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Chapter 1

Introduction

In our daily life, we usually want to find the best choice or better solutions for our

problems which have many contradictory goals. For example, in logistics, we need to

find the shortest way with the cheapest cost to travel from one destination to another.

In health care, especially in radiotherapy treatment, the dose delivered to sick organs

should be maximal but we also want to keep other organs healthy, etc. Mathematical

models of these problems are actually some examples for the application of vector

optimization in practical perspectives. Nowadays, optimization theory not only is an

interesting field in the mathematical point of view but also affects many areas of life,

for instance, economics, energies, politics, culture, computer science. This dissertation

is concerned with two of the most important branches of optimization theory, which

are vector optimization and set optimization.

Vector optimization (or multiobjective optimization) deals with optimizing problems

whose objective functions are vector-valued mappings. This has been studied early in

the 19th century, and probably first appeared in publications of Edgeworth and Pareto

who introduced some initial definitions of efficient points of vector problems. How-

ever, this branch of optimization had already started and grown rapidly since 1951,

when Kuhn and Tucker [45] derived the necessary and sufficient conditions for efficient

elements of vector optimization problems. There are several important practical appli-

cations of vector optimization, for instance, location problems, approximate problems,

fractional problems and multiobjective control problems. Concerning solutions of vec-

tor optimization problems, there are many different solution concepts, such as (weakly)

Pareto-minimal points, properly efficient points, Henig properly minimal points, ap-

proximate efficient points, etc. Those definitions have been systematically studied in

Ha [27, 28], Khan et al. [44], and Luc [51], etc.

Set optimization has naturally appeared and been investigated as an expansion

of vector optimization. It is concerned with problems whose objective functions are

set-valued mappings. Recently, this field has attracted a great deal of attention and
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been developed in many publications; see [6, 7, 23, 24, 27, 37, 39, 40, 47]. We also

refer the reader to the survey book by Khan et al. [44] with the references and dis-

cussions therein. In the literature, there are three main approaches for the formulation

of optimality notions in set-valued optimization, namely the vector approach, the set

approach and the lattice approach. For the vector approach, basically, the solution

concepts are defined on the graph of a set-valued function. In more detail, a solution

defined by the vector approach depends on only a special element in the image of that

point and the other elements are ignored. Therefore, though this approach is interest-

ing in the mathematical point of view, it cannot be used often in practice. In order to

avoid this drawback, relevant order relations to compare two sets will be contributed.

The solution concepts based on these order relations are given by the set approach. In

this context, we should not fail to mention publications of Kuroiwa [46, 47], Jahn and

Ha [40]. In this dissertation, we are using the primal-space approach as well as the

dual-space approach in order to derive optimality conditions for set-valued optimiza-

tion problems.

In order to show necessary and sufficient conditions for solutions of vector optimiza-

tion problems as well as set-valued optimization problems, one needs certain structures

of the objective function such as convexity and Lipschitz continuity. Both convexity

and Lipschitz continuity have various important and interesting properties. The con-

vexity is a natural and powerful property of functions that plays a significant role in

many areas of mathematics, not only in theoretical but also in applied problems. It

connects notions from topology, algebra, geometry and analysis, and is an important

tool in deriving optimality conditions in optimization. In optimization, to get sufficient

conditions for optimal solutions, we need either a second order condition or a convexity

assumption. The Lipschitz continuity has been also known for a long time in applied

sciences and optimization theory. For example, in order to show subdifferential chain

rules or the relationships between the coderivative of a vector-valued function and the

subdifferential of its scalarization, then this function should be strictly Lipschitzian;

see [55, Theorem 3.28]. In particular, the Lipschitz properties for set-valued functions

are used for deriving generalized differential calculus and necessary conditions for min-

imizers of the set-valued optimization problem; see Bao and Mordukhovich [3, 4, 5, 6].

Concerning the relationships between these two properties in finite-dimensional

spaces, one of the well-known theorems of convex analysis states that: A proper con-

vex functional f : Rn → R is locally Lipschitz; see proofs in [13, 62]. We would also

like to know whether the convexity implies to the locally Lipschitz continuity in the

case that f is a vector-valued function or a set-valued function acting between general

spaces. Let us now briefly decribe how this problem is dealt with in the literature. Ini-
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tially, Roberts and Varberg [62] observed that this implication holds true for a function

f : X → R, when X is a normed vector space, and f is locally bounded. In addition,

the Lipschitz constant can be estimated; see Zălinescu [74]. For investigating a vector-

valued function f : Rm → Rn, Luc et al. [52] defined the C-convexity of f , where C is

a proper, convex cone in Rn. They proved that f is locally Lipschitz when the closure

of C is pointed, and f is C-convex. A more general result is given first by Borwein [9]

for a C-convex bounded function f : X → Y , where X,Y are normed vector spaces

and C ⊂ Y is a normal cone. In the case of vector lattice spaces, other similar results

are known from Papageorgiou [58], Reiland [61], and Thibault [69].

For set-valued maps there are many different definitions of Lipschitz continuity and

convexity. The reader can find the Lipschitz-like property in [1, 55], and other extended

Lipschitz properties in [2]. In [49], Kuroiwa et al. proposed six kinds of convexity for

set-valued functions based on corresponding set relations. Consequently, it is possible to

get more relationships between the convexity and the Lipschitz continuity of set-valued

functions. In [53], Minh and Tan defined the C-Lipschitzianity of set-valued functions

and proved that a lower C-convex set-valued function F : X ⇒ Y is C-Lipschitz, where

X is a finite-dimensional space, and Y is a Banach space.

In this dissertation, we investigate new relationships between convexity and Lips-

chitzianity of vector- and set-valued functions, and their applications. Especially, we

achieve the following new results:

• We prove Lipschitz properties of a cone-convex vector-valued function, under a

boundedness condition of this function which is weaker than that in Borwein [9].

In this thesis, this result is proved by two different methods, in which an accurate

Lipschitz constant is derived; see Theorem 4.2.7.

• We study C-Lipschitz properties of cone-convex set-valued functions. Our goal

is to extend the results of Minh and Tan in [53, Theorem 2.9] to general normed

vector spaces. In addition, some conditions concerning the ordering cone in [53,

Theorem 2.9] can be significantly relaxed; see Theorem 5.2.8.

• We use the aforementioned results to derive optimality conditions for solutions

of vector- and set-valued optimization problems, in which the objective functions

are cone-convex; see Chapter 7, and Chapter 8.

This study is organized as follows: The basic framework of vector optimization

and variational analysis is given in Chapter 2. We investigate binary relations on a

nonempty set and ordering cones in topological vector spaces. These binary relations

are the basic tools to define the convexity of vector-valued functions and set-valued

functions. Moreover, these relations are benificial to define the solution concepts for

vector optimization problems as well as set optimization problems. In order to provide
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main scalarization techniques for vector optimization problems, we introduce several

scalarizing functionals and corresponding separation theorems for not necessarily con-

vex sets. We also study set differences, which will be used in the sequel to derive new

concepts of Lipschitz continuity of set-valued functions.

In Chapter 3, we define the Lipschitz continuity of vector-valued functions as well as

set-valued functions. We recall the strictly Lipschitzianity of a vector-valued function,

and the equi-Lipschitzianity of a family of functionals. For set-valued functions, we

study the concepts Lipschitz-like, epigraphically Lipschitz-like (ELL), upper (lower) C-

Lipschitzianity, and all Lipschitz properties which are generated by set differences given

in Section 2.4.

The aim of Chapter 4 is to prove the Lipschitz continuity of C-convex vector-valued

functions. As indicated above, Borwein [9] proved the Lipschitz continuity in the case

that C is a normal cone, we will present new proofs for this result, and provide a more

precise Lipschitz constant in Theorem 4.2.7.

In Chapter 5, we derive new results concerning Lipschitz properties for C-convex set-

valued mappings. To do this, we recall the notations of C-convexity of set-valued func-

tions firstly introduced by Kuroiwa et al. [49]. We study the proofs of C-Lipschitzianity

for C-convex functions given by Kuwano and Tanaka in [50], and obtain stronger results

in comparison with the results in [50].

In the first section of Chapter 6, we present some basic definitions of derivatives

and directional derivatives for vector-valued functions. In Section 6.2, we investigate

definitions and several properties of subdifferentials in the sense of convex analysis and

subdifferentials of convex vector-valued functions. We also introduce normal cones as

well as subdifferentials in the senses of Clarke, Mordukhovich and Ioffe. In the last

sections, we present the derivatives and directional derivatives for set-valued functions.

In Chapter 7, we study optimality conditions for vector optimization problems. We

begin this chapter with collecting some techniques to scalarize the vector optimization

problem by an appropriate scalar optimization problem whose solutions are also solu-

tions of the given problem. In the second section, we derive the necessary conditions for

(weakly) Pareto efficient solutions in both solid and non-solid cases. In the last section,

we use the previous results to derive necessary conditions for solutions of vector-valued

approximation problems.

In Chapter 8, we use both the primal-space approach and the dual-space approach

to establish optimality conditions for solutions of set-valued optimization problems.

In section 8.1.1, we deal with solutions of set-valued optimization problems based on

vector approach as well as set approach. By using contigent cones, contigent deriva-

tives and contigent epiderivatives, we get optimality conditions for the solutions of

the set optimization problems. For the dual-space approach, we use the Mordukhovich
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coderivatives in Asplund spaces to obtain necessary conditions of set optimization prob-

lems in Section 8.2.



Chapter 2

Background

In this chapter, we will present some necessary background related to vector optimiza-

tion and variational analysis. This chapter is organized as follows. In Section 2.2, we

introduce several properties of functionals. In particular, we recall Lipschitz properties,

convex properties, and then we investigate the relationships between them, which play

a significant role in this dissertation. In order to prove the Lipschitzianity of scalar

convex functions, all techniques used in [62, 63, 74] are presented in this section. The

relationships between the Lipschitz continuity and the convexity of scalar functions

will be extended to vector-valued functions, set-valued functions as well as functions in

infinite-dimensional spaces in Chapter 4 and 5.

Section 2.3.2 introduces some types of cones which are related to topologies and

order structures of linear vector spaces. We refer the reader to [26, 42, 44, 66] for

a survey and additional materials on ordering cones. In this section, we especially

emphasize a notion, namely, a normal cone and some characterizations, which will

be used in Chapter 4 to prove the Lipschitz properties of cone-convex vector-valued

functions. In Section 2.3.3 we present some ordering relations between two nonempty

sets in order to define the convex properties of set-valued functions in Chapter 5, and

to study solutions of set-valued optimization problems in Chapter 8. These relations

have been investigated by many authors, such as Kuroiwa [46, 47], Kuroiwa, Tanaka

and Ha [49], Jahn and Ha [40].

In Section 2.4, following Baier and Farkhi [2], we introduce notions of differences

of two sets, which will be used to define several Lipschitz properties for set-valued

functions in Chapter 3. We concentrate on Demyanov differences which are studied in

detail in [2, 64], and recently be modified by Dempe and Pilecka [14] and by Jahn [39].

Section 2.5 is devoted to scalarizing functionals and separation theorems, which

provide main tools for deriving optimality conditions for vector optimization problems

in Chapter 7, and set-valued optimization problems in Chapter 8. Section 2.6 and

Section 2.7 introduce solution concepts for vector-valued optimization problems and

6
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set-valued optimization problems.

2.1 Topological vector spaces

This section mentions some basic concepts of linear spaces or vector spaces, and topo-

logical spaces. We will consider only real vector spaces throughout this dissertation, so

the term vector space will refer to a vector space over the real field R.

Definition 2.1.1. Let X be a nonempty set. X is called to be a vector space if an

addition (that is, a mapping + : X ×X → X) and a multiplication by scalars (that is,

a mapping · : R×X → X) are defined satisfying the following conditions:

(i) ∀ x, y, z ∈ X : (x+ y) + z = x+ (y + z) (associativity),

(ii) ∀ x, y ∈ X : x+ y = y + x (commutativity),

(iii) ∃ 0 ∈ X, ∀ x ∈ X : x+ 0 = x (null element),

(iv) ∀ x ∈ X, ∃ x′ ∈ X : x+ x′ = 0; we write x′ = −x,

(v) ∀ x, y ∈ X, ∀ λ ∈ R : λ(x+ y) = λx+ λy,

(vi) ∀ x ∈ X, ∀ λ, µ ∈ R : (λ+ µ)x = λx+ µx,

(vii) ∀ x ∈ X, ∀ λ, µ ∈ R : λ(µx) = (λµ)x,

(viii) ∀ x ∈ X : 1x = x (unity element).

Let A,B be nonempty subsets of a vector space X. The multiplication of a set with

a scalar α ∈ R and the sum of sets are given by

αA := {αa | a ∈ A}, A+B := {a+ b | a ∈ A, b ∈ B}.

In particular, A − B := A + (−1)B = {a − b | a ∈ A, b ∈ B}. We use the following

conventions for any real number α, and a set A,

α · ∅ = ∅, ∅+A = A+ ∅ = ∅.

We consider now the topological structure on the family of subsets of a nonempty set

X.

Definition 2.1.2. Let X be a nonempty set, and τ be a family of subsets of X. We

say that (X, τ) is a topological space if τ satisfies the following conditions:

(i) every union of sets of τ belongs to τ ,

(ii) every finite intersection of sets of τ belongs to τ ,
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(iii) the empty set ∅ and the whole set X belong to τ .

The elements of τ are called open sets. A subset of X is closed if and only if its

complement is open.

The following definitions present some of the standard vocabulary that will be used.

Definition 2.1.3. Let (X, τ) be a topological space, A be a nonempty subset of X, and

x ∈ X. The closure clA of A is the intersection of all closed sets that contain A. The

interior intA of A is the union of all open sets that are subsets of A. The subset U

of X is a neighborhood of x (relative to τ) if there exists an open Ux ∈ τ such that

x ∈ Ux ⊂ U . The class of all neighborhoods of x will be denoted by Nτ (x). A subset

B(x) of Nτ (x) is called a neighborhood base of x relative to τ if for every U ∈ Nτ (x)

there exists V ∈ B(x) such that V ⊆ U .

Now we give one of the basic structures investigated in functional analysis which is

a combination of a topological space and the algebraic structure of a vector space.

Definition 2.1.4. Let X be a vector space, and τ be a topology on X. We say that

(X, τ) is a topological vector space if the following conditions hold:

(i) every point of Xis a closed set,

(ii) the vector space operations are continuous w.r.t. τ .

2.2 Topological and algebraic properties of functionals

For the convenience of the reader we collect some basic concepts in topological and

some properties of functionals. These concepts and properties are presented in many

classical references, so we will omit their proofs. We shall be working in topological

vector spaces X whose elements are either vectors or points. The element 0X is the

origin of X. To simplify notation, we use the same symbol 0 for origin elements of all

topological vector spaces if no confusion arises. In the case X is a normed vector space

(nvs for short), we shall denote the norm of x by ‖x‖X , and if there is no confusion, we

omit the subscript X for brevity. We denote by X∗ its dual space equipped with the

weak* topology ω∗, while its dual norm is denoted by ‖·‖∗. We denote the closed unit

ball and the unit sphere in X by UX and SX , respectively. The closed ball centered at

x0 ∈ X with radius r > 0 is defined as

B(x0, r) := x+ rUX = {x ∈ X | ‖x− x0‖X ≤ r}.

The symbol ∗ is used to indicate relations to dual spaces (dual elements, adjoint oper-

ators, dual cone etc.).
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Furthermore, we use the notations Rn for n-dimensional Euclidean space, Rn+ for non-

negative orthant of Rn, and R := R∪{+∞}. The set of positive integers is denoted by

N∗ := {1, 2, . . .}.
For a scalar function f : X → R, the domain of f is given by

dom f := {x ∈ X | f(x) < +∞},

while its graph and epigraph are given, respectively, by

gph f := {(x, t) ∈ X × R | f(x) = t},

epi f := {(x, t) ∈ X × R | f(x) ≤ t}.

Definition 2.2.1. The function f : X → R is called:

(i) proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ X;

(ii) positively homogeneous if f(λx) = λf(x) for all x ∈ X and λ ∈ R+;

(iii) symmetric if f(−x) = f(x) for all x ∈ X;

(iv) lower semi-continuous (lsc for short) if epi f is closed;

(v) subadditive if f(x+ y) ≤ f(x) + f(y) for all x, y ∈ X;

(vi) sublinear if f is subadditive and positively homogeneous.

In the following definitions, we define the Lipschitz continuity and the convexity of

scalar functions. Then we will recall the relationships between the Lipschitz continuity

and convexity of scalar functions. These properties will be generated in Chapters 3, 4

and 5 for vector-valued and set-valued mappings in general spaces.

Definition 2.2.2. ([13]) Let X be a normed vector space, f : X → R be a function,

A ⊆ X. Then, f is said to be Lipschitz on A with a nonnegative constant ` provided

that f is finite on A and

|f(x)− f(x′)| ≤ `
∥∥x− x′∥∥

X

for all points x, x′ in A. This is also referred to as a Lipschitz condition of rank `. We

shall say that f is Lipschitz around x if there is a neighborhood U of x such that f

is Lipschitz on U (in particular x ∈ int(dom f)). In addition, f is said to be locally

Lipschitz on A, if f is Lipschitz around every point x ∈ A. Hence, A ⊆ int(dom f).

Definition 2.2.3. ([74]) Let X be a real topological vector space, f : X → R be a

function. We say that f is convex on a convex subset A of X if for all x, x′ ∈ A, λ ∈
(0, 1), one has

λf(x) + (1− λ)f(x′) ≥ f(λx+ (1− λ)x′).

If the equality always holds, f is said to be affine.
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For convenience we will say that the function f : X → R is convex if f is convex

on whole space X. Obviously, if f is convex, then f is convex on every convex subset

of X.

Now we give several simple examples of Lipschitz functions and convex functions.

Example 2.2.4. Let (X, ‖ · ‖) be a normed vector space.

(i) It is simple to verify that the norm function f(x) = ‖x‖ is convex, and Lipschitz

on X with Lipschitz constant ` = 1.

(ii) If A is a nonempty convex subset of X, then the distance function

d(x,A) := inf
y∈A
‖x− y‖, x ∈ X,

is convex on X. It is also Lipschitz with rank ` = 1.

The following maps are often used in the literature.

Example 2.2.5. (Indicator function) Given a nonempty subset A ⊂ X, the indi-

cator function δA : X → R is defined by

δA(x) :=

0 if x ∈ A,

+∞ otherwise .
(2.1)

Obviously, if A is convex, then δA is proper and convex.

Example 2.2.6. (Support function) Given a nonempty subset A of a normed space

X, the support function σ(·, A) : X∗ → R w.r.t. A is defined by

σ(x∗, A) := sup
a∈A
〈x∗, a〉 , (x∗ ∈ X∗). (2.2)

It is easy to verify that σ(·, A) is a positively homogeneous, closed and convex function.

In the next proposition, we present some properties of convex functions, which can

be considered as equivalent concepts of convex functions.

Proposition 2.2.7. ([74]) Let X be a topological vector space, f : X → R be a function.

The following statements are equivalent:

(i) f is convex,

(ii) dom f is a convex set and

∀x, y ∈ dom f,∀λ ∈ (0, 1) : λf(x) + (1− λ)f(x′) ≥ f(λx+ (1− λ)x′),

(iii) epi f is a convex subset of X × R.
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The following lemma shows that every proper scalar convex function is locally

bounded in a finite-dimensional space. For the proof, we refer the reader to [62, Lemma

A].

Lemma 2.2.8. (Lemma A [62]) A proper convex function f : Rm → R is bounded in

a neighborhood of each point x0 ∈ int (dom f).

By using the lemma above, Roberts and Varberg obtained the locally Lipschitz

property of a proper convex functional. They also estimated the Lipschitz constant

which plays an important role in proving the Lipschitz properties of cone-convex set-

valued functions. For convenience we recall the proof in this thesis.

Lemma 2.2.9. ([62, Theorem A]) Let f : Rm → R be a proper convex function. Then,

f is Lipschitz on a neighborhood of each point x0 of int (dom f).

Proof. Let x0 be a given point in int (dom f). Taking into account Lemma 2.2.8, we

see that there exist ε > 0 and M > 0 such that B(x0, 2ε) ⊆ int (dom f) and

|f(x)| ≤M, for all x ∈ B(x0, 2ε).

Take x, y ∈ B(x0, ε), x 6= y, and set

z = x+ (x− y)
ε

‖x− y‖
.

This implies that

z ∈ B(x0, 2ε) and x = ty + (1− t)z,

where t = ε
ε+‖x−y‖ ∈ (0, 1). Since f is convex, we have

f(x) ≤ tf(y) + (1− t)f(z).

Therefore,

f(x)− f(y) ≤ (1− t)(f(z)− f(y))

≤ ‖x− y‖
ε
‖f(z)− f(y)‖ ≤ 2M

ε
‖x− y‖,

which leads to the conclusion. �

However, a scalar convex function on an infinite-dimensional normed space may

be locally unbounded (for example, see [62]). Therefore, we need a mild additional

condition on f , for example, the boundedness from above of the function on a nonempty

open set; see also Roberts and Varberg [62, Theorem B] and Zălinescu [74, Corollary

2.2.12].

Lemma 2.2.10. ([62, Lemma B]) Let (X, ‖·‖X) be a normed vector space, and f :

X → R be a proper convex function. If f is bounded from above in a neighborhood of

just one point x0 of int (dom f), then f is locally bounded on int (dom f).
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It implies from Lemma 2.2.10 that f is locally bounded on int (dom f). Therefore,

the Lipschitzianity of f follows the same lines of argument in the proof of Lemma 2.2.9.

Moreover, if f is bounded by M > 0 on a neighborhood B(x0, 2ε) of x0, we can estimate

the Lipschitz constant ` = 2M/ε.

Lemma 2.2.11. ([62, Theorem B]) Let (X, ‖·‖X) be a normed vector space, and f :

X → R be a proper convex function. If f is bounded from above in a neighborhood of

just one point x0 of int (dom f), then f is Lipschitz around x0. Moreover, f is locally

Lipschitz on int (dom f).

In the following lemma, Zălinescu utilized another technique to show the Lipschitz

property of a proper convex function f , and to estimate the Lipschitz constant. For

the proof, we refer to [74, Corollary 2.2.12].

Lemma 2.2.12. ([74, Corollary 2.2.12]) Let (X, ‖·‖X) be a normed vector space, and

f : X → R be a proper convex function. Suppose that x0 ∈ dom f and there exist θ > 0,

m ≥ 0 such that

∀x ∈ B(x0, θ) : f(x) ≤ f(x0) +m.

Then

∀θ′ ∈ (0, θ),∀x, x′ ∈ B(x0, θ
′) :
∣∣f(x)− f(x′)

∣∣ ≤ m

θ
· θ + θ′

θ − θ′
·
∥∥x− x′∥∥

X
.

In the next chapters, we will study the Lipschitzianity of vector-valued convex

functions and set-valued convex functions arising in a natural way from the results of

the aforementioned Lemmas 2.2.11, and 2.2.12. We investigate these problems not only

in finite-dimensional spaces but also in infinite-dimensional spaces.

2.3 Binary relations, Ordering cones and Set relations

In this section, order relationships w.r.t. a given convex cone C, between two vectors

and between two nonempty sets are considered. Based on these order relationships, we

are able to derive some solution concepts for vector-valued optimization problems in

Section 2.6, and solution concepts for set-valued optimization problems in Section 2.7.

2.3.1 Binary relations

We begin with binary relations and some of their properties which are the basis for the

definition of ordering cones and of optimal elements.

Definition 2.3.1. Let M be a nonempty set, M ×M is the set of ordered pairs of

elements of M :

M ×M :=
{

(x, y) | x, y ∈M
}
.
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If R is a nonempty subset of M ×M , then R is called a binary relation on M and

we write xRy for (x, y) ∈ R. The pair (M,R) is called a set M with binary relation

R. Two elements x, y ∈M are said to be comparable if xRy or yRx holds.

The binary relation R is called:

(i) reflexive if xRx for every x ∈M ;

(ii) transitive if for all x, y, z ∈M : xRy and yRz imply that xRz;

(iii) symmetric if for all x, y ∈M : xRy implies that yRx;

(iv) antisymmetric if for all x, y ∈M : xRy and yRx imply that x = y;

(v) complete if any two elements of M are comparable.

(vi) a preorder if R is reflexive and transitive;

(vii) a partial order if R is reflexive, transitive and antisymmetric.

Example 2.3.2. Let R, Z, N be the set of real numbers, integers, and nonnegative

integers, respectively. Take

R1 := {(x, y) ∈ R× R | x− y ∈ Z},

R2 := {(x, y) ∈ Z× Z | x− y ∈ N},

R3 := {(x, y) ∈ Z× Z | x− y ∈ N∗}.

Then,

(i) R1 is a preorder on R. It is also symmetric but not antisymmetric or complete

on R.

(ii) R2 is a partial order but it is neither symmetric nor complete on Z.

(iii) R3 is only transitive on Z.

Definition 2.3.3. Let R be a binary relation on a nonempty set M , and take M0 ⊆M .

An element x̄ ∈M0 is called a maximal or a minimal element of M0 w.r.t. R if for

every x ∈M0:

x̄Rx =⇒ xRx̄ or

xRx̄ =⇒ x̄Rx, respectively.

We denote by Max(M0;R) the set of all maximal elements of M0, and by Min(M0;R)

the set of all minimal elements of M0.

If R is a partial order on M , then a subset M0 ⊆ M can have no, one or several

minimal (maximal) elements.
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Definition 2.3.4. Let R be a binary relation on a nonempty set M , and M0 be a

subset of M . We call that M0 is bounded below (or bounded above) w.r.t. R if

there exists some a ∈ M such that aRx (xRa, respectively) for every x ∈ M0. In this

case, the element a is called a lower bound (upper bound, respectively) of M0.

If R is a partial order, an element a ∈ M is called the infimum (or supremum)

of M if a is a lower bound (upper bound, respectively) of M0 and for any lower bound

(upper bound, respectively) a′ of M0 we have a′Ra (aRa′, respectively).

We consider M := Z, M0 := N∗ and the binary relation R2 given in Example 2.3.2.

Observe that the unit element 1 is a unique minimal element and also an infimum M0.

2.3.2 Ordering cones

In this section, we will list some basic notions of cones of a topological vector space Y ,

which can be found, for instance, in [26, 42, 44, 51, 66]. These cones induce the class

of binary relations, which are compatible with the linear structure of Y .

Definition 2.3.5. A nonempty set C ⊆ Y is said to be a cone if tc ∈ C for every

c ∈ C and every t ≥ 0. The cone C is called:

(i) convex if ∀λ ∈ (0, 1), ∀x1, x2 ∈ C: λx1 + (1− λ)x2 ∈ C,

(ii) proper if C 6= {0} and C 6= Y ,

(iii) reproducing if C − C = Y ,

(iv) pointed if C ∩ (−C) = {0}.

Obviously, if C is a cone, then 0 ∈ C. We will give some examples of cone.

Example 2.3.6. (i) The nonnegative orthant of the n-dimensional Euclidean space

is given by Rn+ := {(x1, . . . , xn) ∈ Rn | xi ≥ 0 ∀i = 1, . . . , n}. Clearly, Rn+ is a

proper, convex and reproducing cone.

(ii) C := {(x1, . . . , xn) ∈ Rn | ∀i = 1, . . . , n : xi > 0} ∪ {0} is a convex and pointed

cone.

Definition 2.3.7. Let Y be a topological vector space and C be a proper, convex cone

in Y . A nonempty set B of C is called a base for C if each nonzero element y ∈ C has

a unique representation of the form y = λb with λ > 0 and b ∈ B.

On the topological vector space Y , we consider an ordering relation ≥C generated

by a proper, convex cone C ⊆ Y . This ordering relation is given by

y ≥C y′ if and only if y − y′ ∈ C for all y, y′ ∈ Y. (2.3)
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In several cases, if it causes no confusion, we will use the notation ≤C as an ordering

relation on Y , i.e. y ≤C y′ ⇔ y′ ≥C y.

We present some properties of ≥C in the following proposition.

Proposition 2.3.8. Let Y be a topological vector space, and C be a convex cone. Then,

the ordering relation ≥C given by (2.3) has the following properties:

(i) y ≥C y for all y ∈ Y (reflexive),

(ii) y ≥C y′, y′ ≥C y′′ implies y ≥C y′′ for all y, y′, y′′ ∈ Y (transitive),

(iii) y ≥C y′ implies y + z ≥C y′ + z for all y, y′, z ∈ Y ,

(iv) y ≥C y′ implies λy ≥C λy′ for all λ ≥ 0 and y, y′ ∈ Y .

(v) If C is pointed, then ≥C is antisymmetric. Moreover, ≥C is called a partial order.

Now we study some cone properties which show the connection between the topology

and the order of the space Y . Before giving the definition of a normal cone, we recall

that the nonempty set A of the topological vector space Y is full w.r.t. the convex

cone C ⊂ Y if A = [A]C , where

[A]C := (A+ C) ∩ (A− C);

note that [A]C is full w.r.t. C for every nonempty subset A of Y .

Definition 2.3.9. Let Y be a topological vector space, and let C ⊂ Y be a proper,

convex cone. Then C is called normal if there exists a neighborhood base of the origin

0 ∈ Y formed by full sets w.r.t. C.

Remark 2.3.10. If the neighborhood base of the origin in Definition 2.3.9 is taken in

the weak topology of Y , then C is called weakly normal (w-normal, for short).

Example 2.3.11. We give an example of a normal cone. In the 2-dimensional Eu-

clidean space R2, we consider the nonnegative orthant C := R2
+, and a neighborhood

base formed by sets An := {|xi| < 1, i = 1, 2} for every n ∈ N∗. Clearly, An is full

w.r.t. C for every n ∈ N∗, and therefore Rn+ is a normal cone.

Although the concepts given in Definition 2.3.9 and Remark 2.3.9 are defined for

the general topological vector spaces, in this section we consider them in normed vector

spaces. Until the end of this section, unless otherwise stated, by Y we mean a normed

vector space over the field R with the norm ‖ ·‖Y . The topological dual of Y is denoted

by Y ∗.

The continuous dual cone of C and its quasi-interior are respectively given by

C+ := {y∗ ∈ Y ∗ | ∀c ∈ C : y∗(c) ≥ 0},
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and

C# := {y∗ ∈ Y ∗ | ∀c ∈ C : y∗(c) > 0}.

We use the following convention, y∗(∅) := {+∞}, for all y∗ ∈ C+.

We adjoin a maximal element +∞ to Y (+∞ /∈ Y ) such that +∞ ≥C y for all

y ∈ Y , and we use the notation Y • := Y ∪ {+∞}. The infinity element satisfies

α · (+∞) = +∞, y + (+∞) = +∞, 0 · (+∞) = 0, y∗(+∞) = +∞

for any positive real α, any y in Y and any y∗ ∈ C+.

In the next results we give several characterizations of normal cones in a normed

vector space.

Lemma 2.3.12. ([26, Theorem 2.1.22]) Let Y be a normed vector space, and C ⊂ Y

be a convex cone. The following statements are equivalent:

(i) C is normal;

(ii) There exists ρ > 0 such that ρ[UY ]C ⊂ UY ;

(iii) clC is normal;

Taking into account of Lemma 2.3.12 (i), (ii), then (i) is equivalent to the bound-

edness of [UY ]C (compare to [26, Theorem 2.2.10]).

Lemma 2.3.13. ([26, Corollary 2.1.23]) Let (Y, ‖.‖Y ) be a normed vector space, and

C ⊂ Y be a convex cone. If C is normal, then C is pointed, and so clC is pointed, too.

Proof. Indeed, if y ∈ C∩(−C), then y ∈ ({0}+C)∩({0}−C) ⊆ (ρUY +C)∩(ρUY −C) =

[ρUY ]C for every ρ > 0. Since the family {ρ[UY ]C , ρ > 0} is a neighborhood base of

0, y = 0. From Lemma 2.3.12, it follows that clC is a normal cone, and thus clC is

pointed. �

Lemma 2.3.14. ([26, Corollary 2.2.11]) Let (Y, ‖.‖Y ) be a finite-dimensional normed

vector space, and C ⊂ Y be a convex cone. Then, C is normal if and only if clC is

pointed.

The next result is a particular case of [42, 3.4.8]; see also the remark from [66, p.

220].

Proposition 2.3.15. Let (Y, ‖·‖Y ) be a normed vector space, and C ⊂ Y be a convex

cone. Then,

C is normal ⇔ C is weakly normal ⇔ C+ − C+ = Y ∗.
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Proof. The following implications are well known in locally convex spaces; see, e.g.,

[26].

C is normal ⇒ C is weakly normal ⇔ C+ − C+ = Y ∗

Assume that C is weakly normal. Obviously, UY is weakly bounded. Since C is

weakly normal, by [42, Section 3.2.6], [UY ]C is weakly bounded. By [65, Corollary

3.18], [UY ]C is bounded. This shows that C is normal. �

Lemma 2.3.16. Let (Y, ‖·‖Y ) be a normed vector space, and C ⊂ Y be a normal cone.

Then,

ρ := sup{‖y‖ | y ∈ [UY ]C} ∈ [1,+∞) and ρ−1UY ∗ ⊆ C+
1 − C

+
1 ,

where C+
1 := UY ∗ ∩ C+.

This result can be deduced from Jameson’s book [42]. We provide its proof for the

reader’s convenience. In this proof we are dealing with the polar set of a nonempty set

A ⊆ Y defined by

A0 := {y∗ ∈ Y ∗ | ∀y ∈ A : y∗(y) ≥ −1}.

Proof. Since C is normal, there exists r > 0 such that [UY ]C ⊂ rUY . It follows that

1 ≤ ρ ≤ r < +∞. Since [UY ]C = (UY + C) ∩ (UY − C) ⊆ ρUY and (UY + C)0 =

C+ ∩ UY ∗ = C+
1 is convex and w∗-compact, we get

ρ−1UY ∗ = (ρUY )0 ⊆ [(UY + C) ∩ (UY − C)]0

= convw
∗ [

(UY + C)0 ∪ (UY − C)0
]

= convw
∗ [
C+

1 ∪ (−C+
1 )
]

⊆ convw
∗ [
C+

1 − C
+
1

]
= C+

1 − C
+
1 ,

where convw
∗
E is the closed convex hull of the subset E of the vector space Y ∗ with

respect to the weak* topology. This completes the proof. �

Before giving some useful notions of cones, we recall that a net (xi)i∈I ⊂ X is

nonincreasing if

∀i, j ∈ I : j � i⇒ xi ≥C xj ,

where C is a convex cone.

Given a nonempty set A ⊆ X, we say that A is lower bounded w.r.t. C if there

is an element a ∈ X such that x ≥C a for every x ∈ A.

Definition 2.3.17. Let Y be a normed vector space, and C ⊂ Y a proper, convex cone.

We say that

(i) C is based if there exists a convex set B such that C = R+B and 0 /∈ clB.

(ii) C is well-based if there exists a bounded convex set B such that C = R+B and

0 /∈ clB.
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Table 2.1: The relationships among different kinds of cones

C has compact baseww� ~ww C = clC

Y = Rn

C is well-based ⇐⇒ intC+ 6= ∅ww�
∃ proper cone K: ⇐⇒ C is based ⇐⇒ C# 6= ∅
C \ {0} ⊆ intK ww� ~ww C = clC

Y separable

C well-based
C=clC, Y=Rn⇐= C pointed ⇐= C+ − C+ = Y ∗ww� ~ww ~w�

clC is normal ⇐⇒ C is normal
Y nvs⇐⇒ C is w-normal.

(iii) C has a compact base if there exists a compact convex set B such that C = R+B

and 0 /∈ clB.

(iv) C is said to be Daniell if any nonincreasing net which has a lower bound, con-

verges to its infimum.

Remark 2.3.18. (i) Table 2.1 describes the relationships among different kinds of

cones.

(ii) Obviously, if a proper, convex cone C is well-based, then C is also based. It is

clear that the nonnegative orthant R2
+ is well-based in R2 with a bounded convex

set B := {(x1, x2) ∈ R2 | x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}.

(iii) A convex cone with a weakly compact base is Daniell.

2.3.3 Set relations

In what follows X and Y are normed spaces, C is a proper, convex cone in Y . We

take two arbitrary nonempty subsets A,B of Y , and consider the ordered relationship

between them w.r.t. the cone C. We begin this part with the ordering relation ≥C to

compare two vectors x, y ∈ Y given by (2.3) as in the previous section. It is clear that

the ordering relation between two vectors does not imply the ordering relation between

two sets:

A ⊂ B + C < B ⊂ A− C.
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In order to avoid this drawback it is necessary to derive other set relations to compare

two arbitrary nonempty sets in Y .

First, we recall a set less order relation, which plays an important role in set op-

timization, and was first independently introduced by Young [72] and Nishnianidze

[57].

Definition 2.3.19. ([57, 72]) Let A,B be nonempty subsets of Y , and C be a proper,

convex cone; then the set less order relation �sC is defined by

A �sC B ⇐⇒ B ⊆ A+ C and A ⊆ B − C.

We follow the lines of Kuroiwa, Tanaka, and Ha [49] and define six kinds of set

relations between two nonempty sets as follows

Definition 2.3.20. ([49]) For two nonempty sets A,B ⊆ Y and a proper, convex cone

C in Y , we introduce the following set relations

(i) A �(i)
C B ⇐⇒ B ⊆

⋂
a∈A

(a+ C);

(ii) A �(ii)
C B ⇐⇒ A

⋂( ⋂
b∈B

b− C
)
6= ∅;

(iii) A �(iii)
C B ⇐⇒ B ⊆ A+ C;

(iv) A �(iv)
C B ⇐⇒ B

⋂( ⋂
a∈A

a+ C
)
6= ∅;

(v) A �(v)
C B ⇐⇒ A ⊆ B − C;

(vi) A �(vi)
C B ⇐⇒ B

⋂
(A+ C) 6= ∅.

The set relations �(iii)
C and �(v)

C will be called the lower and upper set less order

relation , respectively. In several books and articles, the lower (upper) set less order

relation is denoted by �(l)
C (resp. �(u)

C ); see [40, 44] and the references therein.

The following proposition is directly verified from Definition 2.3.20.

Proposition 2.3.21. ([49]) Let A,B ⊆ Y be nonempty sets, and C be a proper, convex

cone in Y . The following statements hold:

A �(i)
C B =⇒ A �(ii)

C B =⇒ A �(iii)
C Bww� ww�

A �(iv)
C B =⇒ A �(v)

C B =⇒ A �(vi)
C B

The set relations given in Definition 2.3.20 are widely used in literature to define

solution concepts for set-valued optimization problems. In this dissertation, we also

use these relations to define new convexity notions for set-valued functions.
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In [40], Jahn and Ha also derived many new set relations. The authors have

equipped the space Y with an arbitrary pre-order, without any topological or lin-

ear structure, and then after defining new concepts of optimal solutions of set-valued

optimization problems, some existence results for these solutions were derived.

2.4 Set differences

In this section, we study several set differences which were investigated by Baier and

Farkhi [2], Rubinov and Akhundov [64], Dempe and Pilecka [14] for finite-dimensional

spaces, and by Jahn [39] for infinite-dimensional spaces. It is important to mention that

these differences motivate the corresponding Lipschitz continuities in Section 3.2 later.

In [2], various set differences are considered on K(Rn) (the set of nonempty compact

subsets of Rn) or on C(Rn) (the set of nonempty convex compact subset of Rn). For

each set difference, the corresponding distance (or even a metric) is constructed, and

the corresponding Lipschitz continuity of a set-valued function with compact values

F : X ⇒ K(Rn) (or convex compact values F : X ⇒ C(Rn)) are also derived. In this

approach, the Lipschitzianity is related to the distance or the topological structure of

the spaces K(Rn) and C(Rn). In this dissertation, we follow another direction. The

Lipschitz continuities will be defined directly from the topological structure of the

original space without mentioning the distance. To do that, the algebraic difference

and geometric difference of two arbitrary sets are defined in general vector spaces.

In contrast, the Demyanov difference, and metric difference of two compact sets are

defined in the n-dimensional Euclidean space Rn. In the following definitions, for each

set difference concept, we will consider the corresponding vector spaces which can be

either finite-dimensional or general spaces.

Definition 2.4.1. ([2]) Let Y be a general topological vector space, and A,B be subsets

of Y . We define the

(i) algebraic difference as

A	A B := A+ (−1) ·B,

(ii) geometric/star-shaped/Hadwiger-Pontryagin difference as

A	G B := {y ∈ Y : y +B ⊆ A}.

The algebraic difference and geometric difference can be also presented as

A	A B =
⋃
b∈B

A−b, A	G B =
⋂
b∈B

A−b,
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(a) (b)

Figure 2.1: The geometric difference and the algebraic difference.

where A−b := {a− b | a ∈ A} = A− b for b ∈ B. Of course, the second formulae for the

algebraic difference and the geometric difference have more geometrical meaning than

the first ones given in Definition 2.4.1; see Figure 2.1a and 2.1b.

In the special case that B = {b} is a singleton, the algebraic difference and the

geometric difference coincide and are exactly the set A− b.
Note that the disadvantage of these two concepts is that the cardinality of the

algebraic difference set is usually bigger than one of two original sets. Furthermore, the

geometric difference sets in several cases can be empty, even if the vector spaces are

finite- or infinite-dimensional.

Example 2.4.2. (i) Let Y := Rn, and two sets A = B := UY . Then, A	AB = 2UY ;

see Figure 2.2a.

(ii) Let A,B ⊂ Y be two balls in a normed vector space Y such that B has a radius

bigger than A. Then, A	G B = ∅; see Figure 2.2b.

The geometric difference can also be extended to l-difference by Pilecka [60]. In

next definition, the l-difference is defined in a finite-dimensional Rn w.r.t. the relation

�(iii)
C given in Definition 2.3.20, where C is a cone in Rn.

Definition 2.4.3. (Pilecka [60]) Let A,B be arbitrary subsets of Rn, and C be a proper,

convex cone in Rn. The l-difference is defined as follows

A	l B := {y ∈ Rn : y +B ⊆ A+ C}, (2.4)

or the equivalent formulation

A	l B = {y ∈ Rn : A �(iii)
C B + y},
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(a) A	A B = 2UY (b) A	G B = ∅

Figure 2.2: Illustration for Examples 2.4.2.

where �(iii)
C is introduced in Definition 2.4.3.

In [2], Baier and Farkhi defined the algebraic difference and the geometric difference

in finite-dimensional spaces. However, it is clear that the nonempty characterization of

algebraic difference sets and geometric difference sets does not depend on the dimen-

sionality of the space.

Now we will study Demyanov differences and their modifications. In [2, 15, 64],

the Demyanov differences are considered on the class of the convex compact subsets

and the class of compact subsets in the n-dimensional Euclidean space Rn, which are

essential to make Demyanov difference sets nonempty.

For Y = Rn, we denote by K(Rn) the set of nonempty compact subsets of Rn,

and by C(Rn) the set of nonempty convex compact subsets of Rn. For a given set

A ∈ K(Rn), the support function of A is given by

σ(`, A) := max
a∈A
〈`, a〉 (` ∈ Rn),

and the supporting face of A is given by

M(`, A) := {a ∈ A : 〈`, a〉 = σ(`, A)}.

Here we denote by 〈`, a〉 the scalar product of ` and a, and by m(`, A) a point of the

supporting face. SA denotes the set of ` ∈ Rn such that the supporting face M(`, A)

consists of only a single point m(`, A). In general, one takes SA in the unit sphere

Sn−1 ⊂ Rn. Now we are able to define the Demyanov difference as in [2].
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Definition 2.4.4. (Baier and Farkhi [2]) Let A,B ∈ K(Rn). We define the Demyanov

difference as follows

A	D B := cl conv {m(`, A)−m(`, B) : ` ∈ SA ∩ SB}. (2.5)

There are several modifications of the Demyanov difference in the literature. In the

following definitions, we introduce two approaches proposed by Jahn [39], Dempe and

Pilecka [14], which restrict the considered directions to vectors contained in the dual

and negative dual cone of the ordering cone. Moreover, for these new set differences,

new directional derivatives are introduced (see Section 6.7) to formulate optimality

conditions in set optimization w.r.t. the set less order relation. To simplify notation,

we use the same symbol 	D for all the Demyanov differences under consideration if no

confusion arises.

In the next definition, the modified Demyanov difference is proposed in finite-

dimensional spaces.

Definition 2.4.5. (Dempe and Pilecka [14]) Let C be a proper, convex cone in Rn,

and A,B be two nonempty sets in Rn. Then, the modified Demyanov difference is given

by:

A	D B := cl conv {m(`, A)−m(`, B) : ` ∈ SA ∩ SB ∩ (C+ ∪ (−C+))}. (2.6)

In [39], Jahn derives new Demyanov differences for two arbitrary sets A,B in normed

vector space Y which is partially ordered by a convex cone C. However, it is necessary

to assume that the solutions of the following minimization and maximization problems

are unique for every ` ∈ C+
1 := C+ ∩ UY ∗ :

min
a∈A
〈`, a〉 , (2.7)

max
a∈A
〈`, a〉 . (2.8)

The solutions of the problems (2.7) and (2.8) are denoted by ymin(`, A) and ymax(`, A),

respectively. Note that if the constrained set A is weakly compact, then there exist

solutions to these problems.

Definition 2.4.6. (Jahn [39]) Let Y be a normed vector space, C be a proper, convex

cone in Y , and let two sets A,B ∈ Y be given so that for every ` ∈ C+
1 the solu-

tions ymin(`, A), ymin(`, B), ymax(`, A) and ymax(`, B) are unique. Then, the Demyanov

difference is given by:

A	D B :=
⋃
`∈C+

1

{ymin(`, A)− ymin(`, B), ymax(`, A)− ymax(`, B)}. (2.9)
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Definitions 2.4.4-2.4.6 use differences of supporting points. However, there are two

important differences among these three definitions. The first is how to restrict the

continuous linear functionals. Definitions 2.4.5 and 2.4.6 consider them on the closed

unit ball, since this restriction fits the vectorization approach in set optimization. The

second is that the closure of the convex hull of difference vectors is not needed in

Definition 2.4.6. We refer the reader to [14, 39] for more details and comparisons

among the aforementioned definitions of Demyanov differences.

We end this part by defining the metric difference of two nonempty compact subsets

of Rn.

Definition 2.4.7. ([2]) Let A,B ∈ K(Rn). We define the metric difference as

A	M B := {a− b : ‖a− b‖2 = d(a,B) or ‖b− a‖2 = d(b, A)}.

In the case that B = {b} is a singleton, all differences coincide and are equal to the

set A− b.
We refer the reader to [2, 39] for more details on some properties and the calculus

of the aforementioned set differences as well as comparisons between them.

2.5 Scalarizing functionals and separation theorems

In optimization theory, separation theorems play an important role in deriving the

necessary and sufficient conditions for solutions of optimization problems; see Chapter

7. In this section, let Y be a topological vector space, and A,B be given nonempty

subsets of Y . We introduce separation theorems for convex sets and separation theorems

for two arbitrary sets as well as some nonlinear scalarizing functionals.

2.5.1 Separation theorems for convex sets

In mathematics, the Hahn-Banach Theorem is one of three basic principles in functional

analysis. The separation theorem for convex sets, an equivalent form of the Hahn-

Banach Theorem, asserts that any two nonempty disjoint convex subsets of Y are

separated by a hyperplane. We refer the reader to [10, 65] for more details about

the Hahn-Banach Theorem. We will present in this part several main results of the

Hahn-Banach Theorem without proofs.

Theorem 2.5.1. (First separation theorem for convex sets) Let Y be a normed

vector space, and let A,B be nonempty convex subsets of Y such that A ∩B = ∅. If A

is open, then there is a continuous linear functional y∗ ∈ Y ∗, y∗ 6= 0 separating A and

B, i.e.,

y∗(x) ≤ y∗(y) for all x ∈ A, y ∈ B,
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The next corollary follows directly from the theorem above.

Corollary 2.5.2. Let Y be a normed vector space, and let A,B be nonempty convex

subsets of Y . We assume that intA 6= ∅. If intA ∩ B = ∅ then there is a continuous

linear functional y∗ ∈ Y ∗, y∗ 6= 0 such that

y∗(x) ≤ y∗(y) for all x ∈ A, y ∈ B,

Theorem 2.5.3. (Second separation theorem for convex sets) Let Y be a normed

vector space, A,B be convex subsets of Y . Moreover, if A is closed, B is compact, and

A∩B = ∅, then there is a continuous linear functional y∗ ∈ Y ∗ \{0} strictly separating

A and B, i.e.,

y∗(x) < y∗(y) for all x ∈ A, y ∈ B.

Proofs of the Theorems 2.5.1 and 2.5.3 can be found in [10].

2.5.2 Separation theorems for not necessarily convex sets

In the past, “the nonlinear scalarizing functional” or “Gerstewitz scalarizing functional”

was widely used in vector optimization, set optimization as well as financial mathemat-

ics. It was first used in [25] by Tammer (Gerstewitz) and Weidner to prove separation

theorems for nonconvex sets, which are important tools for the proof of optimality con-

ditions. In this section, we will discuss this functional and the separation theorems for

nonconvex sets.

Now let A be a given proper closed subset of Y , and e ∈ Y \ {0} such that

A+ [0,+∞) · e ⊆ A. (2.10)

We consider the scalarizing functional ϕ := ϕA,e : Y → R defined by

ϕA,e(y) := inf{λ ∈ R | λ · e ∈ y +A}, (2.11)

where we use the convention inf ∅ := +∞, sup ∅ := −∞ and (+∞) + (−∞) := +∞.

One main purpose of this dissertation is making use of the scalarization technique

to study necessary conditions of vector optimization problems stated in Chapter 7 and

necessary conditions of set-valued optimization problems stated in Chapter 8. Based

on well-studied properties of the functional ϕA,e, we will scalarize objective functions of

optimization problems, hence we can characterize solutions of the optimization prob-

lems. The nonlinear scalarizing functional is also used to prove the Lipschitzianity of

convex set-valued functions in Chapter 5.

We present some important properties of ϕ in [19, 26, 68] that will be used in sequel.
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Theorem 2.5.4. ([26, 68]) Let Y be a topological vector space, and A ⊂ Y be a proper,

closed set. Let e be a given point in Y \ {0} such that (2.10) holds, then the following

properties hold for ϕ := ϕA,e:

(a) ϕ is lower semi-continuous, and domϕ = Re−A.

(b) ∀y ∈ Y, ∀t ∈ R : ϕ(y) ≤ t if and ony if y ∈ te−A.

(c) ∀y ∈ Y, ∀t ∈ R : ϕ(y + te) = ϕ(y) + t.

(d) ϕ is convex if and ony if A is convex; ϕ(λy) = λϕ(y) for all λ > 0 and y ∈ Y if

and ony if A is a cone.

(e) ϕ is proper if and ony if A does not contain lines parallel to e, i.e., ∀y ∈ Y,∃t ∈
R : y + te /∈ A.

(f) ϕ takes finite values if and ony if A does not contain lines parallel to e and

Re−A = Y.

The following corollary is immediate.

Corollary 2.5.5. Let Y be a topological vector space, A,B,C ⊂ Y be proper sets, and

C be closed. If B − C is closed, then for every e ∈ intC and t ∈ R, we have

A ⊆ te+B − C ⇐⇒ sup
a∈A

ϕC−B,e(a) ≤ t.

Proof. Let A ⊆ te+B − C, this is equivalent to

a ∈ te+B − C, for all a ∈ A. (2.12)

Because of the closedness of B − C, all assumptions of Theorem 2.5.4 (b) are fulfilled.

Therefore, (2.12) is equivalent to

sup
a∈A

ϕC−B,e(a) ≤ t.

�

Before stating the next result we recall the D-monotonicity of a functional.

Definition 2.5.6. Let Y be a topological vector space, and D be a nonempty subset of

Y . A functional ϕ : Y → R is called D-monotone, if

∀y1, y2 ∈ Y : y1 ∈ y2 −D ⇒ ϕ(y1) ≤ ϕ(y2).

Moreover, ϕ is said to be strictly D-monotone, if

∀y1, y2 ∈ Y : y1 ∈ y2 −D \ {0} ⇒ ϕ(y1) < ϕ(y2).
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The following results provide some monotonicity properties of the scalarizing func-

tional ϕ. These properties are important for characterizing vector and set-valued opti-

mization problems.

Theorem 2.5.7. ([26]) Under the assumptions of Theorem 2.5.4, and take ∅ 6= D ⊆ Y .

Then, the following properties hold:

(a) ϕA,e is D-monotone if and only if A+D ⊆ A.

(b) ϕA,e is subadditive if and only if A+A ⊆ A.

We present now a separation theorem for not necessarily convex sets.

Theorem 2.5.8. ([26]) Nonconvex Separation Theorem. Let Y be a topological

vector space, and let A,B ⊆ Y be nonempty sets such that A is closed, intA 6= ∅ and

(−intA) ∩ B = ∅. Take e ∈ Y and assume that one of the following two conditions

holds:

(i) there exists a cone D ⊆ Y such that e ∈ intD and A+ intD ⊆ A;

(ii) A is convex, Re−A = Y and (2.10) is satisfied.

Then, ϕA,e is a finite-valued, continuous function such that

ϕA,e(y) ≥ 0 > ϕA,e(−x) for all x ∈ intA, y ∈ B.

Moreover, ϕA,e(y) > 0 for every y ∈ intB.

Now let Y be a Banach space and f : Y → R be a proper convex function. Recall

that the subdifferential or Fenchel subdifferential of f at ȳ ∈ dom f is given by

∂f(ȳ) = {y∗ ∈ Y ∗ | ∀y ∈ Y : f(y)− f(ȳ) ≥ y∗(y − ȳ)}, (2.13)

for ȳ /∈ dom f one puts ∂f(ȳ) = ∅; see Chapter 6 for more details.

Finally, we consider some calculus for the classical (Fenchel) subdifferential of the

nonlinear scalarizing functional ϕC,e given by (2.11).

Theorem 2.5.9. ([19])Let Y be a Banach space, and let C be a closed, convex cone in

Y with a nonempty interior. Take e ∈ intC. Then, we have

(a) ∂ϕC,e(0) = {y∗ ∈ C+ |y∗(e) = 1}.

(b) ∂ϕC,e(y) = {y∗ ∈ C+ |y∗(e) = 1, y∗(y) = ϕC,e(y)} for any y ∈ Y .

(c) ϕC,e is d(e,bd (C))−1-Lipschitz and for every y ∈ Y and y∗ ∈ ∂ϕC,e(y) one has

||e||−1 ≤ ||y∗|| ≤ d(e,bd (C))−1.

For the detailed proofs of Theorems 2.5.7-2.5.9, see [26, Theorem 2.3.1, Theorem

2.3.6] and [19, Lemma 2.4].
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2.5.3 The oriented distance function

In [30, 31], Hiriart-Urruty introduced “the oriented distance function” to analyse

the geometry of nonsmooth optimization problems. This function is an effective tool

for scalarizing vector optimization problems; see also Chapter 7.

In this section, Y is a normed vector space, and A is a proper subset of Y (i.e.,

A 6= ∅, A 6= Y ).

Definition 2.5.10. The oriented distance function ∆A : Y → R defined for a nonempty

set A ( Y , by

∆A(y) := d(y,A)− d(y, Y \A), (2.14)

where d(·, A) : Y → R is the distance function w.r.t. A.

We will show several important properties of the oriented distance function in the

following proposition.

Proposition 2.5.11. ([73, Proposition 3.2])

(i) ∆A is Lipschitzian of rank 1.

(ii) ∆A(y) < 0 for all y ∈ intA, ∆A(y) = 0 for all y in the boundary of A, and

∆A(y) > 0 for all y ∈ int(Y \A).

(iii) If A is convex, then ∆A is convex, and if A is cone, then ∆A is positively homo-

geneous.

(iv) If A is a closed, convex cone, then ∆A is A-monotone (i.e., y1 − y2 ∈ A implies

that ∆A(y1) ≤ ∆A(y2)). Moreover, if A has a nonempty interior, then ∆A is

strictly intA-monotone (i.e., y1 − y2 ∈ intA implies that ∆A(y1) < ∆A(y2)).

One has by the above proposition that ∆−C is convex, positively homogeneous, C-

monotone and 1-Lipschitz for every closed, convex cone C. Moreover, if intC = ∅, then

cl (Y \ (−C)) = Y . Therefore, d(y, Y \ (−C)) = 0 for all y ∈ Y , hence ∆−C = d(·,−C).

Note that both ∆A and d(·, A) are convex functions with a convex set A, so we can

take their subdifferentials in the sense of Fenchel. For the convenience of the reader we

repeat the calculus of subdifferential of the distance function d(·, A) in the following

proposition.

Proposition 2.5.12. ([11, Theorem 1]) Let A be a nonempty, closed, and convex

subset of Y . Then, d(·, A) is a convex function on Y with a convex subdifferential

∂d(y,A) =

SY ∗ ∩N(y;Ay) if y /∈ A

UY ∗ ∩N(y;A) if y ∈ A,
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where UY ∗ , SY ∗ are the closed unit ball and the unit sphere in Y ∗, Ay := A+d(y,A)UY ,

and N(ā;A) is the normal cone at a point ā ∈ A and be given as

N(ā;A) =
{
y∗ ∈ Y ∗

∣∣∀a ∈ A : y∗(a− ā) ≤ 0
}
.

In particular, if intC = ∅, then

∂∆−C(0) = ∂d(0,−C) = UY ∗ ∩N(0;−C) = UY ∗ ∩ C+. (2.15)

2.6 Solution concepts for vector-valued optimization prob-

lems

In order to formulate solution concepts for vector-valued problems and set-valued prob-

lems in next sections, we shall lead off with the well-known notions of (weak) Pareto

minimal points. In this section, we consider a topological vector space Y , partially

ordered by a proper, pointed, convex, closed cone C.

Definition 2.6.1. Let A be a nonempty subset of Y .

(i) We define the set of Pareto minimal points of A w.r.t. C by

Min(A;C) := {ȳ ∈ A | A ∩ (ȳ − C) = {ȳ}}.

(ii) The set of weakly Pareto minimal points of A w.r.t. C (with intC 6= ∅) is

given by

WMin(A;C) := {ȳ ∈ A | A ∩ (ȳ − intC) = ∅}.

The notions of (weak) minimality for vector optimization problem were first in-

troduced by Edgeworth and Pareto. They play an important role in many fields, for

example, in engineering and economics. Moreover, many authors defined other con-

cepts of minimality in the literature, such as strong minimal point, Properly minimal

point, etc. All these concepts and their relationships have been studied systematically

in Ha [27, 28], or Khan, Tammer and Zălinescu [44, Section 2.4].

The following lemma indicates that the set of (weak) Pareto minimal points of a

set A is exactly the one of the set A+ C.

Lemma 2.6.2. ([37, Lemma 4.7 and 4.13]) Let A be a nonempty subset of a partially

ordered linear space Y , and let C be a proper, pointed, convex, closed ordering cone in

Y . The following assertions hold true:

(i) Min(A+ C;C) = Min(A;C).

(ii) If intC 6= ∅, then WMin(A+ C;C) = WMin(A;C).
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We consider now the vector optimization problem :

minimize f(x) subject to x ∈ D, (VP)

where X,Y are two topological vector spaces, D ⊆ X is a feasible set, and C is a proper,

closed, convex, pointed cone in Y . The objective function f : X → Y is a single-valued

mapping, (VP) is a problem of vector optimization , and “minimization” is to be

understood in the sense of the following definition.

Definition 2.6.3. Let X,Y be two topological vector spaces, D be a nonempty subset

of X. Let f : X → Y be a single-valued mapping.

(i) A point x̄ ∈ D is said to be a Pareto efficient solution of the problem (VP)

for the single-valued mapping f w.r.t. C if f(x̄) ∈ Min(f(D);C).

(ii) A point x̄ ∈ D is said to be a weakly Pareto efficient solution of the problem

(VP) for the single-valued mapping f w.r.t. C if f(x̄) ∈WMin(f(D);C)

Of course, there are several other concepts of minimization of the problem (VP)

w.r.t. the notions of minimality for a set mentioned right after Definition 2.6.1. How-

ever, in this dissertation we restrict ourselves to the concepts in Definition 2.6.3, and

study the necessary optimality conditions for (weak) Pareto efficient solutions of vector-

valued optimization problems in Chapter 7.

2.7 Solution concepts for set-valued optimization prob-

lems

Let X,Y be two topological vector spaces, D ⊆ X be a feasible set, and let C be a

proper, closed, convex, pointed cone in Y . This section will be concerned with set-

valued optimization problems given by:

minimize F (x) subject to x ∈ D, (SP)

where the objective function F : X ⇒ Y is a set-valued mapping, and “minimization”

stands for different solution concepts given in definitions below.

We use the notations

F (D) =
⋃
x∈D

F (x) and domF = {x ∈ D | F (x) 6= ∅}.

There are three different approaches that have been recently studied in the literature

for the formulation of optimality notions for the problem (SP): the vector approach

[3, 4, 5], the set approach, and the lattice approach [44]. In this dissertation, we restrict

ourselves to two first approaches.
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Let x̄ be a point in X, and ȳ be a fix point in F (x̄). Next we define solutions of

(SP) based on the vector approach, that means we consider whether or not ȳ is a

Pareto minimal point of the image set of F w.r.t. C.

Definition 2.7.1. Let X,Y be two topological vector spaces, D be a nonempty subset

of X. Let F : X ⇒ Y be a set-valued mapping.

(i) A pair (x̄, ȳ) ∈ gphF with x̄ ∈ D is said to be a minimizer of the problem (SP)

for the set-valued mapping F w.r.t. C if ȳ ∈ Min(F (D);C), i.e.(
{ȳ} − C

)
∩ F (D) = {ȳ}.

(ii) A pair (x̄, ȳ) ∈ gphF with x̄ ∈ D is said to be a weak minimizer of the problem

(SP) for the set-valued mapping F w.r.t. C if ȳ ∈WMin(F (D);C), i.e.(
{ȳ} − intC

)
∩ F (D) = ∅.

(iii) A pair (x̄, ȳ) ∈ gphF is said to be a local minimizer (or local weak mini-

mizer) of the problem (SP) for the set-valued mapping F w.r.t. C if there is a

neighborhood U ⊂ X of x̄ such that ȳ ∈ Min(F (U);C) (or ȳ ∈WMin(F (U);C),

respectively).

The existence of minimizers and weak minimizers is discussed in Chapter 8, in which

set-valued functions are epigraphically Lipschitz-like or C-convex with some additional

boundedness conditions.

Clearly, the minimizers of the problem (SP) in the sense of Definition 2.7.1 de-

pend only on certain special elements of F (x̄), while other elements of F (x̄) are not

considered, for this reason one derived other approaches and new notions which are

more practical. The set-approach bases on the set relations introduced in Definitions

2.3.19 and 2.3.20 in order to define the solutions for the problem (SP). Now we consider

set-valued optimization problems w.r.t. a set relation �C :

�C −minimize F (x) subject to x ∈ D, (SP− �C)

where we denote �C by one of the set relations introduced in Definitions 2.3.19 and

2.3.20.

Definition 2.7.2. ([44]) Let X,Y be two topological vector spaces, D be a nonempty

subset of X, and F : X ⇒ Y be a set-valued mapping. An element x̄ ∈ D is said to

be a minimal solution of the problem (SP− �C) w.r.t. the relation �C if F (x) �C
F (x̄) for some x ∈ D implies that F (x̄) �C F (x).

An element x̄ ∈ D is said to be a strictly minimal solution of the problem

(SP− �C) w.r.t. the relation �C if there exists no x ∈ D \ {x̄} with F (x) �C F (x̄).

An element x̄ ∈ D is said to be a strongly minimal solution of the problem

(SP− �C) w.r.t. the relation �C if F (x) �C F (x̄), for all x ∈ D \ {x̄}.



Chapter 3

Lipschitz continuity of

vector-valued and set-valued

functions

The Lipschitz continuity is an important and useful tool to study many different prob-

lems of mathematics. In the theory of differential equations, the Lipschitz continuity is

essential for deriving conditions about the existence and uniqueness of the solution to

an initial value problem. In variational analysis, the Lipschitz continuity is also used

to get some calculus rules in generalized differentiation; see Section 6.4. Furthermore,

one can derive the necessary conditions for solutions of optimization problems when

objective functions are Lipschitz (see Chapter 7 and Chapter 8). In this chapter, we

introduce some concepts of Lipschitzianity not only for scalar- and vector- valued func-

tions but also for set-valued functions. Almost all notions in this chapter are cited in

the monographs of Clarke [13] and Mordukhovich [55]. Some of the notions mentioned

in Section 3.2 are based on the definitions of set differences in Section 2.4.

3.1 Lipschitz continuity of vector-valued functions

We consider a normed vector space Y endowed with an order structure which is defined

in (2.3) by a proper, pointed, convex cone C ⊂ Y . We adjoin a maximal element +∞
to Y, and get Y • := Y ∪ {+∞}; see Section 2.3.2. We consider a function f : X → Y •

between two normed vector spaces, and denote the domain of f by dom f := {x ∈ X |
f(x) ∈ Y }.

Definition 3.1.1. Consider f : X → Y •;

(i) f is said to be Lipschitz on U ⊆ X if U ⊆ dom f , and there exists ` ≥ 0 such

32
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that ∥∥f(x)− f(x′)
∥∥
Y
≤ `

∥∥x− x′∥∥
X
, for all x, x′ ∈ U.

(ii) f is said to be Lipschitz around x if there is a neighborhood U of x such that

f is Lipschitz on U (in particular x ∈ int(dom f)).

(iii) f is said to be locally Lipschitz on a nonempty subset D of X, if f is Lipschitz

around every point x ∈ D. Hence D ⊆ int(dom f).

It is well known that in finite-dimensional spaces every scalar convex function is

locally Lipschitz on the interior of its domain. We will extend this assertion in Section

4.2 for general cases with vector-valued functions in infinite-dimensional spaces.

We recall the notion of strict Lipschitzianity in order to show a relationship between

the coderivative of a vector-valued function and the subdifferential of its scalarization

in Section 6.4. This property is also used to derive necessary conditions for solutions

of vector optimization problems in Chapter 7.

Definition 3.1.2. ([55, Definition 3.25]) Consider a function f : X → Y and a point

x̄ ∈ X; f is called to be strictly Lipschitzian at x̄ if f is Lipschitz around x̄ and the

sequence

yk :=
f(xk + tkv)− f(xk)

tk
, k ∈ N,

contains a norm convergent subsequence whenever v ∈ X, xk → x̄ and tk ↓ 0.

If Y is a finite-dimensional space, the strictly Lipschitzianity above reduces to the

class of locally Lipschitz functions f : X → Rn. This claim does not hold for the case

dimY = +∞. For examples and more details on properties of strictly Lipschitzian

functions see [55].

We introduce now the concept of equi-Lipschitzianity of a family of functions that

are used in Chapter 5 to study the Lipschitzianity of convex set-valued functions.

Definition 3.1.3. Let {fα}α∈I be a family of functions fα : X → R, where I is a

nonempty index set. We say that the family {fα}α∈I is equi-Lipschitz around x0 ∈ X
if there are a neighborhood U of x0 and a real number L > 0 such that for every α ∈ I,

fα is finite and Lipschitz on U with the same Lipschitz constant L, i.e.,

|fα(x)− fα(y)| ≤ L||x− y||X , for all x, y ∈ U,α ∈ I.

3.2 Lipschitz continuity of set-valued functions

In this section, we will introduce several types of Lipschitz properties for set-valued

functions generated by a given proper, convex cone C. Moreover, we derive new Lips-

chitz continuities w.r.t. set differences given in Section 2.4.
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Let us begin with the multi-valued Lipschitz behavior called Lipschitz-like (also

known as the Aubin property , or the pseudo-Lipschitzian property) following the

book by Mordukhovich [55, Section 1.2.2]. Let F : X ⇒ Y be a set-valued mapping

between normed vector spaces. The domain of F is domF := {x ∈ X | F (x) 6= ∅}.
We define the graph of the set-valued mapping F by

gphF :=
{

(x, y) ∈ X × Y | y ∈ F (x)
}
.

Definition 3.2.1. (Lipschitz properties of set-valued mappings). Let F : X ⇒

Y with domF 6= ∅.

(i) Given nonempty sets U ⊆ X and V ⊆ Y , we say that F is Lipschitz-like on U

relative to V if there is ` ≥ 0 such that

∀x, x′ ∈ U : F (x) ∩ V ⊆ F (x′) + `
∥∥x− x′∥∥

X
UY . (3.1)

Hence, if F (U) ∩ V 6= ∅, then U ⊆ domF .

(ii) Given (x̄, ȳ) ∈ gphF , we say that F is Lipschitz-like around (x̄, ȳ) with modulus

` ≥ 0 if there are neighborhoods U of x̄ and V of ȳ such that (3.1) holds, hence

necessarily x̄ ∈ int(domF ). The infimum of all such moduli ` is called the exact

Lipschitz bound of F around (x̄, ȳ) and is denoted by lipF (x̄, ȳ).

(iii) F is Lipschitz continuous on U if (3.1) holds with V = Y ; the infimum of

` ≥ 0 for which (3.1) holds with V = Y is denoted by lipU F (x̄). Furthermore, F

is Lipschitz around x̄ if there is a neighborhood U of x such that F is Lipschitz

continuous on U .

Remark 3.2.2. (i) It follows immediately from Definition 3.2.1 that the Lipschitz-

like property of F around (x̄, ȳ) implies the Lipschitz-like property of F around

(x, y) ∈ gphF which is close enough to (x̄, ȳ).

(ii) If F is Lipschitz-like on U , one has U ∩ domF = ∅ or U ⊆ domF .

For a vector-valued function f : X → Y • we associate the set-valued function

F : X ⇒ Y given by

F (x) :=

{f(x)} if x ∈ dom f,

∅ otherwise;
(3.2)

hence domF = dom f ; we say that F is at most single-valued. Inversely, for each at

most single-valued function F : X ⇒ Y , we associate the corresponding vector-valued

function f : X → Y • given by

f(x) :=

y if x ∈ domF and F (x) = {y},

+∞ if x /∈ domF.
(3.3)
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Remark 3.2.3. Of course, if F : X ⇒ Y is at most single-valued, then:

(i) if V = Y , Definition 3.2.1(i) reduces to Definition 3.1.1(i) for the corresponding

vector-valued mapping f defined in (3.3),

(ii) if x̄ ∈ domF , F (x̄) = {ȳ}, and V = Y Definition 3.2.1(ii) reduces to Definition

3.1.1(ii).

We recall that the epigraph of F w.r.t. the cone C is given by

epiF :=
{

(x, y) ∈ X × Y | y ∈ F (x) + C
}
. (3.4)

The epigraphical multifunction of F : X ⇒ Y , EF : X ⇒ Y, is defined by

EF (x) := F (x) + C. (3.5)

From (3.4) and (3.5), it follows that gph EF = epiF .

Definition 3.2.4. A set-valued mapping F : X ⇒ Y is epigraphically Lipschitz-

like (ELL) around a given point (x̄, ȳ) ∈ gphF if there are neighborhoods U of x̄ and

V of ȳ such that

∀x, x′ ∈ U : EF (x) ∩ V ⊆ EF (x′) + `
∥∥x− x′∥∥

X
UY . (3.6)

In other words, F is ELL at (x̄, ȳ) if its epigraphical multifunction EF is Lipschitz-

like around that point.

Now, we introduce concepts of upper (lower) C-Lipschitzianity w.r.t. the

proper, convex cone C. They are used in Section 5.2 to show the C-Lipschitzianity

of C-convex set-valued functions.

Definition 3.2.5. Let F : X ⇒ Y be a set-valued mapping with domF 6= ∅, and

C ⊂ Y be a proper, convex cone.

(i) F is said to be upper (lower) C-Lipschitz around x0 ∈ X if there is a neigh-

borhood U of x0, and a constant ` ≥ 0 such that the following inclusions hold for

all x, x′ ∈ U
F (x′) ⊆ F (x) + `||x′ − x||XUY − C, (3.7)

(F (x′) ⊆ F (x) + `||x′ − x||XUY + C, respectively). (3.8)

(ii) F is said to be locally upper (lower) C-Lipschitz on D ⊆ X if it is upper

(lower) C-Lipschitz around any point of D.

Remark 3.2.6. (i) In Definition 3.2.5(i), if F is upper (lower) C-Lipschitz around

x0, then x0 /∈ cl (domF ) or x0 ∈ int (domF ). Moreover if U ∩ domF 6= ∅, then

U ⊆ domF , and thus x0 ∈ int (domF ).
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(ii) Obviously, if F is lower C-Lipschitz around x̄ ∈ domF , from (3.8), we have that

EF is Lipschitz-like continuous around (x̄, ȳ), for all ȳ ∈ F (x̄), so F is (ELL)

around (x̄, ȳ), for all ȳ ∈ F (x̄).

(iii) Note that the concepts of C-Lipschitzianity in Definition 3.2.5 are more general

than the ones in the sense of Kuwano and Tanaka [50] in Definition 5.3.1, as

they fix x := x0 in the right-hand side of the inclusions (3.7) and (3.8).

We now introduce several new Lipschitz continuities of set-valued maps w.r.t. the

given set differences presented in Section 2.4. These Lipschitz continuities were inves-

tigated for both finite-dimensional spaces in [2, 64], and infinite-dimensional spaces in

[39]. In [2], Baier and Farkhi give a good survey on Lipschitz continuities of set-valued

maps. Furthermore, they also study the relationships between Lipschitz continuities

and existence of selections of set-valued maps. This matter has been attracting the

attention of researchers for a long time.

We now define the Lipschitz continuities of set-valued maps w.r.t. the algebraic

difference 	A and the geometric difference 	G given in Definition 2.4.1. Since these

differences are defined in general vector spaces, we can define Lipschitz continuities in

normed vector spaces without any special conditions for set-valued maps.

In the following definition, we use the notion ∆-Lipschitz standing forA-Lipschitz

(algebraic Lipschitz), and G-Lipschitz (geometric Lipschitz).

Definition 3.2.7. ([2],[60] ) Let X,Y be two normed vector spaces, and F : X ⇒ Y

be a set-valued function. F is called ∆-Lipschitz on X w.r.t. the set difference 	∆

(where ∆ ∈ {A,G}) with a constant L ≥ 0 if

F (x)	∆ F (y) ⊆ L||x− y||XUY for all x, y ∈ X.

Note that since the algebraic difference and the geometric difference coincide for

singleton, the Lipschitz properties w.r.t. these differences coincide for single-valued

map F . Therefore, we get the following proposition.

Proposition 3.2.8. ([2]) Let X,Y be two normed vector spaces, f : X → Y be a vector-

valued function and F : X ⇒ Y be a set-valued function such that F (x) = {f(x)}.
Then, the A-Lipschitzianity and the G-Lipschitzianity for F coincide with classical

Lipschitzianity for f .

For other Lipschitz continuity concepts concerning the partial ordering relation,

we derive the upper (lower) G-Lipschitz concepts around x0 ∈ X. We will use these

concepts to study the Lipschitz continuity of extended convex set-valued functions in

Section 5.4.
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Definition 3.2.9. Let X,Y be two normed vector spaces, F : X ⇒ Y be a set-valued

mapping with domF 6= ∅, and C ⊂ Y be a proper, convex cone. F is said to be upper

G-Lipschitz (or lower G- Lipschitz) around x0 ∈ X if there is a neighborhood U

of x0, and a constant ` ≥ 0 such that

F (x)	G F (x′) ⊆ `||x− x′||XUY + C, for all x, x′ ∈ U, (3.9)

(F (x)	G F (x′) ⊆ `||x− x′||XUY − C, for all x, x′ ∈ U, respectively). (3.10)

Obviously, when C is a normal cone, F is G-Lipschitz if and only if it is upper

G-Lipschitz and lower G-Lipschitz.

To this end, we define the Lipschitzianity w.r.t. the metric difference 	M , and the

D-Lipschitzianity (or Demyanov Lipschitzianity) w.r.t. the Demyanov difference (2.5).

We need to restrict the image of F on the set of nonempty compact subsets of Rn

denoted by K(Rn) as well as on the set of nonempty convex compact subsets of Rn

denoted by C(Rn).

Definition 3.2.10. ([2]) Let X be a vector space, and F : X ⇒ K(Rn) (or F : X ⇒

C(Rn)) be a set-valued function. F is called Lipschitz (or D-Lipschitz) on X with

respect to the metric difference 	M (the Demyanov difference 	D, respectively) with a

constant L ≥ 0 if

F (x)	M F (y) ⊆ L||x− y||XURn for all x, y ∈ X,

(F (x)	D F (y) ⊆ L||x− y||XURn for all x, y ∈ X, respectively).

The following proposition presents the hierarchy of the Lipschitz notions above.

Proposition 3.2.11. ([2]) Let X be a vector space, and F : X ⇒ Rn be a set-valued

function with image in K(Rn). Then, we have

F is D-Lipschitz =⇒ F is Lipschitz =⇒ F is G-Lipschitz.

Note that we also can use the formula in Definition 3.2.10 to define the Demyanov

Lipschitzianity w.r.t. the Jahn’s Demyanov difference (2.9), and F : X ⇒ Y is a

set-valued function between two normed vector spaces.



Chapter 4

Lipschitz continuity of

cone-convex vector-valued

functions

As indicated in Chapter 2, the Lipschitzianity of convex scalar functions lead us to

studying the Lipschitzianity for convex vector functions. The present chapter is devoted

to study systematically the Lipschitz properties of convex functions in the literature,

and also refers to the techniques used to prove them. We not only extend some results

in the literature, but also derive some new proofs. This chapter is organized as follows:

Section 4.1 is concerned with concepts of C-convex functions that are well known in

vector optimization. Section 4.2 is one of the main parts of this dissertation. In

Theorem 4.2.7, we derive different proofs for an assertion of Borwein [9] concerning

the Lipschitzianity of a convex vector-valued function when the ordered cone C is

normal. However, Theorem 4.2.7 is slightly stronger than Borwein’s result, because

our boundedness condition is weaker. Moreover, in the first proof of Theorem 4.2.7,

we can obtain an accurate Lipschitz constant. In order to derive the second proof

of Theorem 4.2.7, we start with Luc, Tan and Tinh’s result ([52, Theorem 3.1]) for

convex-vector functions in finite-dimensional spaces. We use their techniques to extend

their result to infinite-dimensional spaces and get the second proof of Theorem 4.2.7.

Initially, the proof of Theorem 4.2.7 was for a w-normal cone C, and then we realized

that the normal cone and w-normal cone are equivalent in normed vector spaces; see

Proposition 2.3.15. This assertion is known from the book by Schaefer [66] but he did

not prove it. This chapter is based on the results in the paper [70] by Tuan, Tammer

and Zălinescu.

38
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4.1 Cone-convex vector-valued functions

Let X and Y be normed vector spaces, and let C ⊂ Y be a proper, convex cone.

We consider a function f from the normed vector space X to the extended space Y •

(Y • = Y ∪ {+∞C}), and denote the domain of f by dom f := {x ∈ X | f(x) ∈ Y }. In

the sequel, we always assume that int(dom f) 6= ∅.

Definition 4.1.1. Let f : X → Y •, and C ⊂ Y be a proper, convex cone. The function

f is said to be C-convex if for all x, x′ ∈ X,λ ∈ (0, 1), one has

λf(x) + (1− λ)f(x′) ≥C f(λx+ (1− λ)x′).

In the case Y = R and C = R+ := {α ∈ R | α ≥ 0}, Definition 4.1.1 reduces to the

classical definition of convexity for functionals; see [32, 74]. Obviously, the convexity

of f implies that dom f is convex.

In the definition above, the convex function f is defined on the whole of X, and f

takes its values in the extended space Y •. However, in several books (see, for example,

[32]), a convex function must be defined on a convex subset of X, and its values must

be finite. To compare these two definitions for scalar functions, we refer to [32]. In the

following definition, we also define a convex vector-valued function f on a convex set

of X, and f takes finite values.

Definition 4.1.2. Let C ⊂ Y be a proper, convex cone, and A be a nonempty convex set

in X. A function f : A→ Y is said to be C-convex on A if for all x, x′ ∈ A, λ ∈ (0, 1),

one has

λf(x) + (1− λ)f(x′) ≥C f(λx+ (1− λ)x′).

Remark 4.1.3. If we extend the C-convex function f : A → Y from Definition 4.1.2

by

f̃(x) :=

f(x) for x ∈ A,

+∞ for x /∈ A,

we then obtain a new function f̃ : X → Y •. It is easy to verify that f̃ is C-convex in

the sense of Definition 4.1.1.

Definition 4.1.4. Consider f : X → Y • with dom f 6= ∅, and let C ⊂ Y be a proper,

convex cone. The epigraph of f w.r.t. the cone C is given by

epi f :=
{

(x, y) ∈ X × Y | y ∈ f(x) + C
}
. (4.1)

The following proposition states that the convexity of epigraphs can be taken as

one different definition of convex functions.
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Proposition 4.1.5. Consider f : X → Y • with dom f 6= ∅, and let C ⊂ Y be a proper,

convex cone. The following properties are equivalent:

(i) f is C-convex,

(ii) its epigraph is a convex set in X × Y .

Proof. (i)⇒ (ii) Take (x1; y1), (x2; y2) ∈ epi f , we havey1 ∈ f(x1) + C,

y2 ∈ f(x2) + C.

Then,

λy1 + (1− λ)y2 ∈ λf(x1) + (1− λ)f(x2) + C, for all λ ∈ (0, 1).

Since f is C-convex, we get

λy1 + (1− λ)y2 ∈ f(λx1 + (1− λ)x2) + C,

for all λ ∈ (0, 1), so epi f is convex.

(ii)⇒ (i) As (x1, f(x1)), (x2, f(x2)) ∈ epi f , and epi f is convex,

λ(x1, f(x1)) + (1− λ)(x2, f(x2)) ∈ epi f,

for all λ ∈ (0, 1). Thus f is C-convex. �

4.2 Lipschitz continuity of cone-convex vector-valued func-

tions

As shown in section 2.2, a proper convex functional is locally Lipschitz. In this section,

we prove that this result also holds true for a cone-convex function f : X → Y •. Luc,

Tan and Tinh [52] proved the Lipschitz property of f for the case that X,Y are finite-

dimensional spaces. We recall the proof of [52, Theorem 3.1], since it motivates us to

investigate cone-convex functions in infinite-dimensional spaces.

Lemma 4.2.1. ([52, Theorem 3.1]) Let C ⊂ Rm be a proper, convex cone. Assume

that clC is pointed, D is a proper, open, convex subset of Rn, and f : D → Rm is a

C-convex vector function. Then, f is locally Lipschitz on D (in the sense of Definition

3.1.1).

Proof. Taking into account the assumptions of cone C and the properties of cones in

Table 2.1, we see that the cone K := clC has a convex compact base and intK+ 6= ∅.
Therefore, there are m linearly independent vectors y∗1, y

∗
2, . . . , y

∗
m ∈ K+. It is obvious
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that f is convex w.r.t. the cone K, and y∗i ◦ f is a scalar convex function, for every

i = 1, 2, . . . ,m. Applying Lemma 2.2.9 y∗i ◦ f is locally Lipschitz on D, for every

i = 1, 2, . . . ,m. Take y∗ ∈ L(Rm,R) arbitrarily, since (y∗i , i = 1, 2, . . . ,m) is a base of

L(Rm,R), there are α1, α2, . . . , αm ∈ R such that y∗ =
m∑
i=1

αiy
∗
i . Hence y∗ ◦ f is also

locally Lipschitz on D for every y∗ ∈ L(Rm,R), and it follows that f is locally Lipschitz

on D. �

We will utilize this technique to prove the Lipschitzianity of convex functions be-

tween two infinite-dimensional spaces X,Y . Thus, we need to deal with two questions.

The first one is whether each vector y∗ ∈ L(X,Y ) can be represented through some

vectors in intC+. The second one is whether or not f is locally Lipschitz on D when

y∗◦f is also locally Lipschitz on D for every y∗ ∈ L(X,Y ). To answer the first question,

we assume that C is a normal cone, and then we can use all properties of normal cones

in Section 2.3.2 to present y∗ through some vectors in intC+. We address the second

question in the following proposition.

Proposition 4.2.2. Let X, Y be two normed vector spaces, and let f : X → Y • be a

mapping. If y∗ ◦ f is Lipschitz around x ∈ dom f for every linear function y∗ ∈ Y ∗,
then f is also Lipschitz around x.

Proof. Clearly, x ∈ int(dom f). We suppose that f is not Lipschitz around x. Then,

there exists n0 ∈ N∗ such that f is not Lipschitz on B(x, 1
n) for every n ≥ n0. From

Definition 3.1.1, there exist xn, x
′
n ∈ B(x, 1

n) such that

||f(xn)− f(x′n)||Y > n
∥∥xn − x′n∥∥X .

Because of xn, x
′
n ∈ B(x, 1

n), both of the sequences {xn}, {x′n} converge to x. Setting

zn := f(xn)−f(x′n)
‖xn−x′n‖X

∈ Y , we have ||zn||Y ≥ n for all n ≥ n0.

For every y∗ ∈ Y ∗, y∗ ◦ f is Lipschitz around x. This means that there exists

θ = θy∗ > 0 such that y∗ ◦ f is Lipschitz on B(x, θ). Hence there exists Ly∗ > 0 such

that

|y∗ ◦ f(x)− y∗ ◦ f(x′)| ≤ Ly∗
∥∥x− x′∥∥

X
, for all x, x′ ∈ B(x, θ).

Since xn, x
′
n → x, there exists ny∗ ≥ n0 such that xn, x

′
n ∈ B(x, θ) for every n ≥ ny∗ ,

and so |y∗ ◦ f(xn)− y∗ ◦ f(x′n)| ≤ Ly∗ ‖xn − x′n‖X , hence |y∗(zn)| ≤ Ly∗ , for every

n ≥ ny∗ . It follows that there exists L′y∗ , such that

|y∗(zn)| ≤ L′y∗ , for all y∗ ∈ Y ∗, n ≥ n0.

Therefore, all the assumptions for the normed space Y mentioned in [65, Corollary 3.18]

are fulfilled, and then we have that {‖zn‖Y | n ≥ n0} is bounded. This contradicts the

fact that ‖zn‖Y ≥ n for all n ≥ n0. �
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In the following definition we present C-boundedness notions of a mapping f : X →
Y •, where C ⊂ Y is a proper, convex cone.

Definition 4.2.3. Consider f : X → Y •;

(i) f is said to be C-bounded from above (resp. below) on a subset A of X if there

exists a constant µ > 0 such that

f(A) ⊆ µUY − C (resp. f(A) ⊆ µUY + C).

(ii) f is said to be C-bounded on a subset A of X if it is C-bounded from above and

C-bounded from below on A.

Remark 4.2.4. If we assume that f : X → Y • is topologically bounded on a neigh-

borhood U of x0 ∈ dom f , i.e., there is a positive real µ such that f(U) ⊆ µUY , it is

obvious that f is C-bounded on U . Conversely, if X,Y are normed spaces, and C is

normal, any C-bounded function around x0 is topologically bounded around this point.

Indeed, from Definition 4.2.3, there exist a neighborhood U of x0 and a constant µ > 0

such that

f(U) ⊆ µUY + C and f(U) ⊆ µUY − C,

that is

f(U) ⊆ [µUY ]C = µ[UY ]C .

Since C is normal, we can take µ′ > 0 such that [UY ]C ⊆ µ′UY , and so

f(U) ⊆ [µUY ]C ⊆ µµ′UY ;

hence f is topologically bounded around x0.

The following result for vector-valued functions is similar to Lemma 2.2.10 in the

case Y = R.

Proposition 4.2.5. Let X, Y be two normed vector spaces, C ⊂ Y be a proper, convex

cone, and let f : X → Y • be C-convex. If f is C-bounded from above on a neighborhood

of x0 ∈ int (dom f) then for every x ∈ int (dom f), f is C-bounded on a neighborhood

of x.

Proof. As x0 ∈ int (dom f), we take θ, µ0 > 0 such that U := x0 + θUX ⊆ dom f

and f(U) ⊆ µ0UY − C. Fix some x ∈ int(dom f). Then, there exist x′ ∈ dom f and

λ ∈ (0, 1) such that x = (1 − λ)x′ + λx0. Then for u ∈ UX , we have that x + λθu =

(1−λ)x′+λ(x0+θu), and so f(x+λθu) ∈ (1−λ)f(x′)+λf(x0+θu)−C ⊆ B0−C, where

B0 := (1−λ)f(x′) +λµ0UY . Therefore, f is C-bounded from above on a neighborhood

of x. This implies that there exist a constant µ > 0 and a neighborhood U = B(x, r)
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of x such that f(U) ⊆ µUY − C, so −f(U) ⊆ µUY + C. It is sufficient to prove that f

is C-bounded from below on a neighborhood of x.

For every x′ in U , we can take x′′ = 2x − x′ ∈ U , and so that x = 1
2x
′ + 1

2x
′′ and

f(x) ∈ 1
2f(x′) + 1

2f(x′′) − C. Hence f(x′) ∈ 2f(x) − f(x′′) + C ⊆ 2f(x) + µUY + C.

This completes the proof. �

Now we will show that if the cone C satisfies certain properties related to the

topology and order, then all locally C-bounded, C-convex vector functions will be

locally Lipschitz in infinite-dimensional spaces. The following result is first proposed

and proven by Borwein [9].

Theorem 4.2.6. ([9, Corollary 2.4]) Let X,Y be normed spaces, C be a normal cone

in Y, and f : X → Y • be C-convex. If there exist a neighborhood U of x0 ∈ X and

y0 ∈ Y such that f(x) ≤C y0 for all x ∈ U, then f is Lipschitz around x0.

By using a weaker assumption of the boundedness condition, we obtain the following

result, which is slightly stronger than Theorem 4.2.6. In addition we obtain a more

accurate Lipschitz constant.

Theorem 4.2.7. ([70, Theorem 2]) Let X, Y be two normed vector spaces, C ⊂ Y be

a normal convex cone, and let f : X → Y • be C-convex. Suppose that f is C-bounded

from above on a neighborhood of x0 ∈ int(dom f). Then, f is Lipschitz around x0.

Moreover, f is locally Lipschitz on int(dom f).

Proof.

First proof. Without loss of generality we suppose that x0 = 0 and f(0) = 0.

there exist θ, µ > 0 such that f(U) ⊆ µUY − C, where U := θUX .

Let x be arbitrary in U ; then f(x) = µy − c with ‖y‖Y ≤ 1 (as y ∈ UY ) and c ∈ C.

Take y∗ ∈ C+
1 = UY ∗ ∩ C+, that is ‖y∗‖∗ ≤ 1 and y∗ ∈ C+. We obtain that

y∗(f(x)) = y∗(µy − c) = µy∗(y)− y∗(c) ≤ µy∗(y) ≤ µ‖y∗‖∗‖y‖Y ≤ µ.

So y∗(f(x)) ≤ µ for all y∗ ∈ C+
1 , x ∈ U (µ does not depend on y∗).

Since y∗ ◦ f is proper and convex, for θ′ ∈ (0, θ) and y∗ ∈ C+
1 , applying Lemma

2.2.12, we get ∣∣y∗(f(x)− f(x′))
∣∣ ≤ L′ ∥∥x− x′∥∥

X
, for all x, x′ ∈ θ′UX , (4.2)

where L′ := µ(θ + θ′)/[θ(θ − θ′)]. Let us take ρ > 0 provided by Lemma 2.3.16. For

y∗ ∈ UY ∗ , we find y∗1, y
∗
2 ∈ C

+
1 such that ρ−1y∗ = y∗1 − y∗2. From (4.2), we get∣∣y∗1(f(x)− f(x′))− y∗2(f(x)− f(x′))

∣∣ ≤ 2L′‖x− x′‖X ,
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for all x, x′ ∈ θ′UX , hence

‖f(x)− f(x′)‖Y = sup
y∗∈UY ∗

∣∣y∗(f(x)− f(x′))
∣∣ ≤ 2ρL′‖x− x′‖X ,

for all x, x′ ∈ θ′UX . This shows that f is Lipschitz on θ′UX with the Lipschitz constant

L = 2ρµ(θ+ θ′)/[θ(θ− θ′)]. The remaining assertion is deduced from Proposition 4.2.5.

Second proof. Set f0 := f |int(dom f) : int(dom f) → Y , then f0 also has C-

convexity and C-boundedness properties like f .

Since f0 is C-bounded on a neighborhood U of x0, f0(U) ⊆ µUY − C for some

µ > 0; hence for every x ∈ U , there exist y ∈ UY , c ∈ C such that f0(x) = µy − c. For

z∗ ∈ C+, we have that z∗(µy′) ≤ µ‖z∗‖ · ‖y′‖ ≤ µ‖z∗‖ =: µ′ for all y′ ∈ UY . It follows

that

(z∗ ◦ f0)(x) ≤ z∗(µy) ≤ µ′, for all x ∈ U.

It follows that for every z∗ ∈ C+, z∗ ◦ f0 is bounded from above on a neighborhood

of x0. By the C-convexity of the function f0, and according to [51, Proposition 1.6.2],

z∗ ◦ f0 is a scalar convex function. Hence, from [62, Theorem B], z∗ ◦ f0 is Lipschitz

around x0.

Let y∗ ∈ Y ∗. Since C is normal, by Proposition 2.3.15(i), we have Y ∗ = C+ − C+;

hence y∗ = y∗1 − y∗2 for some y∗1, y
∗
2 ∈ C+. Since y∗1, y

∗
2 ∈ C+, y∗1 ◦ f0 and y∗2 ◦ f0 are

Lipschitz around x0, and so y∗ ◦ f0 = y∗1 ◦ f0 − y∗2 ◦ f0 is also Lipschitz around x0.

Since y∗ ∈ Y ∗ is arbitrary, applying Proposition 4.2.2, f0 is Lipschitz around x0, which

completes the proof of the first assertion in Theorem 4.2.7. The second assertion is

deduced from Proposition 4.2.5. �

Now we prove that in the case that X,Y are finite-dimensional spaces, we can omit

C-boundedness from above in Theorem 4.2.7.

Proposition 4.2.8. Let C be a cone in Rn, a C-convex function f : Rm → Rn is

locally C-bounded from above; that is, it is C-bounded from above on a neighborhood of

each point x0 ∈ Rm.

Proof. Let x0 ∈ Rm. Take e1, e2, . . . , em be m unit vectors in Rm. Set vi = x0 + ei for

i = 1, . . .m. We take a cube U = conv {v1, v2, . . . , vm}, so for any x ∈ U we can find

scalars λi, i = 1, . . . , l satisfying

x =

l∑
1

λivi, λi ≥ 0,

l∑
1

λi = 1.

Applying Jensen’s inequality to convex functions (see [32, Theorem 1.1.8]), we get

l∑
1

λif(vi) ≥C f(x), and it follows that f(x) ∈
l∑
1

λif(vi)− C,

so f is C-bounded from above on U . �
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Remark 4.2.9. Observe that the convex cone C ⊂ Rn is normal if and only if clC is

pointed; see also [26, Corollary 2.2.11]. Taking into account 4.2.8, from Theorem 4.2.7

one deduces the assertion of Lemma 4.2.1 (compare with [52, Theorem 3.1]).

From Table 2.1, we know that if a proper, convex cone C is well-based (⇔ intC+ 6=
∅), then it is also normal. Therefore, we end this chapter by deriving the following

Corollary.

Corollary 4.2.10. Let X,Y be normed vector spaces, and let f : X → Y • be C-convex.

If the cone C is well-based (or C has a weakly compact base), and f is C-bounded from

above on a neighborhood of one point in int(dom f), then f is locally Lipschitz on

int(dom f).



Chapter 5

Lipschitz continuity of

cone-convex set-valued functions

As mentioned in the previous chapters, the convexity and the Lipschitz continuity play

an important role in various fields of mathematics. Many authors have investigated

the convexity and the Lipschitzianity of vector-valued and set-valued functions, and

several new concepts have been introduced. In order to generalize the achieved results

for vector-valued functions in Chapter 4, we continue studying the Lipschitzianity for

convex set-valued functions. In this chapter we introduce various extended notions of

the convexity and the Lipschitzianity for set-valued functions, and then study their

relationships.

First, we will define the corresponding convexity notions for set-valued functions in

Section 5.1 based on the order relations between two nonempty sets first introduced in

[46, 47, 49]. In the sequel we study the relationships between the convexity and the

Lipschitzianity concepts introduced in Chapter 3.

The main part of Sections 5.2 is based on the paper [70] by Tuan, Tammer and

Zălinescu. We introduce the C-boundedness concepts of set-valued functions, and

study their correlation. Consequently, we prove that a C-bounded set-valued function

satisfying some additional conditions is C-Lipschitz. It is worth mentioning that the

Lipschitzianity of convex set-valued functions were first studied in finite-dimensional

spaces by Minh and Tan [53]. They used special functional classes, which scalarize

initial set-valued functions to new functional families. Then, the C-Lipschitzianity of

initial set-valued functions is equivalent to the equi-Lipschitzianity of the corresponding

functional families. We adapt this method to the case of general normed vector spaces

to obtain new results in Theorem 5.2.7 and 5.2.8, which are significantly stronger than

ones in [53]. Of course, if we restrict ourselves to the special case that the set-valued

function is at most single-valued (see (3.2)), then the similar results for vector-valued

functions in Chapter 4 will be obtained.

46
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Section 5.3 is based on Kuwano and Tanaka’s results; see [50]. In [50], new concepts

of C-Lipschitz continuity of set-valued maps are introduced, however, they are weaker

than the ones in [53]. The authors applied nonconvex scalarizing functions for set-

valued maps to prove the C-Lipschitzianity of convex set-valued functions. In this

section we only use the nonlinear scalarizing functional (see Section 2.5.2) to prove the

C-Lipschitzianity and to weaken the assumptions of the main theorems in [50].

5.1 Cone-convex set-valued functions

In what follows X and Y are normed spaces, C is a proper, convex cone in Y , and

F : X ⇒ Y is a set-valued function. Recall that the domain of F : X ⇒ Y is given

by domF = {x ∈ X | F (x) 6= ∅}. Now we introduce the definition of C-convex of

set-valued mappings.

For vector-valued functions between two vector spaces, we have already introduced

the convexity concepts based on the order relation between two vectors; see Definition

4.1.1. Based on the six notions of set relations between two sets given in Definition

2.3.20, we define the corresponding cone convexities for set-valued functions.

Definition 5.1.1. ([49]) For each k = i, . . . , vi, a set-valued map F : X ⇒ Y is said

to be type-(k)-convex if for every x, y ∈ domF and λ ∈ (0, 1),

F (λx+ (1− λ)y) �(k)
C λF (x) + (1− λ)F (y).

By Proposition 2.3.21, we also have some implications for the convexities above

Proposition 5.1.2. ([49]) Let F : X ⇒ Y be a set-valued function. Then, the following

statements hold:

type-(i)-convex =⇒ type-(ii)-convex =⇒ type-(iii)-convexww� ww�
type-(iv)-convex =⇒ type-(v)-convex =⇒ type-(vi)-convex

There are two ways of generalization to define convexities of functions. The first one

is based on the relationships between two sets λF (x)+(1−λ)F (y) and F (λx+(1−λ)y)

as in Definition 5.1.1, while the second one is based on the convexity of the epigraph

of F . The following proposition states the correlation between these ways.

Proposition 5.1.3. Let F : X ⇒ Y be a set-valued function, the following statements

hold: If F is type-(k)-convex then

epi (k)F := {(x, V ) ∈ X × V | F (x) �(k)
C V }

is convex; where k ∈ {i, ii, . . . , v}. Furthermore, the converse of the above assertion

holds if k ∈ {iii, iv, v}.
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Proof. We will only prove the case k = iii, as the other cases can be proved by similar

arguments.

If F is type-(iii)-convex, we take (x1;V1), (x2;V2) ∈ epi (iii)F , we haveV1 ⊆ F (x1) + C;

V2 ⊆ F (x2) + C.

These inclusions imply that λV1 + (1− λ)V2 ⊆ λF (x1) + (1− λ)F (x2) +C ⊆ F (λx1 +

(1− λ)x2) + C for all λ ∈ (0, 1), which shows that epi (iii)F is convex.

Conversely, since epi (iii)F is convex, and (x1, F (x1)), (x2, F (x2)) ∈ epi (iii)F , we have(
λx1 + (1− λ)x2, λF (x1) + (1− λ)F (x2)

)
∈ epi (iii)F.

Thus F is type-(iii)-convex. �

Type-(iii)- and type-(iv)-convexity above are also known as upper C-convexity and

lower C-convexity, which will be shown again in the following definition.

Definition 5.1.4. Let F : X ⇒ Y with domF 6= ∅, and C be a proper, convex cone;

F is said to be upper C-convex (or lower C-convex) if

F (αx+ (1− α)y) ⊆ αF (x) + (1− α)F (y)− C,

(αF (x) + (1− α)F (y) ⊆ F (αx+ (1− α)y) + C, respectively),

holds for all x, y ∈ domF and α ∈ (0, 1).

Remark 5.1.5. (i) If F : X ⇒ Y is at most single-valued, then F is upper (lower)

C-convex in the sense of Definition 5.1.4 if and only if the corresponding vector-

valued function f : X → Y • given by

f(x) :=

y if x ∈ domF and F (x) = {y},

+∞ if x /∈ domF.

is C-convex in the sense of Definition 4.1.1.

(ii) Obviously, if F is lower C-convex, then domF is convex, and F (x) + C is a

convex set for all x ∈ domF .

In order to study properties of set-valued mappings, Minh and Tan [53] used a

scalarization method for set-valued mappings. For a given set-valued function F :

X ⇒ Y between two normed vector spaces X,Y and a proper, convex cone C in Y .

The functions Gy∗ , gy∗ : X → R ∪ {+∞} ∪ {−∞} are defined for each y∗ ∈ C+ as

follows:

Gy∗(x) := sup
y∈F (x)

y∗(y), x ∈ X, (5.1)
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gy∗(x) := inf
y∈F (x)

y∗(y), x ∈ X, (5.2)

with the convention inf ∅ := +∞, sup ∅ := −∞.

Obviously, dom gy∗ = domF and (for y∗ = 0) g0 = δdomF , where δA is the indicator

function of A defined by δA(x) = 0 if x ∈ A, and δA(x) = +∞ otherwise.

We will recall some properties of the scalar functions Gy∗ , gy∗ corresponding to

properties of F ; see [53, 54]. The following propositions are stated in [54, Proposition

2.2] without proof. For convenience of the reader, we prove these propositions in detail.

Proposition 5.1.6. Let F : X ⇒ Y be a set-valued function, and domF be convex

and nonempty. Let C be a proper, convex cone. Then, the following implications hold:

(i) If F is an upper C-convex mapping, then Gy∗ is convex on domF for all y∗ ∈ C+.

(ii) Conversely, if F (x) − C is closed and convex for all x ∈ domF 6= ∅, and Gy∗ is

convex for all y∗ ∈ C+, then F is upper C-convex.

Proof. (i) Let F be upper C-convex, and y∗ ∈ C+ be chosen arbitrarily. For every

λ ∈ (0, 1), x1, x2 ∈ domF , we have

Gy∗(λx1 + (1− λ)x2) = sup
y∈F (λx1+(1−λ)x2)

y∗(y)

≤ sup
y∈λF (x1)+(1−λ)F (x2)−C

y∗(y)

≤ sup
y∈λF (x1)+(1−λ)F (x2)

y∗(y)

= sup
y∈λF (x1)

y∗(y) + sup
y∈(1−λ)F (x2)

y∗(y)

= λ sup
y∈F (x1)

y∗(y) + (1− λ) sup
y∈F (x2)

y∗(y)

= λGy∗(x1) + (1− λ)Gy∗(x2).

Therefore, Gy∗ is convex on domF for all y∗ ∈ C+.

(ii) Suppose by contradiction that F is not upper C-convex, so there exist x1, x2 ∈
domF and λ ∈ (0, 1) such that

F (λx1 + (1− λ)x2) * λF (x1) + (1− λ)F (x2)− C.

One can take ȳ ∈ F (λx1 + (1 − λ)x2) 6= ∅ such that ȳ /∈ λF (x1) + (1 − λ)F (x2) − C.

Since λF (x1) + (1− λ)F (x2)− C is closed and convex, there exists y∗ ∈ Y ∗ such that

y∗(ȳ) > sup{y∗(y)
∣∣y ∈ λF (x1) + (1− λ)F (x2)− C}.



5.1. Cone-convex set-valued functions 50

It follows that y∗ ∈ C+ \ {0} and

Gy∗(λx1 + (1− λ)x2) = sup
y∈F (λx1+(1−λ)x2)

y∗(y) ≥ y∗(ȳ)

> sup
y∈λF (x1)+(1−λ)F (x2)−C

y∗(y)

= λGy∗(x1) + (1− λ)Gy∗(x2).

This contradicts our assumption on the convexity of Gy∗ . �

Proposition 5.1.7. Let F : X ⇒ Y with domF 6= ∅, and C be a proper, convex cone;

the following implications hold:

(i) If F is a lower C-convex mapping, then gy∗ is convex for all y∗ ∈ C+.

(ii) Conversely, if F (x) + C is closed and convex for all x ∈ domF 6= ∅, and gy∗ is

convex for all y∗ ∈ C+, then F is lower C-convex.

Proof. (i) Let F be lower C-convex, and y∗ ∈ C+ be chosen arbitrarily; for every

λ ∈ (0, 1), x1, x2 ∈ dom gy∗ = domF , we have

gy∗(λx1 + (1− λ)x2) = inf
y∈F (λx1+(1−λ)x2)

y∗(y) = inf
y∈F (λx1+(1−λ)x2)+C

y∗(y)

≤ inf
y∈λF (x1)+(1−λ)F (x2)

y∗(y)

= inf
y∈λF (x1)

y∗(y) + inf
y∈(1−λ)F (x2)

y∗(y)

= λ inf
y∈F (x1)

y∗(y) + (1− λ) inf
y∈F (x2)

y∗(y)

= λgy∗(x1) + (1− λ)gy∗(x2).

Therefore, gy∗ is convex for all y∗ ∈ C+.

(ii) Since g0 = δdomF is convex, so is domF . Suppose by contradiction that F is

not lower C-convex, there exist x1, x2 ∈ domF and λ ∈ (0, 1) such that

λF (x1) + (1− λ)F (x2) * F (λx1 + (1− λ)x2) + C.

One can take ȳ ∈ λF (x1) + (1 − λ)F (x2) such that ȳ /∈ F (λx1 + (1 − λ)x2) + C 6= ∅.
Since F (λx1 + (1− λ)x2) + C is closed and convex, there exists y∗ ∈ Y ∗ such that

y∗(ȳ) < inf{y∗(y)
∣∣y ∈ F (λx1 + (1− λ)x2) + C}.

It follows that y∗ ∈ C+ \ {0} and

gy∗(λx1 + (1− λ)x2) = inf
y∈F (λx1+(1−λ)x2)+C

y∗(y) > y∗(ȳ)

≥ inf
y∈λF (x1)+(1−λ)F (x2)

y∗(y) (as ȳ ∈ λF (x1) + (1− λ)F (x2))

= λgy∗(x1) + (1− λ)gy∗(x2).
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This contradicts our assumption on the convexity of gy∗ . �

Moreover, we shall recall the cone convexity for set-valued functions w.r.t the set

less order relation introduced in Definition 2.3.19. We will use this concept to prove

the G-Lipschitzianity of set-valued functions in the next section.

Definition 5.1.8. Let F : X ⇒ Y with domF 6= ∅, and C be a proper, convex cone;

F is said to be Cs-convex if

F (αx+ (1− α)y) �sC αF (x) + (1− α)F (y),

holds for all x, y ∈ domF and α ∈ (0, 1) (hence domF is convex).

Remark 5.1.9. Obviously, F is Cs-convex if and only if F is type-(iii)- and type-(v)-

convex (or lower C-convex and upper C-convex in Definition 5.1.4).

5.2 The C-Lipschitzianity of convex set-valued functions

In [53], Minh and Tan already studied the C-Lipschitzianity of C-convex set-valued

mappings F : X ⇒ Y , where X is a finite dimensional space, and Y is a Banach space.

In this section, we derive the corresponding results in general normed spaces.

We shall present C-boundedness notions of a set-valued mapping F : X ⇒ Y , where

C ⊂ Y is a proper, convex cone.

Definition 5.2.1. Let F : X ⇒ Y be a set-valued function, and C be a proper, convex

cone in Y .

(i) F is said to be C-bounded from above (resp. below) on a subset A of X if

there exists a constant µ > 0 such that

F (A) ⊆ µUY − C (resp. F (A) ⊆ µUY + C).

(ii) F is said to be C-bounded on a subset A of X if it is C-bounded from above and

C-bounded from below on A.

Definition 5.2.2. ([44, Definition 3.1.26]) We say that F : X ⇒ Y is weakly C-

upper (lower) bounded on a set A ⊆ X if there exists µ′ > 0 such that F (x) ∩
(µ′UY − C) 6= ∅ (F (x) ∩ (µ′UY + C) 6= ∅, respectively) for all x ∈ A.

In the next proposition, we study the equivalence between the upper C-Lipschitzianity

of a given set-valued mapping F (see Definition 3.2.5) and the equi-Lipschitzianity (see

Definition 3.1.3) of the scalar functional family {Gy∗ : X → R | y∗ ∈ C+, ||y∗||∗ = 1}
corresponding to F .
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Proposition 5.2.3. Let X,Y be two normed spaces, F : X ⇒ Y , and F (x) − C be

convex for all x ∈ X. Let x0 be a given point in int(domF ) such that F (x0) is C-

bounded from above. Then, F is upper C-Lipschitz around x0 if and only if the family

{Gy∗ |y∗ ∈ C+, ||y∗||∗ = 1} is equi-Lipschitz around x0.

Proof. As F is upper C-Lipschitz around x0, there exist a neighborhood U ⊆ domF

of x0 and a real number ` > 0 such that

F (x) ⊆ F (x′) + `||x− x′||XUY − C, for all x, x′ ∈ U. (5.3)

As F (x0) is C-bounded from above, we assume that F (x0) ⊆ µUY −C for some µ > 0;

see Definition 4.2.3. From (5.3) we get

F (x) ⊆ (µ+ `||x− x′||X)UY − C, for all x ∈ U. (5.4)

Hence, for all x ∈ U, y∗ ∈ C+, ||y∗||∗ = 1, we get

Gy∗(x) = sup
y∈F (x)

y∗(y) ≤ µ+ `||x− x′||X < +∞.

Therefore, Gy∗ is finite on U , for all y∗ ∈ C+ that satisfies ‖y∗‖∗ = 1.

Taking into account (5.3), we have the following estimation for all x, x′ ∈ U ⊆ domF

Gy∗(x) = sup
y∈F (x)

y∗(y) ≤ sup
y∈F (x′)

y∗(y) + `||x− x′||X = Gy∗(x
′) + `||x− x′||X .

Hence

Gy∗(x)−Gy∗(x′) ≤ `||x− x′||X , for all x, x′ ∈ U, y∗ ∈ C+, ||y∗||∗ = 1.

By interchanging x and x′, we get

|Gy∗(x′)−Gy∗(x)| ≤ `||x− x′||X , for all x, x′ ∈ U, y∗ ∈ C+, ||y∗||∗ = 1.

This shows that the family {Gy∗ |y∗ ∈ C+, ||y∗||∗ = 1} is equi-Lipschitz around x0.

Now we prove the converse implication by contradiction: if the family {Gy∗ |y∗ ∈
C+, ||y∗||∗ = 1} is equi-Lipschitz around x0, then F is upper C-Lipschitz around x0.

Assume that F is not upper C-Lipschitz around x0, i.e., for any n ∈ N∗, there are

xn, x
′
n ∈ B(x0,

1
n) such that

F (xn) * F (x′n) + n||xn − x′n||XUY − C;

and hence xn 6= x′n for all n ∈ N∗.
Since x0 ∈ int (domF ), for n large enough, B(x0,

1
n) ⊆ domF , and then we can take

yn ∈ F (xn) such that

yn /∈ Bn := F (x′n) + n||xn − x′n||XUY − C.
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Since the set Bn is convex and intBn 6= ∅, one can find y∗n ∈ Y ∗ with ||y∗n||∗ = 1 and

y∗n(yn) ≥ y∗n(v) for all v ∈ Bn.

Hence,

y∗n(yn) ≥ sup y∗n(Bn) = sup y∗n(F (x′n)) + n||xn − x′n||X + sup y∗n(−C).

It follows that y∗n ∈ C+ for large n ∈ N and

Gy∗n(xn) ≥ Gy∗n(x′n) + n||xn − x′n||X ,

which yields

n||xn − x′n||X ≤ Gy∗n(xn)−Gy∗n(x′n) ≤ `||xn − x′n||X ,

and hence n ≤ `, which could not hold true for n sufficiently large. �

Similarly, in the following proposition, we study the equivalence between the lower

C-Lipschitzianity of F (see Definition 3.2.5) and the equi-Lipschitzianity (see Definition

3.1.3) of the scalar functional family {gy∗ |y∗ ∈ C+, ||y∗||∗ = 1} corresponding to F .

Proposition 5.2.4. Let X,Y be two normed vector spaces, F : X ⇒ Y , and F (x) +C

be convex for all x ∈ X. Let x0 be a given point in int(domF ) such that F (x0) is C-

bounded from below. Then, F is lower C-Lipschitz around x0 if and only if the family

{gy∗ |y∗ ∈ C+, ||y∗||∗ = 1} is equi-Lipschitz around x0.

Proof. As F is lower C-Lipschitz around x0, there exist a neighborhood U ⊆ domF

of x0 and a real number ` > 0 such that

F (x) ⊆ F (x′) + `||x− x′||XUY + C, for all x, x′ ∈ U. (5.5)

As F (x0) is C-bounded from below, we assume that F (x0) ⊆ µUY +C for some µ > 0;

see Definition 4.2.3. Due to (5.5), we get

F (x) ⊆ (µ+ `||x− x′||X)UY + C, for all x ∈ U. (5.6)

Hence, for all x ∈ U, y∗ ∈ C+, ||y∗||∗ = 1, we have

gy∗(x) = inf
y∈F (x)

y∗(y) ≥ −(µ+ `||x− x′||X) > −∞.

Thus gy∗ is finite on U , for all y∗ ∈ C+ that satisfies ‖y∗‖∗ = 1.

Taking into account (5.5), we have the following estimation for all x, x′ ∈ U ⊆ domF

gy∗(x) = inf
y∈F (x)

y∗(y) ≥ inf
y∈F (x′)

y∗(y)− `||x− x′||X = gy∗(x
′)− `||x− x′||X .

Hence,

gy∗(x
′)− gy∗(x) ≤ `||x− x′||X , for all x, x′ ∈ U, y∗ ∈ C+, ||y∗||∗ = 1.
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By interchanging x and x′, we get

|gy∗(x)− gy∗(x′)| ≤ `||x− x′||X , for all x, x′ ∈ U, y∗ ∈ C+, ||y∗||∗ = 1.

This shows that the family {gy∗ |y∗ ∈ C+, ||y∗||∗ = 1} is equi-Lipschitz around x0.

We prove the converse implication by contradiction: if the family {gy∗ |y∗ ∈ C+, ||y∗||∗ =

1} is equi-Lipschitz around x0 then F is lower C-Lipschitz around x0. Suppose that F

is not lower C-Lipschitz around x0. Then, there exist xn, x
′
n ∈ B(x0,

1
n) such that

F (xn) * F (x′n) + n||xn − x′n||XUY + C for all n ∈ N∗;

and hence xn 6= x′n for all n ∈ N∗.
Since x0 ∈ int (domF ), for n large enough, B(x0,

1
n) ⊆ domF , we can take yn ∈ F (xn)

such that

yn /∈ Bn := F (x′n) + n||xn − x′n||XUY + C.

Since the set Bn is convex and intBn 6= ∅, one can find y∗n ∈ Y ∗ with ||y∗n||∗ = 1 such

that

y∗n(yn) ≤ y∗n(v) for all v ∈ Bn.

Hence,

y∗n(yn) ≤ inf y∗n(Bn) = inf y∗n(F (x′n))− n||xn − x′n||X + inf y∗n(C).

It follows that y∗n ∈ C+ for large n ∈ N and

gy∗n(xn) ≤ gy∗n(x′n)− n||xn − x′n||X ,

which yields that

n||xn − x′n||X ≤ gy∗n(x′n)− gy∗n(xn) ≤ `||xn − x′n||X ,

and hence n ≤ `, which could not hold true for n sufficiently large. �

Remark 5.2.5. Proposition 5.2.4 is stated in [53, Theorem 2.5] without the assumption

that F (x0) is C-bounded from below. Taking F (x) = Y for all x ∈ X, it is clear that

F is lower C-Lipschitz, but {gy∗
∣∣y∗ ∈ C∗, ‖y∗‖ = 1} is not equi-Lipschitz.

Theorem 5.2.6. Let X,Y be two normed spaces, C be a proper, convex cone. Let

F : X ⇒ Y be upper C-convex, and F (x)−C be convex for all x ∈ X. If F is both C-

bounded from above and weakly C-lower bounded on a neighborhood of x0 ∈ int(domF ),

then F is upper C-Lipschitz around x0.
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Proof. Without loss of generality we suppose that x0 = 0 and 0 ∈ F (0). As F is

C-bounded from above and weakly C-lower bounded on a neighborhood U = θUX ⊆
domF of 0 (θ > 0), Definition 5.2.1 and Definition 5.2.2 imply that there exists a real

number µ > 0 such that F (U) ⊆ µUY − C and F (x) ∩ (µUY + C) 6= ∅ for all x ∈ U .

Take y∗ ∈ C+ with ||y∗||∗ = 1. Let x̄ ∈ U be arbitrary, ȳ ∈ F (x̄), c ∈ C, and y′ ∈ µUY
such that ȳ = y′ + c. We then have

Gy∗(x̄) = sup
y∈F (x̄)

y∗(y) ≥ y∗(ȳ) = y∗(y′ + c) = y∗(y′) + y∗(c)

≥ y∗(y′) ≥ −‖y∗‖∗‖y′‖Y = −‖y′‖Y ≥ −µ, for all x̄ ∈ U.

Analogously, from F (U) ⊆ µUY −C, we get Gy∗(x) = sup
y∈F (x)

y∗(y) ≤ µ for every x ∈ U .

This follows that Gy∗ is finite on U and

Gy∗(x) ≤ Gy∗(0) + 2µ, for all x ∈ U = θUX .

Taking into account Proposition 5.1.6, Gy∗ is convex on U . Applying Lemma 2.2.12 to

the convex function Gy∗ and θ′ ∈ (0, θ), we get

|Gy∗(x)−Gy∗(x′)| ≤ L‖x− x′‖X , for all x, x′ ∈ θ′UX ,

where L := 2µ(θ + θ′)/[θ(θ − θ′)], which does not depend on y∗.

So {Gy∗ | y∗ ∈ C+, ||y∗||∗ = 1} is equi-Lipschitz around x0 with the Lipschitz constant

L. Applying Proposition 5.2.3, we have that F is upper C-Lipschitz around x0. �

Theorem 5.2.7. ([70, Theorem 3]) Let X,Y be two normed spaces, C be a proper,

convex cone. Let F : X ⇒ Y be lower C-convex, C-bounded from below and weakly

C-upper bounded on a neighborhood of x0 ∈ int(domF ), then F is lower C-Lipschitz

around x0.

Proof. Without loss of generality, we suppose that x0 = 0 and 0 ∈ F (0). As F is

C-bounded from below and weakly C-upper bounded on a neighborhood U = θUX ⊆
domF of 0 (θ > 0), taking into account Definition 5.2.1 and Definition 5.2.2 there

exists a real number µ > 0 such that F (U) ⊆ µUY + C and F (x) ∩ (µUY − C) 6= ∅ for

all x ∈ U .

Take y∗ ∈ C+ with ||y∗||∗ = 1. Let x̄ ∈ U be arbitrary, and take ȳ ∈ F (x̄), c ∈ C, and

y′ ∈ µUY such that ȳ = y′ − c. We then have

gy∗(x̄) = inf
y∈F (x̄)

y∗(y) ≤ y∗(ȳ) = y∗(y′ − c) = y∗(y′)− y∗(c)

≤ y∗(y′) ≤ ‖y∗‖∗‖y′‖Y = ‖y′‖Y ≤ µ, for all x̄ ∈ U.
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Analogously, from F (U) ⊆ µUY +C, we get gy∗(x) = inf
y∈F (x)

y∗(y) ≥ −µ for every x ∈ U .

It follows that gy∗ is finite on U and

gy∗(x) ≤ gy∗(0) + 2µ, for all x ∈ U = θUX .

By Proposition 5.1.7, gy∗ is convex on U . Applying Lemma 2.2.12 to the convex function

gy∗ and θ′ ∈ (0, θ), we get

|gy∗(x)− gy∗(x′)| ≤ L‖x− x′‖X , for all x, x′ ∈ θ′UX ,

where L := 2µ(θ + θ′)/[θ(θ − θ′)], which does not depend on y∗.

So {gy∗ | y∗ ∈ C+, ||y∗||∗ = 1} is equi-Lipschitz around x0 with the Lipschitz constant L.

Because of the convexity of F , F (x) +C is convex for all x ∈ X. Applying Proposition

5.2.4, we have that F is lower C-Lipschitz around x0. �

The next result follows directly from Theorem 5.2.7.

Theorem 5.2.8. Let X,Y be two normed vector spaces, C ⊂ Y be a proper, convex

cone, and let F : X ⇒ Y be lower C-convex. If F is C-bounded from below and weakly

C-upper bounded on a neighborhood of some point x ∈ int(domF ), then F is locally

lower C-Lipschitz on int(domF ).

Remark 5.2.9. (i) It is clear that the assumptions in Theorem 5.2.8 are much

weaker than those in [53, Theorem 2.9]; while the assumption that X is finite-

dimensional is unnecessary. We do not even need any additional conditions for

the cone C such as C+ = cone (conv {y∗1, . . . , y∗n}) for some y∗1, . . . , y
∗
n ∈ Y ∗ and

0 /∈ conv {y∗1, . . . , y∗n} as in [53].

(ii) By [26, Proposition 2.6.2], if F is C-bounded from below on a neighborhood of

x0 ∈ int (domF ) then F is C-bounded from below on a neighborhood of x for

every x ∈ domF .

(iii) If F is weakly C-upper bounded on a neighborhood of x0 ∈ int (domF ) then F

is weakly C-upper bounded on a neighborhood of x for every x ∈ int (domF ).

Indeed, assume that F (x)∩ (µUY −C) 6= ∅ ∀x ∈ B(x0, r) and fix x̄ ∈ int (domF ),

then there exist x1 ∈ domF , λ ∈ (0, 1) such that x̄ = λx0 + (1 − λ)x1. Fix

y1 ∈ F (x1) and take u ∈ rUX , then x̄ + λu = λ(x0 + u) + (1 − λ)x1, and there

exists yu ∈ F (x0 + u)∩ (µUY −C). Hence, yu = µvu − cu with ‖vu‖ ≤ 1, cu ∈ C.

Then, λ(µvu− cu)+(1−λ)y1 ∈ F (x̄+λu)+C, hence ∃c′u ∈ C and ȳ ∈ F (x̄+λu)

such that ȳ = λ(µvu− cu) + (1−λ)y1− c′u ∈ µ̄UY −C with µ̄ = λµ+ (1−λ)‖y1‖.

Therefore, Theorem 5.2.8 is a consequence of Theorem 5.2.7 and Remark (ii)

above.
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In particular, when F : X ⇒ Y is an at most single-valued mapping, we have the

following result, which is similar to Theorem 5.2.7 for the corresponding vector-valued

mapping f : X → Y •; see Remark 3.2.2.

Theorem 5.2.10. Under the hypotheses of Theorem 5.2.7, if F : X ⇒ Y is an at most

single-valued mapping and C is a normal cone, then the function f : X → Y • defined

in (3.3) is Lipschitz around x0.

Proof. Theorem 5.2.7 implies that F is lower C-Lipschitz around x0 ∈ int(domF ).

Thus, there is a neighborhood U of x0 in domF and a constant ` > 0 such that

F (x) ⊆ F (x′) + `||x− x′||XUY + C, for all x, x′ ∈ U,

or equivalently

f(x) ∈ f(x′) + `||x− x′||XUY + C, for all x, x′ ∈ U. (5.7)

Since C is normal, there is ρ > 0 such that

(ρUY + C) ∩ (ρUY − C) ⊆ UY .

From (5.7), we have

ρ(f(x)− f(x′))

`||x− x′||X
⊆ ρUY + C, for all x, x′ ∈ U, x 6= x′.

By interchanging x and x′, we also have

ρ(f(x)− f(x′))

`||x− x′||X
⊆ ρUY − C, for all x, x′ ∈ U, x 6= x′.

Therefore,
ρ(f(x)− f(x′))

`||x− x′||X
⊆ (ρUY + C) ∩ (ρUY − C) ⊆ UY ,

for all x, x′ ∈ U, x 6= x′. This shows that f is Lipschitzian around x0. �

When C is normal, by Proposition 4.2.5, the C-boundedness from below and weakly

C-upper boundedness of f in Theorem 5.2.10 can be replaced by the C-boundedness

from above, and then we obtain again the assertions of Theorem 4.2.7.

5.3 Kuwano and Tanaka’s C-Lipschitzianity

In [50], Kuwano and Tanaka introduced a new concept of the locally Lipschitz continuity

of set-valued maps, and then they used the nonlinear scalarizing functional to prove the

locally Lipschitz continuity of convex set-valued functions. In this section, we also use

the nonlinear scalarizing functionals but we propose another scalarization approach to

lighten the assumptions of the main Theorem 3.2 in [50]. Throughout this section X
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is a normed space, Y is a linear topological space, C ⊂ Y is a proper, closed, pointed,

convex cone with a nonempty interior, and e ∈ intC. We begin this section by recalling

the following concepts of Lipschitz continuity in [50].

Definition 5.3.1. Let X be a normed space, Y be a linear topological space. Let C ⊂ Y
be a proper, closed, pointed, convex cone with a nonempty interior, e ∈ intC, and

F : X ⇒ Y . Then, F is said to be locally upper (lower) C-Lipschitz continuous

at x ∈ X if there exist a positive constant L and a neighborhood Ux of x such that for

any x′ ∈ Ux,

F (x′) ⊆ F (x) + L||x− x′||e− C,(
F (x′) ⊆ F (x)− L||x− x′||e+ C, respectively

)
.

F is said to be locally C-Lipschitz continuous at x ∈ X if F is locally upper C-

Lipschitz continuous and locally lower C-Lipschitz continuous at this point.

It is easy to see that these concepts are weaker than the ones in Definition 3.2.5,

because the element x is taken as a fixed point in Definition 5.3.1. It means that the

locally upper (lower) C-Lipschitz continuity (in the sense of Definition 5.3.1) at a given

point x ∈ X implies the upper (lower) C-Lipschitzianity (in the sense of Definition

3.2.5) around this point.

In this section, we only study the C-Lipschitz continuity in the sense of Definition

5.3.1. Now we recall the boundedness concepts in [50].

Definition 5.3.2. Let X be a normed space, Y be a linear topological space, and

F : X ⇒ Y be a set-valued function. Let C ⊂ Y be a proper, closed, pointed, convex

cone with a nonempty interior, and e be a given point in intC. Then, F is said to

be C-bounded from above (resp. below) around a point x0 ∈ X if there exist a

positive t and a neighborhood U of x0 such that

F (U) ⊆ te− C, (resp. F (U) ⊆ −te+ C).

Furthermore, F is called C-bounded around a point x0 ∈ X if it is C-bounded from

above and C-bounded from below around that point.

Remark 5.3.3. We will prove that these concepts are equivalent to other boundedness

concepts in Definition 5.2.1. Indeed, since e ∈ intC, there is µ′ > 0 such that −e +

µ′UY ⊆ −C. If F (U) ⊆ µUY −C, then F (U) ⊆ 1
µ′ e−C := te−C. It is obvious that if

F (U) ⊆ te−C, then there is µ such that F (U) ⊆ µUY −C, and, therefore, the converse

assertion is clear. Similar arguments can be applied to the case C-bounded from below,

and then the proof is complete.

Now we will prove that an upper C-convex set-valued function (see Definition 5.1.4)

is locally upper C-Lipschitz continuous in the sense of Definition 5.3.1.
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Theorem 5.3.4. Let X be a normed space, Y be a linear topological space. Let C ⊂
Y be a proper, closed, pointed, convex cone with a nonempty interior, and e be a

given point in intC. Let F : X ⇒ Y be an upper C-convex set-valued function, and

C − F (x) is closed and convex for every x ∈ X. If F is C-bounded around a point

x0 ∈ int (domF ), then F is locally upper C-Lipschitz continuous at x0.

Proof. Let e ∈ intC. Because of the C-boundedness of F around x0 (see Definition

5.3.2), there exist a positive t and a neighborhood U := x0 + µUX ⊆ int (domF ) of x0

such that F (U) ⊆ te−C and F (U) ⊆ −te+C, which is equivalent to −F (U) ⊆ te−C.

Thus, for every x ∈ U , we have F (x)− F (x0) ⊆ 2te− C. This implies that

F (x) ⊆ 2te+ F (x0)− C. (5.8)

From the assumptions of C − F (x0), it follows directly that A := C − F (x0) is

closed and (2.10) is fullfilled. Thus, using the functional ϕA,e introduced in (2.11) with

A = C − F (x0) and e ∈ intC, we can consider a function H : X → R given by

H(x) := sup
a∈F (x)

ϕA,e(a),

where C is a proper, closed, pointed, convex cone and e ∈ intC.

Applying Theorem 2.5.7(a), we get that ϕA,e is C-monotone. Moreover, taking

into account the inclusion (5.8), for all a ∈ F (x), we can choose b ∈ F (x0) such that

a ∈ 2te+ b− C, hence

ϕA,e(a) ≤ ϕA,e(2te+ b) = 2t+ ϕA,e(b) ≤ 2t+H(x0).

It follows directly from the definition of the functional H that

H(x) ≤ H(x0) + 2t. (5.9)

This implies that H is bounded from above around x0.

Now we prove that H is convex. Indeed, it follows from the upper C-convexity of

F (see Definition 5.1.4) and the convexity of ϕA,e (since A = C−F (x0) is convex) that

for every x, y ∈ X and α ∈ (0, 1) we have

H(αx+ (1− α)y) = sup
a∈F (αx+(1−α)y)

ϕA,e(a)

≤ sup
a∈αF (x)+(1−α)F (y)−C

ϕA,e(a)

= sup
a1∈F (x),a2∈F (y),c∈C

ϕA,e
(
αa1 + (1− α)a2 − C

)
= sup

a1∈F (x),a2∈F (y)
ϕA,e

(
αa1 + (1− α)a2

)
≤ α sup

a1∈F (x)
ϕA,e(a1) + (1− α) sup

a2∈F (y)
ϕA,e(a2)

= αH(x) + (1− α)H(y).
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Applying Lemma 2.2.12 to the scalar proper convex function H, we get that H is

Lipschitz on a neighborhood U ′ := x0 + µ′UX of x0 (0 < µ′ < µ) with the Lipschitz

constant L > 0, which means that

||H(x)−H(x0)|| ≤ L||x− x0|| for all x ∈ U ′.

Since H(x0) ≤ 0, we get

H(x) ≤ L||x− x0|| for all x ∈ U ′,

which induces the conclusion due to Corollary 2.5.5. �

Similarly we can prove that an upper (−C)-convex set-valued function (see Defini-

tion 5.1.4) is locally lower C-Lipschitz continuous in the sense of Definition 5.3.1.

Theorem 5.3.5. Let X be a normed space, and Y be a linear topological space. Let

C ⊂ Y be a proper, closed, pointed, convex cone with a nonempty interior, and e be

a given point in intC. Let F : X ⇒ Y be a upper (−C)-convex set-valued function,

and F (x) +C is closed and convex for every x ∈ X. If F is C-bounded around a point

x0 ∈ int (domF ), then F is locally lower C-Lipschitz continuous at x0.

Proof. Let e ∈ intC. Because of the C-boundedness of F around x0 (see Definition

5.3.2), there exist t > 0 and a neighborhood U := x0 + µUX ⊆ int (domF ) of x0 such

that F (U) ⊆ te − C and F (U) ⊆ −te + C. It follows that −F (U) ⊆ −te + C. Thus,

for every x ∈ U , we have that F (x)− F (x0) ⊆ −2te+ C. This implies that

F (x) ⊆ −2te+ F (x0) + C. (5.10)

From the assumptions of F (x0) +C, it is obvious that A := −F (x0)−C is closed and

(2.10) is fullfilled. Using the functional ϕA,−e introduced in (2.11) with A = −F (x0)−C
and e ∈ intC, we can consider a function G : X → R given by

G(x) := sup
a∈F (x)

ϕA,−e(a),

where C is a proper, closed, pointed, convex cone and e ∈ intC.

Applying Theorem 2.5.7(a), we get that ϕA,e is C-monotone. Moreover, taking

into account the inclusion (5.10), for all a ∈ F (x), we can choose b ∈ F (x0) such that

a ∈ −2te+ b+ C, and hence

ϕA,−e(a) ≤ ϕA,−e(−2te+ b) = 2t+ ϕA,−e(b) ≤ 2t+G(x0).

It follows from the definition of the functional G that

G(x) ≤ G(x0) + 2t. (5.11)
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Thus, G is bounded from above around x0.

Now we prove that G is convex. Indeed, it follows from the upper (−C)-convexity

of F (see Definition 5.1.4) and the convexity of ϕA,−e (since A = −F (x0)−C is convex)

that for every x, y ∈ X and α ∈ (0, 1) we have

G(αx+ (1− α)y) = sup
a∈F (αx+(1−α)y)

ϕA,−e(a)

≤ sup
a∈αF (x)+(1−α)F (y)+C

ϕA,−e(a)

= sup
a1∈F (x),a2∈F (y),c∈C

ϕA,−e
(
αa1 + (1− α)a2 + C

)
= sup

a1∈F (x),a2∈F (y)
ϕA,−e

(
αa1 + (1− α)a2

)
≤ α sup

a1∈F (x)
ϕA,−e(a1) + (1− α) sup

a2∈F (y)
ϕA,−e(a2)

= αG(x) + (1− α)G(y).

Applying Lemma 2.2.12 to the scalar proper convex function G, we get that G is

Lipschitz on a neighborhood U ′ := x0 + µ′UX of x0 (0 < µ′ < µ) with the Lipschitz

constant L > 0, which means that

||G(x)−G(x0)|| ≤ L||x− x0|| for all x ∈ U.

Since G(x0) ≤ 0, we get

G(x) ≤ L||x− x0|| for all x ∈ U,

which induces the conclusion due to Corollary 2.5.5. �

Let us compare the results obtained in Theorem 5.3.4 and Theorem 5.3.5 with

those previously known in the literature derived by Kuwano and Tanaka [50]. The

assumptions in Theorem 5.3.4 and Theorem 5.3.5 are weaker than the ones in [50],

since we do not need the conditions that C is a normal cone and the space X is a

finite-dimensional space.

5.4 Lipschitz continuity of Cs-convex set-valued functions

This section is devoted to the relationships of the Cs-convexity of set-valued functions

introduced in Definition 5.1.8 and the upper (lower) G-Lipschitzianity given in Defi-

nition 3.2.9. We also prove that a C-bounded, Cs-convex function F : X ⇒ Y on a

neighborhood of x0 ∈ int(domF ), then F is G-Lipschitz (see Definition 3.2.7) around

x0. In order to prove these assertions, we will use the equi-Lipschitzianity of a functional

family in the sense of Definition 3.1.3
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From now on (in this section), X,Y are two normed spaces, C is a proper, convex

cone and F : X ⇒ Y is a set-valued mapping. We consider the functions Gy∗ , gy∗ given

by (5.1), (5.2) w.r.t. F .

At first, we need the following propositions.

Proposition 5.4.1. Let X,Y be two normed spaces, F : X ⇒ Y , and x0 ∈ int(domF ).

If the family {Gy∗ |y∗ ∈ C+, ||y∗||∗ = 1} is equi-Lipschitz around x0, then F is lower

G-Lipschitz around x0.

Proof. Suppose by contradiction that F is not lower G-Lipschitz around x0, it follows

that for any n ∈ N∗, there are xn, x
′
n ∈ B(x0,

1
n) such that

F (xn)	G F (x′n) * n||xn − x′n||XUY − C,

hence xn 6= x′n for all n ∈ N∗.
Since x0 ∈ int (domF ), for n large enough, B(x0,

1
n) ⊆ domF , and we can take yn ∈

F (xn)	G F (x′n) such that yn + F (x′n) ⊆ F (xn) and

yn /∈ Bn := n||xn − x′n||XUY − C.

Since Bn is convex and intBn 6= ∅, one can find y∗n ∈ Y ∗ such that ||y∗n||∗ = 1 and

y∗n(yn) ≥ y∗n(v) for all v ∈ Bn.

This implies that

y∗n(yn) ≥ sup y∗n(Bn) = n||xn − x′n||X − sup y∗n(C).

It follows that y∗n ∈ C+ for all n ∈ N and

Gy∗n(xn) = sup y∗n(F (xn)) ≥ sup y∗n(F (x′n)) + y∗n(yn) ≥ Gy∗n(x′n) + n||xn − x′n||X .

Therefore,

n||xn − x′n||X ≤ Gy∗n(xn)−Gy∗n(x′n) ≤ `||xn − x′n||X .

This yields that n ≤ `, which could not hold true for arbitrarily large n. �

Proposition 5.4.2. Let X,Y be two normed spaces, F : X ⇒ Y , and x0 ∈ int(domF ).

If the family {gy∗ |y∗ ∈ C+, ||y∗||∗ = 1} is equi-Lipschitz around x0, then F is upper

G-Lipschitz around x0.

Proof. We prove by contradiction: Assuming that F is not upper G-Lipschitz around

x0, it follows that for any n ∈ N∗, there are xn, x
′
n ∈ B(x0,

1
n) with

F (xn)	G F (x′n) * n||xn − x′n||XUY + C,
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hence xn 6= x′n for all n ∈ N∗.
Since x0 ∈ int (domF ), for n large enough, B(x0,

1
n) ⊆ domF , and we can take yn ∈

F (xn)	G F (x′n) such that yn + F (x′n) ⊆ F (xn) and

yn /∈ Bn := n||xn − x′n||XUY + C.

Since the set Bn is convex and intBn 6= ∅, one can find y∗n ∈ Y ∗ such that ||y∗n||∗ = 1

and

y∗n(yn) ≤ y∗n(v) for all v ∈ Bn.

Hence,

y∗n(yn) ≤ inf y∗n(Bn) = −n||xn − x′n||X + inf y∗n(C).

It follows that y∗n ∈ C+ for all n ∈ N and

gy∗n(xn) = inf y∗n(F (xn)) ≤ inf y∗n(F (x′n)) + y∗n(yn) ≤ gy∗n(x′n)− n||xn − x′n||X .

Therefore

n||xn − x′n||X ≤ gy∗n(x′n)− gy∗n(xn) ≤ `||xn − x′n||X .

This yields that n ≤ `, which could not hold true for arbitrarily large n. �

Theorem 5.4.3. Let X,Y be two normed spaces, C be a proper normal cone, and

F : X ⇒ Y be Cs-convex. If F is C-bounded on a neighborhood of x0 ∈ int(domF ),

then F is G-Lipschitz around x0.

Proof. Without loss of generality we suppose that x0 = 0 and 0 ∈ F (0). As F is C-

bounded on a neighborhood U = θUX ⊆ domF of 0 (θ > 0), and taking into account

Definition 4.2.3, there exist real numbers µ, µ′ > 0 such that F (U) ⊆ µUY + C and

F (x) ⊆ µUY − C for all x ∈ U .

Take y∗ ∈ C+ with ||y∗||∗ = 1. Let x̄ ∈ U be arbitrary, ȳ ∈ F (x̄), c ∈ C, and y′ ∈ µ′UY
such that ȳ = y′ − c. It follows from the definition gy∗ given by (5.2) that

gy∗(x̄) = inf
y∈F (x̄)

y∗(y) ≤ y∗(ȳ) = y∗(y′ − c) ≤ y∗(y′)− y∗(c)

≤ y∗(y′) ≤ ‖y∗‖∗‖y′‖Y = ‖y′‖Y ≤ µ′, for all x̄ ∈ U.

Analogously, from F (U) ⊆ µUY +C, we get gy∗(x) = inf
y∈F (x)

y∗(y) ≥ −µ for every x ∈ U .

It follows that gy∗ is finite on U and

gy∗(x) ≤ gy∗(0) + µ+ µ′, for all x ∈ U = θUX .

By Proposition 5.1.7, gy∗ is convex. Applying Lemma 2.2.12 to the convex function gy∗

and θ′ ∈ (0, θ), we get

|gy∗(x)− gy∗(x′)| ≤ L‖x− x′‖X , for all x, x′ ∈ θ′UX ,
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where L := (µ+ µ′)(θ + θ′)/[θ(θ − θ′)], which clearly does not depend on y∗.

So {gy∗ | y∗ ∈ C+, ||y∗||∗ = 1} is equi-Lipschitz around x0 with the Lipschitz constant

L. Applying Proposition 5.4.2, we have that F is upper C-Lipschitz around x0.

Analogously, {Gy∗ | y∗ ∈ C+, ||y∗||∗ = 1} is equi-Lipschitz around x0. Applying Propo-

sition 5.4.1, F is lower C-Lipschitz around x0. Hence, there exists ` > 0 such that:

F (x)	G F (x′) ⊆ `||x− x′||XUY + C, for all x, x′ ∈ U, (5.12)

and

F (x)	G F (x′) ⊆ `||x− x′||XUY − C, for all x, x′ ∈ U. (5.13)

Since C is normal, there is ρ > 0 such that

(ρUY + C) ∩ (ρUY − C) ⊆ UY . (5.14)

From (5.12),(5.13),(5.14), we have

ρ(F (x)	G F (x′))

`||x− x′||X
⊆ (ρUY + C) ∩ (ρUY − C) ⊆ UY ,

for all x, x′ ∈ U, x 6= x′. This shows that F is G-Lipschitzian around x0. �

The following example, which is first given in [2, Example 6.2], illustrates the G-

Lipschitz continuity of a convex set-valued mappings in Theorem 5.4.3.

Example 5.4.4. Set F : [0,+∞)× R⇒ R2 assuming

F (x) = conv

{(
0

0

)
,

(
x1√
x1

)}
(x ∈ R2).

Obviously, F is C-bounded around every point x ∈ R2, and Cs-convex with C := R2
+.

Hence F is locally G-Lipschitz. Like in [2, Example 6.2], F is not Lipschitz.



Chapter 6

Differentiability properties

For convenience of the reader, in this chapter, we recall some preliminary materials on

basic normal cones, subdifferentials, derivatives, coderivatives and generalized differen-

tiation, which will be used in the following chapters. These concepts will be considered

not only for vector-valued functions, but also for set-valued functions. We refer the

reader to [13, 35, 36, 59, 63, 67, 74] for more references and discussions.

6.1 Basic definitions

We begin this part by recalling several basic derivatives for vector-valued functions.

Let X,Y be Banach spaces, and C be a proper, pointed, convex cone in Y . Consider

a vector-valued function f : X → Y . For each x̄ ∈ X, the “one-sided” directional

derivative of f at x̄ in the direction v ∈ X is defined by

f ′(x̄, v) := lim
t→0+

1

t
(f(x̄+ tv)− f(x̄)), (6.1)

when the limit exists in R.

The function f is said to be Gâteaux differentiable at x̄ ∈ X, if there exists a

continuous linear functional denoted by f ′(x̄) : X → Y , such that for every v ∈ X,

f ′(x̄, v) exists and f ′(x̄, v) = f ′(x̄)(v). The function f ′(x) is called the Gâteaux

derivative (or Gâteaux differential) of f at x ∈ X. This means that the following

difference quotient conveges for each v ∈ X:

f ′(x̄)(v) = lim
t→0+

1

t
(f(x̄+ tv)− f(x̄)), (6.2)

and the convergence is uniform w.r.t. v in finite sets. If the convergence (6.2) is uniform

w.r.t. v in bounded sets, f is said to be Fréchet differentiable at x̄. This is equivalent

to:

lim
x→x̄

f(x)− f(x̄)− f ′(x̄)(x− x̄)

‖x− x̄‖
= 0. (6.3)

65
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Moreover, the function f is said to be strictly differentiable at x̄ if

lim
x→x̄,u→x̄

f(x)− f(u)− f ′(x̄)(x− u)

‖x− u‖
= 0. (6.4)

Note that if f is strictly differentiable at x̄, then f is Lipschitz around this point;

see Clarke [13, Proposition 2.2.1].

Example 6.1.1. Consider the convex function f(x) = ‖x‖, it is easy to verify that f

has directional derivative at every point x ∈ X and f is Gâteaux differentiable at every

point x 6= 0, but there does not exist a Gâteaux derivative at x = 0.

6.2 Subdifferentials of convex functions

This section contains a brief summary of the subdifferentials of convex functionals as

well as the subdifferentials of convex vector-valued functions.

6.2.1 The Fenchel subdifferential of convex analysis

In this part, we consider a convex function f : X → R. We have the following proposi-

tion which is fundamental to the study of differentiability of convex functions.

Proposition 6.2.1. ([59, Lemma 1.2]) Let X be a Banach space. If f : X → R
is a proper convex function, then the directional derivative of f exists at every point

x ∈ dom f and

f ′(x, v) = inf
t>0

1

t
(f(x+ tv)− f(x)), (6.5)

In the following definitions, we consider the normal cone and the subdifferential in

the sense of convex analysis (or Fenchel subdifferential) of convex functions defined as

follows.

Definition 6.2.2. ([74, Section 2.4]) Let X be a Banach space and f : X → R be a

proper convex function, the subdifferential or Fenchel subdifferential of f at x̄ ∈ dom f

is defined by

∂f(x̄) := {x∗ ∈ X∗ | ∀x ∈ X : f(x)− f(x̄) ≥ x∗(x− x̄)}, (6.6)

for x̄ /∈ dom f one puts ∂f(x̄) = ∅. If ∂f(x̄) is nonempty, f is said to be subdifferentiable

at x̄.

The formulation (6.6) can also be written as

∂f(x̄) = {x∗ ∈ X∗ | ∀x ∈ X : x∗(x) ≤ f ′(x̄, x)}, x̄ ∈ dom f. (6.7)

Taking into account (6.7), it is easy to see that f ′(x̄, ·) ∈ ∂f(x̄). Moreover, if f is a

proper convex function, then ∂f(x̄) 6= ∅.
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Let us note that a continuous convex f is Gâteaux differentiable at x̄ ∈ dom f if

and only if ∂f(x̄) is a singleton; see [74, Corollary 2.4.10].

Definition 6.2.3. Let A be a nonempty convex subset of a Banach space X. The

normal cone to A at x̄ ∈ A is defined by

N(x̄, A) := {x∗ ∈ X∗ | x ∈ A : x∗(x− x̄) ≤ 0}.

It follows directly from Definition 6.2.2 and 6.2.3 that the normal cone to a set A

at a given point can also be equivalently defined by the subdifferential of the indicator

function associated with this set at that point,

N(x̄, A) = ∂δA(x̄), (6.8)

where δA is the indicator function of A.

The following proposition presents some calculus rules for subdifferentials of convex

functions.

Proposition 6.2.4. ([74, Theorem 2.4.2]) Let f, g : X → R be proper convex functions

on X, x ∈ X. We have some basic formulae:

(i) For any scalar t, we have

∂(tf)(x) = t∂f(x).

(ii) We have the following sum rule

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x).

The equality holds if x ∈ dom f ∩ dom g and one of the functions is continuous.

6.2.2 Subdifferential of convex vector-valued functions

In the sequel X,Y are are Banach spaces and C is a proper, pointed, convex cone in

Y . Now we consider a proper vector-valued function f : X → Y •.

Definition 6.2.5. The subdifferential of f at x̄ ∈ dom f is given by

∂≤f(x̄) := {T ∈ L(X,Y ) | ∀x ∈ X : f(x)− f(x̄) ≥C T (x− x̄)}. (6.9)

If x̄ ∈ X \ dom f we set ∂≤f(x̄) = ∅. An element T ∈ ∂≤f(x̄) is called a subgradient

of f at x̄.

In the case that Y = R, C = R+ := {α ∈ R | α ≥ 0} and f is convex, (6.9) reduces

to the classical definition of the subdifferential in the sense of Definition 6.2.2.

We recall some properties of (strong) subdifferentials of convex functions in the

following proposition.
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Proposition 6.2.6. (i) ([44, Corollary 6.1.10]) Let f : X → Y • be a proper C- con-

vex mapping, and x̄ be a given point in int (dom f). Then, ∂≤f(x̄) is nonempty.

(ii) ([67, Lemma 2.2]) Let f : X → Y • be a proper C-convex vector-valued function

and let g : Y → R ∪ {+∞} be convex and C-monotone on Y . If there exists

(x0; y0) ∈ epi f such that g is continuous at y0, then for ȳ = f(x̄) ∈ dom g one

has

∂(g ◦ f)(x̄) =
⋃

y∗∈∂g(ȳ)

∂(y∗ ◦ f)(x̄).

Furthermore, if we assume additionally that C has a weakly compact base, we get

the well-known result of Valadier [71], which is useful in the sequel.

Theorem 6.2.7. (Valadier [71]) Let X,Y be real reflexive Banach spaces, and C ⊂ Y
be a proper, convex cone with a weakly compact base. If f : X → Y is a C-convex

mapping, continuous at some point of its domain, then for every x ∈ X and y∗ ∈ C+

one has

y∗ ◦ ∂≤f(x) = ∂(y∗ ◦ f)(x).

6.3 Clarke’s normal cone and subdifferential

Now we extend the notions of the directional derivative and the subdifferential from con-

vex functions to locally Lipschitz functions by defining generalized directional deriva-

tives and generalized gradients (or Clarke’s subdifferentials) that were first introduced

by Clarke [13].

Definition 6.3.1. ([13]) Let X be a Banach space and f : X → R be Lipschitz around

a given point x ∈ dom f . For each v ∈ X, the generalized directional derivative of

f at x in the direction v is defined by

f◦(x, v) := lim sup
y→x,t→0+

1

t
(f(y + tv)− f(y)). (6.10)

Definition 6.3.2. ([13]) Let X be a Banach space and f : X → R be locally Lipschitz,

the generalized gradient of f at x̄ ∈ dom f is defined by

∂Cf(x̄) := {x∗ ∈ X∗ | ∀v ∈ X : f◦(x, v) ≥ x∗(v)}. (6.11)

Note that if f is Lipschitz around x̄ ∈ dom f and admits a Gâteaux derivative f ′(x̄),

then f ′(x̄) ∈ ∂Cf(x̄); see Clarke [13].

Proposition 6.3.3. (Clarke [13, Proposition 2.2.7 and Section 2.3]) Let X be a Banach

space. We assume that functions f, g : X → R are Lipschitz around a given point

x ∈ X. We have some basic calculus:
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(i) For any scalar t, we have

∂C(tf)(x) = t∂Cf(x).

(ii) The sum rule

∂C(f + g)(x) ⊆ ∂Cf(x) + ∂Cg(x).

The equality holds if one of the functions is strictly differentiable at x.

(iii) If f is convex on an open convex subset U of X and f is Lipschitz around a

given point x, then the generalized gradient of f coincides with the Fenchel’s

subdifferential of f at x, and the generalized directional derivative of f coincides

with its directional derivative.

Let A be a nonempty subset of a Banach space X; it is not necessary to suppose A

to be convex. Taking a point x ∈ A, we define the set of all tangents to A at x by

T (A, x) := {v ∈ X | d◦A(x, v) = 0},

where d◦A is the generalized directional derivative of the distance function d(·, A) at x

in the direction v; see Clarke [13, Section 2.4]. A vector v ∈ T (A, x) is called a tangent

to A at x.

We denote the Clarke normal cone to A at x̄ ∈ A by NC(x̄, A) and

NC(x̄, A) := {x∗ ∈ X∗ | ∀v ∈ T (A, x) : x∗(x) ≤ 0}.

We have the following property which is considered as another definition of normal

cone using Clarke’ subdifferential of the distance function.

NC(x̄, A) = cl ∗
(
∪λ>0 λ∂Cd(x.A)

)
, (6.12)

where cl ∗ denotes the weak* closure. This cone is also equivalent to

NC(x̄, A) = ∂CδA(x̄). (6.13)

The following proposition presents the correlation between the generalized gradient

of a function and the normal cone to its epigraph.

Proposition 6.3.4. ([13, Corollary 2.4.9]) Let X be a Banach space, f : X → R be

Lipschitz around a given point x. An element x∗ of X∗ belongs to ∂Cf(x) if and only

if (x∗,−1) belongs to NC

(
(x, f(x)), epi f

)
.

In [13], Clarke first defined the generalized gradient for a locally Lipschitz function,

and then defined the corresponding normal cones via the generalized gradient of the

distance function as in (6.12), and finally, the author extended Clarke subdifferentials

to functions which are not necessarily locally Lipschitz.
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Definition 6.3.5. ([13]) Let X be a Banach space and f : X → R. The Clarke

subdifferential of f at x̄ is the set

∂Cf(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ NC

(
(x, f(x)), epi f

)
} (6.14)

if x̄ ∈ dom f and ∂Cf(x̄) := ∅ if x̄ /∈ dom f .

We also have the sum rule for the Clarke subdifferential, when f is Lipschitz around

x and g is lower semicontinuous around x,

∂C(f + g)(x) ⊆ ∂Cf(x) + ∂Cg(x).

Proposition 6.3.4 guarantees that the definition of Clarke subdifferential given by

(6.14) is consistent with the generalized gradient for the locally Lipschitz case. In

Section 6.4, we will recall this approach for Mordukhovich’s subdifferential, by which the

normal cones to a set will be defined first, and then the corresponding subdifferentials

of a function are defined thanks to the normal cones to its epigraph.

6.4 Mordukhovich’s limiting subdifferential

This section is devoted to presenting definitions and properties of basic generalized

differential constructions held in Asplund spaces. In [55], Mordukhovich studied the

hierarchy of generalized normal cones, coderivatives, and limiting subdifferentials. We

recall in this part some main calculus for normal cones and coderivatives, for more

details, the reader can find them in Mordukhovich’s books [55, 56].

Definition 6.4.1. ([59]) A Banach space X is called an Asplund space if every convex

continuous function on a nonempty open convex subset D of X is Fréchet differentiable

at each point of some nonempty dense Gδ subset of D.

The class of Asplund spaces is quite broad, and contains every reflexive Banach

space, as well as every Banach space with the separable dual. In particular, c0 and lp,

Lp[0, 1] for 1 < p < +∞ are Asplund spaces, but l1 and l∞ are not Asplund spaces.

Consider a set-valued mapping F : X ⇒ X∗ between an Asplund space and its

dual, and a subset Ω of X. We define the Painlevé-Kuratowski outer limit of F at x̄

w.r.t. the norm topology of X and the weak* topology of X∗ by

lim sup
x→x̄

F (x) := {x∗ ∈ X∗ | ∀k ∈ N, ∃(xk, x∗k) ∈ gphF : xk → x̄, x∗k
w∗−−→ x∗}.

In this section, we use the notation x′
Ω−→ x for x′ → x with x′ ∈ Ω. We define the

generalized normal cone to Ω at x ∈ Ω in a Banach space as follows.

Definition 6.4.2. ([55, Definition 1.1]) Let Ω be a nonempty subset of a Banach space

X.
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1. Given x ∈ Ω and ε ≥ 0, define the set of ε-normals to Ω at x by

N̂ε(x,Ω) :=

{
x∗ ∈ X∗ | lim sup

u
Ω−→x

x∗(u− x)

‖u− x‖
≤ ε

}
. (6.15)

When ε = 0, the set (6.15) is called Fréchet normal cone to Ω at x, denoted

by N̂(x,Ω). If x /∈ Ω, we put N̂ε(x,Ω) := ∅ for all ε ≥ 0.

2. Let x̄ ∈ Ω, the (basic, limiting, or Mordukhovich) normal cone to Ω at x̄

is defined by

NL(x̄; Ω) := lim sup
x→x̄
ε↓0

N̂ε(x; Ω). (6.16)

Put NL(x̄; Ω) := ∅ for x̄ /∈ Ω.

Now, if X is an Asplund space and Ω is closed around a given point x̄ ∈ Ω, i.e.,

there is a neighborhood U of x̄ such that Ω ∩ U is a closed set. Then, the limiting

normal cone to Ω at x̄ is also presented by (compare [55, Theorem 1.6])

NL(x̄; Ω) = lim sup
x→x̄

N̂(x; Ω) (6.17)

= {x∗ ∈ X∗ | ∃xk
Ω−→ x̄, x∗k

w∗−−→ x∗,∀k ∈ N : x∗k ∈ N̂(xk; Ω)}.

If Ω is a convex set, then both the Fréchet normal cone and the limiting normal cone

reduce to the normal cone of convex analysis; see [55, Proposition 1.5]:

N̂(x̄; Ω) = NL(x̄; Ω) = {x∗ ∈ X∗ | ∀x ∈ Ω : x∗(x− x̄) ≤ 0} . (6.18)

Let us now recall the sequential normal compactness property of sets, which shows

the equivalence between the weak* and norm convergences to zero of ε-normals (6.15)

in dual spaces.

Definition 6.4.3. ([55, Definition 1.20]) Let Ω be a nonempty subset of a Banach space

X and x̄ be a given point of Ω. We say that Ω is sequentially normally compact

(SNC) at x̄ if for any sequence (εk, xk, x
∗
k) ∈ [0,∞]× Ω×X∗ satisfying

εk ↓ 0, xk → x̄, x∗k ∈ N̂εk(xk; Ω), and x∗k
w∗−−→ 0,

one has ‖x∗k‖ → 0 as k → +∞.

Remark 6.4.4. As a consequence of [55, Theorem 1.21], every nonempty set in a

finite dimensional space is SNC at each of its points. In addition, this property is

also fulfilled for a convex set with a nonempty interior; see [55, Proposition 1.25, and

Theorem 1.26].

As pointed out in Section 6.3, it is possible to define subdifferentials of an extended-

real-valued function through the normal cones to its epigraph. Next, we define the

(basic, limiting, Mordukhovich) subdifferential.
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Definition 6.4.5. ([55, Definition 1.77]) The (basic, limiting, Mordukhovich)

subdifferential for a given function f : X → R ∪ {±∞} at x̄ ∈ X with |f(x̄)| < +∞
is defined by

∂Lf(x̄) :=
{
x∗ ∈ X∗ | (x∗,−1) ∈ NL

(
(x̄, f(x̄)); epi f

)
}.

We put ∂Lf(x̄) := ∅ if |f(x̄)| = +∞.

Note that the limiting subdifferential agrees with the classical gradient for strictly

differentiable functions, and becomes the subdifferential of convex analysis when f is

convex; see [55, Theorem 1.93].

Now we recall the sum rule (see [55, Theorem 3.36]) and the chain rule (see [55,

Theorem 3.41 and Corollary 3.43]) for the limiting subdifferential of locally Lipschitzian

functions.

Proposition 6.4.6. We consider Asplund spaces X and Y .

(i) (Sum rule) Let ϕi : X → R∪ {±∞}, i = 1, 2, . . . , n, n ≥ 2, be lower semicontin-

uous around x̄, and let all but one of these functions be locally Lipschitz around

x̄. Then, one has the following inclusion

∂L(ϕ1 + ϕ2 + . . .+ ϕn)(x̄) ⊆ ∂Lϕ1(x̄) + ∂Lϕ2(x̄) + . . .+ ∂Lϕn(x̄). (6.19)

In addition, if each ϕi is convex (or strictly differentiable), then (6.19) holds as

equality.

(ii) (Chain rule) Let g : X → Y be strictly Lipschitz at x̄, and ϕ : Y → R be locally

Lipschitzian around g(x̄). Then, one has

∂L(ϕ ◦ g)(x̄) ⊆
⋃

y∗∈∂Lϕ(g(x̄))

∂L(y∗ ◦ g)(x̄). (6.20)

Now considering a set-valued function F : X ⇒ Y between two Banach spaces, and

a proper, convex cone C in Y . The graph and the epigraph of F w.r.t. the cone C are

defined by

gphF :=
{

(x, y) ∈ X × Y | y ∈ F (x)
}
,

epiF :=
{

(x, y) ∈ X × Y | y ∈ F (x) + C
}
.

The epigraphical multifunction of F : X ⇒ Y , EF : X ⇒ Y, is defined by

EF (x) := F (x) + C;

and hence, gph EF = epiF .

We continue defining the (basic, normal, Mordukhovich) coderivative at the

reference point.
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Definition 6.4.7. ([55, Definition 1.32]) Let F : X ⇒ Y be a set-valued function

between two Banach spaces with domF 6= ∅.

1. Given (x, y) ∈ X × Y and ε ≥ 0, we define the ε-coderivative of F at (x, y) as

a multifunction D̂∗εF (x, y) : Y ∗ ⇒ X∗ with the values

D̂∗εF (x, y)(y∗) :=
{
x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂ε((x, y); gphF )

}
. (6.21)

When ε = 0, it is called the precoderivative or Fréchet coderivative of F

at (x, y) and is denoted by D̂∗F (x, y). It follows directly from the definition that

D̂∗εF (x, y)(y∗) = ∅ for all ε ≥ 0 and y∗ ∈ Y ∗ if (x, y) /∈ gphF .

2. The (basic, normal, Mordukhovich) coderivative of F at (x̄, ȳ) ∈ gphF is

a multifunction D∗NF (x, y) : Y ∗ ⇒ X∗ defined by

D∗F (x̄, ȳ)(y∗) := lim sup
(x,y)→(x̄,ȳ)

y∗
ω∗−→ȳ∗
ε↓0

D̂∗εF (x, y)(y∗). (6.22)

We put D∗F (x̄, ȳ)(y∗) := ∅ for all y∗ ∈ Y ∗ if (x̄, ȳ) /∈ gphF .

Because of the definition of the limiting normal cone, the (basic, normal, Mor-

dukhovich) coderivative of F can be defined through the corresponding normal cone as

follows

D∗F (x̄, ȳ)(y∗) =
{
x∗ ∈ X∗ | (x∗,−y∗) ∈ NL

(
(x̄, ȳ); gphF

)
}. (6.23)

We can omit ȳ in the coderivative notation above if F = f : X → Y is a vector-

valued function. If f is strictly differentiable at x̄, then

D∗f(x̄)(y∗) =
{
∇f(x̄)∗y∗

)
} for all y∗ ∈ Y ∗.

Furthermore, if f is strictly Lipschitzian at x̄, the relationship between the co-

derivative of a vector function and the subdifferential of its scalarization is given by

[55, Theorem 3.28]:

D∗f(x̄)(y∗) = ∂L(y∗ ◦ f)(x̄).

In [5], Bao and Mordukhovich introduced a subdifferential notion for vector-valued

and set-valued mappings with values in partially ordered spaces by using coderivatives

of the epigraphical multifunction.

Definition 6.4.8. ([5]) Let F : X ⇒ Y be a set-valued function between two Banach

spaces with domF 6= ∅. Given (x̄, ȳ) ∈ X × Y , we define the basic/normal sub-

differential of F at (x̄, ȳ) in direction y∗ ∈ Y ∗ by

∂F (x̄, ȳ)(y∗) := D∗EF (x̄, ȳ)(y∗). (6.24)
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In the case of a single-valued function F := f : X → Y , the subdifferential of f at

x̄ in (6.24) is given by

∂f(x̄)(y∗) := D∗Ef (x̄)(y∗). (6.25)

Moreover, when F = f : X → (−∞,∞] is a lower semicontinuous function, the subd-

ifferential (6.24) with ‖y∗‖ = 1 agrees with the limiting subdifferential.

6.5 Ioffe’s approximate subdifferential

In this section, we study Ioffe’s approximate subdifferential and approximate normal

cone, which are considered in arbitrary Banach spaces. These structures were first

introduced in the series of works by Ioffe starting from 1981.

We suppose that X is a Banach space and f : X → R is lower semicontinuous on

X, and x ∈ dom f . Let F be the collection of all finite-dimensional subspaces of X. In

[35], the approximate subdifferential of f at x is given by

∂Af(x) :=
⋂
L∈F

lim sup
(ε,y)→(+0,x)

∂−ε fy+L(y),

where

fy+L(u) :=

f(u) if u ∈ y + L,

∞ otherwise,

and for ε > 0,

∂−ε fy+L(y) :=
{
x∗ ∈ X∗ | ∀v ∈ X : x∗(v) ≤ ε‖v‖+ lim inf

t→+0
t−1[fy+L(y+ tv)− fy+L(y)]

}
.

Note that the construction of approximate normal cones is similar to that of Clarke

normal cones. Therefore, we can define the approximate normal cone to Ω ⊆ X

at x ∈ Ω via the approximate subdifferential of either the distance function or the

indicator function associated with this set as

NA(x; Ω) :=
⋃
λ>0

λ∂Ad(x,Ω) = ∂AδΩ(x).

Moreover, one can present the approximate subdifferential via the approximate normal

cone above by the following equality

∂Af(x̄) =
{
x∗ ∈ X∗ | (x∗,−1) ∈ NA

(
(x̄, f(x̄)); epi f

)
}.

Using the approximate normal cone, we can define the approximate coderivative of

a set-valued function F : X ⇒ Y as in the next definition.

Definition 6.5.1. Let F : X ⇒ Y be a set-valued function between two Banach spaces

with domF 6= ∅, and (x, y) ∈ gphF . Assuming that F is closed, and the approximate

coderivative of F at (x, y) is a multifunction D∗AF (x, y) : Y ∗ ⇒ X∗ defined by

D∗AF (x, y)(y∗) :=
{
x∗ ∈ X∗ | (x∗,−y∗) ∈ NA

(
(x̄, ȳ); gphF

)
}. (6.26)
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Now we show some properties of the approximate subdifferential for Banach spaces

X and Y .

Proposition 6.5.2. (Ioffe [35, Section 3]) We assume that given functions f, g : X →
R are lower semicontinuous on their domains. Assuming that x ∈ dom f or x ∈ dom g,

we have the following properties:

(i) (Sum rule) If f is Lipschitz around x and x ∈ dom f ∩ dom g, then

∂A(f + g)(x) ⊆ ∂Af(x) + ∂Ag(x).

(ii) If f attains a local minimum at x, then 0 ∈ ∂Af(x).

(iii) If f is strictly differentiable at x, then ∂Af(x) = {f ′(x)}.

In the previous sections, we described the constructions of Fenchel subdifferentials,

Clarke subdifferentials as well as Mordukhovich subdifferentials. To finish this section,

we establish relationships between them and Ioffe subdifferentials in the framework of

Banach spaces and Asplund spaces.

Proposition 6.5.3. (Mordukhovich [55, Section 3.2.3], Ioffe [35, Section 3]) Let X

be an Asplund space, and f : X → R be lower semicontinuous and Lipschitz around

x ∈ dom f . We have the following properties:

∂Cf(x) = cl conv ∂Af(x) = cl ∗conv ∂Lf(x),

∂Af(x) = cl ∗∂Lf(x),

and hence

∂Lf(x) ⊆ ∂Af(x) ⊆ ∂Cf(x).

Moreover, if X is a weakly compactly generated space (i.e., X = cl (span K) for some

weakly compact set K ⊂ X), then

∂Lf(x) = ∂Af(x).

In the latter case if f is convex and f continuous at least at one point (i.e., f is

Lipschitz around that point, see Chapter 4), then these subdifferentials coincide with

the subdifferential of convex analysis.

Note that the relationships between the Clarke subdifferential and Ioffe subdiffer-

ential above also hold in Banach spaces.
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6.6 Derivatives of set-valued functions

Derivatives of set-valued functions are essential in optimization theory. They are used

in primal-space approaches to derive optimality conditions for solutions of set-valued

optimization problems. There are many approaches to define derivatives of set-valued

functions, for instance: contingent (Bouligand), Ursescu, Dubovitskij - Miljutin and

Dini derivatives, etc. In this section, we focus on contigent derivatives and contingent

epiderivatives, which are motivated by the geometric interpretation of the classical

notion of derivative for single-valued functions as a local approximation of their graphs

and epigraphs.

We begin with a brief introduction of the contingent cone (or the Bouligand tangent

cone) of a set S ⊆ X at a given point x ∈ X.

Definition 6.6.1. Let X be a normed vector space, S be a subset of X, and x ∈ X be

given. The contingent cone of S at x is a set

T (S, x) := {u ∈ X | ∃(tn) ↓ 0, ∃(un)→ u, x+ tnun ∈ S},

where (tn) ↓ 0 means (tn) ⊂ (0,+∞) and (tn)→ 0.

In the literature, the contingent cone has been widely used in optimization the-

ory and variational analysis, and it has been known under many different names such

as the Bouligand tangent cone, the tangent cone, the cone of adherent dis-

palcements, the outer tangent cone, etc. We refer the reader to [44] for more

notions and more discussions of contingent cones. In [44, Theorem 4.1.12], the authors

introduce an equivalence of sixteen different characterizations of the contingent cone in-

cluding detailed proofs. We present here two characterizations which are more popular

than the others.

Proposition 6.6.2. ([44, Theorem 4.1.12]) Let X be a normed vector space, S be a

subset of X, and let x ∈ clS. Then, for i ∈ {1, 2}, we have T (S, x) = Ti(S, x), where

Ti(S, x) are given as follows:

T1(S, x) := {u ∈ X | ∃(tn) ⊂ R,∃(un) ⊂ S such that un → x, tn(un − x)→ u}
T2(S, x) := {u ∈ X | ∃(tn) ⊂ R,∃(un) ⊂ S such that tn ↓ 0,

un − x
tn

→ u}.

Note that, in the special case that S is convex, we have T (S, x) = cl cone (S − x).

Now we introduce the notion of the contingent derivative via the contigent cone

above.

Definition 6.6.3. Let X and Y be normed spaces, F : X ⇒ Y be a set-valued function,

and (x, y) ∈ gphF be given. A contingent derivative of F at (x, y) is a set-valued

map DcF (x, y) : X ⇒ Y such that

gph(DcF (x, y)) := T (gphF, (x, y)).
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Because of the equivalence of the characterizations of the contingent cone, and due

to Definition 6.6.1 we get the following properties of the contingent derivative.

Proposition 6.6.4. ([44, Theorem 11.1.8]) Let X,Y be two normed vector spaces, S

be a subset of X. Let F : X ⇒ Y be a set-valued function, and (x, y) ∈ gphF . The

following assertions hold:

(i) A pair (u, v) belongs to gph(DcF (x, y)) if and only if there are sequences {tn} ↓ 0

and {(un, vn)} ⊂ X × Y with (un, vn)→ (u, v) such that y + tnvn ∈ F (x+ tnun),

for every n ∈ N .

(ii) A pair (u, v) belongs to gph(DcF (x, y)) if and only if

lim inf
(ū,t)→(u,0+)

d
(F (x+ tū)− y

t
, v
)

= 0.

It follows from the definitions of the contigent derivative and the properties of the

contingent cone that the contigent derivative is a natural extension of the Fréchet

differentiability concept to the set-valued case; see [37, Remark 15.2].

Now we consider an ordering relation ≤C on the normed space Y , which is generated

by a proper convex cone C ⊂ Y , and we recall that the epigraph of F : X ⇒ Y with

respect to C is given by

epiF :=
{

(x, y) ∈ X × Y | y ∈ F (x) + C
}
.

In case F : S ⇒ Y , where S is a nonempty subset of X, the epigraph of F , also denoted

by epiF if there is no confusion, is given by

epiF :=
{

(x, y) ∈ X × Y | x ∈ S, y ∈ F (x) + C
}
.

We introduce another notion of derivatives of set-valued maps in the following

definition. This is a useful tool for the formulation of optimality conditions in set

optimization.

Definition 6.6.5. Let X and Y be normed spaces, let S be a nonempty subset of X,

and let C be a proper, convex cone. Let F : S ⇒ Y be a set-valued function, and let a

pair (x, y) ∈ gphF with x ∈ S be given. A contingent epiderivative of F at (x, y)

is a single-valued map DeF (x, y) : X → Y such that

epi (DeF (x, y)) = T (epiF, (x, y)).

The contingent epiderivative was originally proposed by Jahn and Rauh [41]. Fol-

lowing the idea of the definition above but taking a different tangent cone for the local

approximation, one can derive other epiderivatives such as the adjacent epiderivative
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and the Clarke epiderivative; see [44, Chapter 11]. Note that the contingent epideriva-

tive is a single-valued function while the contingent derivative is a set-valued function.

Moreover, in the case that F is lower C-convex, we get the following relationship be-

tween the contingent derivative and the contingent epiderivative.

Proposition 6.6.6. (see [37, Theorem 15.9]) Let X and Y be normed spaces, let S

be a nonempty convex subset of X, and let C be a proper, pointed, convex cone. Let

F : X ⇒ Y be a lower C-convex set-valued function, and let a pair (x, y) ∈ gphF

with x ∈ S be given. If both the contingent derivative DcF (x, y) and the contingent

epiderivative DeF (x, y) exist, then

epi (DcF (x, y)) ⊆ epi (DeF (x, y)).

When F is lower C-convex, we also obtain the following property of the contigent

epiderivative.

Proposition 6.6.7. (see [37, Theorem 15.11]) Let X and Y be normed spaces, let S

be a nonempty convex subset of X, and let C be a proper, pointed, convex cone. Let

F : S ⇒ Y be a lower C-convex set-valued function, and let a pair (x, y) ∈ gphF with

x ∈ S be given. If the contingent epiderivative DeF (x, y) exists, then it is sublinear,

i.e.,

(i) DeF (x, y)(αz) = αDeF (x, y)(z) for all α ≥ 0 and for all z ∈ X (positive ho-

mogenity),

(ii) DeF (x, y)(z1 + z2) ∈ {DeF (x, y)(z1) + DeF (x, y)(z2)} − C for all z1, z2 ∈ X

(subadditivity).

For deeper discussions of the contingent derivative as well as the contingent epi-

derivative, we refer the reader to [1, 37, 44].

6.7 Directional derivatives of set-valued functions

The aim of this section is to present an overview of the directional derivatives of set-

valued functions studied by Jahn [39], Pilecka [60], Dempe and Pilecka [14]. They

proposed at least two approaches: the first one is to construct the difference quotients

of the minimal and maximal solution functions, the second one is based on the aid

of the Painlevé-Kuratowski outer limit. In the literature, Kuroiwa is the first author

investigating directional derivatives of set-valued maps. He used a special embedding

technique to derive directional derivatives in [48]. Among the other approaches, we

mention results by Hoheisel, Kanzow, Mordukhovich and Phan [33, 34], as well as by

Hamel, Heyde, Löhne, Rudloff and Schrage [29].
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In this section, we also use the same notation 	D for all Demyanov differences if

there is no confusion; see Section 2.4.

First, we consider a set-valued function F : S ⇒ Y from a subset S of the real linear

space X with a nonempty interior to the real normed space Y partially ordered by a

convex cone C. We assume that F takes strictly convex and weakly compact set-values.

In order to define the differentials of set-valued functions, we will use the Demyanov

differences in the sense of (2.9).

In [39], the Demyanov difference (2.9) was chosen to define the directional deriva-

tives of set-valued functions because the author considered a difference quotient 1
λ(F (x+

λd)	D F (x)), which is nearly of the form 0
0 as λ→ 0+. Hence the chosen set difference

ensures that F (x+ λd)	D F (x) becomes small for nearly the same sets. Before giving

directional derivatives, we use the following convention:

lim
λ→0+

⋃
l∈C+

1

{
G(λ, l)

}
=
⋃
l∈C+

1

{
lim
λ→0+

G(λ, l)
}
.

Hence,

lim
λ→0+

1

λ

(
F (x+ λd)	D F (x)

)
= lim

λ→0+

1

λ

⋃
l∈C+

1

{
ymin(l, F (x+ λd))− ymin(l, F (x)),

ymax(l, F (x+ λd))− ymax(l, F (x))
}

=
⋃
l∈C+

1

{
lim
λ→0+

1

λ

(
ymin(l, F (x+ λd))− ymin(l, F (x))

)
,

lim
λ→0+

1

λ

(
ymax(l, F (x+ λd))− ymax(l, F (x))

)}
We define the directional derivatives DminF (x, d, l) and DmaxF (x, d, l) by

DminF (x, d, l) := lim
λ→0+

1

λ

(
ymin(l, F (x+ λd))− ymin(l, F (x))

)
for all l ∈ C+

1 , (6.27)

and

DmaxF (x, d, l) := lim
λ→0+

1

λ

(
ymax(l, F (x+ λd))− ymax(l, F (x))

)
for all l ∈ C+

1 . (6.28)

Definition 6.7.1. ([39]) Consider a set-valued function F : S ⇒ Y taking strictly

convex and weakly compact set-values, where X is a real linear space, S ⊆ X with a

nonempty interior, and Y is a real normed space ordered by a convex cone C. Take x ∈
intS, and some d ∈ X. Let the directional derivatives DminF (x, d, l) and DmaxF (x, d, l)

exist for all l ∈ C+
1 . The set

DJF (x, d) :=
⋃
l∈C+

1

{
DminF (x, d, l), DmaxF (x, d, l)

}
(6.29)

is called the directional derivative of F at x in the direction d.
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The following property obviously holds for all x ∈ intS and λ ≥ 0:

DJF (x, λd) = λDJF (x, d).

Next we consider the second approach by Dempe and Pilecka [14], where they

used the modified Demyanov difference (2.6) to derive the differentials of set-valued

functions. Now let C be a convex cone in Rn with a nonempty interior, and let F :

Rm ⇒ Rn be a set-valued function, which takes convex and weakly compact set-values

and domF 6= ∅.

Definition 6.7.2. ([14]) Consider a set-valued function F : Rm ⇒ Rn. Take x ∈
int (domF ), the directional derivatives DPF (x, d) at x in the direction d ∈ Rm is

defined by

DPF (x, d) := lim sup
t→0+

F (x+ td)	D F (x)

t
(6.30)

is called the directional derivative of F at x in the direction d, where 	D is the

modified Demyanov difference in the sense of (2.6).

Proposition 6.7.3. ([14, Lemma 3.2]) Let F : Rm ⇒ Rn be Lipschitz around x ∈
int (domF ) in the sense of Definition 3.2.10 w.r.t. the difference (2.6) with Lipschitz

modulus L. Then, for each direction d ∈ Rm, the directional derivative of F at x is

non-empty, bounded and satisfies

DPF (x, d) ⊆ L‖d‖URn . (6.31)

We note that in [60], Pilecka used formula (6.30) to define the directional derivative

with respect to the l-difference (2.4),

DlF (x, d) := lim sup
t→0+

F (x+ td)	l F (x)

t
, (6.32)

which leads to results similar to Proposition 6.7.3.



Chapter 7

Optimality conditions for vector

optimization problems

Many problems in our daily life lead us to make decisions satisfying various objectives

and conflicting goals, which can be mathematically modelled by vector optimiza-

tion problems. They are also well known by other names, such as multiobjective

optimization problems or multi-objective optimization problems. Each application to

real problems, for example in industrial systems, politics, business, industrial systems,

control theory, management science, and networks, makes new models or new research

branches for vector optimization problems; see more examples and models in the intro-

ductory chapter of [26]. The main goal of this chapter is to study necessary optimal

conditions for solutions of the vector optimization problem (VP):

minimize f(x) subject to x ∈ D, (VP)

where X,Y are normed vector spaces, f : X → Y is a single-valued mapping, D ⊆ X

is non-convex, and C is a proper, closed, convex, pointed cone in Y . Recall that some

solution concepts of the problem (VP) have been given in Section 2.6.

In the first section of this chapter, we will collect some recent and interesting tech-

niques to scalarize the vector optimization problem (VP). These techniques are based

on the scalaring functions introduced in Section 2.5. In the second section we give some

necessary optimality conditions for (weakly) Pareto efficient solutions for the problem

(VP) where the objective function f is either Lipschitz or C-convex, no matter whether

intC is empty or not. The last section is devoted to the vector control approximation

problem, which is a special form of the problem (VP), and is applied in many prac-

tical problems. We will derive necessary conditions for approximate solutions of this

problem in infinite-dimensional reflexive Banach spaces.

81



7.1. Characterization of solutions of vector optimization problems by scalarization. 82

7.1 Characterization of solutions of vector optimization

problems by scalarization.

Our objective now is to present some methods to scalarize the vector optimization

problem (VP). We prove that the vector optimization problem (VP) and its suitable

scalar optimization problem have the same solution sets. Of course, solving the new

problem is more advantageous than solving (VP), since we can use the optimality

conditions for scalar optimization problems introduced in Appendix A.

First of all, we will scalarize the convex optimization problems by using the sepa-

ration theorem for two convex sets in Section 2.5.1.

Proposition 7.1.1. ([37, Theorem 5.4]) Let C ⊂ Y be a closed, convex cone.

(i) Given a nonempty subset A of Y such that A+C is convex and has a nonempty

interior, one has that a point ȳ ∈ A is a Pareto minimal point of A w.r.t. C if

there exists y∗ ∈ C+ \ {0} such that ȳ is a solution of the problem miny∈A y
∗(y),

i.e., y∗(y) ≥ y∗(ȳ), for all y ∈ A.

(ii) Consider the problem (VP), assume that D is closed convex and f : X → Y is a

C-convex function such that the set f(D) + C has a nonempty interior. A point

x̄ ∈ D is a Pareto efficient solution of (VP) if there exists y∗ ∈ C+ \ {0} such

that

y∗(f(x)− f(x̄)) ≥ 0 ∀x ∈ D. (7.1)

The following results will handle weakly Pareto minima with solid ordering cone.

Proposition 7.1.2. ([37, Theorem 5.13]) Let C ⊂ Y be a closed, convex cone with a

nonempty interior.

(i) Given a nonempty subset A of Y such that A+C is convex, one has that a point

ȳ ∈ A is a weakly Pareto minimal point of A w.r.t. C if there exists y∗ ∈ C+ \{0}
such that ȳ is a solution of the problem miny∈A y

∗(y), i.e., y∗(y) ≥ y∗(ȳ), for all

y ∈ A.

(ii) Consider the problem (VP), assume that D is closed convex, f : X → Y is a

C-convex function. A point x̄ ∈ D is a weakly Pareto efficient solution of (VP)

if there exists y∗ ∈ C+ \ {0} such that

y∗(f(x)− f(x̄)) ≥ 0 ∀x ∈ D. (7.2)

Now to deal with scalarization of general vector optimization problems (some convex

assumptions are not necessary), there are at least three successful approaches in the

literature. The first one is to change the scalarization procedure by using the oriented
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distance function; see, for example, [27, 73]. The second one is to use the nonlinear

scalarizing functional ϕC,e, which has also become popular in the last few years; see

[8, 16, 17, 19]. The last one is to consider new approximate solution concepts, and then

derive optimal conditions for the new solutions (see [16, 17, 19]). However, the third

approach is beyond the context of this work, and will not be discussed further.

The following proposition presents the scalarization procedure of the problem (VP)

using the oriented distance function introduced in Section 2.5.3. Since this proposition

is a direct consequence of Proposition 2.5.11(ii), for brevity we will omit the proof.

Proposition 7.1.3. ([73, Theorem 4.3]) Let C ⊂ Y be a closed, convex cone, and ∆−C

be given by (2.14).

(i) Given a nonempty subset A of Y , one has that ȳ ∈ A is a Pareto minimal point of

A w.r.t. C if and only if ȳ is a unique solution of the problem miny∈A ∆−C(y− ȳ),

i.e., ∆−C(y − ȳ) > 0, for all y ∈ A, y 6= ȳ.

(ii) Moreover, consider the problem (VP), x̄ ∈ D is a Pareto efficient solution of

(VP) if and only if

∆−C(f(x)− f(x̄)) ≥ 0 ∀x ∈ D. (7.3)

Now using the nonlinear scalarizing functional, the following proposition is a direct

consequence of Theorem 2.5.8.

Proposition 7.1.4. ([19]) Let C be a closed, convex cone with a nonempty interior,

e ∈ intC, and ϕC,e be given by (2.11).

(i) Given a nonempty subset A of Y , one has that ȳ ∈ A is a weakly Pareto minimal

point of A w.r.t. C, then

ϕC,e(y − ȳ) ≥ 0 for all y ∈ A.

(ii) Moreover, consider the problem (VP), if x̄ ∈ D is a weakly Pareto efficient solu-

tion of (VP), then x̄ is minimum of the following problem

minimize ϕC,e(f(x)− f(x̄)) subject to x ∈ D. (7.4)

The most important condition to make use of the nonlinear scalaring functional ϕC,e

is that the ordering cone C has a nonempty interior. However, the class of ordering

cones with nonempty interiors in infinite-dimensional spaces is not very broad. In the

case that intC = ∅, Bao and Tammer [8] constructed a new appropriate solid cone such

that the Pareto minimal points w.r.t. the original cone C are also the Pareto minimal

points w.r.t. the new cone.
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From now on in this section, we consider a normed vector space Y with a proper

pointed convex closed ordering cone C. For each point e ∈ C \ {0} and for each

ε ∈ (0, ‖e‖) we consider the following cone

Θe,ε := cone
(
B(e, ε)

)
= {t · y, y ∈ B(e, ε)}. (7.5)

It is easy to see that the new cone Θe,ε might not contain the given cone C or be

contained in it. Obviously, Θe,ε is a proper pointed convex closed cone with a nonempty

interior, since e ∈ int Θe,ε.

Proposition 7.1.5. ([8, Theorem 3.1]) Let Y be a normed vector space, C be a proper,

closed convex cone. Let A be a nonempty subset of Y and ȳ ∈ Min(A,C). Then, for

each e ∈ C \ {0} satisfying

−e /∈ cl cone (A+ C − ȳ), (7.6)

there exists a positive real number ε > 0 such that ȳ ∈ Min(A + C,Θe,ε), where Θe,ε

is given in (7.5). Moreover, ȳ is a minimum of the scalarization function ϕ := ϕΘe,ε,e

over A+ C:

minimize ϕ(y − ȳ) subject to y ∈ A+ C, (7.7)

where ϕ w.r.t. Θe,ε is given by (2.11).

In some other works, the assumption (7.6) could be replaced by a stronger condition

that cone (A + C − ȳ) is closed; see, for instance, [17, Theorem 2.3]. Furthermore,

several new results about the asymptotic cone and the Bouligand tangent cone are

given to derive necessary optimality conditions for Pareto minimal points without the

assumption (7.6); see [17, Theorem 2.5 and Corollary 2.1]. In the following proposition,

A is locally closed at Pareto minimal point ȳ, and clearly this condition is weaker than

(7.6).

Proposition 7.1.6. ([17, Proposition 2.1]) Let Y be a normed vector space, C be a

proper, closed, convex cone. Let A be a nonempty subset of Y , ȳ ∈ Min(A,C) such

that A is locally closed at ȳ. Then, for each e ∈ C \ {0}, there exists a positive real

number ε > 0 such that 0 ∈ Min(cone (A ∩ B(ȳ, ε) − ȳ + e), coneB(e, ε)). Moreover, 0

is a minimum of the scalarization function ϕ over cone (A ∩B(ȳ, ε)− ȳ + e):

minimize ϕ(y) subject to y ∈ cone (A ∩B(ȳ, ε)− ȳ + e), (7.8)

where ϕ := ϕA,e with A = coneB(e, ε) is given by (2.11).

However, this approach has the disadvantage that the minimum of the new scalar

problem is not attained at the original minimal point ȳ, but at 0.
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7.2 Necessary optimality conditions

In this section, we consider the problem (VP) with certain assumptions concerning the

Lipschitzianity and the C-convexity of the objective function f , and we study both

whether the interior of cone C is empty or not. In the case that intC = ∅, we derive

necessary conditions for Pareto efficient solutions in Theorem 7.2.4 and Theorem 7.2.5,

and in the latter case, we derive the necessary conditions for weakly Pareto efficient

solutions in Theorem 7.2.2 and Theorem 7.2.3. We are interested in deriving neces-

sary optimality conditions in terms of the (basic, normal, Mordukhovich) coderivative

mapping, and hence, the problem (VP) will be investigated in Asplund spaces.

Throughout the section, we use the following assumption:

Assumption 7.2.1. Let X,Y be Asplund spaces, D ⊆ X be a nonempty subset of X

(D is not necessarily convex), let C be a proper, closed, convex, pointed cone in Y ,

and let f : X → Y be a vector-valued function such that D ⊆ dom f . We consider

a pair (x̄, ȳ) ∈ X × Y such that x̄ ∈ D, D is closed around x̄, and ȳ = f(x̄) (i.e.,

(x̄, ȳ) ∈ gph f).

We recall the definition of the epigraphical multifunction of f : X → Y , Ef : X ⇒ Y

given by (compare with (3.5) for set-valued mappings F )

Ef (x) := f(x) + C.

We begin with the case intC 6= ∅. Note that a convex ordering cone with a nonempty

interior has the SNC property; see Definition 6.4.3. In the case that the ordering cone

C has the SNC property, necessary conditions for minimizers of set-valued optimization

problems are derived in [3, Theorem 4.1], [5, Theorem 5.3]. As a direct consequence of

[3, Theorem 4.1], we get the following necessary conditions for weakly Pareto efficient

solutions of vector optimization problems without convexity assumptions concerning

the constraint set D and the objective function f . In the next theorem, we consider the

vector optimization problem in terms of the Mordukhovich coderivative, and limiting

subdifferential in infinite-dimensional spaces.

Theorem 7.2.2. Consider the vector optimization problem (VP) under Assumption

7.2.1, and, in addition, assume that intC 6= ∅, and f is Lipschitz around x̄. If x̄ ∈ D
is a weakly Pareto efficient solution of (VP), then there exists y∗ ∈ C+ \ {0} such that

0 ∈ D∗Ef (x̄, f(x̄))(y∗) +NL(x̄;D). (7.9)

Furthermore, if f is strictly Lipschitzian at x̄, then (7.9) implies

0 ∈ ∂L(y∗ ◦ f)(x̄) +NL(x̄;D). (7.10)
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Proof. Since intC 6= ∅, C has the SNC property. Because of the Lipschitzianity of f ,

the qualification condition (5.28) in [3, Theorem 4.1] is fulfilled. Hence, the necessary

condition (7.9) follows immediately from [3, Theorem 4.1], and [4, Theorem 5].

For the remaining assertion, if we assume additionally that f is strictly Lipschitzian

at x̄, using [55, Theorem 3.28] we get that D∗f(x̄)(y∗) = ∂L(y∗ ◦ f)(x̄). By the defini-

tion of the coderivative, it is easy to see that D∗Ef (x̄, f(x̄))(y∗) ⊆ D∗f(x̄)(y∗). Thus

D∗Ef (x̄, f(x̄))(y∗) ⊆ ∂L(y∗ ◦ f)(x̄), which completes the proof. �

We now consider the problem (VP), in which the feasible set D is not necessarily

convex, and the objective function f : X → Y is C-convex (see Definition 4.1.1). We

observe from Chapter 4 that a C-convex, locally C-bounded function is locally Lipschitz

under the assumption that the cone C is normal. Hence, all the calculus rules for co-

derivatives and generalized differentiations for locally Lipschitz mappings in [55, 56]

are fulfilled for the class of C-convex mappings.

In our next theorem, under the assumption that f is C-convex, we will establish

the Lagrangian necessary condition in the form of (7.10) using the subdifferentials of

convex analysis.

Theorem 7.2.3. Consider the vector optimization problem (VP) under Assumption

7.2.1, and, in addition, assume that C is a normal cone in Y with a nonempty interior,

f is C-convex and C-bounded from above on a neighborhood U of x̄. If x̄ ∈ D is a weakly

Pareto efficient solution of (VP), then there exists y∗ ∈ C+ \ {0} such that

0 ∈ ∂(y∗ ◦ f)(x̄) +NL(x̄;D), (7.11)

Proof. Since C is normal, the cone C satisfies the assumptions of Theorem 4.2.7, hence

f is C-convex and C-bounded from above around x̄. Thus, f is Lipschitz around x̄.

Hence, all the calculus rules of coderivatives and generalized differentiations for locally

Lipschitz mappings in [55, Chapter 1] are valid for the class of C-convex mappings.

Since all assumptions of Theorem 7.2.2 are fulfilled, there exists y∗ ∈ C+ \ {0} such

that (7.9) holds. For ȳ = f(x̄), we have that

x∗ ∈ D∗Ef (x̄, ȳ)(y∗)⇐⇒ (x∗,−y∗) ∈ NL((x̄, ȳ); epi f), (7.12)

where the epigraph of f is given by

epi f :=
{

(x, y) ∈ X × Y | y ∈ f(x) + C
}
.

As f is C-convex, it follows that epi f is convex. Because of the convexity of epi f ,

[55, Proposition 1.5] can be applied such that we get NL((x̄, ȳ); epi f) = N̂((x̄, ȳ); epi f),

i.e., representation (6.18) holds. We can rewrite (7.12) as

x∗ ∈ D∗Ef (x̄, ȳ)(y∗)⇐⇒ (x∗,−y∗) ∈ N̂((x̄, ȳ); epi f)

⇐⇒ x∗(x− x̄)− y∗(y − ȳ) ≤ 0 for all (x, y) ∈ epi f.
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Note that y∗ ∈ C+; and hence we have

x∗ ∈ D∗Ef (x̄, ȳ)(y∗)⇐⇒ x∗(x− x̄)− y∗(f(x)− f(x̄)) ≤ 0 for all x ∈ X.

⇐⇒ x∗ ∈ ∂(y∗ ◦ f)(x̄).

It follows that D∗Ef (x̄, ȳ)(y∗) = ∂(y∗ ◦ f)(x̄). This gives (7.11) when substituted in

(7.9), and the proof is completed. �

Our next goal is to find Lagrangian necessary conditions for Pareto efficient solutions

of the problem (VP) in the case that intC = ∅, which is much harder than the previous

one. In order to overcome the difficulties of this case, we refer the reader to [8, 17] for

more references and discussions. Durea et al. [17] mentioned three possibilities to deal

with this case, however in this section we only consider the following result of Bao and

Tammer [8].

Theorem 7.2.4. ([8, Theorem 3.8]) Consider the vector optimization problem (VP)

under Assumption 7.2.1, and, in addition, assume that intC = ∅, f is Lipschitz around

x̄. Moreover, suppose that cone (f(D) +C − ȳ) is closed. If x̄ ∈ D is a Pareto efficient

solution of (VP), then for every e ∈ C \ {0}, there exists y∗ ∈ C+ with y∗(e) = 1 such

that

0 ∈ D∗Ef (x̄, f(x̄))(y∗) +NL(x̄;D). (7.13)

Furthermore, if f is strictly Lipschitzian at x̄, then (7.9) implies

0 ∈ ∂L(y∗ ◦ f)(x̄) +NL(x̄;D). (7.14)

In comparison with the necessary condition in Theorem 7.2.2, we do not assume

the closedness of cone (f(D) + C − ȳ) from the hypotheses of Theorem 7.2.4, but we

suppose additionally that intC 6= ∅ in Theorem 7.2.2.

In the following theorem, we suppose the C-convexity and C-boundedness of the

objective function f without the Lipschitzianity assumptions. We will get the following

result similar to Theorem 7.2.3.

Theorem 7.2.5. Consider the vector optimization problem (VP) under Assumption

7.2.1, and, in addition, assume that C is a normal cone in Y with an empty interior,

f is C-convex and C-bounded from above on a neighborhood U of x̄. Furthermore,

suppose that cone (f(D) + C − ȳ) is closed. If x̄ ∈ D is a Pareto efficient solution of

(VP), then for every e ∈ C \ {0}, there exists y∗ ∈ C+ with y∗(e) = 1 such that

0 ∈ ∂(y∗ ◦ f)(x̄) +NL(x̄;D). (7.15)

Proof. Taking into account Theorem 4.2.7, we see that any C-convex, C-bounded

function is locally Lipschitz. Following the same lines used in the proof of Theorem
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7.2.3 and applying Theorem 7.2.4 and [8, Corollary 3.2], we obtain the assertion (7.15).

�

As shown in [8, 17], the assumption that cone (f(D) + C − ȳ) is closed, is quite

strict and may not hold true even in simple examples; see [17]. It can be replaced by

weaker assumptions that (f(D) + C) is locally closed at ȳ and e ∈ C \ {0} with

− e /∈ cl cone (f(D) + C − ȳ). (7.16)

Moreover, the existence of a vector e in the condition (7.16) is ensured provided that

the following condition holds:

(−C \ {0}) ∩ bd cone (f(D) + C − ȳ) = ∅.

In [17], the authors derived necessary conditions without the assumption that the gen-

erated cone is closed. However, the Lagrange multiplier y∗ ∈ Y ∗ is nontrivial, but it

is positive only in a certain direction c ∈ C \ {0}; see [17, Proposition 2.1 and 2.2].

In [8, Theorem 3.8] as well as Theorem 7.2.3 and Theorem 7.2.5 one gets the stronger

condition that is y∗ ∈ C+.

Note that when D is closed around x̄ and epi f is closed around (x̄, f(x̄)), then

the indicator functions of the sets D and epi f are lower-semicontinuous around x̄

and (x̄, f(x̄)), respectively. Thus, the local closedness assumptions are essential in all

theorems of this section in order to guarantee the necessary conditions of [3, Theorem

4.1], in comparison with the ones in [8, 4, 5, 27, 28].

Remark 7.2.6. (Comparison with necessary conditions presented in the lit-

erature). To obtain necessary optimality conditions for vector optimization problems,

Dutta and Tammer [20] used Mordukhovich’s subdifferential when X is an Asplund

space, Y is finite dimensional (see [20, Theorem 3.2]), and Ioffe’s approximate sub-

differential in general Banach spaces; see [20, Theorem 3.1]. Obviously, the assertion

of [20, Theorem 3.2] can be deduced from Theorem 7.2.2. In Durea and Tammer [19],

the authors enlarged the framework of the paper [20] to the concepts of abstract sub-

differentials satisfying certain axioms, and considered not only “exact calculus rules”

(see [19, Theorem 3.1]) but also “fuzzy calculus rules”; see [19, Theorem 4.1]. Theorem

7.2.3 and Theorem 7.2.5 show necessary conditions for vector optimization problems

where the subdifferential of convex analysis for scalar functions is involved, since the

objective function is supposed to be C-convex. Moreover, in order to get the correspond-

ing necessary condition (7.10) for Mordukhovich subdifferentials ∂L, we need the strong

assumption that f is strictly Lipschitz.
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7.3 Applications in approximation theory

We consider in this part some applications of Theorems 7.2.3, and 7.2.5 for some vector

control approximation problems. Since many practical problems can be described as

vector approximation problems, they are of interest from both theoretical and practical

points of view. For the convenience of the reader, we will recall relevant materials from

Jahn [37], and Göpfert, Riahi, Tammer and Zălinescu [26].

Let X,Y, Z be real reflexive Banach spaces, and C ⊂ Y be a proper, closed, pointed,

convex cone. We denote the set of linear continuous mappings from X to Y by L(X,Y ).

Consider a vector-valued norm ||| · ||| : Z → C, for all z, z1, z2 ∈ Z and λ ∈ R, we

have

1. |||z||| = 0⇐⇒ z = 0;

2. |||λz||| = |λ| |||z|||;

3. |||z1 + z2||| ∈ |||z1|||+ |||z2||| − C.

We recall the subdifferential for vector-valued functions (denoted by ∂≤) defined in

Chapter 6.

∂≤f(z0) = {T ∈ L(Z, Y ) | ∀z ∈ Z : f(z)− f(z0) ∈ T (z)− T (z0) + C}.

It follows that

∂≤||| · |||(0) = {T ∈ L(Z, Y ) | ∀z ∈ Z : |||z||| − T (z) ∈ C},

and

∂≤||| · |||(z) = {T ∈ ∂≤||| · |||(0) | T (z) = |||z|||} for all z ∈ Z. (7.17)

Moreover, if ||| · ||| is continuous, and C is Daniell , then ∂≤||| · ||| 6= ∅; see Jahn [37,

Lemma 2.24].

Let C ⊂ Y now be a proper, closed, pointed, convex cone, D ⊆ X be closed and

not supposed to be convex, and f : X → Y be given by

f(x) := f1(x) +
n∑
i=1

αi|||Ai(x)− ai|||,

with f1 : X → Y,Ai ∈ L(X,Z), ai ∈ Z. We will consider the following vector con-

trol approximation problem w.r.t. the concept of weakly Pareto efficient solution

introduced in Definition 2.7.1

WMin(f(D);C). (7.18)

Next, we study the convexity and the Lipschitz continuity of the functions f and

f1 above via the following lemma.
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Lemma 7.3.1. Assume that C is a normal cone. If the vector-valued norm |||·||| : Z → C

is continuous around a given point z ∈ Z, then ||| · ||| is Lipschitz.

Proof. It follows from the continuity assumption that ||| · ||| is bounded around z.

Therefore ||| · ||| is C-bounded from above around z. Obviously, ||| · ||| is C-convex due to

the definition of the vector-valued norm. Applying Theorem 4.2.7, then ||| · ||| is locally

Lipschitz. Hence there exist r, ` > 0 such that∣∣∣∣ |||z1||| − |||z2|||
∣∣∣∣
Y
≤ `
∣∣∣∣z1 − z2

∣∣∣∣
Z

for all z1, z2 ∈ rUZ .

Consider arbitrary vectors z1, z2 ∈ Z, there exists α > 0 such that αz1, αz2 ∈ rUZ .

Then ∣∣∣∣ |||αz1||| − |||αz2|||
∣∣∣∣
Y
≤ `
∣∣∣∣αz1 − αz2

∣∣∣∣
Z
,

and hence
∣∣∣∣ |||z1||| − |||z2|||

∣∣∣∣
Y
≤ `
∣∣∣∣z1 − z2

∣∣∣∣
Z
. �

Remark 7.3.2. Let a ∈ Z and A ∈ L(X,Z) be given. It holds that if |||·||| is continuous,

then |||Ai(·) − ai||| is also continuous. In addition, it is clear that |||Ai(·) − ai||| is also

C-convex. Taking into account Lemma 7.3.1, we get that |||Ai(·) − ai||| is Lipschitz.

Therefore, it is bounded by ‖ · ‖Y around a given point x̄ ∈ X.

The following theorem presents a necessary condition for weakly Pareto efficient

solutions of the problem (7.18) under the assumption that C has a nonempty interior,

and f1 is C-bounded and C-convex.

Theorem 7.3.3. Suppose that X,Y, Z are reflexive Banach spaces, D is a closed subset

of X, C ⊂ Y is a proper pointed closed convex Daniell cone with a weakly compact base

and a nonempty interior, and f1 is C-convex. Let ȳ = f(x̄) with x̄ ∈ D be a weakly

Pareto efficient solution of (7.18). If f1 is C-bounded from above around x̄, and ||| · |||
is continuous, then there exists y∗ ∈ C+ \ {0} such that

0 ∈ y∗ ◦ ∂≤f1(x̄) +

n∑
i=1

αiA
∗
i (y
∗Ti) +NL(x̄;D), (7.19)

where Ti ∈ L(Z, Y ) and

Ti ∈ ∂≤||| · |||(Ai(x̄)− ai), i = 1, . . . , n.

Proof. By the assumptions on C, it is easy to see that C is normal; see [26], Section 2.2.

Remark 7.3.2 shows that |||Ai(·)− ai||| is C-convex and C-bounded from above around

x̄; so f has the same properties, hence the assumptions of Theorem 7.2.3 are fulfilled.

Consequently, for every e ∈ intC, we get the existence of y∗ ∈ C+ with y∗(e) = 1 such

that

0 ∈ ∂(y∗ ◦ f)(x̄) +NL(x̄;D).
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The sum rule for subdifferentials of convex continuous functions (see [59, Theorem

3.16]) and Theorem 6.2.7 yield the relation

∂(y∗ ◦ f)(x̄) = ∂

(
y∗(f1(·)) +

n∑
i=1

αiy
∗|||Ai(·)− ai|||

)
(x̄)

= y∗∂≤f1(x̄) +

n∑
i=1

αiA
∗
i

(
∂y∗ ◦ ||| · |||(Ai(x̄)− ai)

)
= y∗∂≤f1(x̄) +

n∑
i=1

αiA
∗
i

(
y∗ ◦ ∂≤(|||Ai(x̄)− ai|||)

)
.

It follows that there exist Ti ∈ ∂≤||| · |||(Ai(x̄) − ai) for i = 1, . . . , n such that (7.19) is

satisfied. �

In comparison with the corresponding results in Dutta and Tammer [20, Theorem

4.1], the function f1 is assumed to be Lipschitz from an Asplund space X to a finite-

dimensional space Y . It is worth noting that the Lipschitz continuity, the strictly

Lipschitz continuity and the strongly compactly Lipschitz continuity are equivalent in

finite dimensional spaces. In [19, Theorem 5.2] a similar result to that of Theorem 7.3.3

is mentioned in terms of an abstract subdifferential (a subdifferential satisfying certain

axioms).

In the case that intC 6= ∅, and f1 is strictly Lipschitz, Bao and Tammer [8, Theorem

4.4] derived Lagrange multiplier rules for the vector control approximation problems

for Pareto efficient solutions. Now if we suppose the C-convexity and C-boundedness

replace to the strictly Lipschitz continuity of f1, then we will also get a similar result

to [8, Theorem 4.4] for Pareto efficient solutions.

Theorem 7.3.4. Under the hypotheses of Theorem 7.3.3 with the condition that intC =

∅, we furthermore suppose that the cone (f(D) +C − ȳ) is closed. If x̄ ∈ D is a Pareto

efficient solution of (7.18), then for every e ∈ C \ {0}, there exists y∗ ∈ C+ with

y∗(e) = 1 such that (7.19) holds.

The proof is based on the same technique that was used in the proof of Theorem

7.3.3.



Chapter 8

Optimality conditions for

set-valued optimization problems

Let X,Y be normed vector spaces, let D ⊆ X be nonempty and not necessarily convex,

let C be a proper, closed, convex, pointed cone in Y , and let F : X ⇒ Y be a set-valued

map. In this chapter, we investigate the set-valued problem:

minimize F (x) subject to x ∈ D. (SP)

We will establish necessary conditions for solutions of the problem (SP) based on the

primal-space approach and the dual-space approach. The principal difference between

these two approaches is that the primal-space approach provides optimality conditions

in primal spaces (using contingent derivatives, contingent epiderivatives and directional

derivatives, etc), while the dual-space approach derives optimality conditions in dual

spaces (using coderivatives, subdifferentials, etc). In this chapter, the interior of the

cone C may be chosen empty or nonempty, depending on the solution types of the

problem (SP).

8.1 The primal-space approach

This section is devoted to necessary and sufficient optimality conditions for solutions

of the problem (SP) using some suitable derivatives and epiderivatives of the involved

objective function. There are three different approaches for defining solutions of the

problem (SP); see Section 2.7. The focus of this section is obtaining optimality condi-

tions for solutions of the problem (SP) based on the vector approach as well as the set

approach.

We state the following assumption that will be used within this section.

Assumption 8.1.1. Let X,Y be normed vector spaces, D ⊆ X be nonempty subset of

X (D is not necessarily convex). Let C be a proper, closed, convex, pointed cone in Y ,

92
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and let F : X ⇒ Y be a set-valued function such that D ⊆ domF .

First, we present a necessary optimality condition for weak minimizers (see Defi-

nition 2.7.1) for the unconstrained optimization problem (SP), when D = X. Recall

that (x̄, ȳ) ∈ gphF is a weak minimizer of set-valued optimization problem (SP), if and

only if,
(
{ȳ} − intC

)
∩ F (D) = ∅.

Theorem 8.1.2. Let Assumption 8.1.1 be satisfied, and, in addition, let D = X and

intC 6= ∅. Assume that (x̄, ȳ) ∈ gphF is a weak minimizer of the problem (SP) and

the contingent derivative DcF (x̄, ȳ) exists, then

DcF (x̄, ȳ)(X) ∩ (−intC) = ∅.

Proof. We argue by contradiction, and assume that u ∈ X and v ∈ DcF (x̄, ȳ)(u) ∩
(−intC). By the definition of contingent derivative, we have

(u, v) ∈ T
(

gphF, (x̄, ȳ)
)
.

Then, there exist tn → 0, tn ∈ (0,+∞) and (un, vn) ∈ X×Y such that (un, vn)→ (u, v)

and (x̄+ tnun, ȳ + tnvn) ∈ gphF , i.e.,

ȳ + tnvn ∈ F (x̄+ tnun) for all n ∈ N,

which implies that

tnvn ∈ F (x̄+ tnun)− ȳ for all n ∈ N.

For n large enough, tnvn ∈ −intC, hence(
F (x̄+ tnun)− ȳ

)
∩ −intC 6= ∅,

contradicts to the weak minimalty of (x̄, ȳ), and completes the proof. �

For D ( X and a set-valued function F : D ⇒ Y , we define a new function

FD : X ⇒ Y by

FD(x) =

{0} if x ∈ X \D,

F (x) if x ∈ D.

Then applying the result in Theorem 8.1.2, one can obtain a necessary condition similar

to [12, Theorem 2.48]. It is easy to check that Theorem 8.1.2 is a consequence of [12,

Theorem 2.64] and [18, Proposition 3.1], in which one considers the problem (SP) with

a variable ordering structure.

The necessary condition for weak minimizers for the optimization problem (SP),

using the contingent epiderivative, was derived by Jahn [37]. For the convenience of

the reader, we recall the following theorem without proof.



8.1. The primal-space approach 94

Theorem 8.1.3. ([37, Theorem 17.3]) Let Assumption 8.1.1 be satisfied, and, in ad-

dition, intC 6= ∅. Assume that (x̄, ȳ) ∈ gphF is a weak minimizer of the problem (SP)

and the contingent epiderivative DeF (x̄, ȳ) exists, then

DeF (x̄, ȳ)(x− x̄) /∈ −intC, for all x ∈ D.

Moreover, [37] also presented the sufficient condition for solutions of the problem

(SP) under an appropriate convexity assumption.

Theorem 8.1.4. ([37, Theorem 17.4]) Let Assumption 8.1.1 be satisfied. Assume that

intC 6= ∅, D is convex, and F : D ⇒ Y is lower C-convex in the sense of Definition

5.1.4. Assume that the contingent epiderivative DeF (x̄, ȳ) exists at a pair (x̄, ȳ) ∈ gphF

and satisfies

DeF (x̄, ȳ)(x− x̄) /∈ −intC, for all x ∈ D.

Then, (x̄, ȳ) is a weak minimizer of the problem (SP).

In the following, we use the set approach to study solutions of problem (SP), which

are defined by the relations�(t)
C , where t ∈ {i, ii, iii, iv, v, vi}, and�(t)

C is given in Defini-

tion 2.3.20. Under Assumption 8.1.1, we consider the following set-valued optimization

problem w.r.t. the relation �(t)
C :

�(t)
C −minimize F (x) subject to x ∈ D, (SP− �C)

where the minimum is taken in the sense of Definition 2.7.2

Next we establish a relationship between weak minimizers of the problem (SP)

introduced in Definition 2.7.1, and strictly minimal solutions of the problem (SP− �C)

w.r.t. the relation�(vi)
C introduced in Definition 2.7.2. We also get a necessary condition

for solutions of the problem (SP− �C) w.r.t. �(vi)
C .

Theorem 8.1.5. Let Assumption 8.1.1 be satisfied, intC 6= ∅, and let D = X. Assume

that x̄ is a strictly minimal solution of (SP− �C) w.r.t. the relation �(vi)
C and there

exists ȳ ∈ F (x̄) such that

ȳ /∈ F (x̄) + C \ {0}, (8.1)

then (x̄, ȳ) is a minimizer of the problem (SP). Moreover,

DcF (x̄, ȳ)(X) ∩ (−intC) = ∅. (8.2)

Proof. Since x̄ is a strictly minimal solution of (SP− �C) w.r.t. the relation �(vi)
C , we

have

F (x) �(vi)
C F (x̄), ∀x ∈ X \ {x̄}.

This yields that

F (x̄) ∩ (F (x) + C) = ∅, ∀x ∈ X \ {x̄}. (8.3)
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As there exists ȳ ∈ F (x̄) satisfying (8.1), and taking into account (8.3), we get

ȳ /∈ F (x) + C \ {0}, ∀x ∈ X.

Therefore,

(ȳ − C) ∩ F (X) = {ȳ},

which completes the first assertion of this theorem.

Finally, the necessary condition (8.2) for strictly minimal solutions of the problem

(SP− �C) is a direct consequence of Theorem 8.1.2. �

As shown in Proposition 2.3.21, �(vi)
C is the weakest relation. Hence, Theorem 8.1.5

also holds true for strictly minimal solutions of (SP− �C) w.r.t. any other relation

definied in Definition 2.3.20.

In the following theorem we show a corresponding result for weak minimizers of

the problem (SP) introduced in Definition 2.7.1, and strongly minimal solutions of the

problem (SP− �C) w.r.t. the relation �(iii)
C introduced in Definition 2.7.2. We also get

a necessary condition for solutions of the problem (SP− �C) w.r.t. �(iii)
C .

Theorem 8.1.6. Let Assumption 8.1.1 be satisfied, intC 6= ∅, and let D = X. Assume

that x̄ is a strongly minimal solution of (SP− �C) w.r.t. the relation �(iii)
C and there

exists ȳ ∈ F (x̄) such that (8.1) is satisfied, then (x̄, ȳ) is a minimizer of the problem

(SP). Moreover, the necessary condition (8.2) for strongly minimal solutions of the

problem (SP− �C) holds true.

Proof. Since x̄ is a strongly minimal solution of (SP− �C) w.r.t. the relation �(iii)
C ,

we have

F (x) �(iii)
C F (x̄), ∀x ∈ X \ {x̄}.

This yields that

F (x) ⊂ (F (x̄) + C), ∀x ∈ X \ {x̄}. (8.4)

As there exists ȳ ∈ F (x̄) satisfying (8.1), and taking into account (8.4), we get

ȳ /∈ F (x) + C \ {0}, ∀x ∈ X.

Therefore,

(ȳ − C) ∩ F (X) = {ȳ},

which completes the first assertion of this theorem. The second one is proved similarly

to Theorem 8.1.5. �

Taking into account Proposition 2.3.21, Theorem 8.1.6 also holds true for strongly

minimal solutions of (SP− �C) w.r.t. the relation �(i)
C or �(ii)

C .

In [24, 43], the problem (SP− �C) was considered w.r.t. variable domination struc-

tures. Some relationships between strictly (strongly) minimal solutions of the problem
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(SP− �C) and weak minimizers of the problem (SP) were also studied. All the rela-

tionships in Theorems 8.1.5, 8.1.6 can be realized as the consequences of [24, Lemma

11] and [43, Theorem 2].

Recently, some results concerning optimality conditions of set-valued optimization

problems w.r.t. the set less order relation �sC have been derived by Dempe and Pilecka

[14], and Jahn [39]. They used the modified Demyanov differences (see Section 2.4) in

order to define the corresponding directional derivatives for set-valued functions (see

Section 6.7), which are appropriate tools for deriving optimality conditions for solutions

of set-valued optimization problems with respect to �sC .

8.2 The dual-space approach

In this section, X,Y are Asplund spaces, and D ⊆ X is a nonempty subset of X

(D is not necessarily convex). Let C be a proper, closed, convex, pointed cone in Y ,

and F : X ⇒ Y be a set-valued function such that D ⊆ domF . We take a pair

(x̄, ȳ) ∈ gphF and suppose that epiF is closed around (x̄, ȳ), and the constraint set D

is closed around x̄.

This section considers again the problem (SP). We will derive necessary conditions

for solutions of the optimization problem (SP) using coderivatives and subdifferentials

in the sense of Mordukhovich in Asplund spaces. For the next results, we need the two

following assumptions about the objective function F .

(A1) F is (ELL) around (x̄, ȳ).

(A2) F is lower C-convex. In addition, F is C-bounded from below and weakly C-upper

bounded on a neighborhood of x̄.

It follows from Theorem 5.2.7 and Remark 3.2.6(ii) that if F is lower C-convex, C-

bounded from below and weakly C-upper bounded on a neighborhood of x̄, then F is

(ELL) at (x̄, ȳ) ∈ gphF with ȳ ∈ F (x̄). Hence, the assumption (A2) is stronger than

(A1).

Recall again (see Definition 3.2.1(iv)) that a set-valued function F : X ⇒ Y is

epigraphically Lipschitz-like (ELL) around (x̄, ȳ) ∈ gphF with modulus l ≥ 0 if there

exist neighborhoods U of x̄ and V of ȳ such that

∀x, u ∈ U : EF (x) ∩ V ⊆ EF (u) + l ‖x− u‖UY .

In the following, we present an optimality condition for weak minimizers of (SP)

where intC 6= ∅.

Theorem 8.2.1. Consider the set-valued optimization problem (SP) with Assumption

(A1), and, in adddition, assume that intC 6= ∅. If (x̄, ȳ) ∈ gphF is a weak minimizer
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of (SP), then for every e ∈ intC, there exists a dual element y∗ ∈ C+ with y∗(e) = 1

such that

0 ∈ D∗EF (x̄, ȳ)(y∗) +NL(x̄;D). (8.5)

Proof. From Remark 6.4.4, a convex cone C with a nonempty interior has the SNC

property; see Definition 6.4.3. Because of the (ELL) property of F , the qualification

condition (4.1) in [3, Theorem 4.1] is fulfilled. Hence, the necessary condition (8.5)

follows immediately from [3, Theorem 4.1]. �

Observe that, since the assumption (A2) is stronger than (A1), the next result can

be considered as a consequence of the previous theorem.

Corollary 8.2.2. Consider the set-valued optimization problem (SP) with Assumption

(A2), and, in adddition, assume that intC 6= ∅. If (x̄, ȳ) ∈ gphF is a weak minimizer

of (SP), then for every e ∈ intC, there exists a dual element y∗ ∈ C+ with y∗(e) = 1

such that (8.5) holds.

Proof. The result is a direct consequence of Theorem 8.2.1. �

In oder to deal with the problem (SP), Ha [27] also derived optimality conditions

in terms of the Clarke coderivatives and the Ioffe coderivatives for several types of

efficient solutions by transferring them to be solutions of a set-valued optimization

problem equipped with an open cone. In addition, [3, 8] studied the problem (SP)

in terms of the Mordukhovich coderivatives. To scalarizing the problem (SP) Ha [27]

used the oriented functional, and Bao and Tammer [8] used the nonlinear scalarizing

functional. However, Bao and Mordukhovich used the technique related to extremal

principle of variational analysis.

Now, we recall necessary optimality conditions given by Bao and Tammer [8, The-

orem 3.10] for the problem (SP), in which the set-valued function F is (ELL), without

assuming that the ordering cone has a nonempty interior and the constraint set D is

convex.

Theorem 8.2.3. ([8, Theorem 3.10]) Consider the set-valued optimization problem

(SP) with Assumption (A1), and, in adddition, assume that cone
(
F (D) + C − ȳ

)
is

closed. If (x̄, ȳ) ∈ gphF is a minimizer of (SP), then for every e ∈ C \{0}, there exists

a dual element y∗ ∈ C+ with y∗(e) = 1 such that (8.5) holds.

The following result presents a necessary optimality condition for solutions of the

problem (SP), where F is a lower C-convex set-valued function. We omit the proof,

since it is a direct consequence of Theorem 8.2.3

Corollary 8.2.4. Consider the set-valued optimization problem (SP) with Assumption

(A2), and, in adddition, assume that cone
(
F (D) + C − ȳ

)
is closed. If (x̄, ȳ) ∈ gphF
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is a minimizer of (SP), then for every e ∈ C \{0}, there exists a dual element y∗ ∈ C+

with y∗(e) = 1 such that (8.5) holds.

Remark 8.2.5. If F = f : X → Y is at most single-valued, it is clear that the necessary

condition in Corollary 8.2.4 reduces to that in Theorem 7.2.5.

Now we consider the problem (SP− �C). In Section 8.1, Theorem 8.1.5 and 8.1.6

illustrate the relationships between strictly (strongly) minimal solutions of the prob-

lem (SP− �C) and minimizers of the problem (SP). Therefore, taking into account

Theorems 8.2.1, 8.2.3 (Corollaries 8.2.2, 8.2.4) we could derive necessary optimality

conditions for strictly (strongly) solutions of the problem (SP− �C) where the objec-

tive function F satisfies Assumption (A1) (Assumption (A2), respectively). For the

sake of shortness, we skip presenting these results in this work.

Among abundant developments in set-valued optimization, we refer the reader to

the monographs by Khan, Tammer and Zălinescu [44], Jahn [37] and Mordukhovich [55,

56]. We especially emphasize the vector optimization problems with variable ordering

structure based on general domination set mappings, in which many solution concepts,

optimality conditions and numerical procedures are derived. They have been among

the primary motivations for developing new issues and applications of optimization

theory. For more details and discussions on the set-valued problems with variable

ordering structure, we mention the recent research by Chen, Huang, and Yang [12],

Eichfelder [21, 22], Eichfelder and Pilecka [23, 24], Bao and Mordukhovich [6], and

Durea, Strugariu and Tammer [18].



Chapter 9

Conclusion and Outlook

In this chapter we present some conclusions and some potential open problems for

furture research found during the work.

9.1 Conclusion

In this thesis, we presented the relationships between Lipschitz continuity and con-

vexity of functions. These relationships were studied systematically for vector-valued

functions in Chapter 4 and for set-valued functions in Chapter 5. In Chapter 4, after

introducing the concepts of C-convex and C-bounded functions, we proved that a C-

convex vector-valued function is locally Lipschitz around a given point if it is C-bounded

from above on a neighborhood of this point, where C is a normal cone. Obviously, this

assertion is a significantly general form of the result given in [52], in which the function

is considered only in finite-dimensional spaces. Compared with the similar result of

Borwein [9], we observed that the boundedness in Theorem 4.2.7 is clearly weaker than

the one in [9, Corollary 2.4]. Therefore, we obtained a result slightly stronger than

Borwein [9]. Moreover, we presented an accurate Lipschitz constant in the first proof

of Theorem 4.2.7.

The relationships between Lipschitz continuity and convexity for set-valued functions

are abundant since there are many approaches to define them in the literature. In the

first section of Chapter 5, we presented six types of convex set-valued functions. Then

we derived scalarizing functions to investigate the properties of the convex set-valued

functions. Using these scalarizing functions, we proved the C-Lipschitzianity of convex

set-valued functions in Section 5.2.

We represented an alternative concept of C-Lipschitzianity given by Kuwano and

Tanaka [50]. By means of the nonlinear scalarizing functional, we obtained a result

similar to one in [50] with milder assumptions.

Section 5.4 showed the relationships between the upper (lower) G-Lipschitzianity and
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the Cs-convexity of set-valued functions.

The obtained results are applied in order to derive the necessary optimality con-

ditions for vector- and set-valued optimization problems. In particular, the objective

functions are considered to be either Lipschitz or convex. We considered the Lagrangian

necessary conditions for (weakly) Pareto efficient solutions of vector optimization prob-

lems in both solid and non-solid cases in Chapter 7.

In Chapter 8, we established necessary optimality conditions for minimizers of the set-

valued optimization problem based on the primal-space approach and the dual-space

approach.

9.2 Outlook

There are many possible open research problems related to the work in this thesis. In

the following, we list some potential problems and research directions, which may be

of interest in the future.

The Lipschitz continuity of C-convex vector-valued functions. In order to deal

with this problem in our work, we have to assume that C is normal cone, and the

function is a mapping between two normed vector spaces. We expect to extend this

result for general spaces and alternative conditions on the cone C.

The relationships between Lipschitzianities and convexities of set-valued

functions. Although there are so many types of Lipschitzianities and convexities of

set-valued functions in the literature, one continues to find more approaches to define

them. Therefore, the relationships between them will need further exploration.

Variable ordering structures. We want to derive new concepts of convexity and

Lipschitzianity of set-valued functions in spaces which are equipped with variable or-

dering structures. We also expect to extend all necessarry optimality conditions for

solutions of set-valued optimization with variable ordering structures.



Appendix

A Optimality conditions for scalar optimization problems

For the convenience of the reader we shall call to mind scalar optimization problems

and show separately the necessary and sufficient conditions for their optimal solutions.

They are useful in Chapter 7 and 8, because we shall transfer the vector- and set-valued

optimization problems to the corresponding scalar optimization problems by using an

appropriate scalar function to scalarize objective functions.

Let X be a Banach space, and D be a subset of X. We consider the scalar opti-

mization problem of minimizing a function f : X → R over the set D, or briefly,

min
x∈D
→ f(x). (P)

Here we call f an objective function, D the constraint domain, and (P) the optimization

problem with constraints. A solution of the problem (P) is called a global minimum

point. We say that x̄ ∈ D is a local minimum point if there exists a neighborhood U

of x̄ such that f(x̄) ≤ f(x) for every x ∈ D ∩ U .

It is well known that minimizing the function f over D is equivalent to minimizing

the following function h : X → R

h(x) := f(x) + δD(x), (1)

over all of the space X, where δD is the indicator function of D. Hence (P) is equivalent

to

min
x∈X
→ h(x), (P1)

(P1) is called unconstrained optimization problem.

We recall the well-known Euler’s equation about the first-order necessary optimality

conditions, where the objective function f is Gâteaux differentiable..

Proposition A.1. ([38, Theorem 3.17]) Let X be a Banach space, and D be an open

subset of X. We consider the problem (P), where the objective function f : X → R is

Gâteaux differentiable. If x̄ ∈ D is a local minimal solution of the problem (P), then

f ′(x̄) = 0.
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When D is not an open set, the proposition above is not true. We can take an

simple example: consider f(x) = x and D = [0, 1]. Clearly 0 is a minimum of f on D,

but f ′(0) = 1.

In the special case that f is a convex function, D is a convex subset of X and

D ∩ dom f 6= ∅, then (P) is called convex optimization problem, hence the function h,

determined by (1), is also convex on X. We recall the two fundamental properties of the

convex optimization problem. Firstly, any locally optimal point of convex optimization

problem is also (globally) optimal (see [74, Proposition 2.5.8]). This is a reason why we

look only for global minimum points in a convex optimization problem. The second one

is that the necessary conditions for optimality become sufficient. Now we shall show

the necessary conditions for optimality of the convex optimization problem.

Proposition A.2. ([74, Theorem 2.5.7]) Let X be a Banach space. We consider the

problem (P1), where the objective function h : X → R is proper and convex on X, then

x̄ ∈ domh is a minimal solution of the problem (P1) if and only if 0 ∈ ∂h(x̄).

Applying the calculus for convex functions (see Proposition 6.2.4), we have the

necessary and sufficient conditions for minimal solutions of optimization problem with

constraints (P).

Proposition A.3. ([74, Theorem 2.9.1]) Let X be a Banach space, f : X → R be a

proper convex function and D be a convex set. Suppose that either dom f ∩ intD 6= ∅,
or there exists x0 ∈ dom f ∩ D, where f is continuous. Then, x̄ ∈ D is a minimal

solution of the problem (P) if and only if 0 ∈ ∂f(x̄) +N(x̄, D).

Now we consider the problems (P) and (P1), where the objective functions are

locally Lipschitz. The following propositions present the necessary conditions of locally

minimal solutions using the generalized gradient given by (6.11).

Proposition A.4. ([13, Proposition 2.3.2]) Let X be a Banach space. We consider

the problem (P1), where the objective function h : X → R is locally Lipschitz. If x̄ is a

locally minimal solution of the problem (P1) then 0 ∈ ∂Ch(x̄).

Applying the calculus to locally Lipschitz functions (see Proposition 6.3.3), we have

the necessary conditions for locally minimal solutions of optimization problem with

constraints (P).

Proposition A.5. ([13, Corollary 2.4.3]) Let X be a Banach space and f : X → R be

a locally Lipschitz function. If x̄ ∈ D is a locally minimal solution of the problem (P)

then 0 ∈ ∂Cf(x̄) +NC(x̄, D).
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la SMC, 17. Springer-Verlag, New York, 2003.

[27] T.X.D. Ha. Optimality conditions for several types of efficient solutions of set-

valued optimization problems. In Nonlinear analysis and variational problems,

volume 35 of Springer Optim. Appl., pages 305–324. Springer, New York, 2010.

[28] T.X.D. Ha. Optimality conditions for various efficient solutions involving coderiva-

tives: from set-valued optimization problems to set-valued equilibrium problems.

Nonlinear Anal., 75(3):1305–1323, 2012.
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Index of notation

Z set of integers

N,N∗ set of nonnegative integers, N∗ = N \ {0}
Rn n-dimensional Euclidean space

Rn+ nonnegative orthant of Rn

R R := R ∪ {+∞}
X,Y, Z, . . . real linear spaces or topological linear spaces

C,K cones (in X,Y, Z)

≥C , ≤C a partial ordering relation generated by C

C-convex cone-convex (function)

+∞C a maximal element w.r.t. ≥C
[A]C [A]C := (A+ C) ∩ (A− C)

C+ positive dual cone of C

C+
1 C+

1 := C+ ∩ UY ∗
C0 polar cone of a nonempty cone C

C# quasi-interior of the dual cone C+

X• X• := X ∪ {+∞C}
X∗ the topological dual space of X

||·||X , ||·||∗ norm in X, norm in X∗

clA closure of a set A

clw∗ closure of a set A w.r.t weak* topology

intA (topological) interior of the set A

bdA (topological) boundary of the set A

convA convex hull of the set A

B(x, r) closed ball centered at x with radius r > 0

UY , SY closed unit ball and unit sphere in a space Y

F : X ⇒ Y set-valued function

f : X → Y • vector-valued function

epi f epigraph of a function f

gph f graph of a function f



dom f domain of a vector-valued function f : X → Y •

domF domain of a set-valued function F : X ⇒ Y

Ef : X ⇒ Y epigraphical multifunction of f

EF : X ⇒ Y epigraphical multifunction of F

δA (convex) indicator function of a set A

δ∗(·, A) support function of a set A

d(x,A) distance from x to A

	A,	D,	G,	M algebraic, Demyanov, geometric and metric differences

K(Rn) set of nonempty compact subsets of Rn

C(Rn) set of nonempty convex compact subsets of Rn

ϕA,e ϕA,e(y) := inf{λ ∈ R | λ · e ∈ y +A}
∆A(·) oriented distance function w.r.t. a set A

T (A, x) contingent cone to A at x

N(x;A) normal cone in the sense of convex analysis

NC(x;A) Clarke’s normal cone to A at x ∈ A
N̂ε(x;A) ε-normal cone

N̂(x;A) Fréchet normal cone

NL(x;A) (basic, limiting or Mordukhovich) normal cone

∂f(x) Fenchel subdifferential of f : X → R at x ∈ X
∂Cf(x) Clarke subdifferential of f : X → R at x ∈ X
∂Lf(x) (basic, normal, Mordukhovich) subdifferential

of f : X → R at x ∈ X
∂≤f(x) subdifferential of f : X → Y • at x ∈ X
L(X,Y ) set of linear continuous function from X to Y

Min(A;C) set of Pareto minimal points of A w.r.t. C

WMin(A;C) set of weakly Pareto minimal points of A w.r.t. C

D̂∗εF (x, y) ε-coderivative of F at (x, y)

D̂∗F (x, y) precoderivative or Fréchet coderivative of F at (x, y)

D∗F (x, y) (basic, normal, Mordukhovich) coderivative of F at (x, y)

〈y∗, ·〉 , (y∗, ·), y∗(·) linear continuous functional y∗ : Y → R



Index

A-Lipschitz , 36

C-Lipschitzianity, 51, 57

C-bounded, 42, 51

C-bounded from (below) above, 42, 51, 58

C-convex, 39, 47

D-Lipschitz, 37

G-Lipschitz , 36

Cs-convex, 51, 61

l-difference, 21

(strictly) D-monotone, 26

algebraic difference, 20, 36

algebraic Lipschitz, 36

approximate coderivative, 74

approximate subdifferential, 74

Asplund space, 70

at most single-valued, 34

based, 18

basic (Mordukhovich) coderivative, 73

basic (Mordukhovich) normal cone, 71

basic (Mordukhovich) subdifferential, 72

basic/normal subdifferential, 73

Clarke normal cone, 69

Clarke subdifferential, 70

closed unit ball, 8

closure, 8

compact base, 18

cone, 14

cone-convex vector-valued function, 39

contingent cone, 76

contingent derivative, 76

contingent epiderivative, 77

continuous dual cone, 16

convex function, 9

convex set, 14

Daniell, 18, 89

Demyanov difference, 23, 37

Demyanov Lipschitz, 37

directional derivative, 65, 78–80

distance function, 10

domain, 9, 47

dual norm, 8

dual-space approach, 96

epigraph, 9, 35

epigraphical multifunction, 35

epigraphically Lipschitz-like, 35

equi-Lipschitz, 33, 52

Fenchel subdifferential, 27, 66

Fréchet differentiable, 65

Fréchet normal cone, 71

Gâteaux derivative, 65

Gâteaux differentiable, 65

generalized directional derivative, 68

generalized gradient, 68

geometric difference, 20, 36

geometric Lipschitz, 36

graph, 9

Hahn-Banach Theorem, 24

indicator function, 10

infinity element, 16

interior, 8
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lattice approach, 30

Lipschitz, 9, 32, 37

Lipschitz around, 9, 33

Lipschitz continuity, 32

Lipschitz-like, Aubin property, 34

local (weak) minimizer, 31

locally Lipschitz, 9, 33

locally upper (lower) C-Lipschitz, 58

lower (upper) set less order relation, 19

lower semi-continuous, 9

metric difference, 24

minimal solution, 31

minimization, 30

minimizer, 31

modified Demyanov difference, 23

neighborhood, 8

neighborhood base, 8

net, 17

nonconvex separation theorem, 27

nonlinear scalaring functional, 83

nonlinear scalarizing functional, 25

norm function, 10

normal, 15

normal cone, 67

normed vector space, 8

null element, 7

ordering relation, 15, 47

oriented distance function, 28, 83

Pareto efficient solution, 30, 82

Pareto minimal point, 29, 82

pointed, 14

positively homogeneous, 9

primal-space approach, 92

proper function, 9

proper set, 14

quasi-interior, 16

reproducing, 14

scalarizing functional, 24

sense of convex analysis, 66

separation theorem, 24, 82

sequential normal compactness, 71

set approach, 30

set difference, 20

set less order relation, 19, 51

set-valued function, 47

set-valued optimization problem, 30, 92

set-valued problem, 29

solution, 29

strictly differentiable, 66

strictly Lipschitz, 33

strictly minimal solution, 31, 94

strictly separating, 25

strongly minimal solution, 31, 95

subadditive, 9

subdifferential, 27, 66, 67

subgradient, 67

sublinear, 9

support function, 10

symmetric, 9

tangent cone, 76

topological space, 7, 8

topological vector space, 8

type-(k)-convex, 47

unit sphere, 8

unity element, 7

upper (lower) C-convex, 48

upper (lower) C-Lipschitz around, 35, 52

upper (lower) G-Lipschitz, 37

upper (lower) G-Lipschitzianity, 61

vector approach, 30

vector control approximation problem, 89

vector optimization, 30
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vector optimization problem, 30, 81

vector space, 7, 8

vector-valued function, 32

vector-valued norm, 89

vector-valued optimization problem, 29

vector-valued problem, 29

weak minimizer, 31

weak* topology, 8

weakly C-upper (lower) bounded, 51

weakly normal, 15

weakly Pareto efficient solution, 30, 82, 85

weakly Pareto minimal point, 29, 82

well-based, 18
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