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Nobody has ever noticed a place except at a time, or a time except at a place.
- Hermann Minkowski
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Abstract

The underlying neuronal processes of the perception of time, space and other magni-
tudes are subject to intense scientific debate. Furthermore, mutual interactions between
the perception of different dimensions are widely reported, but the origin of such cross-
dimensional interference effects is still not well understood. This thesis investigates time,
space and numerosity judgements as well as their cross-dimensional influence on a be-
havioural and neuronal level within a navigational context. Participants underwent fMRI
imaging while being passively moved forward along a virtual path that was covered with
randomly appearing dots. After each trial, participants were asked to make judgements
about the trial duration, distance covered or numerosity of items on the floor, allowing for
a simultaneous observation of behavioural and neuronal effects.
Behavioural results revealed a correlation between time and space judgement precision as
well as a bidirectional interference only between these two dimensions, but not for numeros-
ity. Analyses of the neuroimaging data identified the right IFG as a commonly activated area
during the perception of all three dimensions and MT/V5 bilaterally as being uniquely ac-
tivated during numerosity trials. Mirroring the behavioural results, activation patterns of
time and space trials were indistinguishable by MVPA but could be decoded from numeros-
ity trials, predominantly in MT/V5 as well as in the IPS bilaterally (time vs. numerosity).
The findings suggest that the interference between travel time and traveled distance could
be mediated by neuronal computations of movement speed on the basis of visual optic
flow information. Furthermore, the results add to the body of evidence that the cross-
dimensional interference effects between time and space are based on overlapping neuronal
representations.

Keywords

magnitude perception, time-space interaction, psychophysics, posterior parietal cortex,
fMRI, MVPA
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INTRODUCTION
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1. Motivation

When we are late for a meeting, anxiously awaiting the bus to finally arrive, five minutes

can take excruciatingly long to pass. In contrast, four hours on a Sunday afternoon spend

happily with our loved ones may seemingly fly by in a heartbeat and, after checking our

watch, we ask ourselves "how has it gotten so late so fast?". Likewise, the last 500 meters of an

exhausting hike along a mountain trail sometimes feel almost impossible to complete, while

at other times, we find ourselves barely noticing the many kilometres we walked around a

city during a day tour.

These two examples illustrate that the perception of time and space may vary greatly and

is dependent on a multitude of extrinsic and intrinsic factors. Researchers have long been

fascinated by this phenomenon and emerging technologies have allowed neuroscientists

to tap into the underlying neuronal processes of not only time and space, but numerosity

perception as well. Naturally, this led to the question of whether there are distinct neural

substrates to quantify each dimension, or if a common magnitude system unifies the per-

ception of time, space and number.

When viewed from a behavioural standpoint, a plethora of evidence hints at a common

neural correlate, which is not surprising, given how intertwined the concepts of all three

dimensions are in the human mind. For example, when we suggest somebody to focus on

the future, we tell them to look ahead, while we think of the past as being located behind us.
Likewise, in Western culture, consecutive events are ordered from left to right on a piece of

paper, suggesting the existence of a mental time line that gives spatial structure to temporal

information (Bonato et al. 2012). The same applies for numerical information, which is usu-

ally ordered along a mental number line from left to right in Western culture (Bonato et al.

2012). Another argument put forward in favour of a common locus is cross-dimensional

influence. Should the size of a room have an impact on the perceived duration we spend

sitting in it? Intuitively, we would reject this proposition. However, evidence exists that

room size does in fact bias temporal judgements (Riemer et al. 2018). This is only one ex-

ample, as behavioural evidence for any combination of cross-dimensional interference has

been documented (Walsh 2003, Hubbard et al. 2005, Bueti et al. 2009, Dehaene et al. 2011).

Despite the abundance of behavioural results hinting at a common magnitude system, a

growing number of studies report dissociations between the processing of spatial, tempo-

ral and numerical information and challenge the theory of a common magnitude system

(Hamamouche et al. 2019).

Functional imaging studies in humans have provided inconclusive results so far. While some

propose the right intraparietal sulcus (IPS) and inferior frontal gyrus (IFG) as important
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regions for the processing of magnitudes, evidence for a common perception of all three

dimensions in one locus based on functional imaging is scarce (Skagerlund et al. 2016). An

even greater uncertainty exists concerning a direct involvement of specific regions in cross-

dimensional interaction, mainly because past studies have either focused on behavioural

surrogates or did not use visually identical stimuli to test time, space and numerosity per-

ception. This thesis set out to close this gap by carefully designing a functional magnetic

resonance imaging (fMRI) paradigm that utilized visually identical stimuli for all dimen-

sions. In addition, it was ensured that the magnitude of time, space and number could

only be perceived accumulatively. Hence, this study enabled a direct comparison of the per-

ception of all three dimensions, as well as their inter-dimensional interaction, both on the

behavioural and neuronal level. The following list summarizes the main aims of this thesis:

Investigate whether there is evidence on the behavioural level for a shared magnitude

processing system by measuring the precision in time, space and numerosity judge-

ments as well their inter-dimensional interference effects.

During the accumulation phase of time, space and numerosity judgements, measure

whole brain BOLD activation and analyse it in order to (i) identify areas commonly ac-

tivated by multiple dimensions as well as (ii) characterize neuronal activation patterns

with multivariate pattern analysis.
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2. Outline

This thesis is divided into four parts. The first part starts of with an introduction into basic

concepts of psychophysics, including the methodology of psychometric functions, as these

are an important tool to quantify the behavioural results of the experiment. The second

chapter reviews existing literature concerning key aspects of magnitude processing, both

from a behavioural and a functional imaging perspective.

The second part is dedicated to the methods and materials used in this experiment. First,

the experimental design is described in chapter 5, followed up by an overview of the statis-

tical tools employed for the analyses of the behavioural data. Because fitting psychometric

functions to the input data is an important aspect of the behavioural analyses, the Bayesian

approach is explained in greater detail. Chapter 7 outlines the processing pipeline for the

functional imaging data, starting with preprocessing steps and ending with the methodol-

ogy of multivariate pattern analysis algorithms.

Part three contains the results obtained from analyzing the behavioural and BOLD imaging

data. After a first manipulation check in section 8.1, results from the behavioural data are

presented. Chapter 9 begins by presenting results from data quality control analyses. Sub-

sequently, univariate and decoding results are presented in sections 9.2 and 9.3.

The last parts discusses and summarize the obtained results in the light of existing literature

introduced in the first part.
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3. Psychophysics

3.1 Introduction

3.1.1 Weber-Fechner Law

The field of psychophysics studies the quantitive relationship between a physical stimulus

and the sensory and perceptual experience by a (human) observer of said stimulus. Hereby,

a challenging aspect is that physical stimuli (e.g. brightness of a lightbulb) are accurately

measurable, while the sensation and perception of such stimuli are a private, unobservable

experience and thus, cannot be easily quantified. During the 19th century, scientists such as

Hermann von Helmholtz or Ernst Heinrich Weber began to empirically study psychophysics

and to formulate theoretical laws governing human perception. Most notably, Weber and

his student Gustav Theodor Fechner first discovered that the minimal observable difference

∆I (MOD) of two stimuli is proportional to the magnitude I at which it is measured, now

known as Weber’s law (or Weber’s ratio) (Fechner 1860):

∆I
I

= k (3.1)

The constant k is specific for the sensory system being measured. In practical terms, two

important conclusions may be drawn from this formulation: (i) for small baseline intensi-

ties of a stimulus, small changes in magnitude are sufficient to evoke a perceived difference

whereas greater changes in intensity are needed if the initial intensity is larger and (ii) the

value of k gives insight into the sensitivity of a sensory systems when compared to others.

Following this discovery, Fechner set out to formulate a more general law that relates per-

ceived stimulus intensity to the changes in stimulus strength. He assumed that for a specific

dimension, perceived differences between two stimuli separated by the minimal observable

difference will be equal for all stimulus levels. Or in other terms: the MODs for smaller and

larger initial values may differ significantly (according to Weber’s ratio), but the perceived

difference in intensity will be the same. Essentially, he describes a logarithmic relationship

between perceived stimulus magnitude E and the physical intensity I (Fechner 1860):

E = k · ln I
I0

(3.2)
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The constant k is specific for each modality and I0 denotes the minimal intensity at which

a stimulus is perceived. This logarithmic relationship is also called compression, as sensory

systems become less sensitive with increase stimulus intensities. Both Weber’s ratio and

Fechner’s law are illustrated in Figure 3.1.
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Fig. 3.1: Left: According to Weber’s ratio, the MOD ∆I is linearly proportional to the mag-
nitude I at which it is measured. Right: Fechner’s law relates perceived stimulus intensity E
to the stimulus intensity I . Note the logarithmic increase in physical stimulus intensity and
linearly scaling of the magnitude of perceived sensation.

3.1.2 Stevens’s Power Law

Around 100 years later, Stanly Smith Stevens challenged the formulations of Weber and

Fechner (Stevens 1961). Indeed, if compared to knowledge available today, Weber’s ratio is

only a reasonable approximation for moderate intensities and fails short for both the low

and the high end of the stimulus range. Stevens’s specifically refuted the assumption that

there is a logarithmic relationship between stimulus and sensation intensity and instead

proposed a power-law dependency:

E = c · Ib (3.3)

In Stevens’s equation, c is a constant scaling factor that considers the units in which the

stimulus is measured (e.g. grams, seconds) and b is a constant sensory specific exponent to

which the intensity is raised. For most modalities, b takes on values smaller than 1 and the

shape of the function in equation 3.3 becomes very similar to the logarithmic one of Fech-

ner’s law. However, there are modalities for which the opposite is observed: for example,

participants become more sensitive to the pain induced by electrical shocks with increasing

intensities. This phenomenon could not be explained by Fechner’s law, but Stevens’s power

law describes these cases well if b > 1. For sensory systems that follow a near linear relation-

ship (e.g.) apparent length, equation 3.3 takes on a linear shape if b is close to 1. Figure 3.2

illustrates the aforementioned cases.
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Fig. 3.2: Power functions relating stimulus intensity to perceived sensation for different di-
mensions. Many modalities take on a shape similar to a logarithmic function with b < 1.
In contrast to Weber’s and Fechner’s theory, Stevens’s power law may also describe cases
in which there is an exponential relationship between stimulus intensity and perception,
demonstrated here for the pain experienced by electrical shocks.

Nowadays, Stevens’s power law is accepted as a valid representation among the scientific

community. Following his publication, research has focused on refining his theories by tak-

ing into account e.g. observer bias, individual noise and other parameters that influence

perception (Teghtsoonian et al. 1971, Robinson 1976). A wide array of diagnostic tools and

statistical models enable the investigation of not only basic sensory systems (e.g. the audi-

tory system), but also more complex perceptions, such as time or numerosity perception, as

done in this study. Chapter 4 will give more insight into the more complex perception of

time, space and number.

3.2 Psychometric Functions

3.2.1 Definition

In modern psychophysics, scientists model responses with a psychometric function (PF),

which most commonly is a cumulative probability density function ψ(x) relating the prob-

ability of a certain judgement on the ordinate to the intensity x of a physical stimulus on

the abscissa. Typically, the judgement is either made in a yes-no fashion (detection of a

stimulus) or by comparing two stimuli against each other (discrimination of two stimuli) at

varying intensities or intensity differences1. Figure 3.3 illustrates an example of a PF fitted

to surrogate data of a two-alternative forced-choice (2-AFC) discrimination task.

3.2.2 Parameters of Psychometric Functions

During the fitting procedure, a number of parameters are estimated and will be discussed

subsequently. Before each parameter is introduced, it is important to take into account that

the true value of a parameter p cannot be exactly determined. Instead, by fitting a statistical

1 There are a wide array of different approaches on how to vary stimulus intensities during the course of an
experiment. To explain these is beyond the scope of this thesis, please refer to (Kingdom et al. 2016) for a
detailed explanation.



Chapter 3 Psychophysics 8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Stimulus intensity difference

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

co
rre

ct
re

sp
on

se
s

Fitted PF
Input data

Fig. 3.3: Hypothetical data from a two-alternative forced-choice task in which observers had
to indicate whether two stimuli are different from one another. The ordinate represents the
probability of ’Yes’ responses of n trials (ψ(x)) at each intensity difference (x) on the abscissa.
The vertical dotted line on the x-axis indicates the threshold α̂ at which the participant
perceives both stimuli as identical and thus, the performance is equal to the guessing rate
γ̂ = 0.5.

model to the data, an approximation p̂ is calculated that, by nature of an approximation,

has a certain margin of error. Consequently, it is important to assess the goodness-of-fit af-

ter computing a PF. Section 3.2.4 will provide more detail on the error assessment.

The first parameter, α̂ specifies the overall position of the fitted function along the x-axis.

It simultaneously defines the threshold at which a desired performance is reached. For a

stimulus detection task, this could mean that the stimulus is successfully detected when 75

% of trials are correct. For a task comparing two stimuli (as in this study), α̂ may also be

interpreted as the point of subjective equality (PSE), at which the performance is 50 % and

two stimuli are perceived as equal.

The second parameter needed to characterize a PF is denoted by β̂ and controls the steep-

ness of the function. Therefore, it is often called the slope of the PF, which is not entirely

correct, given how it is defined mathematically. More recently, researches have argued that

the width of the function is a more appropriate parameter, as it is (i) defined in the same

units as the physical stimulus, (ii) independent of the employed sigmoid function and con-

sequently, (iii) only a single set of priors has to be defined, irregardless of the sigmoid func-

tion chosen (Alcala-Quintana et al. 2004, Kuss et al. 2005). Because the PF is asymptotical

towards 0 for small intensities and 12 for larger ones, the width should not be defined as

the intensity at which ψ(x) reaches both values. Instead, an arbitrary value (e.g. 0.05) is sub-

tracted from the lower and upper asymptotes. The width is then defined as the difference

in intensity at which ψ(x) reaches those values (e.g. 0.05 and 0.95 for the lower and upper

value, respectively).

Two more parameters, γ̂ and λ̂, are necessary to fully define the PF. In contrast to α̂ and

β̂, they are not dependent on the underlying sensory mechanism. The variable γ̂ defines

the guessing rate and is defined by the amount of choices participants have during their

2 This is only true in the ideal scenario in which the participant does not make any mistakes (lapses). For the
sake of simplicity, this is omitted here because the lapse rate λ is not yet introduced.
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response. For an n-AFC, γ̂ is typically defined as 1/n. As an example, consider the hypo-

thetical data of Figure 3.3: participants had to choose between two alternatives and thus, γ̂

is defined as 1/2 (0.5). The fourth parameter λ̂ is termed as the lapse rate. It accounts for

the small amount of trials in which participants will responds independently of the stimulus

level, perhaps because they hit the wrong response button or missed the cue presentation.

Consequently, the upper and lower asymptotes of the PF will not be exactly 1 and 0, but

rather 1− γ̂ and 0 + γ̂ , respectively.

3.2.3 Function Types

For a wide range of tasks, the PF assumes the shape of a sigmoidal function. There are

several different functions available to describe the relationship between performance ψ(x)

by the participant and the stimulus intensity x. A general formulation of the PF is:

ψ(x;α,β,γ,λ) = γ + (1−γ −λ) ·F(x;α,β) (3.4)

In this section, only the three most popular options for F(x;α,β) are briefly described. Please

refer to (Davis 2008) and (Kingdom et al. 2016) for a complete description of all possible

functions.

Cumulative Normal Distribution

An important factor in fitting a PF is how noise is affecting the judgement probability (per-

formance). The Cumulative Normal Distribution (CND) is a popular choice for F(x;α,β),

as it assumes a normally distributed noise. This is in line with the Central Limit Theorem,

which states that the linear combination of independent noise sources results in a normally

distributed noise (Ficher 2011). The CND is defined as follows:

F(x;α,β) =
β

2π

∫ x

−∞
exp

(
−
β2(x −α)2

2

)
with: x,α ∈ (−∞,+∞) and β ∈ (0,+∞)

(3.5)

Parameter α denotes the threshold F(x = α;α,β) = 0.5. When β is kept constant, variations

in α result in a rigid transformation along the x-axis. The slope β is determined by the

reciprocal of the standard deviation of the normal distribution. For tasks in which x = 0

is equal to the absence of a stimulus and x is not log-transformed, the CND is not a valid

solution (Kingdom et al. 2016).

Logistic Function

The CND includes an integral for which no analytical solution is known. In contrast, the

Logistic function has a known closed-form integral and thus, does not need to include nu-

merical methods to approximate the integral. It is specified as:
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F(x;α,β) =
1

1 + exp(−β(x −α))

with: x,α ∈ (−∞,+∞) and β ∈ (0,+∞)
(3.6)

Analog to the CND, α and β correspond to the threshold and slope of the PF, respectively.

The same limitations regarding the absence of a stimulus for x = 0 for the CND apply to the

Logistic function.

Weibull

The cumulative distribution function for the Weibull distribution is defined as:

F(x;α,β) = 1− exp
(
−
( x
α

)β)
with: x ∈ [0,+∞) and α,β ∈ (0,+∞)

(3.7)

Because for x < 0, F(x;α;β) = 0 for all α, β, the Weibull distribution should not be used when

x is measured in logarithmic units. In the case of x = α, F(x = α;α,β) = 1 − exp(−1) ≈ 0.632

for all values of β. An important difference between the Weibull distribution and the other

two presented functions is that manipulating α will not result in a rigid transformation on

the x-axis and thus, change β as well if not plotted against log(x).

In order to give a practical example of fitted PFs based on all three functions, a fit to the

same hypothetical input data as in section 3.2.1 was done and plotted in Figure 3.4.
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Fig. 3.4: For the same input data as in Figure 3.3, the PFs were fitted using the three different
function types (i) CND, (ii) a Logistic function and (iii) the Weibull distribution. While their
shapes exhibit small differences, the threshold at 50 % performance is nearly identical.

3.2.4 Parameter Estimation

Once a function type has been defined, the parameters introduced in section 3.2.2 have to be

estimated in order to characterize the PF. Only α and β rely on the sensory mechanism. The

guess rate γ is given by the experiment structure and the lapse rate λ is usually considered

a nuisance value, as it may help to describe the PF but does not contain any information
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about the underlying sensory mechanism. Hence, most studies are primarily interested in

determining the values for α and β.

There are different methods to identify the best-fitting set of parameters. Among those, the

two most common are (i) the maximum likelihood approach and (ii) Bayesian analyses. In

this thesis, only the latter approach will be described in detail, as it will be used in the

subsequent data analysis. Prior to that, the term likelihood will be defined, as it will help to

relate and understand Bayesian statistics.

The Concept of Likelihood

Statistical problems often calculate probabilities for the outcome of an experiment, given a

fixed set of parameters. In contrast, fitting a PF comprises the inverse problem: given the

(already known) outcome and a model of interest (function type), the aim is to find a set

of parameters (α, β) that is most likely to have produced the observed data. In order to

solve this problem, a likelihood function L(a|y) is defined, representing the likelihood of

parameter a given the observed data y (Boos et al. 2013).

Because experiments in Psychophysics typically consist of data obtained by responses to

independent binary choices (i.e. a Binomial distribution), the likelihood function may be

defined as:

L(a|y) =
N !

m!(N −m)!

N∏
i=1

p(yi |a) (0 ≤ a ≤ 1)

or: L(a|y) =
N !

N !(N −m)!
· am(1− a)N−m (0 ≤ a ≤ 1)

(3.8)

In this equation, N denotes the total amount of trials, m the number of successful trials and

p(yi |a) the probability of observing the outcome y on the specific trial i under the assump-

tion of a value a. As a practical example, consider an experiment consisting of ten trials, in

which a participant had to judge whether she or he saw a cat in the presented picture or not.

Comparing the responses to the actual stimulus, the participant successfully classified six

trials correct (S) and missed four (M). If we assume a success rate of a = 0.4 for a successful

classification, equation 3.8 becomes (in its short form):

L(0.4|y) =
10!

6!(10− 6)!
· 0.46(1− 0.4)4

≈ 0.1115
(3.9)

It is important to note that obtained value for L(0.4|y) is neither the probability of obtaining

the specific result y (the experiment is already over, so there is no uncertainty about the

outcome), nor is it the probability of a = 0.4. Instead, one should think of L(a|y) as a function

in the parameter space that provides information about the likelihood of this particular

parameter given a fixed data set. For the hypothetical experiment of identifying a cat, Figure

3.5 shows full likelihood function in the range of 0 ≤ a ≤ 1. The global maximum of this
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function is at the value â = 0.6 and is therefore the maximum likelihood estimation for the

true value of a.
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Fig. 3.5: The likelihood as a function of the parameter a, given the outcome data of the
described hypothetical experiment.

As stated above, experimenters are usually concerned about two parameters of a Psychome-

tric functions, α and β at certain stimulus intensity xi . Equation 3.8 thus becomes:

L(α,β|y) =
N !

m!(N −m)!

N∏
i=1

p(yi |xi ;α,β) (3.10)

Similar to equation 3.8, p(yi |xi ;α,β) represents the probability of a response yi for a specific

trial i, assuming the threshold α and the slope β of the PF. Since there are now two pa-

rameters present, the likelihood function assumes the form of a surface that lies within the

two-dimensional parameter space. Naturally, the task of finding the global maximum for

this function becomes much more complicated and an analytical solution is almost never

found. Instead, researchers employ iterative search algorithms for this task. Since this is

beyond the scope of the present thesis, interested readers are referred to (Myung 2003).

Bayesian Estimation

The Bayesian framework provides probability distributions over parameter values in order

to describe beliefs and uncertainties about their values in relation to the obtained data (Kuss

et al. 2005). A practical example is null-hypothesis testing, in which the obtained p-value

describes the probability that the obtained results have occurred randomly under the as-

sumption that the null-hypothesis was true. This can be formulated as p(D |H), in which D

is an observable outcome and H represents a true null-hypothesis. In the context of Psy-

chophysics, this can be adapted to p(D |φ), whereas φ denotes modelled parameters, e.g.

threshold and slope of the PF3. However, in order to obtain estimations for the parameter

set φ, inferences about p(φ|D) need to be made. In the Bayesian framework, p(φ|D) is also

3 Keep in mind that the true values for these parameters are hidden within the participant and that Bayesian
inference aims to minimize the uncertainty about their value.
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called the posterior distribution and, with the help of Baye’s Theorem, is related to p(D |φ)

by the following equation:

p(φ|D) =
p(D |φ)p(φ)

p(D)
(3.11)

Here, an important advantage of the Bayesian approach becomes evident: a priori beliefs

about the true value of φ can be modelled and are represented by p(φ), the so called prior
distribution. This equation may now be adapted to the task of estimating the posterior dis-

tribution p(α,β|y), given the likelihood function L(α,β|y) from equation 3.8 and the prior

distributions p(α) and p(β):

p(α,β|y) =
L(α,β|y)p(α)p(β)∫

L(α,β|y)p(α)p(β)δαδβ
(3.12)

Ideally, priors should reflect beliefs of the true model parameters. A sensible approach here

is to use a parametric family of distributions for each of the parameters to be estimated. As

a practical example, prior distributions for the hypothetical data of Figure 3.3 are plotted

in Figure 3.6. A uniform distribution over the range of the input data with a cosine fall off
in both directions over half of the range was chosen as a prior for the threshold α, as it is

believed that the threshold lies within the range of the input data with equal likeliness. For

the width β, the prior has a uniform distribution in the range of twice the minimal difference

between two intensities with a cosine falloff at three times the total range of the stimuli for

higher intensities and at the minimal difference for intensities near zero.
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Fig. 3.6: Prior distributions for the threshold and the width for the hypothetical data used in
Figure 3.3. The top row shows the prior densities and in the bottom row, the corresponding
PFs for the 0 %, 25 %, 50 %, 75 % and 100 % quartiles are plotted. The sampled stimulus
intensities are plotted with red crosses.
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As stated above, the posterior distribution directly represents the uncertainty about param-

eters of the PF and could thus be utilized to make confidence judgements. Unfortunately,

it is not straight forward to solve equation 3.12 analytically. Over the years, several ap-

proaches have been developed to obtain estimates and confidence intervals. Typically, ei-

ther the mean, median or mode (also called maximum a posteriori (MAP)) of the posterior

are estimated. Interested readers are referred to (Kuss et al. 2005) for an in-depth review.

More recently, toolboxes that offer grid-based numerical solutions for the posterior have

been published (Schütt et al. 2016) and are employed in this thesis. As an example, poste-

rior distributions for the threshold and width of the hypothetical data from Figure 3.3 have

been calculated and plotted in Figure 3.7.
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Fig. 3.7: Calculated posterior distributions for the threshold and width for the hypothetical
data shown in Figure 3.3. The two plots on the side represent the posterior density functions
for each parameter separately. Hereby, the vertical black line denotes the MAP value. Shaded
gray areas fill the 95 % credible intervals.
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4. Magnitude Processing

4.1 Theories of Magnitude Processing

Over the last decades, a multitude of theories have been proposed on how quantities are

represented in the human and animal brain. Many of them have followed the concept of an

innate common magnitude system integrating all modalities, while others have argued that

distinct neural representations keep track of time, space and number, especially in develop-

mental stages past infancy.

In 1983, a first hint of a shared cognition of time and space was discovered, when Meck et al.

(Meck et al. 1983) reported that rats (i) can generalize rules learned in the time domain to

the number domain and (ii) that the temporal and numerical discrimination characteristics

follow Weber’s law. In 2003, Vincent Walsh (Walsh 2003) published his impactful paper on

A Theory of Magnitude (ATOM), in which he argues that (i) not only time and number, but

also spatial perception share a common metric for action, located in the inferior parietal

cortex and (ii) that a common magnitude system is already present at birth.

Alternatively, in contrast to a common locus, individual modules could be responsible for

magnitude processing of each dimension. Most prominently, this is formulated in the idea

of the Approximate Number System (ANS) (Dehaene et al. 1998, Brannon 2006, Odic et al.

2018), which is thought to be innate and domain-specific for the processing of numerical

magnitudes. Other groups have focused their research with regard to specialized represen-

tations of time (Buhusi et al. 2005, Buhusi et al. 2009) and space (Whitlock et al. 2008,

Vasilyeva et al. 2010, Vasilyeva 2012).

A compromise between the two concepts was proposed by Newcombe (Newcombe 2014),

called the Development Divergence Model, by arguing that a common magnitude system ex-

ists during infancy, which then, during later development, establishes distinct representa-

tions for each domain. This notion is backed up by the Signal Clarity Theory (Cantrell et al.

2013, Cantrell et al. 2015), suggesting that infants perceive all quantities as a single dimen-

sion. A paper by Hamamouche et al. (Hamamouche et al. 2019), reviewing the plethora of

evidence for both a common and distinct magnitude processing, concludes that the current

state of research favours the development divergence model.

4.2 Behavioural Evidence in Magnitude Processing

If a common magnitude system is responsible for processing information about time, space

and number, a reflection of this should be measurable in behavioural experiments. Below,
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a number such implications will be introduced. Evidence in the literature for the theorems

important to the current thesis (namely cross-dimensional interference and correlation in

performance) will be provided in further detail in the following sections. For a complete

review, please refer to (Hamamouche et al. 2019).

Discrimination and precision There should be an inter-dimensional correlation in acuity

within participants, i.e. if participants make highly precise judgements about time, they

should also be equally exact when judging other magnitudes. If there is a change in preci-

sion during development, this change should be similar across dimensions. In addition, the

discrimination precision of all three modalities should follow a common rule, for example

Weber’s law.

Cross-dimensional interference A common magnitude processing would implicate that

there is a symmetric cross-dimensional influence of one domain to another, resulting in a

biased response.

Cross-dimensional transfer Rules learned in one domain should transfer to other dimen-

sions, either by instruction or spontaneously.

Contextual influence Quantity judgements should be influenced by external factors evenly,

if they share a common processing. For example, the emotional state of a participant should

be reflected in a similar bias in the responses of all three domains. The same should apply

for other covariate factors, such as cognitive load.

4.2.1 Discrimination and Precision

There is ample evidence that the ability to discern time, space and number follow Weber’s

fraction in early development stages. According to Brannon et al. (Brannon et al. 2006), 6-

month old infants need a 1:2 ratio to perceive a difference in area of visual stimuli and are

unable to detect changes in area with a 2:3 ratio. Additionally, infants interest1 in novel

stimuli was modulated by the degree of area difference between stimuli. Similarly, research

concerning change in number (Xu et al. 2000, Lipton et al. 2003) and duration (Vanmarle

et al. 2006), discovered the same requirement for a 1:2 ratio of intensity difference to en-

able successful detection by 6-month old infants. At the age of 10 month, ratios of 2:3 can

successfully be discriminated, whereas changes within a ratio of 3:4 are indistinguishable

(Brannon et al. 2007, Cordes et al. 2008).

Research concerning children and adults does not draw such clear conclusions. In early

childhood, spatial and numerical acuity seem to differ (Odic et al. 2012, Geary et al. 2016).

When examining the discrimination precision of children between the age of two and

twelve, an independent development for the sense of number was observed (Odic 2017)

and thus, supports the existence of an ANS (Odic et al. 2018). Furthermore, adults seem to

have a finer grained discrimination ability for area (9:10 ratio) when compared to number

(8:9 ratio) (Odic et al. 2012). Droit-Volet et al. (Droit-Volet et al. 2008) obtained intriguing

results when comparing discrimination precision between time, number and line length:

1 The authors recorded looking behaviour of the infants and quantified the time they spend looking at the
computer screen as a surrogate parameter for novelty.
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in a first experiment, they presented numerical and spatial stimuli non-sequentially and

found a reduced acuity for time compared to space and number. In a second experiment,

sequential presentation was chosen for all stimuli and the differences in precision disap-

peared. These ambiguous results highlight the importance of presentation mode: time is

inherently sequential (i.e. it can only be presented in an accumulative manner), while space

and number may be presented sequentially (e.g. counting the number of dots that appear

and disappear on a computer screen) or non-sequentially (e.g. judge the total amount of

dots simultaneously present on the computer screen for a brief period of time).

A study comparing symbolic numerical abilities with non-symbolic numerical, temporal

and spatial2 abilities found a positive correlation between symbolic and non-symbolic nu-

merical accuracy, but no correlation between non-symbolic numerical, temporal or spatial

acuity (Agrillo et al. 2013). Others have reported cross-dimensional correlation in judge-

ment precision, although not consistently for all modalities (Dewind et al. 2012, Jang et al.

2015). In their review, Hamamouche et al. (Hamamouche et al. 2019) call for caution when

interpreting these results due to a low reliability between the tasks and different approaches

on stimulus intensity scaling. Still, they come to the conclusion that, in summary, the incon-

gruent findings undermine the support for a common magnitude system.

4.2.2 Cross-Dimensional Interference

Research investigating the interaction between the dimensions of time and space has re-

vealed an asymmetric relationship: for basic visual stimuli, such as a line on a computer

screen, time judgements seem to be biased by spatial properties, but not vice-versa (Xuan

et al. 2007, Casasanto et al. 2008, Bottini et al. 2013). Analogue to studies mentioned in sec-

tion 4.2.1, it is often criticized that the sequential vs. non-sequential presentation of time

and space has to be taken into consideration. However, experiments presenting spatial and

time-based stimuli both in a sequential manner (Lambrechts et al. 2013, Martin et al. 2017)

came to a similar conclusion. Interestingly, Riemer et al. (Riemer et al. 2018) discovered

a symmetric interaction between time and distance judgements in a static large-scale vir-

tual environment (experiment 1), but an asymmetric interference when participants where

passively moved along a path and had to judge travelled time and distance (experiment 2).

Here, traversed distance strongly influenced travel time judgements, but not vice versa.

Regarding the cross-dimensional interaction between time and number, the results of a

stroop experiment by Dormal et al. (Dormal et al. 2006) mirror those of time-space interfer-

ence: time processing is affected by numerosity, but numerical judgements are unaffected

by temporal cues. In stark contrast, Agrillo et al. (Agrillo et al. 2010) have found no inter-

dimensional influence between time and number and argue against a common magnitude

system.

Studies investigating all three modalities at once are scarce. Dormal et al. (Dormal et al.

2013) expanded their stroop-experiment to include all three dimensions and discovered

2 Symbolic numerical abilities were assessed with mental calculations and mathematical reasoning. Non-
symbolic judgement precision was quantified by evaluating line length, duration of a tone and numerosity
of dots.
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asymmetric interactions: numerosity and length (space) both interfere with duration pro-

cessing separately and cumulatively, while time had no effect on neither of the other dimen-

sions. Both number and space cross-influenced each other. These findings are opposed by

the report of Lambrechts et al. (Lambrechts et al. 2013), who saw an influence of temporal

cues on the judgement of number and space, but temporal judgement were unaffected by

number and/or spatial properties.

4.3 Neural Correlates of Magnitude Processing

4.3.1 Introduction

So far, only behavioural correlates for the processing of time, number and space have been

considered. Examination of neuronal activity may identify topographic organization under-

lying magnitude processing and could give insight into cross-dimensional interference ef-

fects found on the behavioural level. The following sections are structured by dimension and

will mainly focus on neural activation measured by fMRI as well as the impact of lesions.

An excellent in-depth review is provided in (Hamamouche et al. 2019). The perception of

space in the context of spatial navigation has been a key focus of research, both by single

unit recordings in animals as well as fMRI in humans. Results have provided compelling

hints at a complex system of different cell types within the hippocampus (HC) that pro-

vide different aspects of spatial information (Eichenbaum 2017). Because the experimental

paradigm employed in this thesis investigates magnitude processing within a navigational

context, a separate paragraph is dedicated to the perception of space in the framework of

navigation.

4.3.2 Spatial Representation in the Brain

Spatial Perception in the Context of Navigation

Among the three domains, spatial processing in the context of navigation was the first one

for which scientists discovered a potential neural substrate with the discovery of place cells
in the rat’s HC, first described by John O’Keefe (O’Keefe 1976). He concluded that place cells

inside the HC play an intricate part in facilitating the formation of a stable spatial map3 of

the surrounding environment. Their research sparked an extensive investigation on place

cells and their properties, not only in rats but also in other species, such as bats (Geva-Sagiv

et al. 2015, Hoffman et al. 2016), birds (Sherry et al. 2017) and humans (Kim et al. 2017).

Nowadays, it is widely accepted that place cells process information of various modalities

(Dabaghian et al. 2014, França et al. 2019) and are only one part of a more complex system

of different brain regions that support a multitude of spatial representations.

3 The idea of such a map dates back several decades earlier, when Tolman (Tolman 1948) proposed the ex-
istence of a cognitive map in order to explain the behavioural results he obtained by observing navigation
in rats. With his theory, he opposed the generally accepted purely stimulus-response concept of navigational
abilities at this time. He argued that behaviour such as taking shortcuts or latent learning could only be
explained if the animal had a stable spatial representation of its surroundings.
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(a) Early recordings of a place unit

1 m 1 m 1 m

(b) Grid cells in the rat’s entorhinal cortex

Fig. 4.1: (a): The cell represented here fired only at a high rate when the rat sat in the field
marked with A. Note the frequent spikes in 1 during a phase of immobility at A, as well as
in 4, when the animal moves from position D to A (O’Keefe 1976). (b): Grid cell recordings
in the rat’s entorhinal cortex. Left most plot shows the trajectory of the rat (black) and spike
locations (red). Peak rate of those locations is drawn in the middle. Spatial autocorrelation
for the rate map is depicted on the right (Hafting et al. 2005).

Other components of such a system are cells encoding allocentric orientation, termed head-
direction cells (Taube et al. 1990, Wiener et al. 2005, Shine et al. 2016) and border cells, which

are tuned to borders of an environment (Solstad et al. 2009, Shine et al. 2019). Grid cells,
first described in rats by the team of May-Britt and Edward Moser (Hafting et al. 2005), are

located in the entorhinal cortex4 and exhibit spatial-tuned firing pattern much like place

cells, but have multiple firing fields across the environment, forming a periodic triangu-

lar lattice. An extensive review on different cell types facilitating spatial navigation in the

hippocampal and parahippocampal formation is provided here (Ekstrom et al. 2003, Moser

et al. 2017).

Neural Substrates for other Types of Spatial Perception

Research investigating other properties of spatial representation suggests that there are var-

ious regions involved apart from the hippocampal and parahippocampal formation. Mental

rotation of 3D-objects seems to evoke activation in different regions, e.g. IPS, (pre-)motor

areas and the inferior temporal gyrus (ITG) (Jordan et al. 2002). Involvement of the poste-

rior parietal cortex (PPC) and IPS has also been found when participants judged the length

of a line or the position of an array of dots (Dormal et al. 2009). This is further backed up by

studies showing attenuated spatial processing performance when deactivating the IPS and

PPC via TMS (Bjoertomt et al. 2002, Muggleton et al. 2006, Dormal et al. 2012a). In a study

investigating topographic mapping of object size, Harvey et al. (Harvey et al. 2015) pin-

pointed the IPS in both hemispheres as key locations. The same areas have been identified

for processing of numerosity, but with different properties of mapping. In a review about the

functional organization of the IPS (Grefkes et al. 2005), the authors attribute visuospatial

functions (e.g. spatial coordinates of objects) to the IPS.

4 Since their discovery, grid cells have been found in other brain areas, such as the pre- and parasubiculum
(Boccara et al. 2010).
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4.3.3 Neural Code for Numerical Cognition

Similar to the perception of spatial cues, various studies have discovered the IPS as a key

region for the representation of number. Eger et al. (Eger et al. 2003) presented participants

with numbers, letters and colour in a visual and auditory manner while undergoing fMRI

scanning. When contrasted against letters and colours, number singularly activated a hor-

izontal region of the IPS bilaterally. A study by Piazza et al. (Piazza et al. 2004) confirmed

these findings, as they found activation in the IPS in both hemispheres when participants

were presented with sets of items with varying number. Furthermore, the role of the IPS in

numerical processing is strengthened by a study comparing discrete numerical stimuli with

analogue judgements in space or time (Castelli et al. 2006). Hereby, both the IPS and the

parietal-occipital transition zone were significantly more active while processing discrete

stimuli. In children with developmental dyscalculia, the right IPS was activated less when

tasked with numerical judgements compared to healthy controls (Mussolin et al. 2009).

Studies that employ TMS to selectively deactivate the left (Cappelletti et al. 2007) or the

right (Dormal et al. 2012a) IPS could show an increased error rate when judging the amount

of dots in an array.

4.3.4 Keeping Track of Time

In comparison with space and number, scientific evidence for neural substrates supporting

temporal processing is even more ambiguous. This becomes evident on a very basic level:

there is still no consensus of whether there are dedicated neural populations responsible to

tell time or if timing is an intrinsic ability of various different neural circuits (Dehaene et al.

2011).

Experimental and theoretical studies could show an intrinsic sensory timing capability of

neural circuitry, but fail to provide a general model that explains both temporal control of

behaviour and is neurobiological feasible (Dehaene et al. 2011). In an attempt to provide a

model for the timing of motor tasks, Buonomano et al. (Buonomano et al. 2010) proposed a

population clock framework, in which the time-varying activity of individual neurons in a

population support temporal judgements. In principal, population clocks could be formed

by various different groups of neurons and thus, do not favour dedicated areas in the brain

solely responsible for keeping track of time. In line with this notion, Buzsáki et al. (Buzsáki

et al. 2018) argue that neuronal populations previously suggested to singularly compute

time always contain other types of behaviourally relevant information in their firing char-

acteristics.

Other studies have pointed out distinct neural populations which facilitate the processing

of temporal information. One area of interest are the basal ganglia and their cortical con-

nections (Matell et al. 2004, Meck et al. 2008, Buhusi et al. 2009). For example, Meck et al.

(Meck et al. 2008) put forth the idea that striatal medium spiny neurons act as integrators

for specific beat patterns of cortical oscillations. This is backed up by a review compiling

data from functional neuroimaging, neuropsychological, psychopharmacological as well as

leasion studies in humans (Coull et al. 2011). Here, firing rates of striatal areas intercon-

nected with the frontal cortex are suggested as a neurophysiological substrate for processing
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time. Other areas that have been proposed as possible loci for temporal perception include

the right IPS and IFG (Hayashi et al. 2013), precentral, middle and superior frontal gyri

(Dormal et al. 2012b) as well as the insula (Lewis et al. 2003).

4.3.5 Neural Evidence for a Common Magnitude System

As introduced in section 4.3.2, specialized cells inside the hippocampus facilitate the per-

ception of space when navigating an environment. Since the discovery of place cells, re-

search could show that they do not only encode spatial location, but also convey tempo-

ral information5 (Hampson et al. 1993, Pastalkova et al. 2008). In his review, Eichenbaum

(Eichenbaum 2014) proposed the existence of time cells, which are identical in their proper-

ties to place cells and fire at specific moments in a temporally structured period. This is in

line with the theory that the HC plays an intricate part in the spatial-temporal organization

of episodic memory and emphasizes how closely time and space processing may be inter-

twined (Schiller et al. 2015, Eichenbaum 2017, Banquet et al. 2020). Buzsáki et al. (Buzsáki

et al. 2018) have argued that the anatomical organization of the HC does not support the

selective perception of time, space and other modalities. Instead, they theorize the HC to

be a general, modality independent, theta-rhythm sequence generator which governs the

computation of all incoming signals to the HC.

Outside the context of hippocampus-dependent perception of time, space and number,

functional imaging experiments predominantly examined two dimensions simultaneously

and point towards the IPS as a possible hub for a common magnitude system. Fias et al.

(Fias et al. 2003) obtained significant activation in the left IPS while participants compared

two digit numbers, line length and angles in a pairwise manner. The right superior pari-

etal lobe, including the IPS, was conjointly active in adults when comparing non-symbolic

number and spatial discrimination (Kaufmann et al. 2008). Results by Dormal et al. (Dor-

mal et al. 2012b) further emphasize the role of the IPS, as they found shared activation

in the right IPS as well as pre-central, middle, and superior frontal gyri when participants

judged duration and numerosity of stimuli. In a paradigm investigating all three modalities,

participants had to judge temporal intervals, numerosity and line length, Skagerlund et al.

(Skagerlund et al. 2016) identified the right hemispheric IPS, insula, premotor cortex and

IFG as key components of a common magnitude processing system. The authors hypoth-

esize the IPS to be the locus for processing cardinal properties of magnitude, which then

streams to the insula (salience detection and awareness), premotor cortex (action planning)

and IFG (categorical decision-based representations).

5 Other experiments suggest that place cells might be tuned to information from various different sensory
modalities, such as olfactory cues. For the sake of simplicity, only the time dimension is considered here. The
interested reader is referred to (Dehaene et al. 2011) for an excellent review.
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PART II:
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5. Experimental Design

5.1 Participants

Twenty-five right-handed participants were recruited from the local community (14 fe-

males, mean age 24.9 years, ranging from 20 to 41). Participants received monetary compen-

sation and gave written informed consent to the experimental protocol, which was approved

by the local ethics committee.

5.2 Virtual Environment

The virtual environment was comprised of a narrow concrete path enclosed by a grass tex-

ture to the left and right (see Figure 5.1). The coarse texture of both surfaces provided optic

flow, but did not present any salient landmarks that could potentially be utilized to judge

the travelled distance. The participant’s viewport was placed in the middle of the path at a

virtual height of 1.8 m, with a field-of-view of 60° and looking straight forward (yaw, pitch

and roll all equaled 0°). At a distance of 1 m, grey fog with a linear increase in density started

to obscure the view distance. Additionally, white dots appeared and disappeared constantly

at random positions on the floor around the participant. Their individual lifetime was set to

100 ms.

Inside the MR scanner, the stimulus image was presented via a mirror (size 302 mm x 170

mm), placed at a distance of 350 mm from the participant’s head. The image was projected

onto the mirror with a resolution of 1920 x 1080 px and a refresh rate of 60 Hz. Due to

visual obstruction by the head coil, the bottom 300 px of the screen were not visible, so the

effective visible area was approximately 1920 x 780 px (1140 x 780 px binocularly visible).

5.3 Task and Stimulus Description

During fMRI scanning, participants performed a magnitude accumulation task in each trial

with respect to either time, space and numerosity, while being passively moved through

the virtual environment as described in 5.2. At the end of time and space trials, participants

had to judge either for how long1 or how far they were passively moved, respectively. After

each numerosity trial, participants were asked to estimate the accumulative number of dots

they saw on the floor2. Importantly, the overall area in which the dots appeared remained

1 Participants were instructed not to actively countdown seconds when making judgements about the duration.
2 The randomly appearing and disappearing nature of the dots made it impossible to determine their exact

number in order to force participants to make an approximate judgement.
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Fig. 5.1: View from the participant’s viewpoint during a trial. Evidently, the virtual environ-
ment does not provide any landmarks and the view distance was limited, in order to prevent
the possibility to judge distance by referencing a fixed landmark. The coarse structure of the
floor provided optic flow.

constant in size, as to not confound the number of dots by the physical space of the dot

array.

As a control condition, luminescence was included as a fourth dimension. Hereby, par-

ticipants did not perform a magnitude accumulation task but rather had to evaluate the

greyscale value of a square that was overlayed in the middle of the screen 200 ms before the

passive movement ended. Thus, this condition will be referred to as the control condition

from here on.

Each dimension had two distinct and fixed magnitudes, which will be called high or low
condition subsequently. The travelled distance was either 11.5 m or 19.7 m, the duration

was either 2.8 s or 4.8 s, there were either 45 or 77 white dots present on the floor and the

white square had either 16 pct or 28 pct white content. These values will be called the ref-
erence or standard value in the following sections. At the end of each trial, participants had

to perform a two-alternative forced-choice task, indicating whether the experienced magni-

tude was higher or lower than a comparison value3 that was displayed during the response

phase. Participants gave their responses with either the right index finger (less) or right

middle finger (more) on a five-button MRI-compatible response box (LUMItouch, Photon

Control Inc., Burnaby, Canada). The thumb button could also be pressed to indicate that

the relevant dimension of the current trial was forgotten. Did the participant fail to make a

response within 2 s, "Please respond faster!" was displayed in red letters for 500 ms on the

screen. Otherwise, no feedback was provided throughout the whole experiment in order to

minimize the influence of previous choices on the following trials.

It is important to note that the visual input for all trials was identical, regardless of the

trial type of the current trial. So even when the participants were asked to pay attention

to e.g. time, dots appeared on the floor and a white square appeared just before the end of

the passive movement. Critically, this also allowed to vary the magnitude of the irrelevant

3 The comparison value was adjusted on a trial-by-trial bases. See section 5.6 for details on how its value was
calculated.
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dimensions to assess cross-dimensional influences. For example, a trial in which numeros-

ity was the relevant dimension (participants had to judge the amount of dots on the floor),

the distance traveled (irrelevant dimension) could either be long or short. The speed of the

passive movement was adjusted in order to achieve times and distances that were equal to

the high or low conditions.

Another critical point is that this experimental setup ensured a sequential presentation of

all dimensions. The complete information needed to make a judgement was only accessible

at the end of a trial and thus, all three dimensions are presented in a similar fashion (see

sections 4.2.1 and 4.2.2).

5.4 Trial Structure

Each trial started with a 500 ms cue display, indicating the current relevant dimension.

This was followed by an inter stimulus interval (ISI) with a randomized duration between

2 and 3 s. Afterwards, the participants were moved passively forward at a constant speed.

200 ms before the forward motion was terminated, the grey square for the control condi-

tion appeared in the middle of the screen. After another ISI with a fixed duration of 1 s, a

comparison value (or rectangle in case of control trials) was displayed for 2 s (comparison

phase). This was also the time during which the participants could make a response. The

duration of the inter trial interval (ITI) was adjusted to equalize the total duration of the

trial to either 10.8 s or 12.8 s. For null trials, a fixation cross was shown following the cue

phase until the end of the response phase. The timeline of an exemplary trial is depicted on

the left side of Figure 5.2.

3.4

Cue
0.5 s

ISI
[2, 3] s

Integration
2.8 / 4.8 s

ISI
1 s

Comparison
2 s

ITI
[1.5, 2.5] sTime

Time

Cue

Comparison

Space Numerosity Control

3.4 9.1 47 47

Fig. 5.2: Left: Timeline of an exemplary time trial. Please note that the onset of the grey
square 200 ms before the end of the integration phase is not depicted. Right: Cue icons and
corresponding exemplary comparison values for all four dimensions.
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5.5 Trial Order

Trials had to be ordered in a sequence that allows for simultaneous estimation of (i) the mean

difference in neural activity between the four dimensions and (ii) inter-stimulus effects of

individual trials upon each other (carry-over effect) with a rapid-event design. To achieve

this, a de Bruijn sequence, spanning 125 trials and balanced on the second order, within

a continuous carry-over design (Aguirre 2007, Aguirre et al. 2011) was created, resulting

in a trial order in which each of the five task types was preceded by every other task type

(including itself) for an equal number of times. Additionally, each trial had a relevant and

an irrelevant dimension, as described in section 5.3. Trials were counter-balanced so that

the same amount of high and low conditions of irrelevant dimensions were included.

Finally, trials had to be balanced with respect to their total duration (either 10.8 s or 12.8

s). This was achieved by repeating the initial de Bruijn sequence four times. In the first

repetition, short and long trials were inverted. During the second and third repetition, only

even or odd trials were inverted, respectively.

The final result were four de Bruijn sequences with a length of 125 trials each, including

25 trials of each dimension (time, space, numerosity, control), as well as 25 null trials. The

500 trials were distributed among eight runs4 and conducted in two separate session on two

different days that were not more than one month apart.

5.6 Task Difficulty

An adaptive strategy, depicted in equation 5.1, was utilized to calculate the comparison

value for each trial. This was necessary to (i) equalize the task difficulty across all four

dimensions, (ii) counter increased performance due to the learning effect and (iii) keep par-

ticipants as engaged as possible throughout the experiment. Before each trial, the respective

comparison value Ri (e.g. for time trials a value of 5.8 s) was randomly calculated according

to the response (more or less) of the previous trial. The comparison value for the first trial

R0 was obtained by randomly choosing a number based upon the standard (true) value S

for the current dimension.

first trial: R0 = {x ∈R | S − 0.25 · S ≤ x ≤ S + 0.25 · S}

response more: Ri = {x ∈R | Ri−1 ≤ x ≤ Ri−1 + 0.25 ·Ri−1}

response less: Ri = {x ∈R | Ri−1 − 0.25 ·Ri−1 ≤ x ≤ Ri−1}
(5.1)

To monitor the perceived difficulty of each task type after each run, the participants had to

judge the difficulty on a visual analogue scale (VAS, slider with 20 intermediate positions)

ranging from easy to difficult with the help of their index and middle finger.

4 As this yields an unequal number of trials per run, null trials were added at the end of each run to equalize
the total amount of trials per run.
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6. Behavioural Data Analyses

6.1 Preprocessing

Trials with (i) a reaction time lower than 300 ms (0.18 %), (ii) in which participants indicated

that they forgot the current trial type (0.28 %) or (iii) with a response later than 2 s (2.65

%) were excluded prior to any analysis. Additionally, behavioural and functional data of

participant 15 was completely discarded, as he missed more than 20 % of his responses,

casting overall doubt on alertness during the experiment. Participants 4, 5 and 6 confused

the response buttons during control (luminescence) trials in session 1, hence this data was

dropped from the analyses as well. This left a total number of 9430 trials of 24 participants

for behavioural data analyses.

6.2 Reaction Time and Task Difficulty

Both reaction times and perceived task difficulty ratings for the four task types during the

course of the eight runs were analysed with respective linear mixed effects models to assess

whether (i) there are interdimensional differences or if (ii) there were changes during the

course of the experiment. For both models, task type as well as the run number were fixed

effects predictors and participant number was modelled as a random intercept (reaction

times: reaction time ∼ dimension * run + 1|subject, task difficulty: task difficulty ∼ dimension *
run + 1|subject). All analyses were conducted in R (R Core Team 2019), including the nlme
package (Pinheiro et al. 2019).

6.3 Fitting Psychometric Functions

6.3.1 Input Data

Due to several reasons, fitting a PF to the behavioural data of this experiment was challeng-

ing. First, the amount of trials per stimulus intensity is usuallyN ≤ 10. This is mainly due to

the limited time a participant lays comfortably in the MRI scanner. Additionally, the func-

tional data analysis strategy created additional constraints for the sequence and amount of

trials (see section 5.5). Second, due to the adaptive adjustment of reference values to keep

the difficulty constant, not all stimulus intensities were sampled with the same amount of

trials. Some intensities, especially closer to the lower and upper boundaries, were sampled

with only one trial. Erroneous responses from participants thus may have a substantial im-

pact on the fitted PF, if the fitting algorithm is not robust against these outliers.
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6.3.2 Fitting Algorithm

Due to the unique features of the behavioural data explained above, the chosen fitting al-

gorithm must be robust against outliers, account for sparse and varying trial numbers per

sampled intensity, should allow for a transparent adjustment of parameters and provide a

reliable proxy for the goodness-of-fit. The Python package psignifit 4 by (Schütt et al. 2016,

Schütt 2016) is based on Bayesian inference and, compared to other alternatives1, fulfilled

all the aforementioned prerequisites best. Hence, a modified version was used to analyse

the behavioural data of this experiment. Several key advantages of psignifit are summarized

here:

1. Even for overdispersed data, psignifit is able to obtain credible interval estimations by

integrating a beta-binomial model.

2. Instead of estimating the slope β of the PF, psignifit 4 reports the width w. Due to advan-

tages shown in section 3.2.2, this is the preferred parameter.

3. Posterior distributions are calculated by numerical integration within predefined limits,

thus complicated approaches to solve the posterior equation are not needed.

4. The package provides predefined priors for each parameter, based on extensive research

and experience. These priors can easily be adapted if needed.

5. Ease of use within the Python language environment.

Standard Bayesian approaches model the probability of a response only as a function of

the stimulus intensity. Essentially, each trial is a Bernoulli trial and independent from the

others. In reality however, this is rarely true. For example, participants might get tired over

the course of the experiment or might be influenced by the choice she or he made the trial

before. As stated above, participants did not get any feedback on any trial, so the influence

of previous choices on the current response are minimized. Still, the assumption of a com-

pletely stable observer is violated, resulting in too narrow credible intervals for the posterior

distribution (Schütt et al. 2016).

Instead of treating each trial as a Bernoulli trial with a binomial distribution, psignifit 4 em-

ploys a beta-binomial model to account for that instability of the observer, causing overdis-

persion in the data. For a constant stimulus intensity x, the success probability is no longer

fixed (as in binomial models), but a randomly drawn beta-distributed variable with mean

ψ(x). An additional parameter η (0 ≤ η ≤ 1) is introduced to the PF, defining the variance of

success probability for a stimulus intensity x and number of trials N as follows:

σ2 =
(
η2 +

1− η2

N

)
ψ(x)(1−ψ(x)) (6.1)

In the case of η = 0, equation 6.1 collapses to the variance of a standard binomial distri-

bution σ2 = 1
nψ(x)(1 − ψ(x)). For a maximally unstable observer with η = 1, the variance

is independent of the trial number N with σ2 = ψ(x)(1 −ψ(x)), i.e. increasing the number

1 An alternative investigated was BayesFit (Slugocki 2019). However, it was found that its robustness to overdis-
persed data is not suitably high for the input data of this study.
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of trials does not decrease uncertainty about the mean. For any value between 0 < η < 1,

this model allows to account for overdispersed data by adjusting the variance of the success

probability to 1 + (N − 1)η2 times the one of the standard binomial model.

6.3.3 Priors

As described in 3.2.4, Bayesian inference requires a priori distributions for each parame-

ters. The priors proposed by (Schütt et al. 2016) have been adjusted to reflect the estimated

outcome of this experiment and are summarized in the following list. Figure 6.1 provides a

graphical representation of the distributions.

• Threshold α: The prior was chosen as a uniform distribution across the range of the stim-

ulus intensity with a cosine falloff to 0 over half of the range at both ends. This was identi-

cal to the proposition by (Schütt et al. 2016) and assumed that the threshold has an equal

probability within the range of the sample stimuli and may be localized 50 % below or

above the range with decreasing probability.

• Width w: The prior distribution was uniformly distributed between four times the min-

imal distance between two stimulus intensities (lower limit) and three times the total

range of stimulus intensities (upper limit). The distribution had a cosine falloff to 0 at

the lower limit and at 4 times the total range. This is different from the standard prior

implemented in psignifit and accounted for larger width values due to the overdispersed

and undersampled data of this experiment.

• The guess rate had a fixed value of γ = 0 for the two-alternative forced-choice task in this

study.

• The lapse rate λ was fixed at a value of λ = 0.01. Preliminary analyses of the data showed

that a variable lapse rate with a beta-distributed prior (as proposed by (Schütt et al.

2016)) provided unsatisfactory fitting results and overestimated lapse rates due to the

low amount of trials at some intensities, especially near the lower and upper intensity

boundaries.

• The prior for η, accounting for an unstable observer, was left unchanged and had a beta-

distributed prior with α = 1 and β = 10.

6.3.4 Parameter Estimates

For each participant, each dimension and magnitude (high or low), a separate PF was fitted

to the experimental data. Once a PF had been fitted, psignifit provided posterior distribu-

tions, along with the MAP2 and credible intervals for each parameter.

In this experiment, the threshold α is defined at the comparison value where p(M) = 0.53

2 (Schütt et al. 2016) argue that the MAP is the most appropriate estimator, as mean and median are heavily
biased for the width, especially for data with a low amount of trials, such as in this study.

3 During the introduction of Psychophysics in chapter 3, values along the y-axis denoted the probability of a
successful stimulus detection. In contrast, Psychometric functions in this thesis are fitted to the probability
p(M) of a participant correctly identifying a comparison value as being more than the just experienced value
during the trial.
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Fig. 6.1: Prior distributions for evenly spaced input data at comparison values in the range
of x = [0.1,2] for the threshold, width and observer stability η. The guess and lapse rate
priors are not shown, as these are fixed at their respective values. The top row shows the
cumulative density functions for each prior. Below, Psychometric functions corresponding
to 0 %, 25 %, 50 %, 75 % and 100 % quartiles of the prior are plotted. The label p(M) denotes
the probability that a participant perceives the comparison value (plotted on the x-axis) as
greater than the actual value (e.g. the time travelled was longer than the comparison value
presented).

and was identical to the point of subjective equality, i.e. participants perceived the shown

comparison values during the response phase as equal to the reference value of the trial she

or he just experienced. For comparison values above the threshold, participants become in-

creasingly more likely to perceive the comparison value as greater (more) than the reference

value and, thus, p(M) converges asymptotically towards 1. Conversely, p(M) asymptotically

falls towards 0 for increasingly smaller comparison values.

The width is defined here as the difference in comparison values, at which the unscaled PF

reaches 0.2 (lower limit) and 0.8 (upper limit). It is interpreted as a measure of how precise

the participant was in her or his judgements (section 6.5).

For both threshold and width, results were classified as outliers if they exceeded Q75 + 1.5 ·
IQR or fell belowQ25−1.5 ·IQR.Q25 andQ75 are the 25th and 75th percentile, respectively.

IQR is the interquartile-range, defined as IQR =Q75 −Q25.

6.4 Magnitude Differentiation

In a first sanity check of the behavioural data, it was tested if participants could distinguish

between large and small magnitudes of each trial type by comparing the PSEs (thresholds)

between large and small magnitudes. Before any statistical analysis, the data was checked

for normality by a combined test of skew and kurtosis (K-S test) with Python’s SciPy package

(Virtanen et al. 2020). As all of the distributions were found to be not normally distributed,

the results of one-tailed paired t-tests were verified by a Wilcoxon signed-rank test and cor-

rected for multiple comparisons (FWE = 0.05).
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Because the scales of physical stimuli differ substantially between dimension (e.g. time var-

ied in the order of 2 - 10 seconds, the number of dots between 20 and 50), the comparison

values of all trials are normalized to the mean of the two reference values for each dimen-

sion, in order to allow for simultaneous plotting of all dimensions. For example, the dura-

tion of a time trial was either 2.8 s or 4.8 s, so all comparison values for time trials were

normalized to 3.8 s.

6.5 Judgement Precision

Participant’s judgement precision was characterized by the width of the calculated PF as

defined in 6.3.4. Participants that had a higher precision in their magnitude perception had

a smaller width compared to participants with less precise judgements.

The data analysis assessed whether there were crossdimensional correlations in judgement

precision between all possible pairs of dimensions, as this provided insight on how similar

their perception might be. For this, Spearman rank correlation coefficients of the widths of

all participants were obtained for each possible pair of dimensions.

In contrast to the magnitude differentiation sanity check, a different normalization was ap-

plied to the data: all trials were normalized to their respective standard values. This enabled

a conjoint analysis of trials with a high and low standard value. For example, all space trials

with a distance of 11.5 m or 19.7 m were normalized to 11.5 m or 19.7 m, respectively.

6.6 Cross-Dimensional Interference

In order to assess cross-dimensional influences, the behavioural data of one trial type was

split into two subsets, based on the magnitude of the irrelevant dimension. This is possi-

ble, because the trial order was designed in a way to counter-balance the amount of trials

in which the irrelevant dimension was either in a high or low condition (see sections 5.3

and 5.5). Practically, this meant that for e.g. time trials, separate PFs were fitted for trials

in which the amount of dots on the floor was either high (77) or low (39), to assess whether

the amount of dots on the floor influenced the perception of time. Vice versa, trials in which

participants judged the amount of dots on the floor were split with respect to the duration

of the passive movement (either 2.8 s or 4.8 s). For each possible pair of relevant-irrelevant

dimension and each participant, the thresholds were obtained and their mean differences

compared against 0 by a Wilcoxon signed-rank test with a correction for multiple compar-

isons (FWE = 0.05). Positive values indicate congruent interference (i.e., larger values of the

irrelevant dimension lead to an overestimation of the relevant dimension).

Analogue to the interdimensional judgement precision analysis, comparison values were

normalized in the same fashion to allow the analysis of cross-dimensional inference.
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7. Neuroimaging Data Analyses

7.1 Data Acquisition

MRI data was acquired on a 3 T Magnetom Prisma-fit Syngo MR D13D Siemens Scanner

(Siemens Healthcare GmbH, Erlangen, Germany) with a 64-channel phased array head coil.

For anatomical images, both T1- and T2-weighted images were recorded. In each session,

double-echo gradient-echo (GRE) field maps were acquired1, allowing for susceptibility dis-

tortion correction of the functional images. Scanning parameters of the anatomical and

functional sequences according to (Inglis 2015) are summarized in table A.1.

7.2 Data Quality Control

Prior to any analysis, both structural and functional imaging data were visually inspected.

Additionally, image quality metrics (IQMs) for both were calculated using the software

package MRIQC 0.14.2 (Esteban et al. 2017). This allowed for a quick assessment of var-

ious data quality parameters such as head movement, temporal SNR, ghosting or artefact

detection. As of today, no comprehensive study has published guidelines on which combi-

nation of parameters are best suited to detect and exclude outliers. However, recent projects

try correlate quality ratings by experts with IQMs (Esteban et al. 2019a). Shehzad et al. (She-

hzad et al. 2015) investigated quality assessments of resting-state fMRI data from various

sites and provides some advice on test-retest reliability of IQMs as well as correlation be-

tween those. Based upon these assessments, a set of IQMs was selected and they are briefly

introduced in this section. Please refer to (Esteban et al. 2017, Esteban et al. 2019a) for a

detailed description.

Analoge to the behavioural outlier criterion, quality parameter values for a specific partici-

pant aboveQ75+1.5·IQR or belowQ25−1.5·IQRwere considered to be suspect and triggered

a detailed examination of the functional data. Furthermore, it was decided to exclude func-

tional runs if the percentage of volumes exceeding a framewise displacement (FD) of 1 mm

was above 10 %.

Spatial Information

• EFC: The entropy-focus criterion gives an indication of ghosting and blurring induced

by head motion (Atkinson et al. 1997). In very basic terms, the entropy criterion favours

alterations to the data which maximise the number of voxels containing no information

1 Echo times were 4.92 ms and 7.38 ms.
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and therefore have a value close to 0. Participant motion has the opposite effect, as neigh-

bouring voxels at the borders will have increased values. EFC may therefore be used to

detect and correct motion-induced image alterations. Lower values are better.

Temporal Information

• tSNR: Temporal SNR calculated by the average BOLD signal across time divided by the

temporal standard deviation map. It gives insight into the temporal variability (Welvaert

et al. 2013). Higher values are better.

Artefact Detection

• GSR: Ghost-to-signal ration estimates the mean signal in the areas prone to Nyquist

N/2 ghosting artefacts along the possible phase-encoding directions relative to the mean

signal within the voxels of the brain mask. Fast echo-planar imaging sequences are es-

pecially susceptible to Nyquist ghost artefacts, as the rapidly changing gradients may

induce eddy currents in the RF coils and magnetic housing (Giannelli et al. 2010). It is

therefore sensible to screen the data for this type of artefact. Lower values are better.

• FD: Framewise displacement is a measure for instantaneous head-motion from one vol-

ume to the next (Power et al. 2012). Typically, either the mean FD or the percentage of

volumes above a certain threshold (1 mm in this analysis) are reported.

7.3 Preprocessing

Anatomical and functional images were preprocessed using fMRIPrep 1.1.1 (Esteban et al.

2019b). For the structural preprocessing, T1/T2 weighted (T1w/T2w) images were cor-

rected for intensity non-uniformity with ANTs’ N4BiasFieldCorrection v2.1.0 (Tustison et

al. 2010). Afterwards, they were skull-stripped using ANTs’ antsBrainExtraction.sh v2.1.0

(OASIS template, (Marcus et al. 2007)) to create an initial binary mask of the brain. After

brain mask computation, FSL FAST v5.0.9 (Zhang et al. 2001) was used to perform brain

tissue segmentation (CBF, white matter, gray matter). Brain surface reconstruction was per-

formed by recon-all from FreeSurfer v6.0.1 (Fischl 2012). The initial brain mask was refined

with a fMRIPrep custom variation of the method to reconcile ANTs-derived and FreeSurfer-

derived segmentations of the cortical gray-matter (Klein et al. 2017). In the last step, spatial

normalisation to the MNI152NLin2009cAsym template space (Fonov et al. 2009) was per-

formed using antsRegistration. This entails a multiscale, mutual-information based, non-

linear registration scheme. In order to obtain individual anatomical region-of-interest (ROI)

masks, a cortical reconstruction was run with Freesurfer 6.0. The resulting label files were

converted to binary masks.

During the initial step of BOLD image preprocessing, a reference image was created in order

to calculate a brain mask for the BOLD signal. This EPI reference image is then passed to

FSL’s mcflirt v5.0.9 (Jenkinson et al. 2002) in order to estimate head motion (6 parameters -

three for rotation and three for translation) parameters. Slice time correction is performed

using AFNI v16.2.07 3dTShift function (Cox 1996), realigning each slice to the middle of
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each TR. Next, spatial distortion due to B0 field inhomogeneities were accounted for by sus-

ceptibility distortion correction (SDC) using an implementation of the TOPUP technique

(Andersson et al. 2003) using function 3qwarp in AFNI v16.2.07. Hereby, the field inhomo-

geneity can be mapped by measuring the phase evolution in time between two close GRE

acquisitions (Hutton et al. 2002). Finally, the BOLD reference image is aligned to the T1w

image using linear boundary-based registration with 9 DOF implemented in FSL flirt. To

map the EPI image to the MNI152NLin2009cAsym template space, transform calculated

upstream (head-motion estimation, SDC, EPI to T1w registration, T1w-to-MNI transform)

workflows are concatenated. These transforms are applied all at once with one Lanczos in-

terpolation step.

7.4 Univariate Analysis

7.4.1 First Level Analysis

Design and implementation of the statistical analysis was done using the nipype Python

framework (Gorgolewski et al. 2011), which allows for a flexible and accessible implemen-

tation of various different neuroscientific software packages in one workflow. Figure 7.1a

shows the corresponding workflow for the first level analysis. With few exceptions, SPM12

v7487 MATLAB 2016b (The MathWorks, Natick, 2016) was utilized for model generation

and contrast estimation. The functional images were smoothed using a 6 mm FWHM gaus-

sian filter and masked with an individual brain mask obtained from fMRIPrep. The data

was high-pass filtered at 128 Hz.

During first level univariate analyses, the integration (passive movement) phase was mod-

elled as delta functions convolved with the hemodynamic response function (HRF) as im-

plemented in SPM12, excluding temporal or spatial derivatives. Additionally, (i) the cue

onset as well as (ii) the comparison phase until a response was given were included as re-

gressors of interest and convolved with the HRF (see Figure 5.2 for a reference of the trial

structure). It was decided to leave out the actual response (button press), as this regressor

showed high correlation with the one modelling the comparison phase. As nuisance regres-

sors, six head motion parameters2, framewise displacement (FD) as well as the PCA-based

anatomical aCompCor (Behzadi et al. 2007, Muschelli et al. 2014) confounds were included.

Figure 7.1b shows an exemplary design matrix for one run. Significance threshold for uni-

variate analyses was set to a voxel-wise FWE (p < 0.05) and a cluster threshold of 10 voxels.

Contrasts were defined based upon the aims of this study, introduced in section 1. Table

7.1 summarizes the conditions and contrasts. In addition to the independent contrasts, a

conjunction analysis of the three accumulation trials (time, space, numerosity) contrasted

against the control condition was performed in order to identify regions that become jointly

significant.

2 Three for translation and three for rotation.
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Fig. 7.1: (a): Simplified graph of the first level analysis workflow. Inputs and outputs are
depicted with arrows. A detailed schematic for the workflow is provided in Figure A.1.
(b): Exemplary first level design matrix for one run. The first six regressors are convolved
with the HRF and represent the four trial types, cue presentation and response phase (until
a response was given). Nuisance regressors are FD, six anatomical aCompCor confounds,
calculated by fMRIPrep, as well as six motion parameters.

Table 7.1: List of T-contrasts estimated during the univariate analyses.

Nr. Name time space numerosity control cue comparison

1 Accumulation 1/3 1/3 1/3 0 0 0
2 Accumulation > control 1/3 1/3 1/3 -1 0 0

3 Time > control 1 0 0 -1 0 0
4 Space > control 0 1 0 -1 0 0
5 Numerosity > control 0 0 1 -1 0 0

6 Conjunction (Time > control) ∩ (Space > control) ∩ (Numerosity > control)

7.4.2 Second Level Analysis

Analogue to the first level analysis, group level analyses were computed with SPM12 v7487

within the nipype Python framework, similar to the first level analysis. A classical inference

on the second level with a one sample t-tests were performed on all contrasts. Thresholding

was performed with a foxel-wise FWE (p < 0.05) and with a minimum cluster size of 10

voxels. As reported in (Eklund et al. 2016), this approach tends to be too conservative, but

avoids the inflated false-positive of the clusterwise FWE. A graph of the nipype workflow is

shown in the appendix (Figure A.2).
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7.5 Multivariate Pattern Analysis

7.5.1 Introduction

Multivariate Pattern Analysis

The goal of this experiment was not only to gain insight which magnitude perception poten-

tially activates a specific neuronal population (i.e. associating brain regions with functions),

but also to decode distinct patterns of activity corresponding to processing time, space and

number. Multivariate pattern analysis (MVPA), first employed by Haxby et al. (Haxby et al.

2001), is a technique to enable to classification of such activity patterns. This subsections

will provide a superficial introduction into the methodology, for a more detailed introduc-

tion into the topic, please refer to (Pereira et al. 2009) and (Haxby et al. 2014).

In a first step during MVPA, the BOLD values of each voxel in a brain are vectorized into

a high-dimensional representational space. The dimensionality of that space is defined by

the amount of voxels and time-points (trials) of the functional imaging data. In the case of

this study, the whole brain contains about 64290 voxels and 100 trials for each condition.

Numerically, this is done by creating a N ×M matrix, in which N denotes the number of

observations (i.e. trials corresponding to certain conditions, also called labels) and M the

amount of voxels. For a binary decision problem, in which e.g. time trials are classified

against space trials, the matrix would contain 200 rows (100 trials for each condition) and

64290 columns. Each field of that matrix would contain the BOLD value of the specific voxel

at a specific time point.

In a second step, the available data is now divided into a training and a testing dataset.

Based on the training data, a classifier is now employed to find a decision surface that de-

fines the boundaries between sectors in the representational space. The most popular option

for a classifier is a support vector machine that optimizes the position by maximising the

distances from the surface to the closest vector (i.e. the support vectors). In a binary clas-

sification problem such as in this study, the decision surface would take on the shape of a

plane.

Once training is complete, the test data is now presented to the classifier and each trial

is classified according to its position in regard to the decision plane. Classification perfor-

mance is commonly assessed by counting the amount of correctly classified trials, but there

are many other options for scoring parameters (see (Kelleher et al. 2015)).

Typically, splitting the available data into a training and testing set is not only done once

(e.g. by splitting the data in half), but many times in a procedure called cross-validation (CV)

with the aim of maximizing the amount of independent training and testing data. Hereby,

only a fraction of the data is left out for testing (e.g. 20 %). The classification is then repeated

e.g. 5 times (5-fold CV), each with a different 20% of the data serving as the test subset. The

final result is obtained by calculating the average of the 5-fold CV classifier performances.

Searchlight Analyses

Because BOLD responses are mapped into a high-dimensional representational space in

MVPA, their spatial and temporal information is disregarded. An approach how to re-
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tain information about the anatomical localization of the representational space is called

information-based functional brain mapping (Kriegeskorte et al. 2006, Chen et al. 2011).

Among fMRI scientists, it is often called searchlight decoding, as its procedure is not un-

like shining a searchlight through the whole brain: in succession, MVPA is performed based

on multiple small subsets of voxels. The whole brain is traversed by iterating through every

voxel and defining an ROI with the neighbouring voxels, based on a predefined radius.

The output of such a searchlight analysis is a brain map in which each voxel’s value is the

cross-validated classification accuracy obtained by performing MVPA with only the subset

of voxels surrounding the central voxel. In order to infer information about statistical signif-

icance, the accuracy maps have to be thresholded and corrected for multiple comparisons.

The strategy employed in this thesis is described in section 7.5.3.

7.5.2 Sample Generation

Before running a MVPA, the raw BOLD signal has to be transformed into samples that are

suited for the particular classification problem at hand. The most straightforward method

is to use each volume as an individual sample for the classifier, but one could also e.g. av-

erage multiple volumes to obtain a less noisy sample. Approaches based on raw data have

two main limitations: (i) they potentially ignore vital information as the HRF is not mod-

elled and (ii) the BOLD signal of nearby trials inevitably overlaps, making the signal that is

unique to one specific trial much harder to identify.

One solution to the first problem is to obtain beta estimates for each trial using one gen-

eral linear model (GLM), in which each trial is modelled as a separate regressor (Rissman

et al. 2004). Consequently, the design matrix has as many columns as trials. Mumford et

al. (Mumford et al. 2012) called this the least-squares-all (LS-A) method. However, this ap-

proach is not suited for rapid event-related designs, as trial-specific regressors of closely

timed trials may be highly correlated. To solve this, Mumford et al. (Mumford et al. 2012)

propose the so called least-squares-separate (LS-S) method. Hereby, a separate GLM for each

trial is created that predicts two timecourses: one for the event (trial) of interest and one

for all other occurring events. The resulting design matrix has two columns plus additional

nuisance regressors. A disadvantage of this method is a high computational load, as there

have to be as many GLMs estimated as there are trials. In a follow-up paper (Turner et al.

2012), the authors modify the LS-S approach by modelling each type of event in a separate

regressor instead of summarising them into one. This LS2 method improves (i) overall clas-

sification performance and (ii) the ability to disentangle the signal of temporally adjacent

events compared to LS-S and was therefore chosen in this thesis to create input samples for

the MVPA. See Figure 7.2 for a graphical representation of the three methods. A detailed

workflow map for the trialwise beta estimation is shown in the appendix in Figure A.3. In a

last step, the trialwise beta maps were standardized (i.e. removal of the mean and scaled to

unit variance).
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Fig. 7.2: Schematic representation of different beta-series estimation approaches. Note that
additional nuisance regressors (e.g. motion parameters) are omitted. Left (LS-A): one GLM is
modelled in which each trial is a separate regressor. Middle (LS-S): for each trial, a new GLM
is created (in this example for the second trial). This trial is included as the first regressor
and all other trials are summarized in a second nuisance regressor (βn2). Right (LS2): similar
to LS-S, each trial has a separate GLM. The first regressor estimates the timecourse of the
current trial. All other occurrences of the other trial types (including the trial type of the
current trial) are modelled in separate regressors (βn2 - βn5). Adapted after (Turner et al.
2012).

7.5.3 Inter-Subject Pattern Analysis

Statistical inference on the group level in whole brain MVPA commonly employs t-tests on

participant’s individual decoding accuracies. Warranted criticism has been raised against

this approach, mainly due to (i) low number of observations and non-uniformity of statisti-

cal distribution of classification accuracies (Olivetti et al. 2012, Stelzer et al. 2013, Allefeld

et al. 2016), (ii) the non-directional nature of the identified group information (Gilron et al.

2016) and (iii) biases in the results due to confounds, e.g. time on task or individual dif-

ferences (Todd et al. 2013). In their publication, Allefeld et al. (Allefeld et al. 2016) bring

forward another important point: because the classification performance of a participant

can never be below chance level, the t-test tests a null-hypothesis that there is no infor-

mation in any subject on the group level. Consequently, the results may show that there

are participants with an effect, but not whether this generalises to the population. Crucially,

Stelzer et al. (Stelzer et al. 2013) could show that t-tests lead to high levels of false-positivity.

In a recent paper, Wang et al. (Wang et al. 2020) reviewed the inter-subject pattern analysis
(ISPA) approach. Instead of splitting the data of one subject into a train and test dataset,

the data is split on the group level in training and testing subjects. Cross-validation is done

via a leave-one-subject-out (LOSO) algorithm, in which the accuracy is repeatedly tested on

the left out participant. As a results, there as many folds as there are participants and each

fold produces a whole-brain accuracy map. In a second step, the proposed approach uses

non-parametric permutations tests to asses significance on the group-level (T. E. Nichols

et al. 2002). When compared to the traditional group level MVPA methods, ISPA provides

various key advantages and was therefore chosen as the analysis method for this thesis:
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• ISPA offers straight forward interpretation of the results. A significant effect detected by

ISPA may directly be translated to the population level (Kragel et al. 2018).

• Since no permutations of labels on the participant level are employed for significance

testing, computational requirements remain reasonable.

• Compared to decoding on the participant level, the amount of samples available for train-

ing is larger when ISPA decoding is utilized3. This in turn allows ISPA to detect smaller

multivariate effects (Wang et al. 2020).

P₁ S₂₃ S₂₄ S₂₅S₂ S₃ S₄ S₅Fold 1 P₂₂ P₂₃ P₂₄P₂ P₃ P₄ P₅

S₁ S₂₃ S₂₄ S₂₅S₂ S₃ S₄ S₅Fold 3 P₁ P₂₂ P₂₃ P₂₄P₂ P₃ P₄ P₅

S₁ S₂₃ S₂₄ S₂₅S₂ S₃ S₄ S₅Fold 24 P₁ P₂₂ P₂₃ P₂₄P₂ P₃ P₄ P₅

P₁ P₂₂ P₂₃ P₂₄P₂ P₃ P₄ P₅Fold 2

Training Test

SnPM

Accuracy 1

Accuracy 2

Accuracy 3

Accuracy 24

LOSO whole-brain searchlight decoding Statistical inference

Fig. 7.3: Schematic representation of the ISPA analysis algorithm for one pair of conditions
(e.g. time vs. space). In a 24-fold LOSO cross-validation, trial-wise beta maps of 23 partici-
pants are combined into a training set. The classifier is then tested on the data from the 24th
participant. Each fold results in a whole-brain accuracy map, in which each voxel carries the
decoding accuracy of the specific searchlight run. The 24 accuracy maps are then analysed
for their significance via non-parametric permutations, as implemented in SnPM.

Figure 7.3 depicts a schematic representation of the ISPA decoding algorithm. Pairwise

whole brain searchlight decoding with a LOSO cross-validation and a radius of 6 mm was

implemented in Python using the packages nilearn 0.5.2 (Abraham et al. 2014) and scikit-
learn 0.21.3 (Pedregosa et al. 2011). As an estimator, a logistic regression classifier was cho-

sen due to (i) its computational efficiency and (ii) readily interpretable results (Ryali et al.

2010). Table 7.2 summarizes the relevant parameters. The optimization problem was solved

by using the lbfgs-solver4, as it is memory conservative and relatively fast for the amount of

data points in this analysis.

As described in section 5.3, participants could indicate that they forgot the dimension of

interest for the current trial with the thumb button during the response phase. These tri-

als were excluded from the classification samples. To prevent an inflated performance es-

timates for the classifier due to different amount of samples, a balanced accuracy scoring

was employed, weighting samples according to the inverse prevalence of its true class. If

the participant did not press the thumb button for any trials and the sample numbers are

thus balanced, the reported classification score is equal to the conventional accuracy (i.e. the

3 On the participant level, the number of samples (trials) is usually in the order of dozens to a few hundred.
In ISPA, this number is multiplied by the amount of participants in the study, greatly increasing the total
amount of samples available for training.

4 Limited-memory Broyden-Fletcher-Goldfarb-Shanno approximates the second derivative matrix updates
with gradient evaluations (Zhu et al. 1997).
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number of correctly classified samples divided by the total number of predictions). Other

parameters have been left at their default value.

In a second step, the significance at the group level of 24 accuracy maps was tested with the

implementation of SnPM toolbox (T. Nichols et al. 2001) with 1000 permutations, a voxel-

wise significance thresholding of p < 0.05 (FWE corrected) and a minimum cluster size of

20 voxels. In a last step, the obtained statistical maps were converted to binary images and

the average classification accuracy maps from 24 folds were masked using these maps. The

final result is a map of average classification accuracy that shows only voxels that remain

after significance testing on the group level.

Table 7.2: Parameters used for the logistic regression classifier.

Parameter Setting

penalty l2
C 0.1
solver lbfgs
scoring balanced_accuracy
tol 1e−4

class_weight none
decision_function_shape one-versus-rest (ovr)
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PART III:
RESULTS
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8. Behavioural Results

8.1 Manipulation Checks

8.1.1 Reaction Times

The average reaction times across eight runs for the four dimensions are depicted in Figure

8.1. ANOVA of the fitted linear mixed effects model revealed two main effects: (i) partic-

ipants responded faster during the course of experiment and (ii) response times differed

between dimensions significantly. No interaction was found between run and dimension,

indicating that the change in response times across eight runs did not differ between task

dimensions. Table 8.1 summarizes the results.
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Fig. 8.1: Reaction times in seconds across all eight runs. The markers are jittered along the
x-axis for better visibility. Error bars represent 95 % confidence intervals across participants.

In order to test for which dimensions the reaction times differed significantly, a post-hoc

test was done using Tukey’s HSD to control for familiy-wise error rate at p = 0.05. Hereby,

only the reaction times for numerosity and time showed a significant difference (x = 0.03

s, p = 0.005).
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Table 8.1: Results of the ANOVA of the fitted linear mixed effects models for reaction times.
Task dimension and run number were included as fixed predictors, subject number was
modelled as a random intercept (reaction time ∼ dimension * run + 1|subject).

DF denDF F-value p-value

intercept 1 725 835.40 <0.001
dimension 3 725 3.6175 0.013
run 1 725 50.72 <0.001
dimension:run 3 725 0.5442 0.652

8.1.2 Perceived Task Difficulty

As described in section 5.6, the comparison values were adjusted by an adaptive algorithm

with the intention to maintain an equal difficulty level across runs and across different di-

mensions. In order to assess task difficulty, participants had to judge the difficulty of the

four task types at the end of each run. Figure 8.2 shows the results.
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Fig. 8.2: Perceived task difficulty for each dimension and each run. Participants made their
response on a VAS with 20 intermediate positions ranging from easy (0) to difficult (1).
The markers are jittered along the x-axis for better visibility. Error bars represent 95 %
confidence intervals across participants.

Analogue to the reaction times, an ANOVA of the fitted linear mixed effects model was per-

formed. The results show that perceived task difficulty did not change during the course of

the experiment, as intended by the adaptive algorithm employed (see Table 8.2). However,

there was a main effect for dimension, indicating that difficulty among the different trial

types was significantly different. A pairwise post-hoc Tukey’s HSD test revealed a significant

difference in perceived difficulty between space and control (x = 0.07, p = 0.003), numeros-

ity and control (x = 0.09, p < 0.001) as well as time and control (x = 0.05, p = 0.03). Difficulty

among the three accumulation dimensions did not differ significantly.
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Table 8.2: Results of the ANOVA of the fitted linear mixed effects models for perceived
task difficulty. Task dimension and run number were included as fixed predictors, subject
number was modelled as a random intercept (task difficulty ∼ dimension * run + 1|subject).

DF denDF F-value p-value

intercept 1 721 1112.67 <0.001
dimension 3 721 8.71 <0.001
run 1 721 0.0022 0.96
dimension:run 3 721 0.49 0.69

8.1.3 Magnitude Differentiation

Wilcoxon signed-rank tests confirmed that the thresholds for large and small magnitude of

time (W23 = 252, p < 0.001), space (W23 = 210, p < 0.001), numerosity (W23 = 276, p < 0.001)

and control (W23 = 276, p < 0.001) differed significantly, confirming that participants were

able to distinguish between the low and high standard values. For the statistical analysis,

outliers were excluded from the data using Tukey’s criterion (1.5 · IQR), as described in sec-

tion 6.3.4. However, regardless of the exclusion or inclusion of outliers, significance levels

remained the same. A graphical representation of the results is shown in Figure 8.3.
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Fig. 8.3: Boxplot of the calculated thresholds (PSEs) of each participant for the four dimen-
sions and two magnitudes, including outliers. Upper and lower boundaries of the boxes
represent 25 % and 75 % quartiles. Whiskers extend to 1.5 times the interquartile range.
Threshold values are normalized to the respective mean of reference values, as described in
section 6.1.
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8.2 Inter-Dimensional Judgement Precision

One of the main aims of this experiment was to investigate behavioural evidence for a shared

magnitude processing system by comparing judgement precisions of the different dimen-

sions. If the perception of two dimensions is grounded on the same neuronal mechanism,

judgement precision should be correlated between these two dimensions. As an example,

figure 8.4 illustrates two PFs with different widths from different participants to provide a

graphical illustration how judgement precisions is reflected in the shape of the PF.
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(a) Participant 3, large-numerosity
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Fig. 8.4: Behavioural data (red crosses) and calculated PFs for two different participants
and different task types as well as magnitudes to illustrate how the shape of the PFs differ
with higher and lower precision. In this case, the judgements made by participant 3 in large-
numerosity trials were more accurate than the ones of participant 4 in small-time trials. The
y-axis denotes the probability of a participant responding with more when asked to compare
the displayed value with the perceived value during the response phase.

Between each possible pair of dimensions, Spearman rank correlation coefficients were cal-

culated and are summarized in Table 8.3. Analogue to the magnitude differentiation anal-

ysis above, outliers were identified and excluded from the statistical analysis. Again, this

had no impact on the overall outcome. Results show that participants who were relatively

accurate in their judgements of time were also more accurate in their perception of space.

For the other dimensions, no significant correlations were found. Spearman rank plots for

all dimensions, including the control condition, can be found in Figure B.1 of the appendix.
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Table 8.3: Inter-dimensional precision correlations between all possible combinations of
modalities. Reported are Spearman rank correlation coefficients and their corrected p-
values (FWE = 0.05).

Dimension ρ p-value

Time & space 0.678 0.002
Time & numerosity 0.284 0.443
Space & numerosity 0.271 0.443
Time & control 0.237 0.768
Space & control 0.054 0.913
Numerosity & control 0.090 0.913

8.3 Cross-Dimensional Interference

As described in section 6.6, the last behavioural analysis examined the inter-dimensional

bias on magnitude perception, meaning the impact an irrelevant dimension had on the

judgement of the relevant dimension. A practical example is displayed in Figure 8.5, which

shows the influence of distance as the irrelevant dimension on (i) time (Figure 8.5a) and (ii)

numerosity (Figure 8.5b) judgements in one participant. The trials of the relevant dimen-

sion were split into trials with short or long distances and separate PFs were calculated for

both conditions. In this example, distance biased time judgements in a positive direction

whereas no influence of the trial distance on numerosity perception was visible.
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Fig. 8.5: Exemplary, the effect of trial distance as the irrelevant dimension on (a) time and
(b) numerosity judgements are shown for participant 2. For each dimension, separate PFs
were calculated after splitting all trials according to the distance travelled during the trial
(either 11.5 m or 19.7 m). For time, a positive bias was observed. In contrast, numerosity
judgements were not affected by distance.

Figure 8.6 visualizes the results obtained from all 24 participants. Out of all possible com-

binations, only time and space interfered in both directions with each other. Specifically, a

Wilcoxon signed-rank test revealed a positive influence of space on time (x = 0.177, W23 = 36, p = 0.006),
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meaning that time was perceived longer when the distance travelled was also longer com-

pared to shorter travel lengths, even though the actual time of the passive movement was

the same in each trial. On the other hand, time as the irrelevant dimension influenced space

negatively (x = −0.139, W23 = 45, p = 0.013): for trials in which the participant travelled the

exact same length and had to judge distance, the PSE was smaller when the duration of the

movement (time) was 4.8 s compared to trials in which the movement only lasted 2.8 s.

Among the other possible combinations of dimensions, no significant interference was

found. Table B.1 shows the results for all possible combinations, including the control con-

dition.
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Fig. 8.6: Results of cross-dimensional interference on magnitude perception plotted with
box-whisker plots. Individual data points are plotted as red dots. A positive PSE difference
indicates higher PSE values if the irrelevant dimension was in high condition and vice versa.
Significance was tested with a Wilcoxon signed-rank test and corrected for multiple com-
parisons (FWE = 0.05).
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9. Neuroimaging Results

9.1 Quality Control

In this section, the results for the quality metrics introduced in section 7.2 are presented.

Figures for the other parameters that were not selected may be found in section C.1 of the

appendix.

9.1.1 Spatial Information

Entropy-focus criterion (EFC) provides a proxy for participant-movement induced blurri-

ness and ghosting in MRI data (Atkinson et al. 1997), as introduced in section 7.2. Figure

9.1 shows the EFC for each participant separately. While there are noticeable differences in

the EFC between participants (e.g. participant 4 vs. 16), none of the participants had values

that were outside the inclusion area, so no detailed examination based on EFC was triggered.
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Fig. 9.1: Box-whisker plot of the entropy-focus criterion (EFC) of all participants. Individual
runs are plotted as red dots. The group median is shown by the orange horizontal line. The
area shaded in light grey is visualizes the data range in which data points are not considered
outliers, as defined in section 7.2. Lower values are better.

9.1.2 Temporal Information

Temporal SNR gives insight into the temporal variability of BOLD images. A low tSNR re-

flects higher fluctuations in the signal, mainly due to thermal noise and physiological signal

alterations. In Figure 9.2, tSNR values of each participant and run are plotted. Similar to

the EFC, no participant had a value outside the outlier range. Most of the participants have
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varying tSNR values across the eight runs, with participant 5 being a noticeable exception,

as her or his values are consistently low.
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Fig. 9.2: Box-whisker plot of the whole-brain tSNR values of all participants. Individual
runs are plotted as red dots. The group median is shown by the orange horizontal line. The
area shaded in light grey is visualizes the data range in which data points are not considered
outliers, as defined in section 7.2. Higher values are better.

9.1.3 Artefact Detection

Ghosting

Figure 9.3 shows the Ghost-to-signal ration (GSR) values along the phase encoding y-axis.

Higher values indicate a significant presence of ghosting in the anterior and posterior sec-

tions of the image. Image data of participant 13 and 18 lie outside of the inclusion area and

indicate the presence of ghosting. Hence, the corresponding images were manually exam-

ined.
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Fig. 9.3: Box-whisker plot of the GSR values along the phase-encoding y-axis of all partic-
ipants. Individual runs are plotted as red dots. The group median is shown by the orange
horizontal line. The area shaded in light grey is visualizes the data range in which data
points are not considered outliers, as defined in section 7.2. Lower values are better.

Upon manual inspection, ghosting was found in all runs for participant 13 and 18. As an

example, Figure 9.4a shows a volume of participant 13, session 1, run 4 in which ghost arte-
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facts are visible at the top row of the image. Ghosting artefacts of participant 18 were similar

in nature. After preprocessing with fMRIPrep, the ghosting was successfully removed in all

volumes. For both participants, the brain masks were visually inspected as well, to make

sure that ghosting did not have an adverse effect on this crucial preprocessing step (Figure

9.4c).

(a) Raw (b) Preprocessed (c) Brain mask

Fig. 9.4: (a): Raw data of an EPI volume of participant 13, session 1, run 4. Ghosting is visible
in the top part of the image. After preprocessing, ghosting was successfully corrected (b).
Additionally, the brain mask (c) calculation was not affected by the ghosting.

Movement Induced Artefacts

The percentage of volumes that exhibited a fieldwise displacement above 1 mm for all par-

ticipants and runs is plotted on Figure 9.5. A median percentage of all participants of 0.54 %

indicates an overall low level of head motion. However, some runs exceeded the inclusion

range. Most strikingly, run 4 in session 1 from participant 20 has 10.45 % of volumes that

exceeded the threshold of 1 mm FD, resulting in the exclusion of this particular run in

subsequent analyses.
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Fig. 9.5: Box-whisker plot of the percentage of volumes that are above a threshold of 1 mm
for the FD. Individual runs are plotted as red dots. The group median is shown by the
orange horizontal line. The area shaded in light grey is visualizes the data range in which
data points are not considered outliers, as defined in section 7.2. Lower values are better.
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9.2 Second Level Univariate Analysis

9.2.1 Introduction

In addition to behavioural data analyses, another main aim of this experiment was to mea-

sure BOLD activation in order to identify brain regions exclusively or commonly activated

during the processing of time, space or numerosity processing. In this chapter, the results

from the group level activation analyses are presented.

9.2.2 Activation During Accumulation Trials

The first contrast was calculated in order to identify neural structures that were commonly

activated during the accumulation phase of all three dimensions (time, space or numeros-

ity). As shown in Figure 9.6 and Table C.1, nine activation clusters could be identified,

mainly located in (i) IFG bilaterally, (ii) the IPS bilaterally, (iii) the fusiform gyrus bilat-

erally, although predominantly in the right hemisphere, (iv) right and left posterior medial

frontal gyrus as well as (v) a cluster spanning the right and left primary visual cortex.

8 10 12 14 16

A
Right hemisphereLeft hemisphere

A

P

Fig. 9.6: Surface t-map of the average activation during time, space or numerosity trials
(contrast 1 in Table 7.1). Glass brain plot shown in Figure C.7 of the appendix.

9.2.3 Accumulation Trials vs. Control Trials

The next contrast where designed to uncover regions that had a higher BOLD response

during the accumulation trials compared to the control condition, regardless of the specific

dimension. Here, four clusters remained after thresholding and are shown in Figure 9.7.

Both in the right (78 voxels) and left (44 voxels) hemispheres, clusters in the pars orbitalis
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of the respective IFG were identified. On the right hemisphere, two clusters in the inferior

occipital gyrus as well as fusiform gyrus showed significant activation for this contrast.

6.4 8 9.7 11 13

y=-75 x=51 z=-2

y=42 x=-42 z=-12

y=-54 x=42 z=-19
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y=45 x=39
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Cluster #1 Cluster #3

Cluster #2 Cluster #4

Fig. 9.7: T-map of voxels that show a significantly higher BOLD response during accumula-
tion trials compared to control trials (contrast 2 in Table 7.1). Four clusters could be identi-
fied and slices at their local maxima are shown in coronal plane. Glass brain plot shown in
Figure C.7 of the appendix.

Table 9.1: Clusters identified for contrast 2: activation during accumulation trials vs. control
trials. The value of cluster size indicates the number of voxels. Coordinates represent peak
level activation.

Nr. Anatomical region Cluster size T p MNI coordinates

1 R inferior frontal gyrus 78 12.49 <0.001 (39, 45, -12)
2 R inferior occipital gyrus (hO4cla) 76 9.44 <0.001 (51, -75, -2)
3 L inferior frontal gyrus 44 9.41 <0.001 (-42, 42, -12)
4 R fusiform gyrus 35 8.84 <0.001 (-51, -81, -5)
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9.2.4 Dimension Specific Activation

The next three contrasts (plotted in Figure 9.8 and Table 9.2) were calculated in order to

identify regions that had a dimension-specific significant higher BOLD response compared

to the control condition (contrasts 3-5 in Table 7.1). For time > control, bilateral clusters in

the pars orbitalis of the IFG (left: 81 voxels, right: 68 voxels) as well as pars triangularis of

the IFG (12 voxels) on the left hemisphere showed significant activation.

For the contrast space > control, three clusters located within the right hemisphere remain

after thresholding: (i) in the pars orbitalis of the IFG, (ii) in the lingual gyrus and (iii) in the

inferior parietal lobe (PGp).

In trials where numerosity was to be judged, six clusters were discovered. First, the group

level analysis revealed a large cluster including 320 voxels on the right hemisphere with its

maximum located in in the fusiforme gyrus. Furthermore, this cluster expands to the lateral

and inferior gyri and sulci occipitotemporalis. A similar, smaller cluster with 91 voxels is

present in the middle occipital gyrus contralaterally. Additionally, four more clusters within

the right hemisphere could be identified, notably including the IPS and cuneus.

As a last univariate analysis, a conjunction analysis of a all three accumulation conditions

revealed only the right IFG as an area that exhibited higher BOLD activation during time,

space and numerosity trials than during control trials.

Table 9.2: Clusters identified for contrasts 3-6 and the conjunction analysis. The value of
cluster size indicates the number of voxels. Coordinates represent peak level activation.

Nr. Anatomical region Cluster size T p MNI coordinates

Time > control

1 L inferior frontal gyrus 81 11.56 <0.001 (-45, 45, -12)
2 R inferior frontal gyrus 68 9.28 <0.001 (36, 45, -12)
3 L inferior frontal gyrus 12 7.75 0.002 (-54, 27, 1)

Space > control

1 R inferior frontal gyrus 38 11.00 <0.001 (36, 45, -12)
2 R lingual gyrus 21 7.54 0.004 (18, -66, -2)
3 R Inferior parietal lobe (PGp) 10 7.33 0.006 (45, -81, 24)

Numerosity > control

1 R fusiform gyrus 320 13.44 <0.001 (42, -51, -19)
R middle temporal gyrus (V5) 11.47 <0.001 (45, -66, 1)
R inferior occipital gyrus (V4) 11.24 <0.001 (45, -84, -12)

2 L inferior occipital gyrus (hO4cla) 91 10.97 <0.001 (-54, -78, -2)
3 R middle orbital gyrus 33 8.92 0.001 (39, 48, -15)
4 R intraparietal sulcus 28 8.21 0.001 (48, -36, 54)
5 R middle occipital gyrus 19 7.97 0.001 (30, -72, 34)
6 R cuneus 10 7.60 0.003 (24, -84, 44)

(Time > control) ∩ (Space > control) ∩ (Numerosity > control)

1 R inferior frontal gyrus 29 6.52 0.01 (42, 45, -12)
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Fig. 9.8: T-maps of two exemplary clusters that showed highest activation for each dimen-
sion compared to the control condition (a-c) and the conjunction analysis (d). Glass brain
plots of each contrast are shown in Figure C.7 and C.8 of the appendix.
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9.3 Multivariate Pattern Analysis

9.3.1 Decoding of Accumulation Trials Against Control Trials

As described in section 7.5.3, MVPA was performed with an inter-subject pattern analysis

approach. First, the three trial types in which the participants had to perform accumulation

of either time, space or numerosity were decoded pairwise against trials in which the par-

ticipants had to judge the luminance of a square (control condition). This analysis was done

in order to gain insight into the activation patterns generally associated to the processing of

time, space or numerosity and whether these areas are specific for one dimension or not.

To provide a first overview, glass brain plots are shown in Figure 9.9. Common for all three

dimensions was a cluster located in the left and right thalamic area that remained after sig-

nificance testing, but showed an overall low classification accuracy when compared to other

regions. Another area in which classification between accumulation and control condition

was possible for all tested dimensions was the pars orbitalis of the right IFG (depicted ex-

emplary for time in Figure 9.10B). Decoding of both space or numerosity versus control

trials was possible in a common cluster that is located in the left and right precuneus (area

7M, 7P and 7A), shown in Figure 9.10 as well as C.10 of the appendix. Although both time

and space can be decoded against control trials within the lingual gyrus, the cluster for time

trials is located anterior to the one for space trials vs. control trials.

A Time vs. control

B Space vs. control

C Numerosity vs. control

2.9%

5%

7.5%

10%

12.5%

15%

L R L R

Fig. 9.9: Glass brain plots of average decoding accuracy above chance level (50 %) of 24
inter-subject folds for all three accumulation dimensions against the control dimension.
Colormap values are fixed at the lowest (2.9 %) and the highest (15 %) accuracy values.
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One unique cluster remains after significance testing on the group level for time versus

control: pars orbitalis of the left IFG (98 voxels). Decoding of numerosity condition versus

control condition is uniquely possible bilaterally in a large cluster with 473 voxels (right)

and 181 voxels (left), spanning along the fusiform gyrus on the right side as well as bilat-

erally the posterior temporal cortex and anterior inferior parts of the occipital cortex (area

hOc4la, hOc4lp and hOc5). Exemplary, the cluster in the right hemisphere is depicted in

Figure 9.10D.
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D numerosity vs. control right hOc4la

y=-84 x=45 z=-5

2.9% 5.9% 8.9% 12% 15%

Fig. 9.10: Accuracy maps of exemplary clusters that show significant decoding accuracy
against the control condition. Values are percentages above chance level of 50 %.
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Table 9.3: Clusters which show significant decoding accuracies when decoding each dimen-
sion vs. control trials. The value of cluster size indicates the number of voxels. Accuracy
values are in percent above chance (50 %). Coordinates represent peak level activation.

Nr. Anatomical region Cluster size Accuracy MNI coordinates

Time vs. control

1 R lingual gyrus (V2) 64 10.06 (9, -87, -9)
R lingual gyrus (V1) 9.33 (18, -99, -12)
R inferior occipital gyrus (V3v) 9.29 (27, -93, -12)

2 R inferior frontal gyrus 75 8.95 (48, 45, -9)
3 L inferior frontal gyrus 98 8.84 (-48, 45, -9)
4 R + L mesencephalon 230 8.46 9, -30, -9)

L thalamus 6.98 (-3, -15, +14)
R thalamus 6.97 (9, -27, -2)

Space vs. control

1 R + L lingual gyrus (V2) 63 9.71 (12, -72, -2)
2 R + L precuneus 184 9.50 (3, -63, 44)
3 R middle orbital gyrus 77 8.84 (36, 48, -15)
4 R + L thalamus 155 6.81 (0, -30, -5)

Numerosity vs. control

1 R inferior occipital gyrus (hOc4la) 473 14.65 (45, -84, -5)
R fusiforme gyrus 13.74 (39, -60, -12)
R middle temporal gyrus (V5) 12.73 (51, -72, 8)

2 L inferior occipital gyrus (hOc4la) 181 14.60 (-48, -87, 1)
3 R superior occipital gyrus 145 11.43 (27, -69, 34)
4 R + L precuneus 310 10.51 (0, -72, 54)
5 R + L thalamus 509 8.29 (-3, -18, 14)
6 R inferior frontal gyrus 88 8.22 (42, 48, -12)
7 L posterior cingulate gyrus 67 7.12 (-3, -39, 28)
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9.3.2 Crossdimensional Decoding

In a next step, pairwise whole brain ISPA decoding was performed for every combination of

accumulation conditions (time, space or numerosity). One might speculate that a significant

decoding accuracy between two dimensions is an indicator for different neural processing of

these dimensions within these areas. On the contrary, failure to decode dimensions hints at a

similar processing of these dimensions. As an overview, Figure 9.11 shows glass brain plots

for the decoding results. Figure 9.12 show slices of specific clusters for a better localization.

A Time vs. space

B Time vs. numerosity

C Space vs. numerosity

2.9%

5%

7.5%

10%

12.5%

15%

L R L R

Fig. 9.11: Glass brain plots of average decoding accuracy above chance level (50 %) of 24
inter-subject folds for all three accumulation dimensions against each other. For time vs.
space, no significant voxels remain after significance thresholding.

Interestingly, the decoding algorithm could not identify any clusters in which a separation

between time and space trials is possible, hence Figure 9.11A shows an empty glassbrain

plot.

For the pairwise decoding of space or time trials vs. numerosity, similar areas seem to be

contain significant decoding information, as visual inspections of the patterns of Figure

9.11B and C reveal. First, large clusters in both hemispheres along the fusiform gyrus, infe-

rior, middle as well as posterior temporal areas (Figure 9.12A) showed neuronal activity that

enabled decoding of time or space trials vs. numerosity trials. The same clusters also (i) ex-

hibited unique firing patterns when decoding numerosity vs. control trials and (ii) showed

a unique activation contrast for numerosity > control in the activation analysis (see section

9.2.4). Another cluster in which successful decoding of time or space versus numerosity

was possible was located bilaterally at the border between the occipital and parietal cortex

(cuneus and precuneus, see Figure 9.12B).
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Two unique clusters could be identified for the decoding of time trials versus numerosity

trials: (i) bilaterally, clusters located at the IPS (Figure 9.12C) and (ii) within the inferior

parietal lobe in the left hemisphere.

A space/time vs. numerosity (common)

L R

y=-63 x=45
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z=1

C time vs. numerosity (unique)

y=-57 x=36 z=57

D time vs. numerosity (unique)

y=-60 x=-36 z=57

2.9% 5.9% 8.9% 12% 15%

L R
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z=13

B space/time vs. numerosity (common)

Fig. 9.12: Accuracy maps of exemplary clusters exhibiting significant decoding accuracy
between dimensions. A and B show clusters that are common when decoding time or space
trials vs. numerosity trials. The bottom row (C and D) show clusters that are unique for the
decoding pair time vs. numerosity. Values are percentages above chance level of 50 %.

Table 9.4: Clusters with significant decoding accuracies when performing crossdimensional
decoding. The value of cluster size indicates the number of voxels. Accuracy values are in
percent above chance (50 %). Coordinates represent peak level activation.

Nr. Anatomical region Cluster size Accuracy MNI coordinates

Time vs. numerosity

1 R middle temporal gyrus (V5) 343 12.99 (45, -66, -2)
R fusiforme gyrus 7.69 (42, -45, -15)

2 L middle temporal gyrus (V5) 220 11.96 (-48, -78, 1)
3 R intraparietal sulcus 67 10.36 (36, -57, +57)
4 L intraparietal sulcus 51 9.12 (-36, -60, 57)
5 R + L cuneus 263 8.87 (6, -87, 13)
6 L inferior parietal lobe 41 8.04 (-57, -48, +41)

Space vs. numerosity

1 R middle temporal gyrus (V5) 335 11.21 (45, -63, 1)
R inferior temporal gyrus (FG1) 10.56 (42, -60, -12)

2 L middle occipital gyrus (hOc4la) 135 10.99 (-48, -72, 1)
3 R + L cuneus 204 8.02 (0, -84, 28)
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10. Discussion

10.1 Paradigm Design

This thesis examined magnitude perception of time, space and numerosity on a behavioural

and neuronal level. Creating paradigms which allow tapping into these higher order mental

representations is not trivial, as multiple, potentially confounding, aspects have to be con-

sidered.

First, distance and numerosity are both dimensions that may be presented in a sequential

or instantaneous format. The same is not true for time, as it can only be experienced in an

accumulative (i.e. sequential) manner. The importance of an identical presentation format

has been highlighted in a recent review by (Hamamouche et al. 2019). By using passive

movement inside a virtual environment, with dots appearing at random locations and with

a random lifetime, participants were forced to make an accumulative judgement for space

and numerosity. Furthermore, by presenting the control condition (luminescence of a white

square) in an instantaneous manner, the paradigm allowed to study precisely the accumu-

lation phase of time, space or numerosity perception in contrast to an instant judgement

of a fourth dimension. A potential difference in perception of time trials vs. all other di-

mensions remained, as participants could have mentally counted down the seconds during

movement in order to judge elapsed time, even though there were instructed not to do so

(see section 5.3). However, given that reaction times were highest for time trials (see section

8.1), this seems unlikely, as counting down would have reduced the difficulty of time trials

substantially.

Second, identical visual input for all trials was an important aspect during the design of this

paradigm. Only then could variances in BOLD activation or shape of activation patterns be

attributed to different neuronal magnitude perception mechanisms. A potential limitation

of this study is that visual attention to different elements of the virtual environment during

the trials was not fully controlled. For example, in numerosity trials, participant were likely

focusing the ground to a higher degree than in other trial types, thus increasing the sensa-

tion of optical flow for that specific trial type. In future studies, the inclusion of eye-tracking

could help to elicit neuronal processes that are numerosity-specific by including the point

of gaze as a confound.

Third, extensive pilot testings were conducted in order to fine-tune the standard values in

high and low condition as well as the initial comparison values. This was done in order

to achieve similar judgement difficulties between magnitude judgements of all dimensions.

Furthermore, post-hoc manipulation checks were performed before any further analyses of
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the behavioural data were conducted. To this end, the reactions times and the reported task

difficulty were analyzed. Hereby, all three trial types of interest were subjectively perceived

as identical in their difficulty. While reaction times differed significantly between numeros-

ity and time trials, the change in reaction times over the course of the experiment was iden-

tical between all task types, i.e. participants answered faster as the experiment progressed,

but did so equally for all dimensions. In a third preliminary analysis, it was confirmed that

participants could distinguish the two different magnitudes (low and high condition) of

each trial type by comparing their normalized PSE values.

Finally, trial ordering proved to be a challenging aspect of paradigm design, as the order

had to satisfy multiple, partially competing, requirements. As an illustrative example, one

can envision that the time a participant comfortable spends inside the scanner is limited.

However, classification performance by MVPA usually improves with the amount of train-

ing data (Haxby et al. 2014). Based on results from pilot scans and other fMRI studies, a

target for approximately 100 trials per condition was set. Furthermore, the amount of train-

ing data was drastically improved by using ISPA, thus pooling trials for training and testing

across subjects. In order to minimize the effect of neural habituation and maximize effect

sizes, counterbalancing of trials was achieved by creating de Bruijn sequences (Aguirre 2007,

Aguirre et al. 2011).

10.2 Behavioural Data

In order to quantify magnitude perception across time, space and numerosity, psychometric

functions were fitted to the magnitude judgements of each participant and each dimension.

This proved to be highly challenging, as restrictions on the amount of trials, imposed by

limited scan times, resulted in overdispersed data and a lower than usual number of trials

per stimulus intensity. To overcome this challenge, psignifit 4 (Schütt et al. 2016), a Bayesian

framework to estimate PFs, was used. After modification of the priors to the characteristics

of the behavioural data, this approach was able to partially compensate for overdispersed

data and provide a good proxy for credible intervals for the majority of behavioural data.

In future studies, the reliability of the behavioural data could be improved by reducing

constraints on the trial ordering and thus, allowing for more trials per stimulus interval.

Additionally, an adaptive algorithm that monitors the amount of trials for each stimulus

intensity during the experiment could be beneficial and help reduce uncertainty in fitting

the PFs. Another methodological improvement to the reliability of the behavioural results

could be achieved by using a multi-level Bayesian model to incorporate the size of credible

intervals on the group level. In the present study, PFs were only fitted on the individual

level with a Bayesian approach. Results on the group level were then obtained by comput-

ing frequentist statistical methods.

Behavioural data analysis focused on two aspects: (i) comparison of judgement precisions

between the different dimensions and (ii) the cross-dimensional bias afflicted by one dimen-

sion on the other.
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Judgement precision (see section 8.2), characterized by the width of the fitted PF, showed

significant correlation between the acuity for time and space perception, but not for any

other combination of dimensions. As iterated in section 4.2.1, research regarding judge-

ment precision of different dimensions remains inconclusive at the point of this thesis

(Hamamouche et al. 2019). Furthermore, a comparison with other studies is challenging,

as few studies have investigated time, space and number perception during self-motion and

while presenting the stimuli in a sequential manner. A study by (Droit-Volet et al. 2008) in-

cluded both sequential and non-sequential presentation modes for space and numerosity. In

contrast to results of this study, the authors found no differences in judgement performance

between time, space and number when all three dimensions were presented sequentially.

Similarly to judgement precision, a cross-dimensional bias could only be found between

time and space (section 8.3). It was found that time judgements were positively influenced

by distance, i.e. the duration of time trials was perceived as longer when the distance trav-

elled during the trials was longer, even though the actual duration was the same. Counterin-

tuitively, the duration of a trial biased distance judgements negatively: when the duration of

a distance trial was shorter, the distance travelled was judged as farther compared to longer

lasting trials with the exact same distance. This effect has been reported before (Lambrechts

et al. 2013) and stands in apparent contrast to other studies which reported a positive influ-

ence of time on space perception (Riemer et al. 2018, Cai et al. 2015).

However, the current findings may be explained by considering the additional factor of

speed. When travel time is kept constant but traversed distance increases, so does speed.

Conversely, in trials with identical travelled distance and increased travel time, speed de-

creases. Therefore, a positive effect of trial duration on perceived distance and a negative

bias of trial distance on perceived duration is expected, if one assumes that interference

between time and space is predominately driven by the factor of speed. In line with this in-

terpretation, studies using static stimuli, and thus excluding the additional factor of speed,

reported a positive bias of time on space ((exp. 1 Riemer et al. 2018) or (Cai et al. 2015))

whereas studies using dynamic stimuli reported a negative (e.g. Martin et al. 2017) or the

absence of ((exp. 2 Riemer et al. 2018) or (Casasanto et al. 2008)) an interference effect. It is

important to note that movement speed was counterbalanced within the trial order in order

to avoid an asymmetric bias.

10.3 Functional Imaging Data

The quality of the functional and anatomical image data from 24 participants was first thor-

oughly checked by calculating various IQMs with the excellent toolset available in MRIQC
(Esteban et al. 2017). Overall, a high quality of the dataset could be assessed. One run of a

participant had to be excluded due to excessive movement. Otherwise, the amount of move-

ment was within tolerable limits. Ghosting artefacts detected in the data of two participants

were successfully removed during preprocessing and were therefore included in the analy-

sis.

The obtained functional image data were analysed with two different methodologies: (i) a
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univariate GLM analysis to identify regions that are activated during magnitude processing

of each dimension and (ii) an inter-subject MVPA (ISPA) analyses with the aim to decode

unique activation patterns evoked while perceiving each dimension.

Univariate activation analysis revealed the right IFG as a commonly activated ROI during

the accumulation of all three dimensions in contrast to the control condition. This was evi-

dent both in individual contrasts against control trials as well as in a conjunction analysis.

Uniquely, the left IFG showed higher activation only during time trials. In numerosity tri-

als, the fusiform gyrus/V5 bilaterally and the cuneus bilaterally were ROI with dimension-

specific activation.

According to (Hayashi et al. 2013), the IFG is specifically involved in decision processes

of magnitude estimation. Our findings support this assumption, as the decision between

less or more is equal for time, space and numerosity trials. Additionally, the IFG has been

hypothesized as a key structure within a fronto-basal-ganglia network for neural and be-

havioural of inhibition (Jahanshahi et al. 2015). According to this model, the activation of

the IFG during the accumulation phase in this study could be due to the action inhibition

until a decision had to be made in the comparison phase. A study which also conducted

fMRI measurements and magnitude judgements (Skagerlund et al. 2016) identified more

regions commonly activated during time, space and numerosity processing, including the

insula and right IPS. However, comparison of these findings remains difficult, as the author

also reported considerable differences between the difficulty levels for the respective tasks.

This holds also true for other studies attributing neuronal activation patterns to the percep-

tion of specific dimensions, as it was reported that these were confounded by differences in

task difficulty ((e.g. Tregellas et al. 2006) or (Livesey et al. 2007)).

Specifically for numerosity trials, areas MT/V5 showed higher activation when contrasted

against control trials in the univariate analysis. A possible explanation could be the height-

ened focus of the participants on the moving virtual floor in front of them, which would lead

to an increase in the processing of optic flow and the speed of directional movement. These

finding are in line with studies linking the MT/V5 area to (i) the detection of translational

change (Martinez-Trujillo et al. 2007), (ii) processing of speed gradients (Martinez-Trujillo

et al. 2005) and (iii) registering uni-directional motion (Zeki 2015).

ISPA was always performed pairwise. First, each dimensions was decoded against control

trials. Interestingly, a major portion of these results mirror the ones from the univariate

analysis: areas that evoked a higher BOLD response in accumulation trials also gave rise

to activation patterns that can be successfully decoded from control trials. For example,

for all dimensions, the right IFG showed a unique activation pattern when decoded from

control trials. Specific for time trials, activation in the left IFG was significantly different

from control trials in the left IFG. Additionally, bilateral posterior temporal regions and

anterior inferior parts of the occipital cortex had unique activation patterns in numerosity

trials when compared to control trials. This suggests that these areas do not only show a

heightened BOLD activation during perception of the respective dimension, but also spe-
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cific activation patterns in comparison to the control condition. An area that does not show

increased activation in univariate analysis but in which decoding of time, space and nu-

merosity against control trials is possible is the thalamus bilaterally. Similar to the IFG, the

thalamus has been associated with inhibition of action (Jahanshahi et al. 2015) within the

same cortico-basal-ganglia network and again, could be involved in withholding a decision

during the accumulation phase. However, there is also recent evidence that the thalamus is

a key area in switching the cortex into a highly excitable, asynchronous state in situations

with a high uncertainty (Kosciessa et al. 2021).

Remarkably, when decoding accumulation trials in a pairwise manner against each other, no

ROI could be identified that differentiates between time and space trials. In contrast, both

time and space trials could be successfully decoded bilaterally in posterior temporal regions

as well as at the junction of parietal and occipital cortices (cuneus and precuneus). Selective

for time vs. numerosity trials, both right and left IPS evoked unique activation patterns for

this pair of dimensions.

10.4 Concluding Remarks

Two main theories are currently discussed as the origin of cross-dimensional interferences.

First, a potential origin for cross-dimensional influences are similar neuronal encodings

(Srinivasan et al. 2010). Following this hypothesis, a bi-directional influence of time and

space could be originating from similar brain mechanisms for the perception of these two

dimensions (Bonato et al. 2012). The second theory, called metaphoric structuring, postu-

lates that imposition of the concept of one dimensions upon the other dimension causes

interference (Boroditsky 2000). For example, as illustrated in section 1, humans in Western

cultures frequently use a mental timeline from left to right to order sequential events. The

theory of metaphoric structuring would imply an asymmetrical interference between space

and time, due to the dominance of spatial perception (Lambrechts et al. 2013, Riemer 2015).

Thus, one would expect time to be more influenced by space and vice versa (Casasanto et al.

2008).

Taking into account both the behavioural and the functional imaging results, the present

thesis is more in line with the former hypothesis of overlapping neuronal representations.

On the behavioural level, the data of this thesis is explainable by both theories. However,

the inability to decode time from space trial activation patterns, while each one alone is

distinguishable from numerosity trials, hints more towards overlapping neuronal represen-

tations of time and space, while numerosity perception could be computed by a distinct

mechanism, such as the ANS (Dehaene et al. 1998, Brannon 2006, Odic et al. 2018).

As mentioned above, Area MT/V5 is critically involved in processing visual optic flow and

serves as important input for the computation of movement speed (Martinez-Trujillo et al.

2005, Martinez-Trujillo et al. 2007, Zeki 2015). As the relation between travel time and

travelled distance is fully determined by speed, neuronal processes in area MT/V5 are a

potential source for the perceptual influence between time and space.
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In order to further elicit the role of each brain region and potentially unmask a neuronal

network responsible for magnitude processing, future work could employ a normative con-

nectome or individualized structural connectivity analysis which e.g. correlate individual

inter-dimensional influences on the behavioural level with connectivity strengths within

different ROI. Similarly, a functional resting-state fMRI dataset could be obtained alongside

this experiment. Again, behavioural data could then be correlated with functional connec-

tivity profiles within predefined networks.
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11. Summary

The present thesis aimed at shedding light on the behavioural and neural perception of

time, space and numerosity in humans within a spatial navigation context. An fMRI imag-

ing paradigm was carefully designed in which participants were passively moved forward

along a virtual path while randomly placed dots appeared on the floor. Each trial, partic-

ipants had to either judge trial duration, distance covered or numerosity of items on the

floor.

At the behavioural level, the acuity of judgements showed significant correlation only be-

tween time and space trials. Identically, a bi-directional bias was only evident between time

and space with opposing directions: time judgements were positively influenced by dis-

tance, but conversely, trial duration biased distance judgements negatively.

Univariate activation analysis on the second level revealed higher activation of the right IFG

during the accumulation of all three dimensions when contrasted against control trials. Ac-

tivation clusters that were unique to one dimension were only found in the left IFG for time

trials as well as in (i) the fusiform gyrus/V5 bilaterally and (ii) the cuneus for numerosity

trials.

Using ISPA, each dimensions was first decoded against control trials in a pairwise manner.

In general, areas that evoked a higher BOLD response in accumulation trials also evoked

activation patterns that could be successfully decoded from control trials. For example, for

all dimensions, the right IFG showed a unique activation pattern when decoded from con-

trol trials. Unique for time trials, activation in the left IFG was significantly different from

control trials in the left IFG. Additionally, bilateral posterior temporal regions and ante-

rior inferior parts of the occipital cortex had unique activation patterns in numerosity trials

when compared to control trials.

Interestingly, decoding of accumulation trials in a pairwise manner was not possible for

time and space trials. Conversely, successful classification of neural activation patterns of

time and space trials against numerosity trials was possible bilaterally in posterior temporal

regions as well as at the junction of parietal and occipital cortices (cuneus and precuneus).

Given the ongoing scientific debate about the existence of a common magnitude system in

adults, these findings add to the body of evidence that time and space are indeed based

on overlapping neuronal representations, while the judgement of numerosity could be

grounded in a separate system.
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12. Zusammenfassung

Die zugrunde liegenden neuronalen Prozesse der Wahrnehmung von Zeit, Raum und an-

deren Größenordnungen sind Gegenstand intensiver Forschung. Darüber hinaus wird häu-

fig über gegenseitige Wechselwirkungen zwischen der Wahrnehmung verschiedener Di-

mensionen berichtet, aber der Ursprung dieser Interferenzeffekte ist noch nicht gut ver-

standen. Diese Arbeit untersuchte Zeit-, Raum- und Numerositätsurteile sowie deren gegen-

seitige Beeinflussung auf verhaltens- und neuronaler Ebene mittels der funktionellen-MRT

Bildgebung. Hierzu wurden die Versuchsteilnehmenden passiv auf einem virtuellen Pfad

vorwärts bewegt, der mit zufällig erscheinenden Punkten bedeckt war. Nach jedem Versuch

wurden die Teilnehmenden gebeten, (i) die Dauer der Bewegung, (ii) die zurückgelegte Ent-

fernung oder (iii) die Anzahl der Punkte auf dem Boden zu beurteilen.

Die Verhaltensergebnisse zeigten eine Korrelation zwischen der Genauigkeit zeitlicher und

räumlicher Beurteilungen sowie eine bidirektionale Interferenz zwischen ausschließlich

diesen beiden Dimensionen. Analysen der bildgebenden Daten identifizierten den rechten

IFG als ein gemeinsam aktives Areal während der Wahrnehmung aller Dimensionen. Im

Gegensatz dazu wurde der Bereich MT/V5 bilateral einzig während Numerositätsversuchen

aktiviert. Aktivierungsmuster von Zeit- und Raumversuchen waren mittels multivariater

Musteranalyse nicht zu unterscheiden, konnten jedoch von Numerositätswahrnehmungsver-

suchen im MT/V5 und IPS bilateral dekodiert werden.

Die Ergebnisse legen nahe, dass die Interferenz zwischen Zeit und zurückgelegter Entfer-

nung durch neuronale Berechnungen der Bewegungsgeschwindigkeit auf der Grundlage

visueller optischer Flußinformationen vermittelt werden könnte. Darüber hinaus ergänzen

die Ergebnisse die Beweise dafür, dass die interdimensionalen Interferenzeffekte zwischen

Zeit und Raum auf überlappenden neuronalen Darstellungen beruhen.



69

Bibliography

1. Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gram-
fort, A., Thirion, B., Varoquaux, G.: Machine learning for neuroimaging with scikit-
learn. Frontiers in Neuroinformatics. 8. 14 (2014)

2. Agrillo, C., Piffer, L., Adriano, A.: Individual differences in non-symbolic numerical
abilities predict mathematical achievements but contradict ATOM. Behavioral and
brain functions: BBF. 9. 26 (2013)

3. Agrillo, C., Ranpura, A., Butterworth, B.: Time and numerosity estimation are inde-
pendent: Behavioral evidence for two different systems using a conflict paradigm.
Cognitive Neuroscience. 1. 96–101 (2010)

4. Aguirre, G. K.: Continuous carry-over designs for fMRI. NeuroImage. 35. 1480–1494
(2007)

5. Aguirre, G. K., Mattar, M. G., Magis-Weinberg, L.: de Bruijn cycles for neural decod-
ing. NeuroImage. 56. 1293–1300 (2011)

6. Alcala-Quintana, R., Garcia-Perez, M.: The Role of Parametric Assumptions in Adap-
tive Bayesian Estimation. Psychological methods. 9. 250–271 (2004)

7. Allefeld, C., Goergen, K., Haynes, J.-D.: Valid population inference for information-
based imaging: Information prevalence inference. NeuroImage. 141. 378–392 (2016)

8. Andersson, J., Skare, S., Ashburner, J.: How to correct susceptibility distortions in
spin-echo echo-planar images: Application to diffusion tensor imaging. NeuroImage.
20. 870–888 (2003)

9. Atkinson, D., Hill, D. L., Stoyle, P. N., Summers, P. E., Keevil, S. F.: Automatic correc-
tion of motion artifacts in magnetic resonance images using an entropy focus crite-
rion. IEEE Transactions on Medical Imaging. 16. 903–910 (1997)

10. Banquet, J., Gaussier, P., Cuperlier, N., Hok, V., Save, E., Poucet, B., Quoy, M., Wiener,
S.: Time as the fourth dimension in the hippocampus. Progress in Neurobiology.
101920 (2020)

11. Behzadi, Y., Restom, K., Liau, J., Liu, T. T.: A component based noise correction
method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 37. 90–101
(2007)



70

12. Bjoertomt, O., Cowey, A., Walsh, V.: Spatial neglect in near and far space investigated
by repetitive transcranial magnetic stimulation. Brain : a journal of neurology. 125.
2012–2022 (2002)

13. Boccara, C., Sargolini, F., Thoresen, V., Solstad, T., Witter, M., Moser, E., Moser, M.-B.:
Grid cells in pre- and parasubiculum. Nature Neuroscience. 13. 987–994 (2010)

14. Bonato, M., Zorzi, M., Umiltà, C.: When time is space: Evidence for a mental time
line. Neuroscience and Biobehavioral Reviews. 36. 2257–2273 (2012)

15. Boos, D., Stefanski, L.: Likelihood Construction and Estimation. pp. 27–124. Springer.
2013.

16. Boroditsky, L.: Metaphoric Structuring: Understanding Time through Spatial Metaphors.
Cognition. 75. 1–28 (2000)

17. Bottini, R., Casasanto, D.: Space and Time in the Child’s Mind: Metaphoric or ATOMic?
Frontiers in psychology. 4. 803 (2013)

18. Brannon, E.: The representation of numerical magnitude. Current Opinion in Neuro-
biology. 16. 222–229 (2006)

19. Brannon, E., Lutz, D., Cordes, S.: The development of area discrimination and its
implications for number representation in infancy. Developmental science. 9. 59–64
(2006)

20. Brannon, E., Suanda, S., Libertus, K.: Temporal discrimination increases in precision
over development and parallels the development of numerosity discrimination. De-
velopmental science. 10. 770–777 (2007)

21. Bueti, D., Walsh, V.: The parietal cortex and the representation of time, space, number
and other magnitudes. Philosophical Transactions of the Royal Society B: Biological
Sciences. 364. 1831–1840 (2009)

22. Buhusi, C., Meck, W.: Relativity Theory and Time Perception: Single or Multiple
Clocks? PLoS ONE. 4. 62–68 (2009)

23. Buhusi, C., Meck, W.: What makes us tick? Functional and neural mechanisms of
interval timing. Nature reviews. Neuroscience. 6. 755–765 (2005)

24. Buonomano, D., Laje, R.: Population Clocks: Motor Timing with Neural Dynamics.
Trends in cognitive sciences. 14. 520–527 (2010)

25. Buzsáki, G., Tingley, D.: Space and Time: The Hippocampus as a Sequence Generator.
Trends in Cognitive Sciences. 22. 853–869 (2018)

26. Cai, Z. G., Connell, L.: Space-time interdependence: Evidence against asymmetric
mapping between time and space. Cognition. 136. 268–281 (2015)



71

27. Cantrell, L., Boyer, T., Cordes, S., Smith, L.: Signal clarity: An account of the vari-
ability in infant quantity discrimination tasks. Developmental Science. 18. 877–893
(2015)

28. Cantrell, L., Smith, L.: Open questions and a proposal: A critical review of the evi-
dence on infant numerical abilities. Cognition. 128. 331–352 (2013)

29. Cappelletti, M., Barth, H., Fregni, F., Spelke, E., Pascual-Leone, A.: rTMS over the in-
traparietal sulcus disrupts numerosity processing. Experimental brain research. 179.
631–642 (2007)

30. Casasanto, D., Boroditsky, L.: Time in the mind: using space to think about time.
Cognition. 106. 579–593 (2008)

31. Castelli, F., Glaser, D. E., Butterworth, B.: Discrete and analogue quantity processing
in the parietal lobe: a functional MRI study. Proceedings of the National Academy of
Sciences of the United States of America. 103. 4693–4698 (2006)

32. Chen, Y., Namburi, P., Elliott, L., Heinzle, J., Soon, C., Chee, M., Haynes, J.-D.: Cortical
surface-based searchlight decoding. NeuroImage. 56. 582–592 (2011)

33. Cordes, S., Brannon, E.: The Difficulties of Representing Continuous Extent in In-
fancy: Using Number Is Just Easier. Child development. 79. 476–489 (2008)

34. Coull, J. T., Cheng, R.-K., Meck, W. H.: Neuroanatomical and neurochemical sub-
strates of timing. Neuropsychopharmacology : official publication of the American
College of Neuropsychopharmacology. 36. 3–25 (2011)

35. Cox, R.: AFNI: Software for Analysis and Visualization of Functional Magnetic Res-
onance Neuroimages. Computers and biomedical research, an international journal.
29. 162–173 (1996)

36. Dabaghian, Y., Brandt, V. L., Frank, L. M.: Reconceiving the hippocampal map as a
topological template. eLife. 3. e03476 (2014)

37. Davis, S. F.: Handbook of Research Methods in Experimental Psychology. pp. 441–
469. John Wiley & Sons. 2008.

38. Dehaene, S., Brannon, E.: Space, Time and Number in the Brain. pp. 37–186. Aca-
demic Press. 2011.

39. Dehaene, S., Dehaene-Lambertz, G., Cohen, L.: Abstract representations of numbers
in the animal and human brain. Trends in neurosciences. 21. 355–361 (1998)

40. Dewind, N., Brannon, E.: Malleability of the approximate number system: Effects of
feedback and training. Frontiers in human neuroscience. 6. 68 (2012)

41. Dormal, V., Andres, M., Pesenti, M.: Contribution of the right intraparietal sulcus
to numerosity and length processing: An fMRI-guided TMS study. Cortex; a journal
devoted to the study of the nervous system and behavior. 48. 623–629 (2012)



72

42. Dormal, V., Dormal, G., Joassin, F., Pesenti, M.: A common right fronto-parietal net-
work for numerosity and duration processing: An fMRI study. Human brain map-
ping. 33. 1490–1501 (2012)

43. Dormal, V., Pesenti, M.: Common and Specific Contributions of the Intraparietal Sulci
to Numerosity and Length Processing. Human brain mapping. 30. 2466–2476 (2009)

44. Dormal, V., Pesenti, M.: Processing numerosity, length and duration in a three-
dimensional Stroop-like task: Towards a gradient of processing automaticity? Psy-
chological research. 77. 116–127 (2013)

45. Dormal, V., Seron, X., Pesenti, M.: Numerosity-duration interference: A Stroop exper-
iment. Acta psychologica. 121. 109–124 (2006)

46. Droit-Volet, S., Clement, A., Michel, F.: Time, number and length: Similarities and dif-
ferences in discrimination in adults and children. Quarterly journal of experimental
psychology (2006). 61. 1827–1846 (2008)

47. Eger, E., Sterzer, P., Russ, M., Giraud, A.-L., Kleinschmidt, A.: A Supramodal Number
Representation in Human Intraparietal Cortex. Neuron. 37. 719–725 (2003)

48. Eichenbaum, H.: On the Integration of Space, Time, and Memory. Neuron. 95. 1007–
1018 (2017)

49. Eichenbaum, H.: Time cells in the hippocampus: a new dimension for mapping mem-
ories. Nature reviews. Neuroscience. 15. 732–744 (2014)

50. Eklund, A., Nichols, T. E., Knutsson, H.: Cluster failure: Why fMRI inferences for
spatial extent have inflated false-positive rates. Proceedings of the National Academy
of Sciences of the United States of America. 201602413 (2016)

51. Ekstrom, A., Kahana, M., Caplan, J., Fields, T., Isham, E., Newman, E., Fried, I.: Cel-
lular Networks underlying human spatial navigation. Nature. 425. 184–188 (2003)

52. Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., Poldrack, R. A., Gorgolewski, K. J.:
MRIQC: Advancing the automatic prediction of image quality in MRI from unseen
sites. PloS one. 12. e0184661 (2017)

53. Esteban, O., Blair, R. W., Nielson, D. M., Varada, J. C., Marrett, S., Thomas, A. G.,
Poldrack, R. A., Gorgolewski, K. J.: Crowdsourced MRI quality metrics and expert
quality annotations for training of humans and machines. Scientific data. 6. 30–37
(2019)

54. Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe,
A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright,
J., Durnez, J., Poldrack, R. A., Gorgolewski, K. J.: fMRIPrep: a robust preprocessing
pipeline for functional MRI. Nature methods. 16. 111–116 (2019)

55. Fechner, G. T.: Elemente der Psychophysik. pp. 9–27. Breitkopf und Haertel. 1860.



73

56. Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., Orban, G.: Parietal Representation
of Symbolic and Nonsymbolic Magnitude. Journal of cognitive neuroscience. 15. 47–
56 (2003)

57. Ficher, H.: A History of the Central Limit Theorem. pp. 218–220. Springer. 2011.

58. Fischl, B.: FreeSurfer. NeuroImage. 62. 774–781 (2012)

59. Fonov, V., Evans, A., Mckinstry, R., Almli, C., Collins, L.: Unbiased nonlinear average
age-appropriate brain templates from birth to adulthood. Neuroimage. 47. 313–327
(2009)

60. França, T. F. A., Monserrat, J. M.: Hippocampal place cells are topographically orga-
nized, but physical space has nothing to do with it. Brain Structure and Function.
224. 3019–3029 (2019)

61. Geary, D., Vanmarle, K.: Young Children’s Core Symbolic and Nonsymbolic Quantita-
tive Knowledge in the Prediction of Later Mathematics Achievement. Developmental
Psychology. 52. 2130–2144 (2016)

62. Geva-Sagiv, M., Las, L., Yovel, Y., Ulanovsky, N.: Spatial cognition in bats and rats:
From sensory acquisition to multiscale maps and navigation. Nature reviews. Neuro-
science. 16. 94–108 (2015)

63. Giannelli, M., Diciotti, S., Tessa, C., Mascalchi, M.: Characterization of Nyquist ghost
in EPI-fMRI acquisition sequences implemented on two clinical 1.5 T MR scanner
systems: Effect of readout bandwidth and echo spacing. Journal of applied clinical
medical physics / American College of Medical Physics. 11. 3237 (2010)

64. Gilron, R., Rosenblatt, J., Koyejo, O., Poldrack, R., Mukamel, R.: What’s in a pattern?
Examining the Type of Signal Multivariate Analysis Uncovers At the Group Level.
NeuroImage. 146. 113–120 (2016)

65. Gorgolewski, K., Burns, C. D., in, C. M. F.: Nipype: a flexible, lightweight and extensi-
ble neuroimaging data processing framework in python. Frontiers in Neuroinformat-
ics. 5. 13 (2011)

66. Grefkes, C., Fink, G.: REVIEW: The functional organization of the intraparietal sulcus
in humans and monkeys. Journal of Anatomy. 207. 3–17 (2005)

67. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E. I.: Microstructure of a spatial
map in the entorhinal cortex. Nature. 436. 801–806 (2005)

68. Hamamouche, K., Cordes, S.: Number, time, and space are not singularly represented:
Evidence against a common magnitude system beyond early childhood. Psychonomic
Bulletin and Review. 26. 833–854 (2019)

69. Hampson, R., Heyser, C., Deadwyler, S.: Hippocampal Cell Firing Correlates of
Delayed-Match-to-Sample Performance in the Rat. Behavioral neuroscience. 107.
715–739 (1993)



74

70. Harvey, B. M., Fracasso, A., Petridou, N., Dumoulin, S. O.: Topographic representa-
tions of object size and relationships with numerosity reveal generalized quantity
processing in human parietal cortex. Proceedings of the National Academy of Sci-
ences of the United States of America. 112. 13525–13530 (2015)

71. Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., Pietrini, P.: Dis-
tributed and overlapping representations of faces and objects in ventral temporal
cortex. Science (New York, N.Y.) 293. 2425–2430 (2001)

72. Haxby, J. V., Connolly, A. C., Guntupalli, J. S.: Decoding neural representational
spaces using multivariate pattern analysis. Annual review of neuroscience. 37. 435–
456 (2014)

73. Hayashi, M. J., Kanai, R., Tanabe, H. C., Yoshida, Y., Carlson, S., Walsh, V., Sadato, N.:
Interaction of numerosity and time in prefrontal and parietal cortex. The Journal of
neuroscience : the official journal of the Society for Neuroscience. 33. 883–893 (2013)

74. Hoffman, K., Babichev, A., Dabaghian, Y.: A model of topological mapping of space
in bat hippocampus. Hippocampus. 26. 1345–1353 (2016)

75. Hubbard, E. M., Piazza, M., Pinel, P., Dehaene, S.: Interactions between number and
space in parietal cortex. Nature Reviews Neuroscience. 6. 435–448 (2005)

76. Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J., Turner, R.: Image
Distortion Correction in fMRI: A Quantitative Evaluation. NeuroImage. 16. 217–240
(2002)

77. Inglis, B.: A checklist for fMRI acquisition methods reporting in the literature. The
Winnower. e143191 (2015)

78. Jahanshahi, M., Obeso, I., Rothwell, J., Obeso, J.: A fronto-striato-subthalamic-pallidal
network for goal-directed and habitual inhibition. Nature reviews. Neuroscience. 16.
719–732 (2015)

79. Jang, S., Cho, S.: The Acuity for Numerosity (but Not Continuous Magnitude) Dis-
crimination Correlates with Quantitative Problem Solving but Not Routinized Arith-
metic. Current Psychology. 35. 1–13 (2015)

80. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved Optimization for the Ro-
bust and Accurate Linear Registration and Motion Correction of Brain Images. Neu-
roImage. 17. 825–841 (2002)

81. Jordan, K., Wüstenberg, T., Heinze, H. J., Peters, M., Jäncke, L.: Women and men ex-
hibit different cortical activation patterns during mental rotation tasks. Neuropsy-
chologia. 40. 2397–2408 (2002)

82. Kaufmann, L., Vogel, S., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L.-B.,
Koten, J.: A developmental fMRI study of nonsymbolic numerical and spatial pro-
cessing. Cortex; a journal devoted to the study of the nervous system and behavior.
44. 376–385 (2008)



75

83. Kelleher, J., Mac Namee, B., D’Arcy, A.: Fundamentals of Machine Learning for Pre-
dictive Data Analytics: Algorithms, Worked Examples, and Case Studies. pp. 397–
463. MIT Press. 2015.

84. Kim, M., Jeffery, K. J., Maguire, E. A.: Multivoxel pattern analysis reveals 3D place
information in the human hippocampus. The Journal of neuroscience. 2703–2716
(2017)

85. Kingdom, F. A. A., Prins, N.: Psychophysics: A Practical Introduction: Second Edition.
pp. 55–117. Elsevier. 2016.

86. Klein, A., Ghosh, S., Bao, F., Giard, J., Haeme, Y., Stavsky, E., Lee, N., Rossa, B., Reuter,
M., Chaibub Neto, E., Keshavan, A.: Mindboggling morphometry of human brains.
PLOS Computational Biology. 13. e1005350 (2017)

87. Kosciessa, J., Lindenberger, U., Garrett, D.: Thalamocortical excitability modulation
guides human perception under uncertainty. Nature Communications. 12. 24430
(2021)

88. Kragel, P. A., Koban, L., Barrett, L. F., Wager, T. D.: Representation, Pattern Infor-
mation, and Brain Signatures: From Neurons to Neuroimaging. Neuron. 99. 257–273
(2018)

89. Kriegeskorte, N., Goebel, R., Bandettini, P.: Information-based functional brain map-
ping. Proceedings of the National Academy of Sciences of the United States of Amer-
ica. 103. 3863–3868 (2006)

90. Kuss, M., Jäkel, F., Wichmann, F. A.: Bayesian inference for psychometric functions.
Journal of Vision. 5. 478–492 (2005)

91. Lambrechts, A., Walsh, V., Wassenhove, V. van: Evidence accumulation in the magni-
tude system. PloS one. 8. e82122 (2013)

92. Lewis, P., Miall, R. C.: Distinct sytems for automatic and cognitively controlled time
measurement: Evidence from neuroimaging. Current opinion in neurobiology. 13.
250–255 (2003)

93. Lipton, J., Spelke, E.: Origins of Number Sense Large-Number Discrimination in Hu-
man Infants. Psychological science. 14. 396–401 (2003)

94. Livesey, A., Wall, M., Smith, A.: Time perception: Manipulation of task difficulty dis-
sociates clock functions from other cognitive demands. Neuropsychologia. 45. 321–
331 (2007)

95. Marcus, D., Wang, T., Parker, J., Csernansky, J., Morris, J., Buckner, R.: Open Access
Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged,
Nondemented, and Demented Older Adults. Journal of cognitive neuroscience. 19.
1498–1507 (2007)

96. Martin, B., Wiener, M., Wassenhove, V. van: A Bayesian Perspective on Accumulation
in the Magnitude System. Scientific Reports. 7. 630 (2017)



76

97. Martinez-Trujillo, J., Cheyne, D., Gaetz, W., Simine, E., Tsotsos, J.: Activation of Area
MT/V5 and the Right Inferior Parietal Cortex during the Discrimination of Transient
Direction Changes in Translational Motion. Cerebral cortex. 17. 1733–1739 (2007)

98. Martinez-Trujillo, J., Tsotsos, J., Simine, E., Pomplun, M., Wildes, R., Treue, S., Heinze,
H.-J., Hopf, J.-M.: Selectivity for speed gradients in human area MT/V5. Neuroreport.
16. 435–438 (2005)

99. Matell, M., Meck, W.: Cortico-striatal circuits and interval timing: Coincidence detec-
tion of oscillatory processes. Cognitive Brain Research. 21. 139–170 (2004)

100. Meck, W., Church, R.: A mode control model of counting and timing processes. Jour-
nal of Experimental Psychology. Animal Behavior Processes. 9. 320–334 (1983)

101. Meck, W., Penney, T., Pouthas, V.: Cortico-striatal representation of time in animals
and humans. Current Opinion in Neurobiology. 18. 145–152 (2008)

102. Moser, E. I., Moser, M.-B., McNaughton, B. L.: Spatial representation in the hippocam-
pal formation: a history. Nature Publishing Group. 20. 1448–1464 (2017)

103. Muggleton, N., Postma, P., Moutsopoulou, K., Nimmo-Smith, I., Marcel, A., Walsh, V.:
TMS over right posterior parietal cortex induces neglect in a scene-based frame of
reference. Neuropsychologia. 44. 1222–1229 (2006)

104. Mumford, J. A., Turner, B. O., Ashby, F. G., Poldrack, R. A.: Deconvolving BOLD ac-
tivation in event-related designs for multivoxel pattern classification analyses. Neu-
roImage. 59. 2636–2643 (2012)

105. Muschelli, J., Nebel, M. B., Caffo, B. S., Barber, A. D., Pekar, J. J., Mostofsky, S. H.:
Reduction of motion-related artifacts in resting state fMRI using aCompCor. Neu-
roImage. 96. 22–35 (2014)

106. Mussolin, C., De Volder, A., Grandin, C., Schloegel, X., Nassogne, M.-C., Noel, M.-P.:
Neural Correlates of Symbolic Number Comparison in Developmental Dyscalculia.
Journal of cognitive neuroscience. 22. 860–874 (2009)

107. Myung, I. J.: Tutorial on maximum likelihood estimation. Journal of Mathematical
Psychology. 47. 90–100 (2003)

108. Newcombe, N.: The Origins and Development of Magnitude Estimation. Ecological
Psychology. 26. 147–157 (2014)

109. Nichols, T., Holmes, A.: SnPM. Version 8c40ad237ccd12ed074124a29b1bf2095f872841.
url: https://github.com/SnPM-toolbox/SnPM-devel

110. Nichols, T. E., Holmes, A. P.: Nonparametric permutation tests for functional neu-
roimaging: a primer with examples. Human brain mapping. 15. 1–25 (2002)

111. O’Keefe, J.: Place units in the hippocampus of the freely moving rat. Experimental
neurology. 4. 1363 (1976)



77

112. Odic, D.: Children’s intuitive sense of number develops independently of their per-
ception of area, density, length, and time. Developmental science. 21. e12533 (2017)

113. Odic, D., Libertus, M., Feigenson, L., Halberda, J.: Developmental Change in the Acu-
ity of Approximate Number and Area Representations. Developmental psychology.
49. 1103–1112 (2012)

114. Odic, D., Starr, A.: An Introduction to the Approximate Number System. Child de-
velopment perspectives. 12. 223–229 (2018)

115. Olivetti, E., Veeramachaneni, S., Nowakowska, E.: Bayesian hypothesis testing for pat-
tern discrimination in brain decoding. Pattern Recognition. 45. 2075–2084 (2012)

116. Pastalkova, E., Itskov, V., Amarasingham, A., Buzsaki, G.: Internally Generated Cell
Assembly Sequences in the Rat Hippocampus. Science (New York, N.Y.) 321. 1322–
1327 (2008)

117. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research. 12. 2825–2830 (2011)

118. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tuto-
rial overview. NeuroImage. 45. 199–209 (2009)

119. Piazza, M., Izard, V., Pinel, P., Le Bihan, D., Dehaene, S.: Tuning Curves for Approxi-
mate Numerosity in the Human Intraparietal Sulcus. Neuron. 44. 547–555 (2004)

120. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team: nlme: Linear and Nonlin-
ear Mixed Effects Models. Version 3.1-142. url: https://CRAN.R-project.org/package=nlme

121. Power, J., Barnes, K., Snyder, A., Schlaggar, B., Petersen, S.: Spurious but systematic
conditions in functional connectivity MRI networks arise from subject motion. Neu-
roimage. 59. 2141–2154 (2012)

122. R Core Team: R: A Language and Environment for Statistical Computing. Version 3.6.2.
url: https://www.R-project.org/

123. Riemer, M.: Psychophysics and the anisotropy of time. Consciousness and cognition.
38. 191–197 (2015)

124. Riemer, M., Shine, J. P., Wolbers, T.: On the (a)symmetry between the perception of
time and space in large-scale environments. Hippocampus. 28. 539–548 (2018)

125. Rissman, J., Gazzaley, A., D’Esposito, M.: Measuring functional connectivity during
distinct stages of a cognitive task. NeuroImage. 23. 752–763 (2004)

126. Robinson, G.: Biasing power law exponents by magnitude estimation instructions.
Perception and Psychophysics. 19. 80–84 (1976)



78

127. Ryali, S., Supekar, K., Abrams, D., Menon, V.: Sparse logistic regression for whole-
brain classification of fMRI data. NeuroImage. 51. 752–764 (2010)

128. Schiller, D., Eichenbaum, H., Buffalo, E. A., Davachi, L., Foster, D. J., Leutgeb, S.,
Ranganath, C.: Memory and Space: Towards an Understanding of the Cognitive Map.
The Journal of neuroscience : the official journal of the Society for Neuroscience. 35.
13904–13911 (2015)

129. Schütt, H.: psignifit 4. Version 3013da0. url: https://github.com/wichmann-lab/psignifit

130. Schütt, H., Harmeling, S., Macke, J. H., Wichmann, F. A.: Painfree and accurate
Bayesian estimation of psychometric functions for (potentially) overdispersed data.
Vision research. 122. 105–123 (2016)

131. Shehzad, Z., Giavasis, S., Li, Q., Benhajali, Y., Yan, C., Yang, Z., Milham, M., Bellec, P.,
Craddock, C.: The Preprocessed Connectomes Project Quality Assessment Protocol -
a resource for measuring the quality of MRI data. Frontiers in Neuroscience. 1 (2015)

132. Sherry, D., Grella, S., Guigueno, M., White, D., Marrone, D.: Are There Place Cells in
the Avian Hippocampus? Brain Behavior and Evolution. 90. 73–80 (2017)

133. Shine, J., Valdes-Herrera, J., Hegarty, M., Wolbers, T.: The Human Retrosplenial Cor-
tex and Thalamus Code Head Direction in a Global Reference Frame. Journal of Neu-
roscience. 36. 6371–6381 (2016)

134. Shine, J., Valdes-Herrera, J., Tempelmann, C., Wolbers, T.: Evidence for allocentric
boundary and goal direction information in the human entorhinal cortex and subicu-
lum. Nature Communications. 10. 4004 (2019)

135. Skagerlund, K., Karlsson, T., Träff, U.: Magnitude processing in the brain: An fMRI
study of time, space, and numerosity as a shared cortical system. Frontiers in human
neuroscience. 10. 500 (2016)

136. Slugocki, M.: BayesFit: A tool for modeling psychophysical data using Bayesian infer-
ence. Journal of open research software. 7. 2 (2019)

137. Solstad, T., Boccara, C., Kropff, E., Moser, M.-B., Moser, E.: Representation of Geo-
metric Borders in the Entorhinal Cortex. Science (New York, N.Y.) 322. 1865–1868
(2009)

138. Srinivasan, M., Carey, S.: The long and the short of it: On the nature and origin of
functional overlap between representations of space and time. Cognition. 116. 217–
241 (2010)

139. Stelzer, J., Chen, Y., Turner, R.: Statistical inference and multiple testing correction in
classification-based multi-voxel pattern analysis (MVPA): Random permutations and
cluster size control. NeuroImage. 65. 69–82 (2013)

140. Stevens, S. S.: To Honor Fechner and Repeal His Law. Science. 133. 80–86 (1961)



79

141. Taube, J., Muller, R., Ranck Jr, J.: Head-direction cells recorded from the postsubicu-
lum in freely moving rats. I. Description and quantitative analysis. The Journal of
neuroscience : the official journal of the Society for Neuroscience. 10. 420–435 (1990)

142. Teghtsoonian, M., Teghtsoonian, R.: How repeatable are Stevens’s power law expo-
nents for individual subjects? Perception and Psychophysics. 10. 147–149 (1971)

143. Todd, M., Nystrom, L., Cohen, J.: Confounds in Multivariate Pattern Analysis: Theory
and Rule Representation Case Study. NeuroImage. 77. 157–165 (2013)

144. Tolman, E. C.: Cognitive maps in rats and men. Psychological review. 55. 189–208
(1948)

145. Tregellas, J., Davalos, D., Rojas, D.: Effect of task difficulty on the functional anatomy
of temporal processing. NeuroImage. 32. 307–315 (2006)

146. Turner, B. O., Mumford, J. A., Poldrack, R. A., Ashby, F. G.: Spatiotemporal activity es-
timation for multivoxel pattern analysis with rapid event-related designs. NeuroIm-
age. 62. 1429–1438 (2012)

147. Tustison, N., Avants, B., Cook, P., Zheng, Y., Egan, A., Yushkevich, P., Gee, J.: N4ITK:
improved N3 bias correction. Medical Imaging, IEEE Transactions on. 29. 1310–1320
(2010)

148. Vanmarle, K., Wynn, K.: Six-month-old infants use analog magnitudes to represent
duration. Developmental science. 9. 41–49 (2006)

149. Vasilyeva, M.: Development of spatial cognition. WIRES Cognitive Science. 349–362
(2012)

150. Vasilyeva, M., Lourenco, S. F.: Spatial Development. In: Lerner, R., Overton, W., Fre-
und, A., Lam, M. (eds.) The Handbook of Lifespan Development. Vol. 1. pp. 720–753.
American Cancer Society 2010.

151. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wil-
son, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., Carey, C., Polat, I., Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J.,
Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P.: SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python. Nature Methods. 261–272 (2020)

152. Walsh, V.: A theory of magnitude: common cortical metrics of time, space and quan-
tity. Trends in cognitive sciences. 7. 483–488 (2003)

153. Wang, Q., Cagna, B., Chaminade, T., Takerkart, S.: Inter-subject pattern analysis:
A straightforward and powerful scheme for group-level MVPA. NeuroImage. 204.
116205 (2020)

154. Welvaert, M., Rosseel, Y.: On the Definition of Signal-To-Noise Ratio and Contrast-To-
Noise Ratio for fMRI Data. PloS one. 8. 1–10 (2013)



80

155. Whitlock, J. R., Sutherland, R. J., Witter, M. P., Moser, M.-B., Moser, E. I.: Navigat-
ing from hippocampus to parietal cortex. Proceedings of the National Academy of
Sciences of the United States of America. 105. 14755–14762 (2008)

156. Wiener, S., Taube, J.: Head Direction Cells and the Neural Mechanisms of Spatial
Orientation. pp. 7–248. MIT Press. 2005.

157. Xu, F., Spelke, E.: Large number discrimination in 6-month olds. Cognition. 74. 1–11
(2000)

158. Xuan, B., Zhang, D., He, S., Chen, X.: Larger Stimuli Are Judged to Last Longer. Jour-
nal of vision. 7. 1–5 (2007)

159. Zeki, S.: Area V5-a microcosm of the visual brain. Frontiers in Integrative Neuro-
science. 9. 21 (2015)

160. Zhang, Y., Brady, M., Smith, S.: Segmentation of Brain MR Images through a Hid-
den Markov Random Field Model and the Expectation Maximization Algorithm. IEEE
transactions on medical imaging. 20. 45–57 (2001)

161. Zhu, C., Byrd, R., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran Subroutines
for Large-Scale Bound-Constrained Optimization. ACM Trans. Math. Softw. 23. 550–
560 (1997)



ix

Ehrenerklärung

Ich erkläre, dass ich die der Medizinischen Fakultät der Otto-von-Guericke-Universität zur

Promotion eingereichte Dissertation mit dem Titel

Accumulation processes of time, space and numerosity: an fMRI study

im Zentrum für Neurodegenerative Erkrankungen e.V. Magdeburg,

mit Unterstützung durch Prof. Dr. Thomas Wolbers und Dr. Martin Riemer,

ohne sonstige Hilfe durchgeführt und bei der Abfassung der Dissertation keine anderen

als die dort aufgeführten Hilfsmittel benutzt habe. Bei der Abfassung der Dissertation sind

Rechte Dritter nicht verletzt worden.

Ich habe diese Dissertation bisher an keiner in- oder ausländischen Hochschule zur Promotion

eingereicht. Ich übertrage der Medizinischen Fakultät das Recht, weitere Kopien meiner

Diss-ertation herzustellen und zu vertreiben.

Berlin, 30.06.2022

Ort, Datum Johannes Achtzehn



x

Erklärung zur strafrechtlichen Verurteilung

Ich erkläre hiermit, nicht wegen einer Straftat verurteilt worden zu sein, die wissenschaftsbezug

hat.

Berlin, 30.06.2022

Ort, Datum Johannes Achtzehn



xi

Danksagung

Die Danksagung ist in dieser Version aus Datenschutzgründen nicht enthalten.



xii

Veröffentlichung

Teile dieser Arbeit wurden unter dem Titel

Cross-dimensional interference between time and distance during spatial navigation is

mediated by speed representations in intraparietal sulcus and area hMT+

durch folgende Autor:innen

Martin Riemer1,2,3,4,†, Johannes Achtzehn1,2,†, Esther Kuehn2,3, Thomas Wolbers1,3

†geteilte Erstautorenschaft
1Aging and Cognition Research Group, German Center for Neurodegenerative Diseases

(DZNE), 39120 Magdeburg, Germany
2Medical Faculty, Otto-von-Guericke University, 39106 Magdeburg, Germany
3Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
4Biological Psychology and Neuroergonomics, Technical University Berlin, 10623 Berlin,

Germany

in der Zeitschrift

NeuroImage, Volume 257, 2022, Article 119336

unter der DOI 10.1016/j.neuroimage.2022.119336 veröffentlicht.



xiii

Lebenslauf

Der Lebenslauf ist in dieser Version aus Datenschutzgründen nicht enthalten.



1

PART V:
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A. Methods and Materials

Table A.1: Scanning parameters of anatomical and functional (BOLD) MRI sequences.

Parameter T1w T2w BOLD

In-plane spatial encoding

Pulse sequence type MPRAGE TSE EPI
PE acceleration factor 2 2 2
PE partial Fourier scheme 224/256 512/512 72/72
Echo spacing - - 0.245 ms

Timing Parameters

TR 2.5 s 6 s 2 s
TE 2.82 ms 73 ms 30 ms
No. of volumes - - 500 (per run)
No. of dummy scans - - 5 (per run)

Spatial Parameters

In-plane matrix 256 × 256 512 × 512 72 × 72
No. of slices 192 60 36
FOV 256 mm 256 mm 216 mm
Slice thickness 1 mm 2 mm 3 mm
Inter-slice gap 1 mm 2 mm 3.3 mm
Slice acquisition order contiguous contiguous interleaved

Slice acceleration

SMS acceleration factor - - 1
Sequence name tfl3d1_16ns tse2d1_11 epfid2d1_72
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Fig. A.1: Detailed workflow for the univariate analysis.
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Fig. A.3: Detailed workflow for the trialwise beta map estimation utilised to create decoding
samples.
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B. Behavioural Results
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Fig. B.1: Spearman rank plots for all modality pairs comparing the judgement precision.

Table B.1: Cross-dimensional interference on magnitude perception for all possible combi-
nations of dimensions. Numerical values are normalised (to the mean of the current dimen-
sion reference values) mean differences in thresholds. Positive numbers indicate higher PSE
values if the irrelevant dimension was in high condition and vice versa. Significance was
tested with a Wilcoxon signed-rank test and corrected for multiple comparisons (FWE =
0.05).

Relevant dim. Irrelevant dim. Difference in mean W p-value

Time Space 0.177 36 0.006
Time Numerosity -0.052 106 0.607
Space Time -0.139 45 0.013
Space Numerosity 0.048 89 0.608
Numerosity Time 0.016 115 0.778
Numerosity Space 0.015 130 0.5677
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C. Neuroimaging Results

C.1 Quality Control
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Fig. C.1: Mean fraction of outliers per fMRI volume as given by AFNI’s 3dToutcount (AOR)
for all participants.
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Fig. C.2: Mean quality index as computed by AFNI’s 3dTqual.
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Fig. C.3: DVARS for all participants: D referring to temporal derivative of timecourses, VARS
referring to RMS variance over voxels.
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Fig. C.4: Foreground-Background energy ratio (FBER) for all participants.
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Fig. C.5: Mean fieldwise displacement for all participants.
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Fig. C.6: Full-width half maximum smoothness for all participants.
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C.2 Second Level Analysis

Table C.1: Clusters identified for contrast 1: average activation during accumulation trials.
The value of cluster size indicates the number of voxels. Coordinates represent peak level ac-
tivation. For larger clusters spanning multiple regions, additional maxima have been listed
in grey color.

Nr. Anatomical region Cluster size T p MNI coordinates

1 R fusiforme gyrus 257 16.75 <0.001 (39, -75, -15)
2 R posterior medial frontal gyrus 409 14.50 <0.001 (3, 15, 47)

L posterior medial frontal gyrus 13.52 <0.001 (-6, 9, 54)
R middle cingulate cortex 10.36 <0.001 (9, 24, 41)

3 L inferior frontal gyrus 162 13.81 <0.001 (-30, 27, 1)
4 L intraparietal sulcus 821 13.09 <0.001 (-45, -48, 44)

L superior parietal lobe 12.85 <0.001 (-30,-66, 47)
5 R inferior frontal gyrus 166 12.87 <0.001 (33, 24, -5)
6 R intraparietal sulcus 255 12.07 <0.001 (30, -69, 51)
7 R cuneus 473 11.72 <0.001 (12, -93, 21)

L calcarine gyrus 11.50 <0.001 (-3,-93, 8)
R occipital gyrus 8.20 0.002 (15, -81, -2)

8 L precentral gyrus 160 10.27 <0.001 (-42, 6, 34)
9 L fusiform gyrus 102 10.26 <0.001 (-36, -66, -12)
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(a) Contrast 1: Accumulation
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(b) Contrast 2: Accumulation > control
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(c) Contrast 3: Time > control
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(d) Contrast 4: Space > control
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(e) Control 5: Numerosity > control

Fig. C.7: Glass brain plots for the second level analysis contrasts 1 - 5, as defined in table
7.1.
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Fig. C.8: Glass brain plots for the conjunction analysis (contrast 6), as defined in table 7.1.
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C.3 Multivariate Pattern Analysis
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(a) Thalamic cluster
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(b) IFG cluster

Fig. C.9: Exemplary plot for two clusters that show significant decoding accuracy across all
three modalities when decoded against the control condition. Here, data for the pair space
vs. control is shown. Values are percentages above chance level of 50%.
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Fig. C.10: Accuracy map for the cluster that exhibits significant decoding accuracy for both
space vs. control and numerosity vs. control. Values are percentages above chance level of
50%.
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