditions) and Rrec (indicating the maximum growth

rate for plants in recovery phase) are strong correlated with final biomass of control and stressed plants,

respectively, their ratio was defined for each genotype as “stress elasticity” as:

ϵstress =
Rrec

RIP

ϵstress showed high correlation (r > 0.5) with several drought tolerance indexes of different genotypes

(Figure 3.6A), such as yield stability index (Bouslama and Schapaugh, 1984) and stress susceptibility

index (Fischer and Maurer, 1978). It was found that cultivars MorexDH, Perun and Sissy showed the

lowest tolerance to drought stress, while Ursa, Isaria and Pflugs Intensiv showed the highest tolerance

(Figure 3.6B).

3.2.4 Growth modeling of a worldwide collection of maize plants

The established methodologies of plant growth modeling were then applied to a worldwide collection of

maize plants, which were collected for 36 genotypes (including two high performance [HP] lines) with

origin from 20 countries (Supplemental Table S2). Over a course of five weeks, 223 maize plants were

monitored in a LemnaTec phenotyping system under three different conditions: wet, normal and drought

stress (Figure 3.7A-C). The phenotyping period covers the most vegetative stage until the tassel emerges

when plants attain their maximum height. Image data were subjected to trait extraction using the IAP

software (Klukas et al., 2014). The trait of projected volume (Online Data Set 4 in Appendix C) was

used to predict plant growth over time, as this trait is highly correlated to manually measured plant

biomass (Figure 3.7D). Due to the limitations the phenotyping system, data points of plants with height

more than 2.3m were excluded from analysis because of out of the range of imaging.
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Figure 3.7: Experimental design for high-throughput phenotyping of a worldwide collection of maize

plants

(legend on next page).

Plants with wet and normal treatments were fitted using the same set of nonlinear models as they

were used in barley plant growth modeling under normal conditions (see Chapter 3.2.1). It was found that
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I Figure 3.7 (continued). (A) The growth stage of maize. (B) The strategy of high-throughput

phenotyping (HTP) of a diverse set of maize plants with different treatments. HTP was per-

formed in a LemnaTec system. Plants were monitored in a noninvasive manner under wet, normal

and drought stress conditions. Two types of images (visible and fluorescence) from both side view

(shown) and top view (not shown) were used for plant image-based volume construction. (C) Dis-

tribution of the worldwide maize collection. 223 plants in total were collected from 36 genotype-

s with 20 country origin. Top: pie charts indicate the distribution of plants with three treatments.

Bottom: countries are coloured according the number of plants with their origin (indicated in the

parentheses). (D) Correlation of image-based volume and manually measured plant biomass. �

Figure 3.8: Evaluation of the performance of growth modeling for maize plants

Refer to Figures 3.3A-C and 3.5 for legends. �

Table 3.3: Summary of growth model-derived parameters.

Model† Parameter§ mean s.d. w2¶

Weibull model

m 5.656 0.219 0.791

r 3.378× 10−10 2.517× 10−10 0.849

Kmax = K 8.923× 107 2.076× 107 0.971

tIP 48.277 1.728 0.932

RIP 3.773× 106 8.659× 105 0.970
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Bell-shaped model 3

a 8.921× 10−3 1.368× 10−3 0.721

b 0.709 0.080 0.712

tmax 40.031 1.990 0.710

Amax 1.118× 107 1.264× 106 0.934

|tIP2 − tIP1| 15.118 1.266 0.660

Linear model Rrec = r 1.719× 106 5.502× 105 0.971

Combined ϵstress = Rrec/RIP 0.452 0.129 0.911

† The parameters of these model can be found from Table 3.1.

§ Kmax: the maximum growth capacity, determined by parameter K; tIP : the inflection time point; RIP : the maximum

growth rate at time tIP ; tmax: the time point that plant shows the maximum biomass (Amax) under stress; tIP1 and

tIP2 are two inflection time points determined by the bell-shaped curve. |tIP2 − tIP1| is the time range between these

two inflection points.

¶w2: repeatability of the corresponding parameter.

Weibull curve is the model of choice for describing maize plant growth under wet and normal conditions

(Figures 3.9A and 3.8A-C). It was also observed that stressed maize plants follow the similar growth

patterns as observed in barley: bell-shaped curve of growth under stress and linear-like re-growth in

recovery stage (Figures 3.9A and 3.8D-F). However, maize plants showed sharper peaks and more narrow

width in “bell” curves than barley plants, suggesting that maize plants are more sensitive to drought

stress. Accordingly, it was observed the re-growth rates Rrec for stressed plants are largely lower than

the maximum growth rates RIP for plants with wet and normal treatments based on evaluation of a set

of HP plants (Figure 3.9B).

Furthermore, the genotype-level growth rates (under normal conditions) were calculated for plants

collected from different countries. Plants originated from different countries showed clear distinct patterns

of growth rates (Figure 3.9C). Figure 3.9D showed the distribution of the maximum growth rates RIP

over the world according to the country origin of plants. For example, plants originated from Germany

had the maximum RIP , while plants originated from Russia had the minimum RIP . Besides, it was

found that RIP is highly correlated with the maximum growth capability (Kmax; Figure 3.9E), which is

consistent with the previous observations in barley plants (Figure 3.2B).

3.3 Discussion

HTP is an ideal tool to study plant growth dynamics due to its noninvasive way of phenotyping protocol.

In this regard, plant growth for the same plant can be investigated over time, thus to relieve the common

problems — such as autocorrelation and heteroscedasticity of the residuals (Thornley and France, 2007)

— caused in traditional growth modeling based on heterogeneous data collected from different individuals.

In this chapter, linear and various nonlinear growth models were applied for modeling plant growth in two

important crop species — barley and maize — under both normal growth and drought stress conditions.
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Figure 3.9: Growth modeling of maize plants

(legend on next page).

In a nutshell, it was found that both crops share the similar growth patterns under normal or water-

limited conditions (Figures 3.2, 3.4 and 3.9), implying that the methodologies herein can be applicable

to other crops in the future when HTP data are available.

Due to limiting belowground resources and ontogenetic changes such as the onset of flowering, crop

plant growth biomass will finally approach an asymptote (Paine et al., 2012). In this study, since the time

scale of phenotyping for barley and maize plants covers the whole vegetative stage, it was reasoned that

asymptotic growth models are appropriate for analyses. Indeed, asymptotic models (i.e., logistic, Gom-

pertz and Weibull models) show better performance in modeling crop plant growth than non-asymptotic

models (i.e., exponential model; Figures 3.3A-C and 3.8A-C). In addition, logistic, Gompertz and Weibull

models are almost equally good in prediction. For example, the logistic model can be considered as an

alternative model for modeling barley plant growth (Chen et al., 2014b) as it shows similar performance

with the Weibull model (Figure 3.3). However, each model has its advantages and disadvantages and it
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is desirable to select an appropriate one to fit the experimental data and with biologically interpretable

parameters (Archontoulis and Miguez, 2013; Paine et al., 2012). The logistic function reveals symmetric

growth with an inflection point at half the final biomass (Kmax/2), while the Weibull model is more

robust to deal with asymmetric growth as the inflection point can be flexible over time. From this aspect,

it can be concluded that the Weibull model is preferred to the logistic model for describing plant growth

in crops like barley and maize.

On the other hand, non-asymptotic models can be appropriate for modeling the initial stages or par-

tial stages of the lifespan of plant growth, even though the underlying assumption that growth continues

indefinitely is somehow implicit (Paine et al., 2012). For example, a recent study showed that sorghum

(Sorghum bicolor L. Moench) plants followed the non-asymptotic power law model in a “nitrogen” ex-

periment based on the investigation of projected leaf area over four weeks (Neilson et al., 2015).

The methodology developed here for describing plant growth can be used for a further purpose of

applying it to a large genetic mapping population. The selected nonlinear Weibull function could be used

within a genetic mapping model to determine the underlying genetic bases associated with crop growth.

In practice, complex agronomic phenotypes, such as plant growth and stress tolerance, can be dissected

into more simple and heritable traits by model-assisted methods (Tardieu and Tuberosa, 2010). Herein a

set of mathematical parameters of the growth models that define the shape of plant growth for different

genotypes were identified (Table 3.3), such as the inflection time-points (tIP , repeatability w2 = 0.93),

the maximum growth rate (RIP , w
2 = 0.97), the maximum growth capacity (Kmax, w

2 = 0.97) and the

stress elasticity (ϵstress, w
2 = 0.91), which showed very high repeatabilities and are explicitly related to

plant growth and drought tolerance, thereby permitting identification of stable QTLs controlling their

expression through dynamic QTL mapping approaches (Wu and Lin, 2006). Notably, such traits in the

dissection approach typically are not measurable via traditional phenotyping approaches.

I Figure 3.9 (continued). (A) Growth modeling of maize plants under three different conditions as

indicated in different colors. Plants with wet and normal treatments are fitted with Weibull curves.

Stressed plants were fitted with bell-shaped curve (model 3) under stress condition and with linear model

in recovery stage. The formulas of model functions, goodness of fit (adjusted R2) and model-derived

parameters are provided. Dots denote the average values over all plants with a specific treatment,

shadow represents the estimated standard error, and curves represent the least-squares fit to the average

data. Vertical lines represent the infection points for Weibull curves and the position of the peak for

bell-shaped curve. Horizontal lines represent the values of Kmax for Weibull models and the peak for

bell-shaped curve. See Online Data Set 5 in Appendix C for growth modeling for individual plants. (B)

Comparison of the maximum of growth rate (RIP from Weibull model) for plants with wet and normal

treatments and recovery growth rate (Rrec from linear model) for stressed plant. Evaluation is based

on the common set of high performance lines. (C) The absolute growth rate (AGR) of normal plants

derived from the Weibull models, which were fitted at the genotype level. The number of plants used for

modeling is given in parentheses. (D) Distribution of the maximum growth rate (RIP ). Countries are

coloured according the median values of RIP . (E) Correlation of the maximum growth capacity (Kmax)

and the maximum growth rate (RIP ). �
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3.4 Materials and methods

3.4.1 Plant image data

Barley plant image data were obtained as described in the previous chapter (see Chapter 2.4.1; (Chen

et al., 2014b)). Maize plant image data are described as below.

3.4.1.1 High-throughput phenotyping of a worldwide set of maize plants

A collection of a worldwide varieties of maize genotypes was provided by the IPK Genebank (Supplemental

Table S2). The selection includes 34 genotypes from 20 different countries and two high performance

(HP) lines (with German origin) from KWS Company1.

On average four replicates per genotype were grown, except from the two high-performance lines,

which includes 26 replicates each. The overall cultivation time was 55 days. The plants were seeded in

five litre pots (filled with 4 kg of an IPK soil mixture composed of 40% IPK made compost [composed

of 9% organic matter, pH 6.9, with 153 mg/l N, 731 mg/l P2O5, 1259 mg/l K2O, 272 mg/l Mg], 40%

substrate 2 [Klasmann-Deilmann GmbH, Geeste, Germany] and 20% sand) and pre-cultivated in an

external greenhouse for 16 days in a controlled environment. Within this duration the plant are large

enough for imaging on the high-throughput imaging system. After, the plants were randomly placed for

39 days on the phenotyping system. The plants grew in a climate controlled glass house at 25/20◦C

day/night, 65% relative air humidity, and 205−245 µmol m2s1 PAR supplemental illumination using

SonT Agro high pressure sodium lamp (Philips, Amsterdam, The Netherlands) with the light period set

to 16 h (06:00−22:00 h). The watering were handled by the system through a peristaltic pump, each

plant were watered daily by adding equivalent volume of water that was lost from the soil. By a daily re-

arrangement of the plants, growth effects affected by positioning effects should be avoided. After 14 days

of growth, a stress phase were initiated for 15 days. For every genotype a control-line were established

which were unaffected from changing conditions. Additionally, for the two KWS lines the watering were

also extended over the normal distribution to simulate effects of over-watering of plants. An detailed

overview about the cultivation duration and the exact harvest times is shown in Figure 3.7B.

The plants were cultivated in an automated greenhouse equipped with a HTP system from the

LemnaTec company which allows the automatic cultivation of plants. Each plant was placed on a separate

carrier which can be moved by an conveying system. The system enables an automatic imaging using

three different imaging sensors. Images were acquired in the visible light spectra (˜390-750 nm) using

a Basler2 Pilot piA2400-17gc with resolution of 2454 × 2056 pixels. This images are useful for many

analysis task, e.g. extracting architectural or color features. An fluorescence imaging system, performing

an excitation of blue light with an average intensity of 450 nm3 and an image capturing in a range of

1http://www.kws.com/
2Basler AG, Ahrensburg, Germany.
3minimum intensity at 400 nm and maximum intensity at 500 nm.

http://www.kws.com/
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˜520-750 nm by using a Basler Scout scA1400-17gc with resolution of 1390 × 1038 pixels, a relative

prediction for fluorescence activity in plants is possible. Finally a near-infrared imaging in a range of

˜1420-1480 nm using a Nir 3004 camera with a resolution of 320 × 256 pixels is performed. The camera

has an maximum intensity at 1452 nm with and full width at half maximum (FWHM) of 27 nm. During

the experiment three different zoom configuration were used to get the maximum detail in respect to the

plant development. Also blank reference images (images including only the empty imaging chamber), for

each imaging system, are created before each imaging run. This images could later be used for the image

processing. The images were saved as uncompressed .png (portable network graphic) files. The created

dataset include 80133 images with an overall size of 281 GB (uncompressed). Images were acquired from

different positions including a top-view and several side-views. For side-view images two angles at zero

and 90 degree were considered. On days on which the manual harvests were performed additional images

from 24 side angles were taken in steps of 15 degree. The harvested plants were randomly chosen from the

whole set. Weighting and watering data were collected automatically by the system, during the watering

procedure.

3.4.2 Image analysis

Image analysis was peformed by using the IAP software (Klukas et al., 2014), as described in Chapter

2.4.2. Parameter were adjusted and optimized according to the experiment configuration and imaging

conditions. One of the main features used in this chapter, the estimated plant “digital volume”, is

implemented inside IAP and calculated as

VIAP =
√
A2

side.view ×Atop.view

where Aside.view and Atop.view are the mean values of projected areas from side-view (at different angles)

and top-view images, respectively. While there are different ways to estimate plant volume, VIAP shows

the best performance in biomass estimation (Klukas et al. (2014)).

3.4.3 Plant growth modeling

Of the investigated traits, image-based volume showed the best correlation with manually measured fresh

weight and dry weight (Figures 3.1 and 3.7) and thus was considered to represent the digital biomass of

plants. The plant growth was modeled using digital biomass for control and stressed plants, respectively.

Growth in control conditions was modeled with five different mechanistic models: exponential,

monomolecular, logistic, Gompertz and Weibull models (Table 3.1). To fit these models using the lin-

ear regression function “lm” in R, the nonlinear relationship of the models were first transformed into

linearized forms. These linearized models were fitted using the estimated volume of each control plant.

To fit models in high quality, it was required that the input data include at least one data point from

the first one-fourth and the last one-fourth of the whole growth stage. The fitting quality of models was

assessed and compared based on the following criteria:

4Camera from Allied Vision Technologies GmbH former VDS Vosskühler GmbH, Stadtroda, Germany.
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(i) the Pearson correlation coefficient (PCC; r) between the predicted values and the observed values;

r =

∑n
i=1 (yi − y) (ŷi − ỹ)√∑n

i=1 (yi − y)
2
√∑n

i=1 (ŷi − ỹ)
2

(ii) the adjusted coefficient of determination (R2), namely, the fraction of variance explained by the

linear-transformed model;

R2 =

(
1−

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − y)

2 − p

n− 1

)(
n− 1

n− p− 1

)
(iii) the root mean squared relative error of prediction, defined as

RMSRE =

√√√√∑n
i=1

(
yi−ŷi

yi

)2
n

where ŷi is the predicted and yi is the observed biomass at the ith time point for a specific plant, ỹ is

the mean value of the predicted biomass and y is the mean value of the observed biomass, n denotes

the number of data points used for growth modeling and p is the number of model parameters.

Of the five models, the Weibull model fitted best (Figures 3.3 for barley and 3.8A-C for maize). Several

useful parameters (derived traits) can be derived from the Weibull model: (1) the intrinsic growth rate

(R) which measures the speed of growth; (2) the inflection point (IP) which represents the time point

when plant reaches the maximal speed of growth; and (3) the maximum final vegetative biomass (Kmax),

which was estimated for each plant on the basis that the model could fit the data with the largest R2. To

this end, Kmax was initially assigned to the image-based volume at the last day and the corresponding

R2 is calculated. The process was iterated with 1% increment of Kmax at each step, and the iteration

was stopped when there was no increment of R2.

Modeling of growth in stress conditions is divided into two parts: (1) growth before and during the

stress phase and (2) re-growth during recovery phase. In the first phase, three different bell-shaped curves

and a quadratic curve were fitted to the data, while in the recovery phase a simple linear model was used

to characterize re-growth (Table 3.1). The bell-shaped models were first linearized and then fitted using

the linear regression function. The bell-shaped model y = Aebt−at2 fitted best and was used for parameter

extraction. Parameters estimated from this bell-shaped model included: time point of maximum biomass

(tmax = b/2a) and biomass at tmax (Table 3.3). After stress, the linear model revealed the speed of

re-growth (Rrec).

3.4.4 Trait repeatability

Repeatability (w2) is the proportion of phenotypic variance attributable to differences in repeated mea-

sures of the same genotype (in terms of replicated plants). Repeatabilities were calculated as w2 =
σ2
G

σ2
G + σ2

e/r
, where r is the number of of replicated plants. Genotypic variance σ2

G was estimated in

the linear mixed model (see Chapter 2.4.8) by residual maximum likelihood (REML) assuming that

Gi ∼ N(0, σ2
G).



Chapter 4

Prediction of plant biomass accumulation based

on image-derived parameters

4.1 Introduction

Biomass accumulation is an import indicator of crop final product and plant performance. It is thus

considered as a key trait in plant breeding and agriculture improvement. The conventional means of

measuring plant biomass is very time consuming and labor intensive because plants need to be harvested

and dried before measuring their fresh or dry weights. Moreover, owing to its destructive measurements,

this method is impossible to measure the same plant over time. Digital image analysis has been proposed

as a fast alternative way to accurately infer plant biomass.

Recently, plant biomass has been subject to intensive investigation by using high-throughput phe-

notyping (HTP) approaches in both controlled growth chambers (Feng et al., 2013; Golzarian et al.,

2011; Tackenberg, 2007) and field environments (Busemeyer et al., 2013b; Cao et al., 2013; Ehlert et al.,

2010, 2008; Erdle et al., 2011), demonstrating that the ability of imaging-based methods to infer plant

biomass accumulation. For example, Golzarian et al. (2011) modeled the plant biomass (dry weight) in

wheat (Triticum aestivum L.) as a linear function of projected area, assuming plant density is constant.

However, this method under-estimated dry weight of salt stressed plants while over-estimated that of

control plants. Although the authors argued that the bias was largely related to plant age and the model

can be improved by including the factor of plant age (Golzarian et al., 2011), the differences in plant

density between stressed and control plants may be due to different physiological properties of plants

rather than plant age. In another study, Busemeyer et al. (2013b) developed a calibrated biomass de-

termination model for triticale (x Triticosecale Wittmack L.) under field conditions based on multiple

linear regression analysis of a diverse set of parameters with selectivity to both the volume of the plants

and their density. Indeed, this model largely improved the prediction accuracy of the calibration models

based on a single type of parameters and can precisely predict biomass accumulation across environments

(Busemeyer et al., 2013b). Nonetheless, this analysis was performed at plot level rather than at single

66
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plant level, making the results difficult to interpret. In such studies, it is often difficult to accurately

determine the biomass and image-based trait values of each plant (e.g., temperature differences resulting

in imaging errors and differences in competition as an attribute of a certain genotype), which limits the

predictive power of these models. Besides, the number of traits used in these studies were quite limited

and perhaps not representative.

In this chapter, I endeavour to develop a general framework to study the relationship between plant

biomass (refer to shoot biomass hereafter) and image-derived parameters. A multitude of supervised and

unsupervised statistical methods were applied to investigate different aspects of biomass determinant by a

list of representative phenotypic traits in three consecutive experiments in barley. It is shown that image-

based features can accurately predict plant biomass output and collectively account for large proportion

of the variation in biomass accumulation. I also investigate the relative importance of different feature

categories and of individual features in prediction of biomass accumulation. Furthermore, I compare the

contribution difference of the image-based features in prediction of two types of biomass measurements,

fresh weight and dry weight. In addition, I test the possibility of the models in prediction of plant biomass

in different experiments with different treatments. As high-throughput plant phenotyping is going to be

the technique of choice for automated phenotype measurements in plant breeding in the near future, I

anticipate that the methodologies proposed in this work have various potential applications.

4.2 Results

4.2.1 Development of statistical models for modeling plant biomass accumu-

lation using image-derived features

Table 4.1: Overview of three barley experiments.

Experiment #plants/#genotypes† Date of sowing Date of harvesting Biomass§

Exp. 1 312/18 27.05.2011 24.07.2011 FW & DW

Exp. 2 312/18 22.07.2011 18.09.2011 FW

Exp. 3 312/18 16.09.2011 13.11.2011 FW & DW

† Number of plants or genotypes. The genotype information refers to Table 2.1.

§ Types of biomass measurement. FW: fresh weight; DW: dry weight.

In the previous chapter, it has been shown that a single phenotypic trait — the three-dimensional

digital volume, which is a derived feature from projected side and top areas — can be reasonably predictive

of plant biomass accumulation (Figures 3.1 for barley plants and 3.7D for maize plants). I argue that the

predictive power can be improved when multiple phenotypic traits are combined in a prediction model, as

plant biomass is determined not only by their structure features but also by their density (physiological

properties). To further investigate the relationship between image-derived parameters and plant biomass

accumulation, I took advantage of deep phenotyping data which include both structural (e.g., geometric
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Figure 4.1: Modeling pipeline for predicting plant biomass accumulation based on image-derived param-

eters

(legend on next page).

traits) and physiological traits (e.g., plant moisture content; Figure 4.1A-B).

I constructed models to quantify the ability of image-derived features to statistically predict the

biomass accumulation. I developed models using four widely used machine-learning methods (Figure

4.1C): multivariate linear regression (MLR), multivariate adaptive regression splines (MARS), random

forest (RF) and support vector regression (SVR), which have extensively been used in accurate prediction

of gene expression (Cheng et al., 2012; Cheng and Gerstein, 2012; Cheng et al., 2011; Dong et al., 2012;

Karlić et al., 2010) and DNA methylation levels (Das et al., 2006; Ma et al., 2014; Zhang et al., 2015;

Zheng et al., 2013). I combined the biomass measurements (fresh weight [FW] and/or dry weight [DW])

with image-based features and then divided them into a training data set and a test data set. A model

was trained on the training data set and then was applied to the test data set to predict the plant biomass.
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The relationship between plant biomass accumulation and image-derived features was assessed based on

the criterion of the Pearson correlation coefficient (r) between the predicted values and the actual values,

or the coefficient of determination (R2; the percentage of variance of biomass explained by the model;

Figure 4.1D).

I applied the methodology to three consecutive experiments (Figure 4.2A; Table 4.1), which were

designed to investigate vegetative biomass accumulation in response to two different watering regimes

under semi-controlled greenhouse conditions in a core set of barley cultivars by non-invasive phenotyping

(Chen et al., 2014b; Neumann et al., 2015). There are 312 plants with 18 genotype origin for each

experiment. Plants were monitored using three types of sensors (visible, fluorescence [FLUO] and near-

infrared [NIR]) in an imaging system LemnaTec-Scanalyzer 3D. An extensive list of phenotypic traits

ranging from geometric (shape descriptors) to physiological properties (i.e., color-, FLUO- and NIR-

related traits) can be extracted from these image data (Figure 4.1B) using the image processing pipeline

IAP (Klukas et al., 2014). A representative list of traits for each plant in the last growth day were selected

to test their predictability of plant biomass.

4.2.2 Coordinate patterns of plant image-based profiles and their biomass

output

A list of representative and non-redundant phenotypic traits were extracted for each plant from image

datasets for each experiments (see Chapter 4.4.3; Figure 4.1B). Thirty-six high-quality traits in common

were obtained to describe plant growth status in the last growth day. As a result, each dataset was

assigned a matrix whose elements are the signals of different features in different plants (Figure 4.1C).

I applied unsupervised methods, such as hierarchical clustering (HCA; Figure 4.2B) and principal com-

ponent analysis (PCA; Figure 4.2C), on these datasets and found that plants from different experiments

I Figure 4.1 (continued). (A) Input data, including high-throughput image data and manually mea-

sured biomass data. Plants were phenotyped using various cameras such as visible (or color), fluorescence

(FLUO) and near-infrared (NIR) sensors. Image analysis was performed with IAP software (Klukas et al.,

2014) for feature extraction. The same plants were harvested and measured at the end of growth stage.

Generally, two types of biomass was measured: fresh weight (FW) and dry weight (DW). (B) Trait

processing. All the phenotypic traits are grouped into four categories: geometric, color-related, FLUO-

related and NIR-related traits. Phenotypic data were subjected to quality check to remove low-quality

data. (C) Each plant was described by a list of traits, resulting in a predictor matrix whose rows repre-

sent plants and columns represent image-based traits. This matrix was used to predicted plant biomass

accumulation by MLR (multivariate linear regression), MARS (multivariate adaptive regression splines),

RF (random forest) and SVR (support vector regression) models. The right panel represents the schema

of model validation. In the first schema, a dataset (Dataset 1) was divided into training set and testing

set in a ten-fold cross-validation manner. In the second schema, the whole of one dataset (Dataset 1) was

used for training and another dataset (Dataset 2) was used for testing. (D) Model selection, evaluation

and result interpretation. The correlation of the predicted values and measured values was used to assess

the overall performance of the model. �
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Figure 4.2: Predictability of image-based traits to plant biomass

(legend on next page).

with different treatments showed clearly distinct patterns of phenotypic profiles. For instance, stressed

plants and control plants were separated by the first principal component (PC1) in PCA or the top

clusters in HCA, while plants from different experiments were distinguished by PC2 and PC3 in PCA or

subordinate clusters in HCA. Accordingly, it was observed that biomass (e.g., FW) of plants from differ-

ent experiments with different treatments was significantly different (two-way ANOVA, P < 2e-16; Figure

4.2D). The relationship was reflected by a dendrogram from clustering analysis based on the means of

FW over genotypes (Figure 4.2E). Furthermore, it was found that the overall phenotypic patterns of these

plants were similar to their biomass output (Figure 4.2B-E), revealing that these image-based features

are potential factors determining the accumulation of plant biomass. I thus explored the relationship

between the signals of these image-based features and the level of plant biomass output. The correlation

coefficients in each dataset were calculated. The correlation patterns were consistent in different datasets

and more than half of the features revealed high correlation coefficients (r > 0.5; Figure 4.2F). Interest-
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ingly, the top ranked features include both structure features (such as digital volume, projected area and

plant area border length) and density-related features (such as NIR and FLUO intensities).

4.2.3 Relating image-based signals to plant biomass output

The above analyses suggest that plant biomass can be at least partially inferred from image-based features.

I then applied the regression models (Figure 4.1C) to predict plant biomass using image-based features.

To examine which model has the best performance and to select an appropriate model for biomass

prediction, I focused on the analyses in the first experiment (i.e., experiment 1), since the phenotypic

traits of the corresponding dataset have been intensively investigated in the previous study (Chen et al.,

2014b, as presented in Chapter 2). In this experiment, plant biomass was quantified in two forms: FW

and DW (Table 4.1). I selected a collection of 45 image-derived parameters from this dataset that were

non-redundant and highly representative.

I next tried to predict FW (Figure 4.3A) and DW (Figure 4.3C) based on this set of image-derived

features using four different regression models. The models were respectively tested on control plants,

stressed plants and the whole set of plants. I compared and evaluated the performance of these models.

Although the performance of these models was roughly comparable, RF, SVR and MARS methods

had better performance than that of MLR method for prediction of both FW (Figure 4.3B) and DW

(Figure 4.3D), implying a nonlinear relationship between image-based phenotypic profiles and biomass

output. The RF model largely outperformed other models especially in predicting biomass of control

plants, accounting for the most variance (R2 = 85% for FW and R2 = 62% for DW; Figure 4.3B,D, left

panels) and showing the best prediction accuracy (Pearson’s correlation r = 0.93 for FW and r = 0.80

for DW; Figure 4.3B,D, middle panels). I also compared the prediction accuracy of the models (the

correlation coefficients between the predicted biomass and the actual biomass) with the best predictability

of individual feature (here, the “digital volume”; Figure 4.3B,D, middle panels). It was found that

I Figure 4.2 (continued). (A) Schema depicting three consecutive high-throughput phenotyping ex-

periments in barley. Plants in each experiment were harvested for biomass measurements: fresh weight

(FW; for all experiments) and dry weight (DW; only for experiment 1). (B) Heatmap of Pearson’s cor-

relations between plants. Pearson’s correlation coefficient (PCC) was calculated based on image-derived

traits. Cluster dendrograms for experiments (left) and treatments (top) are shown. (C) Scatter plots

showing projections of top four Principal components (PCs) based on PCA of image-based data. The

component scores (shown in points) are colored and shaped according to the experiments (as legend listed

in the box). The component loading vectors (represented in lines) of each traits (as colored according

to their categories) were superimposed proportionally to their contribution. (D) Boxplot showing the

distribution of FW across different experiments. (E) A dendrogram from cluster analysis based on the

means of FW data over genotypes. (F) Pearson’s correlation (mean values in the three datasets) between

image-based traits and FW. Traits with the largest mean correlations values are labeled: 1 — sum of leaf

length (side view), 2 — sum of FLUO intensity (side), 3 — plant area border length (side), 4 — sum of

NIR intensity (top), 5 — sum of FLUO intensity (top), 6 — projected area (top), 7 — projected area

(side) and 8 — digital volume. �
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Figure 4.3: Quantitative relationship between image-based features and plant biomass

(legend on next page).

the models generally showed better prediction power than the single digital volume-based prediction,

indicating that additional features improved the predictive power. In this study, I focus on results from

the RF method in the rest of analysis, although results from different methods are highly consistent and

lead to the same conclusions.
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4.2.4 Contribution of different image-based features to predicting plant biomass

As mentioned above, the image-based features can be classified broadly into four categories: plant struc-

ture properties, color-related features, NIR signals, and FLUO-based traits (Figure 4.1B). The last three

types of features reflect plant physiological properties and can be considered as plant density-related

traits and are thus related to their fresh or dry matter content. For each individual feature or each type

of features, I constructed a degenerate model of biomass prediction using the corresponding feature(s) as

the predictor(s). I compared the capability of each individual or type of features for predicting biomass

accumulation in the first experiment (i.e., experiment 1). Geometric features showed the most predictive

power among the four categories for prediction of both FW and DW, but were slightly less predictive

than all features in a full model (Figure 4.4A-B). Strikingly, the predictability of other types of features

(such as color-related and FLUO-based traits) was substantial, indicating that these traits may act as

unforeseen factors in biomass prediction. In addition, the NIR-based features showed higher predictive

capability for FW than for DW in control and stressed plants, revealing NIR signals are import factors

determining FW accumulation.

Next, I investigated the relative importance (RI) of each feature for predicting biomass using a full

model in the whole set of plants (i.e., “control + stressed plants”; Figure 4.4C-D, upper panels). In a RF

model, the RI of a feature is calculated as the increase of prediction error (%IncMSE) when phenotypic

data for this feature is permuted (Breiman, 2001), and thus indicates the contribution of the feature after

considering its intercorrelation in a model. It was found that the top ten most important features in the

full model for predicting FW and DW included both structure and density-related traits. As expected,

projected area (from side or top view) and digital volume were the top ranked features, which have

individually been considered as proxies of shoot biomass in previous studies (Arvidsson et al., 2011; Chen

et al., 2014b; Dietz and Steinlein, 1996; Golzarian et al., 2011; Hairmansis et al., 2014; Leister et al.,

1999; Neilson et al., 2015; Paruelo et al., 2000; Walter et al., 2007).

In principle, I would expect that the more importance of a feature in the full model, the more pre-

dictive power of this feature in a degenerate model. Surprisingly, there was no clear correlation observed

between the feature importance and their predictive power (Figure 4.4C-D). For example, several color-

I Figure 4.3 (continued). (A) and (C) Scatter plots of manually measured plant biomass (fresh weight

[FW] and dry weight [DW]) versus predicted biomass values using four prediction models: multivariate

linear regression (MLR), multivariate adaptive regression splines (MARS), random forest (RF) and sup-

port vector regression (SVR). The red line indicates the expected prediction (y = x). The quantitative

relationship between image-based features and biomass is evaluated by Pearson’s correlation coefficient

(PCC r and its corresponding p-value), RMSRE (root mean squared relative error) and the percentage

of variance explained by the models (the coefficient of determination R2). (B) and (D) Summary of the

predictive power of each regression models. The results are based on ten-fold cross-validation with ten

trials. Models were evaluated based on control plants, stressed plants and the whole set of plants. The

solid lines in the middle panel represent PCC between digital volume and biomass for specific datasets.

�
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Figure 4.4: The relative importance of image-based features in prediction of plant biomass

(legend on next page).

related and NIR-based features that are in the list of top ten most important ones revealed insubstantial

predictive power in individual models. This observation implies that the underlying biomass determinant

is extremely complex rather a linear combinations of the investigated features.

Furthermore, I compared the relative importance of each feature in predicting FW and DW (Figure

4.4E). Although I observed a positive correlation (r = 0.88) between the feature importance for FW

and DW, there are several features showed largely different, including “nir.intensity” (derived from side

view images), “compactness.01” (top), “hull.pc1” (top), “leaf.count” (side), “hsv.h.average” (top) and

“lab.a.mean” (top). For instance, NIR intensity and plant compactness (top view) may be important for

predicting FW but not for DW. Meanwhile, I performed the above analyses using only control (Figure
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4.5) or stressed plants (Figure 4.6), respectively. It was found that the patterns of feature importance

were distinct between these two groups of plants. For example, NIR intensity was ranked in the top

fifth feature for predicting FW for stressed plants but not substantial for control plants. These findings

indicate that the difference in plant biomass determinant is reflected by their image-based phenotypic

traits.

I Figure 4.4 (continued). The capabilities of different types of image-based features to predict plant

biomass based on evaluation of either fresh weight (FW) (A) or dry weight (DW) (B). The overall

predictive accuracies of each types of features are indicated. Grey bar denotes the predictive accuracy

using all features. The relative importance of each feature in the Random Forest model (upper panel)

and the predictive accuracy of each individual feature as the single predictor (lower panel) based on

investigation of either FW (C) or DW (D). The calculation is based on the whole set of plants (control

and stressed plants). Note that feature labels are shared in the upper and lower panels. Features are

shown in numbers as ordering by their names. Three features highlighted in red dash box are digital

volume, projected side area and projected top area. (E) Comparison of the relative importance of features

in prediction of FW and DW. The top six most different features are highlighted and labeled. �

Figure 4.5: The relative importance of image-based features in prediction of biomass in control plants

Refer to Figure 4.4 for legend. The calculation is based on control plants. �
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Figure 4.6: The relative importance of image-based features in prediction of biomass in stressed plants

Refer to Figure 4.4 for legend. The calculation is based on stressed plants. �

4.2.5 Image-based features are predictive of plant biomass across experi-

ments with similar conditions or treatments

In this section, I set out to explore whether the models are generalizable across different experiments.

I applied the models trained in one experiment to predict biomass (herein FW) in other experiments

using a common set of features. Examples of such cross-experiment prediction are shown in Figure

4.7A, wherein I tested all possibility of cross prediction using the whole set of plants in the corresponding

experiment. In general, the prediction accuracy within individual experiments remains high (r > 0.97 and

R2 > 0.93 for all three experiments; Figure 4.7B), revealing that the models are effective at predicting

plant biomass by image-based feature signals among different experiments. Moreover, the prediction

accuracy of cross-experiment prediction is still relatively high, with r > 0.81 and R2 > 0.65, implying

that the models accurately captured the relationships among the various image-based features. However,

it was observed that the third experiment has relative weaker correlations with other two experiments

for predicting biomass, while the first two experiments showed strong correlations or even identical with

each other (Figure 4.7A). This may be mainly due to plants in experiment 3 behaving very differently

from plants in experiments 1 and 2 (Neumann et al., 2015).

At the same time, I tested cross predicability of the models using treatment-specific data in the



4.2. Results 77

Figure 4.7: Comparison of prediction accuracy across different experiments

(legend on next page).

experiments (Figure 4.8). Similar results were observed as above using the whole dataset (Figure 4.7B).

The weak predictive power of cross prediction for control plants resulted from the third experiment

which showed powerless in predicting biomass of other experiments or predicted by other experiments.

Generally, control and stressed plants were found to have very weak predictive power with each other
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(Figure 4.8), as supported by the distinct patterns of relative feature importance between these two plant

groups (Figures 4.5 and 4.6).

I Figure 4.7 (continued). (A) Application of the model learned from one experiment to other experi-

ments. (B) Boxplots of coefficient determination (R2, left) Pearson’s correlation coefficients (r, middle)

and the root mean squared relative error (RMSRE, right) for different comparisons. “Within” denotes

a model trained and tested on data from the same dataset with specific treatments (control, stress or

both), and “Cross” represents a model trained on one dataset and tested on another dataset. “Control →
stress” denotes a model trained on data with control treatment and tested on data with stress treatment,

and vice versa for “stress → control”. �

Figure 4.8: Comparison of prediction accuracy across different treatments

Refer to Figure 4.7B for legend. �
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4.3 Discussion

Biomass is a complex but an important trait in functional ecology and agronomy to study plant growth,

crop productive potential and regeneration. Many different techniques, in either destructive or non-

destructive manners, have been used to estimate biomass (Catchpole and Wheeler, 1992). The typical

destructive methods for measuring biomass are very time consuming and labor intensive when investi-

gating many individuals at the same time. While non-destructive imaging methods do not have such

limitations, accurately predicting biomass from image data requires efficient mathematical models as well

as representative image-derived features. Although previous attempts have been made to estimate plant

biomass from image data, most of these studies consider only a single image-based feature or very few

features in their models which are often linear-based, ignoring the fact that the phenotypic components

underlying biomass accumulation are presumably complex.

In this study, I have presented a systematic analysis of relationship between plant biomass accumula-

tion and image-derived signals, to confirm the assumption that biomass can be accurately predicted from

image-based parameters. I built a random forest model of biomass accumulation using a comprehensive

list of representative image-based features. In the comparison between the RF model and alternative

regression models, it was found that the RF model outperforms other models in terms of (1) better

predictive power – especially in comparison with the linear model, confirming the complex phenotypic

architecture of biomass, and (2) feasible biological interpretability — the ability to readily extract infor-

mation about the importance of each feature in prediction. The high prediction accuracy based on this

model, in particular the cross-experiment performance, is promising to relieve the phenotyping bottleneck

in biomass measurement in breeding applications. For example, based on an established small reference

dataset to train a RF model, it is possible to predict biomass in several large plant populations within

one experiment or across several experiments using image data by taking advantage of high-throughput

phenotyping technologies. However, because of environmental effects on biomass accumulation, the ap-

plication of the model will require the testing experiments showing similar conducted conditions with

that of the reference experiment. Alternatively, the model can be trained from a much larger reference

panel of plants that are grown in diverse environmental conditions and then is applied to a diverse set of

experiments. This notion is first evidenced from the observation that the model shows more predictive

power in plants with two treatments than with single treatment (Figure 4.3). Indeed, when applying

the model to the combined dataset from all the three experiments, it was found the prediction accuracy

remains very high (R2 = 0.96 and r = 0.98, average values from ten times of ten-fold cross-validation).

In contrast to previous studies (Arvidsson et al., 2011; Dietz and Steinlein, 1996; Feng et al., 2013;

Golzarian et al., 2011; Hairmansis et al., 2014; Leister et al., 1999; Neilson et al., 2015; Paruelo et al.,

2000; Tackenberg, 2007; Walter et al., 2007), in which biomass was investigated using only single image-

derived parameter (such as projected area) or several geometric parameters, the analyses extend these

studies by incorporating more representative features that cover both structural and physiological-related

properties into a more sophistic model. Although the predictive power of the model is roughly higher
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than that of single feature-based prediction, such as the digital volume (Figure 4.3; Chen et al., 2014b),

the model reveals the relative contribution of individual feature in prediction of biomass. The information

regarding the importance of each feature will offer new insights into the phenotypic determinants of plant

biomass outcome. Interestingly, it was found that several top ranked features, such as digital volume

and NIR intensity, show genetic correlations with biomass of fresh weight (Figures 4.4C and 2.13; Chen

et al., 2014b), implying these top ranked features may represent the main “phenotypic components” of

biomass outcome and can be further used to dissect genetic components underlying biomass accumulation.

However, as the current ability to characterize plant physiological-related properties from image data is

still poor, I believe that the model can be further improved when new types of cameras and/or newly

defined features are available.

In summary, I have developed a quantitative model for dissecting the phenotypic components of

biomass accumulation based on image data. Apart from predicting biomass outcome, the methods can

be used to determine the most important image-based features related to plant biomass accumulation,

which are promising for subsequent genetic mapping to uncover the genetic basis of biomass. I anticipate

that these statistical methods will be broadly used in plant breeding in the context of phenomics.

4.4 Materials and methods

4.4.1 Germplasm and experiments

Barley plant image data were obtained as described in Chapter 2.4.1 and were recently published elsewhere

(Chen et al., 2014b; Neumann et al., 2015). Briefly, a core set of 16 two-rowed spring barley cultivars

(Hordeum vulgare L.) and two parental cultivars of a double haploid (DH) were monitored for vegetative

biomass accumulation (Table 2.1). Three independent experiments with identical setup were performed

in a (semi-) controlled greenhouse at IPK by using the automated phenotyping and imaging platform

LemnaTec-Scanalyzer 3D. Experiments were performed consecutively from May to November 2011 over a

period of 58 days each (Table 4.1). The greenhouse setup enabled sowing for the next experiment already

2 days before the old experiment ended. For this, new pots were placed in the middle of the greenhouse,

while the old experiment was still on the conveyer belts.

Each experiment consisted of two treatments: well-watered (control treatment) and water limited

(drought stress treatment). In each treatment, nine plants per core set cultivar as well as six plants

per DH parent were tested. This resulted in a total of 312 plants per experiment, corresponding to the

maximal capacity of the phenotyping platform. Watering and imaging were performed daily. Drought

stress was imposed by intercepting water supply from 27 days after sowing (DAS 27) until DAS 44.

Stressed plants were re-watered at DAS 45. In total, each of the experiments was accumulating about

100 GB of raw data. At the end of experiments (DAS 58), plants were harvested to measure above-ground

biomass in form of plant fresh weight (FW; for all experiments) and/or dry weight (DW; for experiment

1).
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4.4.2 Image analysis

Image datasets were processed by the barley analysis pipelines in the IAP software. Analysed results

were exported in the csv file format via IAP functionalities, which can be used for further data inspection.

The result table includes columns as different phenotypic traits and rows as imaged plants over time.

The corresponding metadata is included in the result table as well.

Each plant was characterized by a set of phenotypic traits also referred to as features, which were

grouped into four categories: geometric features, fluorescence-related (FLUO-related) features, color-

related features and near-infrared-related (NIR-related) features. These traits were defined by considering

image information from different cameras (visible light, fluorescence and near infrared) and imaging

views (side and top views). See the IAP online documentation (http://iapg2p.sourceforge.net/

documentation.pdf) for details about trait definition.

4.4.3 Feature selection

Feature selection was performed with the same procedure as described in Chapter 2.4.4. I applied the

feature selection technique to each dataset. Generally, almost identical subset features were captured from

different datasets. I manually added several representative traits due to removal by variance inflation

factors. For example, the digital volume and projected area are highly correlated with each other but

both of them were kept, because I would investigate the predictive power of both features. Moreover,

the regression models are insensitive to collinear features. I thus kept as much representative features as

possible. To apply the prediction models among different datasets, a common set of features supported

by all the datasets were used.

4.4.4 Data transformation

Each plant can be presented by a representative list of phenotypic traits, resulting in a matrix Xn×m for

each experiment, where n is the number of plants and m is the number of phenotypic traits. Missing

values were filled by mean values of other replicated plants. To make the image-derived parameters from

diverse sources comparable, the columns of X was normalized by dividing by the maximum value of

each column across all plants. Plants with empty values of manual measurements (FW and DW) were

discarded for analysis. These transformed data were subjected to regression models.

4.4.5 Hierarchical clustering analysis and PCA

Hierarchical clustering analysis (HCA) and principle component analysis (PCA) were performed on the

transformed data matrix Xn×m in the same way as described in Chapter 2.4.5.HCA was also performed

using the genotype-level mean value of FW data to check the similarity of overall plant growth patterns

in different experiments.

http://iapg2p.sourceforge.net/documentation.pdf
http://iapg2p.sourceforge.net/documentation.pdf
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4.4.6 Models for predicting plant biomass

To understand the underlying relationship between image-derived parameters and the accumulated

biomass (such as FW and DW), I constructed predictive models based on four different machine-learning

methods: multivariate linear regression (MLR), multivariate adaptive regression splines (MARS), random

forest (RF) and support vector regression (SVR). In these models, the normalized phenotypic profile ma-

trix Xn×m for a representative list of phenotypic traits were used as the predictors (explanatory variables)

and the measured DW/FW as the response variable Y .

All these models were implemented in R (http://www.r-project.org/; release 2.15.2). To assess the

relative contribution of each phenotypic trait to predicting the biomass, the relative feature importance

for each model was also calculated . Specifically, for the MLR model, I used “lm” function in the base

installation packages. The relative importance of predictor variables in the MLR model were estimated by

a heuristic method (Johnson, 2000) which decomposes the proportionate contribution of each predictor

variable to R2. For MARS, I used the “earth” function in the earth R package. The “number of

subsets (nsubsets)” criterion (counting the number of model subsets that include the variable) was used

to calculate the variable importance, which is implemented in the “evimp” function. For the RF model,

I used the randomForest R package which implements Breiman’s random forest algorithm (Breiman,

2001). I chose the “%IncMSE” (increase of mean squared error) to represent the criteria of relative

importance measure. For SVR, I utilized the e1071 R package which provides functionalities to use the

libsvm library (Chang and Lin, 2011). The absolute values of the coefficients of the normal vector to the

“optimal” hyperplane can be considered as the relative importance of each predictor variable contributing

to regression (Iyer-Pascuzzi et al., 2010; Loo et al., 2007).

4.4.7 Evaluation of the prediction models

To evaluate the performance of the predictive models, a 10-fold cross-validation strategy was adopted

to check the prediction power of each regression model. Specifically, each dataset was randomly divided

into a training set (90% of plants) and a testing set (10% of plants). I trained a model on the training

data and then applied it to predict biomass in the testing data. Afterwards, the predicted biomass in the

testing set was compared with the manually measured biomass. The predictive accuracy of the model

can be measured by

(i) the Pearson correlation coefficient (PCC; r) between the predicted values and the observed values;

(ii) the coefficient of determination (R2) which equals to the fraction of variance of biomass explained

by the model, defined as

R2 = 1− SSres

SStot
= 1−

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − y)2

where SSres and SStot are the sum of squares for residuals and the total sum of squares, respectively,

ŷi the predicted and yi the observed biomass of the ith plant, y is the mean value of the observed

biomass; and

http://www.r-project.org/


4.4. Materials and methods 83

(iii) the root mean squared relative error of cross-validation, defined as

RMSRE =

√∑s
i=1 (

yi−ŷi

yi
)2

s

where s denotes the sample size of the testing dataset.

I repeated the cross-validation procedure ten times. The mean and standard deviation of the resulting

R2 and RMSRE values were calculated across runs.

To illustrate the broad utility of the methods across seasons (thus different growth environments)

and treatments (e.g., control versus drought stress) in the same season, I applied the models in different

contexts with cohort validation. Specifically, I trained the biomass prediction models under one specific

context and predicted biomass in another different context and vice versa. The predictive accuracy of

the model was evaluated based on the measures R2 and RMSRE as described above. Furthermore, the

predictive power was reflected by the bias µ between the predicted and observed values, defined as

µ =
1

n
·

n∑
i=1

ŷi − yi
yi

where n denotes the sample size of the dataset. This bias indicates over- (µ > 0) or under-estimation

(µ < 0) of biomass.



Chapter 5

Summary and outlook

5.1 Summary

Significantly improved crop varieties are urgently needed to feed the rapidly growing human population

under changing climates. While genome sequence information and excellent genomic tools are in place for

major crop species, the systematic quantification of phenotypic traits or components thereof in a high-

throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype

gap, a comprehensive framework for high-throughput phenotype data analysis in plants was developed

herein.

Within this framework, an extensive list of phenotypic traits can be extracted from non-destructive

plant imaging over time. A series of supervised and unsupervised methods have been presented for efficient

analysis and interpretation of huge and high-dimensional phenotypic data sets to support understanding

plant growth and performance. As a proof of concept, I investigate the phenotypic components of the

drought responses of 18 different barley cultivars during vegetative growth. I analyze dynamic properties

of trait expression over growth time based on 54 representative phenotypic features. I use linear mixed

models to dissect variance components of phenotypic traits and show that the traits revealed variable

genotypic and environmental effects and their interactions over time. Key parameters such as trait

heritability and genetic trait correlations are assessed, indicating image-derived traits are valuable in

genetic association studies. These data are highly valuable to understand plant development and to

further quantify growth and crop performance features.

I next test various growth models to predict plant biomass accumulation based on the image-derived

parameter “digital volume” in both barley and maize under normal and stress conditions. It is found

that barley and maize plants share simliar growth patterns as described by Weibull models. Several

relevant parameters that support biological interpretation of plant growth and stress tolerance has been

identified. These model-derived parameters reveal several important aspects regarding plant development

and provide a solid basis for subsequent genetic mapping uncover the genetic basis of plant growth.

Finally, I construct several models to examine the quantitative relationship between image-based fea-

84
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tures and plant biomass accumulation. I apply the methodology to three consecutive barley experiments

with control and stress treatments. It is observed that plant biomass can be accurately predicted from

image-based parameters using a random forest model. The high prediction accuracy based on this mod-

el, in particular the cross-experiment performance, is promising to relieve the phenotyping bottleneck in

biomass measurement in breeding applications. I further quantify the relative contribution of individual

feature for predicting biomass, revealing new insights into the phenotypic determinants of plant biomass

outcome.

Taken together, I anticipate that the analytical framework and analysis results presented in this

thesis will be useful to advance our views of phenotypic trait components underlying plant development

and their responses to environmental cues, and will have broad applications in plant breeding under the

context of phenomics.

5.2 Outlook

In this thesis, although I mainly validate the methodology using phenotypic data of barley cultivars

collected by three different cameras, the framework is readily extensible to the analysis of other plant

species (such as Arabidopsis, maize and wheat) and other newly developed sensors. In the near future,

high-throughput plant phenotyping will receive a flood of applications in genetic mapping and mutant

screening. In this regard, the analytical framework provides the starting point on the journey towards

systematic plant phenotyping.
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Appendix A

Glossary

Color space

..

Color. Color is the visual perceptual property of the spectrum of light (distribution of light power

versus wavelength) received by the human eye with the categories called red, green, blue, and others.

Note that the light (called “visible light”) which excites the human visual system is a very small por-

tion of the whole electromagnetic spectrum. LemnaTec system employs various controlled cameras,

such as RGB/visible, fluorescence and NIR cameras, for hyperspectral reflectance measurement in

the spectral regions (called “region of interest”, ROI) of visible and near-infrared (VNIR), with the

wavelengths ranging from 400 nanometers (nm) to 1700 nm (Figure 1.2). Colors can be described

and defined numerically by their coordinates in the color space. Several color models have been

mathematically described, such as RGB, HSB, HSL and L*a*b* color spaces (Figure A.1). Ap-

propriate color spaces are important for image processing (for example, image segmentation). For

example, we used the combined color spaces for image analysis in the IAP system (Klukas et al.,

2014).

RGB color space. RGB stands for three primary colors: red (R), green (G) and blue (B).

It is an additive color model in which the color perception is stimulated by the additive mixing of

the primary colors. Particularly, the RGB model can be represented by a cube using non-negative

values within a range of 0 and 255, and stores individual values for red, green and blue in a triplet

(r, g, b) as the three-dimensional coordinate of the point of a given color. Black represents the origin

of the cube at the vertex (0, 0, 0) and white at the diagonally opposite vertex (255, 255, 255). The

human visual system works in a way that is quite similar to the RGB color space, which captures

the largest portion of the human color space. However, due to the high correlation among the three

primary colors in RGB space, in silico segmentation of color image poses a big challenge.

HSB color space. HSB stands for hue, saturation and brightness, also known as HSV (hue,

saturation and value). HSB is a cylindrical-coordinate representation of points in an RGB color
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model. The components and colorimetry of HSB color space are derived from the RGB color space.

Hue stands for color shade and represents the main wavelength of the color within the visible

light. The saturation is the intensity of the color it is the relative bandwidth of the visible output.

Brightness is a relative expression of the intensity of the energy output of a visible light source.

However, the HSB color space is not sufficient enough for image segmentation.

HSL color space. HSL, short for hue, saturation, lightness/luminance and also known as HSI

(hue, saturation and intensity), is quite similar to HSV, with “lightness” replacing “brightness”.

The difference is that the brightness of a pure color is equal to the brightness of white, while the

lightness of a pure color is equal to the lightness of a medium gray.

L*a*b* color space. L*a*b* color space is a color-opponent space with dimension L for

lightness (always positive) and a and b for the color-opponent dimensions. A value larger than zero

for “A” represents the red component, all negative values stand for the green part. A “B” value

above zero represent the yellow component, the negative values stand for the blue component. The

L*a*b* color space describes all the colors visible to the human eye and is created to serve as a

device independent model to be used as a reference. It is a perceptually uniform color space in

which a change of the same amount in a color value should produce a change of about the same

visual importance. In L*a*b*, colorimetric determination of color coordinates and color differences.
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Figure A.1: Histogram bin-based feature extraction in different color spaces

Color analysis is based on histograms with 20-bins for visible light color and brightness investigation

(based on HSB and L*a*b* color spaces), for fluorescence activity and NIR intensity investigations. In

addition to the histogram values, for each property the average, the standard deviation and the skewness

of the pixel values is calculated. �



Appendix B

Supplemental Tables

Table S1: The 54 investigated phenotypic traits in barley.

Trait Description Category† View§ Camera¶

side.area projected area from side (filled pixels) geometric side VIS

side.border.length plant area border length geometric side VIS

side.compactness.01.relative geometric measure of plant compactness; 4 * π / (whole border length from side 2 / projected

side area)

geometric side VIS

side.compactness.16.relative geometric measure of plant compactness; whole border length from side 2 / projected side area geometric side VIS

side.fluo.histogram.bin.02.12 25 number of pixels in intensity bin 2/20 (low) FLUO side FLUO

side.fluo.histogram.bin.20.242 255 number of pixels in intensity bin 20/20 (high) FLUO side FLUO

side.fluo.intensity.average..relative average intensity of the fluorescence reflection based on the color (pure red highest intensity,

yellow lowest intensity)

FLUO side FLUO

side.fluo.intensity.classic.average average intensity of the fluorescence reflection based on the color and brightness (pure red

highest intensity, yellow lowest intensity, value is scaled by the brightness)

FLUO side FLUO
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Table S1 (continued)

side.height plant height (px or mm) geometric side VIS

side.hull.fillgrade..percent projected area / area of convex hull geometric side VIS

side.hull.pc1 largest distance between any plant pixels from side view (these pixels are the base for the

‘maximum distance line’)

geometric side VIS

side.hull.pc2 sum of the maximum distance of pixels left and right to the ‘maximum distance line’ geometric side VIS

side.leaf.count..leaves estimated leaf count, based on the number of end points of the plant skeleton geometric side VIS

side.leaf.length.sum length of the plant skeleton geometric side VIS

side.leaf.width.average average distance of plant pixels to the nearest skeleton pixel geometric side VIS

side.nir.histogram.bin.11.127 140 number of pixels with NIR intensity in the rage of 127-140 (0 no intensity, 255 highest intensity) NIR side NIR

side.nir.histogram.bin.13.153 165 number of pixels with NIR intensity in the rage of 153-165 (0 no intensity, 255 highest intensity) NIR side NIR

side.nir.intensity.average..relative average near-infrared intensity of plant pixels (0..255, 0 no intensity, 255 highest intensity) NIR side NIR

side.vis.hsv.h.average average hue of plant pixels color side VIS

side.vis.hsv.h.histogram.bin.01.0 12 number of plant pixels within specific hue range color side VIS

side.vis.hsv.h.histogram.bin.13.153 165 number of plant pixels within specific hue range color side VIS

side.vis.hsv.s.average average plant pixels color saturation color side VIS

side.vis.hsv.v.average average brightness color side VIS

side.vis.hsv.v.histogram.bin.04.38 51 number of plant pixels with brightness in specific range color side VIS

side.vis.hsv.v.histogram.bin.17.204 216 number of plant pixels with brightness in specific range color side VIS

side.vis.hsv.v.histogram.bin.20.242 255 number of plant pixels with brightness in specific range color side VIS

side.vis.lab.b.kurtosis “peakedness” of the b* (blue to yellow) values of the plant color histogram, calculated in the

l*a*b*-color space

color side VIS

side.vis.lab.b.mean average color in the b* range of the L*a*b* color space (blue to yellow) color side VIS

side.vis.stress.hue.yellow2green yellow to green ratio of plant pixels (based on according hsv hue classes) color side VIS

side.width horizontal extend of the plant geometric side VIS

top.area projected area from top view (filled pixels) geometric top VIS
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Table S1 (continued)

top.compactness.16..relative geometric measure of plant compactness (whole border length from side) 2 / projected side area geometric top VIS

top.fluo.histogram.bin.04.38 51 number of pixels in intensity bin 4/20 (rel. low) FLUO top FLUO

top.fluo.histogram.bin.06.63 76 number of pixels in intensity bin 6/20 (rel. middle) FLUO top FLUO

top.fluo.histogram.bin.12.140 153 number of pixels in intensity bin 4/20 (rel. high) FLUO top FLUO

top.fluo.intensity.phenol.plant weight drought

loss

top plant area reduced by a penalty term for yellowish plant parts (drought stressed leaf areas

appear yellowish)

FLUO top FLUO

top.hull.pc1 largest distance between any plant pixels from top view (these pixels are the base for the

’maximum distance line’)

geometric top VIS

top.hull.pc2 sum of the maximum distance of pixels left and right to the ’maximum distance line’ geometric top VIS

top.leaf.count estimated number of leafs (skeleton based) geometric top VIS

top.leaf.length.sum length of plant pixel skeleton geometric top VIS

top.ndvi.vis.blue.intensity.average..relative average blue intensity in the rgb color space color top VIS

top.vis.hsv.h.average average hue in the hsv color space color top VIS

top.vis.hsv.h.histogram.bin.07.76 89 number of pixels in bin 7/20 of the hue histogram (yellow to green) color top VIS

top.vis.hsv.h.histogram.bin.10.114 127 number of pixels in bin 10/20 of the hue histogram (green to blue) color top VIS

top.vis.hsv.h.histogram.bin.19.229 242 number of pixels in bin 19/20 of the hue histogram (red) color top VIS

top.vis.hsv.s.average average plant pixel color saturation color top VIS

top.vis.hsv.s.histogram.bin.10.114 127 number of pixels in bin 10/20 of the saturation histogram (middle) color top VIS

top.vis.hsv.v.average average brightness color top VIS

top.vis.hsv.v.histogram.bin.03.25 38 number of pixels with brightness in a specific range (bin 3/20, low) color top VIS

top.vis.hsv.v.histogram.bin.07.76 89 number of pixels with brightness in a specific range (bin 7/20, middle) color top VIS

top.vis.hsv.v.histogram.bin.09.102 114 number of pixels with brightness in a specific range (bin 9/20, middle) color top VIS

top.vis.hsv.v.histogram.bin.17.204 216 number of pixels with brightness in a specific range (bin 17/20, high) color top VIS

top.vis.lab.b.skewness asymmetry of the b* (blue to yellow) values of the plant color histogram, calculated within the

l*a*b*-color space

color top VIS
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Table S1 (continued)

volume.fluo.iap estimated digital volume (px3 or mm3) geometric both FLUO

† the category of a defined phenotypic trait belonged to

§ a trait is defined based on images from side view, top view or both

¶ the type of image data used to define the trait; VIS, visible-light; FLUO, fluorescence; NIR, near-infrared. This table was taken from Chen et al. (2014b).

Table S2: A worldwide collection of maize plants selected from from IPK Genebank.

Accession No† Accession Name Scientific Name Country of Origin

ZEA 3 Gelber Badischer Landmais Zea mays L. convar. mays var. mays Germany

ZEA 16 Breslau II Zea mays L. convar. mays var. rubra Bonaf. Poland

ZEA 249 Lester Phister Zea mays L. convar. dentiformis Körn. var. flavorubra Körn. Romania

ZEA 323 Risovaja 645 Zea mays L. convar. microsperma Körn. var. oryzoides Körn. Russia

ZEA 333 Cukrova Cervena Zea mays L. convar. saccharata Körn. NA

ZEA 384 Aromatnaja Zea mays L. convar. saccharata Körn. var. flavodulcis Körn. Russia

ZEA 472 NA Zea mays L. convar. aorista Greb. Greece

ZEA 668 NA Zea mays L. convar. dentiformis Körn. var. xantodon Alef. Macedonia

ZEA 701 NA Zea mays L. convar. mays var. mays Hungary

ZEA 710 NA Zea mays L. convar. dentiformis Körn. var. xantodon Alef. Czech Republic

ZEA 712 NA Zea mays L. convar. dentiformis Körn. var. xantodon Alef. Czech Republic

ZEA 719 NA Zea mays L. convar. mays var. mays Slovakia

ZEA 852 Col/Chung Nam Jusan/2620 Zea mays L. North Korea

ZEA 1008 NA Zea mays L. convar. mays var. mays Libya

ZEA 1066 NA Zea mays L. convar. dentiformis Körn. var. flavorubra Körn. North Korea

ZEA 1129 NA Zea mays L. convar. mays var. alba Alef. Austria

ZEA 1181 Rainbow Amerindian Zea mays L. convar. microsperma Körn. NA
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Table S2 (continued)

ZEA 3240 Weiße Zarin Zea mays L. convar. dentiformis Körn. var. leucodon Alef. Georgia

ZEA 3303 NA Zea mays L. Italy

ZEA 3327 NA Zea mays L. Albania

ZEA 3338 Lazuti Zea mays L. convar. aorista Greb. Georgia

ZEA 3348 NA Zea mays L. convar. mays var. aurantiaca Kuleshov & Kozhukhov Romania

ZEA 3361 NA Zea mays L. convar. aorista Greb. Croatia

ZEA 3425 Strenzfelder Zea mays L. convar. mays var. mays Germany

ZEA 3426 Schindelmeiser Zea mays L. convar. mays var. mays Germany

ZEA 3434 Brona Zea mays L. convar. dentiformis Körn. var. flavorubra Körn. Spain

ZEA 3455 NA Zea mays L Cuba

ZEA 3528 NA Zea mays L. convar. mays var. aurantiaca Kuleshov & Kozhukhov North Korea

ZEA 3548 Taos Pueblo Blue Zea mays L. convar. mays var. caesia Alef. USA

ZEA 3554 NA Zea mays L. convar. dentiformis Körn. Albania

ZEA 3555 Miser I bardeti Zea mays L. convar. mays var. alba Alef. Albania

ZEA 3572 NA Zea mays L. convar. aorista Greb. Italy

ZEA 3606 Inrafrueh Zea mays L. convar. dentiformis Körn. var. flavorubra Körn. NA

ZEA 3651 Meirenhuang Zea sp. China

Athletico§ NA Zea sp. Germany

Fernandez§ NA Zea sp. Germany

† Detailed information is accessible through the GBIS/I Genebank Information System (http://gbis.ipk-gatersleben.de/GBIS I/) in IPK Gatersleben. NA: not available.

§ Two high performance (HP) lines (with German origin) from KWS Company (http://www.kws.com/)

http://gbis.ipk-gatersleben.de/GBIS_I/
http://www.kws.com/
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Online Resources

Additional online data sets related to this thesis are availabe from the following link https://github.

com/htpmod/HTPdata:

..

4 Online Data Set 1. High-throughput phenotyping data in barley.

4 Online Data Set 2. Growth modeling of control plants in barley.

4 Online Data Set 3. Growth modeling of stressed plants in barley.

4 Online Data Set 4. Image-derived data set used for growth modeling in maize.

4 Online Data Set 5. Growth modeling of individual plants in maize.

Additional information related to this thesis is availabe from our website:

..

4 The IAP software can be downloaded from this link: http://iapg2p.sourceforge.net/.

4 Relevant R code and corresponding document are provided at the website of https://

github.com/htpmod/HTPmod.
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