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Abstract

Intracranial aneurysms are pathological dilatations of brain vessel walls. As
aneurysm rupture can have fatal consequences, treatment of intracranial aneu-
rysms aims to prevent aneurysm rupture. Treatment decisions depend on the as-
sessment of aneurysm rupture risk. While the factors leading to aneurysm rupture
are not completely understood yet, it is suspected that changes in the aneurysm
wall play a major role in aneurysm rupture.

In this thesis, several tools for analysis of the intracranial aneurysm wall were
developed. First, the wall of an aneurysm and its parent vessel are recon-
structed as a 3D model based on 2D histologic data. These data were collected
post mortem. Second, histologic and microCT images of a tissue sample were
combined with preoperative data. Both projects include histologic data, which
are useful in research but cannot be used in clinical routine, as the necessary
tissue collection requires opening the skull. Two further projects on how the
aneurysm wall could be included into clinical routine are part of this thesis. In
the near future, rupture risk assessment could be aided by vessel wall imag-
ing, wall enhancement segmentation and geometric deep learning rupture predic-
tion. In the distant future, hemodynamic parameters like the wall shear stress
could also be included in clinical routine. Here, first steps towards this are pre-
sented.

From 2D histologic images a 3D model of the aneurysm wall is constructed. This
includes the definition of tissue classes occurring in the aneurysm wall, segmen-
tation of the images into these classes and extraction of the contours of each
tissue section. Then, the contours are registered, 3D point clouds are derived
and meshes are generated. For the mesh generation a new algorithm based on
the behaviour of a shrinking tube was developed. The final 3D model of the
wall includes over 100 smaller meshes showing the various tissue sections of the
aneurysm wall.

The second project combines histologic images with additional pre- and post
imaging. A preoperative 3D model of the aneurysm and a microCT scan of the
tissue provide additional information about the shape. The model of the wall
tissue from the microCT image is registered and deformed to fit the preopera-
tive aneurysm shape. The histologic images are mapped to the corresponding
microCT images. Together with the wall shear stress these information are com-
bined in a user interface for visual exploration.

Current research indicates a correlation between wall enhancement and rupture
of intracranial aneurysms. However, a problem is the objective and automatic
segmentation of wall enhancement for research and clinical routines in the fu-
ture. To integrate vessel wall imaging and wall enhancement in clinical routine, a
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semi-automatic wall enhancement segmentation is developed. Additionalyl, the
aneurysm shape is used for rupture prediction with geometric deep learning. A
visualization of the deep learning to increase acceptance of the prediction is also
presented.

Hemodynamic parameters like the wall shear stress are a major part of aneurysm
research. For clinical routine, hemodynamic simulations are too time-consuming
and require expert knowledge. As a first step towards inclusion of these pa-
rameters in clinical routine, geometric deep learning approaches to reduce the
effort for hemodynamic simulations are presented. The wall shear stress of ar-
tificial as well as patient-specific aneurysms is predicted with geometric deep
learning.
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Zusammenfassung

Intrakranialle Aneurysmen sind krankhafte Veränderungen der Gefäßwände im
Gehirn. Die Ruptur eines intrakraniallen Aneurysmas kann fatale Folgen haben,
weswegen das Ziel der Therapie eine Verhinderung der Ruptur ist. Da das indi-
viduelle Rupturrisko stark variiert und viele Aneurysmen nicht rupturieren, ist die
Analyse des Rupturrisikos ein wichtiger Teil der Therapieentscheidung. Die Fak-
toren, welche zur Ruptur eines Aneurysmas führen, werden noch erforscht. Ak-
tuelle Forschung deutet darauf hin, dass Veränderungen in der Aneurysmenwand
eine wichtige Rolle bei der Aneurysmenruptur spielen.

In dieser Arbeit wurden Algorithmen zur Analyse und Erstellung von 3D-Mo-
dellen patientenspezifischer Aneurysmenwände aus histologischen Bilddaten ent-
wickelt. Im ersten Projekt wird die Rekonstruktion eines 3D-Modells eines Aneurys-
mas einschließlich des Elterngefäßes basierend auf 2D histologischen Daten beschrieben.
Diese Daten wurden post mortem gewonnen. In einem weiteren Projekt wur-
den histologische und microCT-Bilder eines während einer Operation entfernten
Gewebestückes mit präoperativen Daten kombiniert. Beide Projekte verwenden
histologische Daten, welche zwar wichtig für die Erforschung der Aneurysmen-
wand, jedoch nicht für den klinischen Alltag geeignet sind, da sie die Entnahme
des Aneurysmagewebes im Rahmen eines operativen Eingriffs erfordern. Zwei
weitere Projekte in dieser Arbeit betrachten Möglichkeiten, die Aneurysmen-
wand im klinischen Alltag zu verwenden. In Zukunft könnte die Abschätzung des
Rupturrisikos durch vessel wall imaging, Segmentierung des wall enhancement
und geometric deep learning unterstützt werden. Des Weiteren könnten hämo-
dynamische Parameter wie die Wandschubspannung in Zukunft Teil der klinis-
chen Beurteilung von intrakraniallen Aneurysmen werden.

2D histologische Bilder wurden verwendet, um ein 3D-Modell der Gefäßwand
eines intrakraniallen Aneusymas zu konstruieren. Diese Rekonstruktion beinhal-
tet die Definition verschiedener in der Wand auftretender Gewebetypen, die Seg-
mentierung der Bilder und die Extraktion der Konturen der einzelnen Gewebestücke.
Anschließend erfolgt eine Registrierung der Gewebe und Erstellung von 3D-Punktwolken
sowie Meshes. Für die Meshgeneration wurde ein neuer Algorithmus basierend
auf dem Verhalten eines Schrumpfschlauches entwickelt. Das resultierende 3D-
Mo-dell der Wand besteht aus über 100 kleinen Meshes, welche die verschiedenen
Gewebestücke der Aneurysmenwand zeigen.

Das zweite Projekt kombiniert histologische Bilder mit weiteren prä- und postop-
erativ gewonnenen Bildern. Ein 3D-Modell des Aneurysmas basierend auf präop-
erativen Bildern zeigt die Form des Aneurysmas und ein microCT-Scan die Form
des Gewebes vor der Erstellung der histologischen Schnitte. Das aus dem mi-
croCT gewonnene Gewebemodell wurde auf das präoperative Aneurysma-Modell
registriert und an die Aneurysmenform angepasst. In einem visual exploration

6



tool sind die Informationen aus histologischen Bildern, microCT, präoperativen
Bildern und hämodynamischen Simulationen kombiniert.

Vorherige Studien legen einen Zusammenhang zwischen wall enhancement und
Aneurysmenruptur nahe. Derzeit fehlt eine automatische und objektive Segmen-
tierung für weitere Forschung und zukünftige Anwendung im klinischen Alltag. In
dieser Arbeit wird eine semi-automatische Segmentierung vorgestellt. Des Weit-
eren wird mittels geometric deep learning die Form des Aneurysmas zur Vorher-
sage der Aneurysmenruptur verwendet. Eine Visualisierung der deep learning
Resultate soll zur Akzeptanz dieser beitragen.

Hämodynamische Parameter wie die Wandschubspannung sind ein aktives For-
schungsfeld der Aneurysmenforschung. Da die Simulation des Blutfluss Experten-
kenntnisse voraussetzt und zeitaufwendig ist, ist sie nicht für den Klinikalltag
geeignet. In dieser Arbeit wird geometric deep learning verwendet, um den
Aufwand zu reduzieren. Für künstliche Aneurysmenmodelle sowie für patien-
tenspezifische Aneurysmen wird die Wandschubspannung mittels deep learning
vorhergesagt.
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1 Introduction

Intracranial aneurysms are deformations of brain arteries (see Fig. 1.1). The
berry-shaped bulges of the vessel can rupture, leading to blood inside the brain.
As aneurysm rupture can have fatal consequences, treatment of intracranial aneu-
rysms aims to prevent aneurysm rupture. Possible interventions are endovascular
treatment or surgical clipping. Due to their location, both treatments also pos-
sess a risk for the patient. Not all aneurysms rupture. To avoid unnecessary risks
for the patients, only aneurysms that would rupture without treatment should be
treated. To decide whether treatment is recommended for a patient, the correct
estimation of the aneurysm rupture risk is necessary. At the moment, this is hin-
dered as the processes leading to aneurysm rupture are not fully understood yet.
Previous research suggests that the aneurysm wall plays a major role in aneurysm
rupture. In this thesis, several tools to advance aneurysm wall research are pre-
sented.

Current research of the aneurysm wall composition uses histologic images. Histo-
logic images allow a detailed analysis because they provide information about the
cells and tissues present in the wall, but they require the collection of aneurysm
tissue and therefore an operative opening of the cranium. They are either col-
lected post mortem or during surgery. While providing useful information about
aneurysm forming and remodeling, these images are only used for research and
not in clinical routine. The images are restricted to 2D, therefore loosing valuable
information about the aneurysm shape.

In contrast to histologic images, black blood magnetic resonance imaging (BB-
MRI) is non-invasive and might be used to evaluate the rupture risk of aneurysms
in patients in the future. While not as detailed as histologic images, BB-MRI
can show wall enhancement. Recent studies suggest that wall enhancement is a
useful factor in predicting aneurysm rupture. A major limitation is the currently
subjective evaluation of the wall enhancement.

Another ongoing research aspect is the behavior of the wall and hemodynamic
wall features like the wall shear stress. Despite the large presence of hemodynamic
simulations in research, they are not used in clinical routine. Hemodynamic sim-
ulations are time-consuming, labor-intensive and require expert knowledge.

This thesis provides tools for a better understanding of the wall of intracranial
aneurysms. To improve research with histologic images, a 3D model based solely
on post mortem collected histologic images is described. This includes semantic
segmentation of the images, and registration and mesh generation with the newly
developed shrinking tube mesh algorithm.
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Figure 1.1: Intraoprative images of intracranial aneurysms with various wall
structures [1]

The resulting model allows a 3D view of the wall composition of an intracranial
aneurysm and can also be used for simulation. Moreover, a unique combina-
tion of pre- and postoperative imaging is presented. With preoperative data the
aneurysm shape is preserved. MicroCT and histologic images of aneurysm wall
tissue collected during surgery provide detailed information about the aneurysm
wall. Hemodynamic simulation adds further information. All these aspects are
combined in a user interface for a new visual exploration of the aneurysm wall.

In the future, BBMRI could be used in clinical routine. As a step towards reliable
and easy segmentation of wall enhancement, a semi-automatic wall enhancement
segmentation tool is developed. Furthermore, the impact of various BBMRI
modalities on the segmentation is discussed.

To pave the way towards the inclusion of hemodynamic parameters into clini-
cal routine, geometric deep learning applications are explored. The experiments
presented in this thesis suggest that wall shear stress of artificial as well as patient-
specific aneurysms can be predicted with geometric deep learning.

The thesis is structured into medical and technical background, related work,
aneurysm research for wall understanding with histologic images and research to-
wards the inclusion of the aneurysm wall in clinical routine.
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First, the medical background of aneurysms is described and different medical
imaging systems are explained in Chapter 2. Recent work in the area of im-
age processing for histology and BBMRI is described in Chapter 3. Then, the
current research on mesh processing and hemodynamic analysis is discussed in
Chapter 4.

Chapter 5 summarizes the research questions arising from the current situation
described in Chapter 2, 3 and 4. These questions are answered in detail in
Chapters 6 to 9 and Chapter 10 provides a summary with short answers to the
research questions.

Chapter 6 describes the construction of a 3D aneurysm wall model including the
parent vessel based on post mortem histologic image data. It includes segmenta-
tion, virtual inflation, mesh generation and model generation. In the next Chap-
ter, the combination of histologic images with further data is described. The
wall tissue information from histology are combined with microCT shape and
calcification data and hemodynamic parameters from a preoperative aneurysm
model.

Chapter 8 presents a semi-automatic wall enhancement segmentation, deep learn-
ing rupture prediction and visualization of this deep learning approach. Chap-
ter 9 focuses on tools to simplify hemodynamic simulations. The first part
of that chapter discusses improvements of mesh processing for simulation and
the second part presents geometric deep learning for wall shear stress predic-
tion.
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2 Background

Intracranial aneurysms are a complex disease. Several challenges occur during
aneurysm detection, treatment decision and treatment. Imaging of intracranial
aneurysms can be achieved with various imaging modalities. These have several
limitations and not all techniques are suitable for clinical use. Here, the current
options for aneurysm treatment and diagnosis are described. Especially risk fac-
tors for aneurysm development and rupture are discussed, as the assessment of
the individual rupture risk of an aneurysm is a crucial part in clinical routine. At
the moment, there is a gap between research on rupture risk and clinical rupture
risk assessment. Chapter 8 and 9 will present how this gap could be closed with
deep learning on surface meshes to predict rupture and include hemodynamic
features.

2.1 Medical background - Intracranial aneurysms

Healthy vessels consist of three layers: the tunica externa, tunica media and tu-
nica intima (see Fig. 2.1). Intracranial aneurysms are deformations of vessels in
the brain. As Figure 2.2 shows, the aneurysm is separated from the parent vessel
by the neck and ostium. Additional to the shown elements an aneurysm might also
include a bleb, a further bulge on the aneurysm body.

Figure 2.1: Structure of a healthy vessel wall [2]
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Figure 2.2: Structure of an aneurysm (based on [3])

Commonly, intracranial aneurysms are divided into saccular, fusiform, and dis-
secting aneurysms (Fig. 2.3). As saccular and fusiform aneurysms affect all
three wall layers of the vessel, they are also called true aneurysms, while dis-
secting aneurysms are called false aneurysms. Besides this common morphology-
based classification, aneurysms can be classified based on size, location and eti-
ology [4].

Figure 2.3: Different types of aneurysms [5]

12



Intracranial aneurysms are often asymptotic as long as they are not ruptured.
Findings of unruptured intracranial aneurysms are normally coincidentally. Es-
pecially with the increased usage of imaging techniques, intracranial aneurysms
are coincidentally found during diagnosis of other issues. Unruptured aneurysms
may lead to symptoms due to their size. Common symptoms are headache,
unilateral third cranial nerve palsy (posterior communicating artery aneurysm),
bilateral temporal hemianopsia (anterior communication artery aneurysm), is-
chemic cerebrovascular disease and seizures [6]. The rupture of an aneurysm
leads to subarachnoid hemorrhage (SAH) and has a mortality rate up to 50%.
While the rupture of an aneurysm can have fatal results, only some aneurysms
rupture. Intracranial aneurysms have a prevalence of 1-5 % and 50-80% of the
aneurysms do not rupture during the patient’s lifetime [7]. Common treatments
of intracranial aneurysms are clipping and coiling. These are described in more
detail in Section 2.1.3. Due to their location, the treatment of intracranial aneu-
rysms has some risks. Therefore, the necessity of treatment and the best therapy
for the patient have to be chosen carefully. At the moment, the mechanisms
leading to aneurysm formation and aneurysm rupture are not fully understood
[4]. Further research on the processes leading to aneurysm rupture is needed.
Chapter 6 and Chapter 7 describe tools for 3D exploration of the intracranial
aneurysm wall to gain insight in these processes.

Aneurysms are rare in children and are normally developed during life. As a
result of a connective tissue disease, an aneurysm can occur in neonates or young
babies. Persons of older age and women are more likely to develop an aneurysm.
Other risk factors for aneurysm formation and SAH are smoking, heavy alcohol
consumption, Finish or Japanese descent, hypertension, and atherosclerosis [4].

The most common type of intracranial aneurysms are saccular aneurysms [8].
They are berry-shaped vessel outpouchings [4]. The shape of saccular aneurysms
varies. Some are rather small and round outpouchings while others are larger and
elongated, and some may include blebs. Some examples are shown in Figure 2.4.
This work is restricted to saccular aneurysms.

The exact reasons for aneurysm development are an ongoing research topic. Dör-
fler and Wanke [4] suspect that the most common reasons are vascular injuries,
atherosclerosis, high flow states, or underlying vasculopathy, and uncommon rea-
sons are trauma, infection, drug abuse, and neoplasms. Several studies suspect
the involvement of inflammation in aneurysm formation [10, 11]. After intracra-
nial aneurysm rupture, the inflammation-related protein levels in the peripheral
blood are alternated. In peripheral blood cells the expression of miRNAs, which
are related to inflammation and immune response, are influenced by aneurysm
rupture [12]. Chalouhi et al. [7] proposed that hemodynamic stress induces en-
dothelial dysfunction and is followed by an inflammatory reaction in the vessel
wall. These theories may lead to new therapeutic approaches using pharmaceu-
ticals and thus avoiding the risks of invasive therapies like clipping and coiling.
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(a) (b) (c) (d)

Figure 2.4: Examples of intracranial aneurysms (data from the Aneurisk dataset [9])
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Figure 2.5 shows arteries in the brain. Aneurysms can occur at every artery. Most
intracranial aneurysms arise at bifurcations of arteries. With 30-35% the anterior
cerebral artery is the most common location for intracranial aneurysms, followed
by the middle cerebral artery (30%). Around 7.5% of the intracranial aneurysms
occur at the basilar tip and approximately as many develop from other posterior
fossa vessels [4]. 7-34% of patients with intracranial aneurysms have more than
one aneurysm. Patients with multiple aneurysms may have between 2 and 13
aneurysms [13]. Among other things, multiple aneurysms are associated with
female sex, hypertension and blood group AB [14].

Figure 2.5: Arteries in the brain [15]

Blebs are additional outpouchings on the aneurysm, as shown in Figure 2.6. Blebs
occur in 36% of the aneurysms. 77% of the aneurysms with blebs have a single
bleb. Blebs most likely occur at the dome (48%) or the aneurysm body (46%) and
only rarely at the neck. Aneurysms with blebs tend to be larger, more elongated,
and with a wider neck. A positive correlation between dental infection and blebs
and a negative correlation between treatment with hormone replacement therapy
and bleb occurrence was found [16].
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Figure 2.6: Example of aneurysm with two blebs [17]

Two grades commonly used in patient evaluation after aneurysm rupture are
the Fisher scale and the Rankin scale. These are used in clinical routine and in
Section 2.1.3 to compare different treatment methods. The Fisher scale [18]
describes the amount of subarachnoid hemorrhage in CT scans. It consists
of:

• grade 1: no SAH or intraventricular hemorrhage (IVH) visible

• grade 2: diffuse thin (>1mm) SAH, no clots

• grade 3: larger SAH or clots

• grade 4: diffuse or no SAH, IVH present

The Rankin scale measures the degree of disability after a stroke or other causes
of neurological disability [19]. It includes 7 classes:

• 0: no symptoms

• 1: no significant disability, can carry out usual activities despite some symp-
toms

• 2: slight disability

• 3: moderate disability, walk without assistance

• 4: moderately severe disability, unable to walk, assistance needed

• 5: severe disability, constant care needed

• 6: dead
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2.1.1 Detection & diagnosis of aneurysms

Here, the techniques used for diagnosis of intracranial aneurysms are described.
The technical aspects of the various imaging techniques are discussed in Section
2.2. Chapter 8 and 9 use models derived from images used in clinical routine.
Based on these models the rupture risk of patient-specific intracranial aneurysms
is assessed. Evaluation of the individual rupture risk is necessary to select the
optimal treatment. The currently available treatments are described in Section
2.1.3.

There are several imaging techniques used in the diagnosis and treatment of
intracranial aneurysms. The most common ones are computer tomography an-
giography (CTA) and magnetic resonance angiography (MRA). A disadvantage
of CTA is the usage of radiation. Besides these two non-invasive imaging tech-
niques, intracranial aneurysms can be diagnosed with catheter angiography, which
is expansive and invasive [7]. For aneurysm analysis outside of diagnostic tasks,
additional imaging modalities are available. For example, optical coherence to-
mography (OCT) and histologic images of aneurysms from cadavers are used in
the research of the aneurysm wall [20].

Digital Subtraction Angiography (DSA) with selective cerebral arterial injections
and multiple projections is the most reliable technique for identification of in-
tracranial aneurysms. It has a risk of 1 % for transient and 0.5 % for permanent
neurological complications. This invasive imaging is not regularly used due to
the risk of complications [21].

The sensitivity of CTA is between 77 % and 97 % and MRA exhibits a sensi-
tivity between 70 % and 99 %. For aneurysms smaller than 3 mm the sensitivity
drops significantly to 40 % for MRA and 40 % to 91 % for CTA. The specificity
of MRA is up to 100 % and for CTA 87 % to 100 % [7].

Kwak et al. [22] analyzed 652 unruptured intracranial aneurysms from 530 pa-
tients to evaluate the sensitivity and accuracy of MRA for small unruptured
aneurysms (< 7mm ). Two independent reviewers analyzed the shape of the
aneurysms using MRA images. The aneurysms were divided into two groups:
aneurysms with regular shape and aneurysms with a irregular shape, therefore
more likely to rupture. DSA was used as a reference. The sensitivity for detecting
shape irregularity was 60.4% for one reviewer and 60.9% for the other reviewer.
Anterior cerebral artery aneurysms and aneurysms smaller than 3 mm had even
lower sensitivities (under 47 % and under 27 %). The 1.5T MRA had a lower
sensitivity than the 3T MRA.

To better discriminate between rupture-prone aneurysms needing treatment and
aneurysms which do not require treatment, new diagnosis techniques are devel-
oped.

Recent research highlighted the role of macrophage-mediated chronic inflamma-
tion in aneurysm development. Based on this, Shimzu et al. [23] developed an
imaging technique to visualizes macrophages infiltrating in lesions. They used
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ferumoxytol, an ultrasmall superparamagnetic iron oxide particle, as contrast
agent to detect macrophages using MRI. Based on the presence or absence of
macrophages they divided aneurysms into active lesions and stable lesions [23].

Chapter 3 further discuss how different image types are used in research to ana-
lyze the aneurysm wall. In Chapter 8, research to include vessel wall imaging in
clinical routine is presented.

2.1.2 Prognosis of development and rupture: risk factors

In this Section, research on factors leading to aneurysm rupture are discussed.
In Chapter 9, tools for automatic mesh processing and morphological parameter
extraction are presented. An alternative to the usage of these parameters could
be deep learning, as described in Chapter 8. Risk factors related to the aneurysm
wall and wall enhancement are discussed in Chapter 3.

The international study of unruptured aneurysms (ISUIA) determined that an-
eurysms larger than 10 mm or aneurysms at the posterior circulation or posterior
communication artery have a higher rupture risk than other aneurysms. Another
major risk factor was the occurrence of SAH of another aneurysm in patients
with multiple aneurysms. The study included 2621 patients from 53 centers in
the United States, Canada, and Europe [24].

The usage of the PHASES score (Population, Hypertension, Age, Size of aneu-
rysm, Earlier subarachnoid hemorrhage, Site of aneurysm) is controversial. Feghali
et al. [25] analyzed ruptured aneurysms and used scores to access which treatment
would have been recommended if the aneurysms were detected before rupture.
They calculated the PHASES score for 992 patients and the unruptured intracra-
nial aneurysm treatment score (UIATS) for 266 patients. Based on the PHASES
score, 54% of the ruptured aneurysms had a low rupture risk (5-year risk ≤
1.3). Based on the UIATS, observation would be recommended for 23-34% of the
patients.

A recent study analyzing 9940 patients, including 6555 women, confirmed that
women had a higher risk of aneurysm rupture than men. This difference could
not be explained by patient- or aneurysm-related risk factors. Women more often
had aneurysms at the internal carotid artery and more aneurysms larger than 7
mm [26].

Suzuki et al. [27] analyzed the rupture risk of small intracranial aneurysms (aneu-
rysms <10mm). They analyzed 338 aneurysms, 35 ruptured and 303 unruptured.
The study population only consists of Japanese adults. Previous studies deter-
mined Japanese origin as a risk factor for aneurysm rupture. Based on CT images
they carried out hemodynamic simulations. They found several risk factors for
the rupture of small aneurysms: young age, multiple aneurysms, bifurcation an-
eurysms, aneurysms with bleb, and large aneurysm length.
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Feng et al. [28] analyzed 1671 intracranial aneurysms from 700 patients with
multiple aneurysms. Similar to the PHASES score, they developed a rupture risk
prediction specifically for patients with multiple aneurysms. Their categories are
all designed to be answered with yes or no. The highest weighted category is
"history of SAH", followed by "located at posterior circulation", "aspect ratio >
1.55" and "female". Further categories are "drinking", "bifurcation" and "irregular
shape".

Wang et al. [29] analyzed 20,280 patients with aortic aneurysms and 20,280
patients without aortic aneurysms. They found that intracranial aneurysms were
associated with aortic aneurysms. This also depends on the treatment of the
aortic aneurysms: open surgical repair was associated with fewer intracranial an-
eurysms than nonsurgical treatment.

Although aneurysms in children are rare, they are possible. They have a high risk
for seizures. The risk of preoperative seizures in pediatric patients with intracra-
nial aneurysms is increased by younger age (< 5years), head trauma history, lobe
hematomas, modified Fisher grade 3-4, giant aneurysms, and distal arterial aneu-
rysms. The risk of postoperative seizures is lower for surgical interventions than
for endovascular treatment [30].

Molenberg et al. [31] evaluated the use of the UIATS for the prediction of aneu-
rysm growth. 214 patients were followed for a mean period of 1.3 years. Their
study showed that the UIATS was not able to predict aneurysm growth or rup-
ture. However, the results are limited by the biased patient selection.

Especially for multiple aneurysms, the PHASES score is problematic [32]. The
PHASES score is aimed at single aneurysms. Feng et al. [33] applied the PHASES
score to 701 patients with altogether 1673 aneurysms. They tried to predict the
occurrence of rupture in a patient based on the PHASES score of the largest
aneurysm, highest PHASES score, sum of PHASES score and mean PHASES
score. None of these were suitable and more accurate models are needed.

According to a study by Rousseau et al. [34] the location is the most signifi-
cant factor in aneurysm rupture. This is followed by age. Their study included
2505 patients. In contrast to the PHASES and UIATS score, the size was not a
factor relevant for aneurysm rupture.
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More and more morphological and hemodynamic parameters were introduced in
the last years to predict aneurysm rupture. Neyazi et al. [32] criticized this as
unpractical and not applicable in clinical practice. Based on 87 aneurysms from
38 patients with multiple aneurysms they propose aneurysm rupture prediction
based on two parameters: the aspect ratio (height of the aneurysm measured
vertically to the aneurysm neck / maximum diameter of the aneurysm neck) and
from the hemodynamic parameters the maximum relative residence time. These
parameters showed differences between ruptured and unruptured aneurysms and
low correlation to other risk factors.

Asgharzadeh et al. [35] propose a classification based on a single parameter,
the aneurysm number. The number is calculated based on the parent artery di-
ameter, the neck size, and the pulsatility index, which is derived from the average,
minimum and maximum velocity in the parent artery. With this, a specificity of
33% was reached.

Varble et al. [36] compared small (<5mm) and large aneurysms. For both,
morphological parameters, especially the undulation index, were important. To
discriminate between small ruptured and unruptured aneurysms, the oscillatory
shear index, previous SAH and number of aneurysms are useful, while for large
aneurysms wall shear stress and aneurysm location are relevant factors.

Shi et al. [37] trained a support vector machine (SVM) to classify aneurysms
as ruptured and unruptured. They used data from CTA and included clinical
characteristics, morphological and hemodynamic parameters. For training, 410
aneurysms were used, and 94 aneurysms for testing. Further evaluation included
data sets with 30 and 22 aneurysms from different hospitals. They reached a
sensitivity between 54.5% and 81.8% and a specificity between 73.7% and 91.1%.

Yang et al. [38] classified aneurysms from 36 patients to predict whether they
were stable or unstable over 36 months. They used a backpropagation neural net
and 45 features. The best results were achieved by using clinical, morphological,
and hemodynamic features. If only one of these three groups was used, morpho-
logical features achieved the best results. Amigo et al. [39] compared different
machine learning algorithms and suggest the usage of a random forest classifier
to classify ruptured and unruptured aneurysms. However, they only used a total
of 71 patients which severely limits the result.

Ahn et al. [40] used a multi-view CNN architecture to predict the rupture risk
of small unruptured aneurysms. They used 364 3D-DSA images for training and
93 for testing. An accuracy of 81.72% was reached.

The aneurysm size alone is not a reliable parameter for the prediction of aneu-
rysm rupture. Especially for small aneurysms other factors like neck size and
parent vessel diameter should be included. Ruptured aneurysms have a lower
wall shear stress than unruptured aneurysms. Currently, no single factor can
be identified as responsible for aneurysm rupture. A combination of shape and
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Figure 2.7: Left: minimally invasive placement of coils in the aneurysm, middle:
clipping of an aneurysm, right: stent under aneurysm [42]

hemodynamics could lead to a better understanding of aneurysms and rupture
risk [41]. The hemodynamic aspects of aneurysm research are further described
in Section 4.2.

Predicting aneurysm rupture is an important step towards selecting the right
treatment. While clinical routines only use a very limited number of factors,
research studies explored a large number of factors related to aneurysm rupture.
Some of these factors are further explored in this thesis: morphological parameters
and hemodynamic parameters. The focus is on practical applications which could
help including these parameters into clinical routine.

2.1.3 Treatment of intracranial aneurysms

There are several options for the treatment of intracranial aneurysms. Figure
2.7 shows the most common treatment methods. Aneurysms are treated by al-
ternating the blood flow to prevent aneurysm rupture. Alternatively, the blood
flow in the aneurysm can be completely stopped with clipping. To find the best
treatment, the risk of treatment and the risk of aneurysm rupture are evaluated.
Here, different treatments and their risks are described.

The main options for aneurysm treatment are micro-surgical clipping and en-
dovascular treatment. Clipping involves opening the cranium and placing a clip
around the aneurysm neck to prevent blood flow into the aneurysm. Combined
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treatment with clipping and coiling is also possible [43]. For clipping, the mortal-
ity rates are between 1 and 3%. In some cases, technical failures like incomplete
occlusion (5.2%), recurrence (1.5%) or hemorrhage (0.26%) can occur [44].

Coiling is a minimally invasive treatment option and as such less physiologically
stressfull than clipping. By placing detachable coils inside the aneurysms the
blood flow in the aneurysm is reduced or completely stopped. The mortality rate
for coiling is between 1.1 and 1.5%. The risks of coiling are arterial dissection
(0.7%), parent-artery occlusion (2.0%), thromboembolic phenomena (2.4%), and
minor risks similar to the risks of diagnostic catheter angiography (for example
reactions to material, groin hematomas and infections). In 1.4 to 2.7% of the
cases the aneurysm ruptures during the catheter advancement or the coil place-
ment and of these cases the mortality rate is between 30% and 40%. In 85 to
90.4% of the aneurysms treated with coiling an occlusion over 90% was reached.
Coiling is less successful for larger aneurysms or aneurysms with a wide neck.
The treatment of aneurysms with coiling is an active research field and with the
development of new coils the treatment is improved [44].

The blood flow can also be alternated by placing a stent in the vessel. A stent can
be used alone or to support treatment with coils. An example of a flow diverting
stent is a pipeline embolization device. It consists of a tightly braided mesh. The
mesh causes stagnation of blood in the aneurysm sac and leads to occlusion of
the aneurysm while allowing blood flow in the vessel branches [7].

Meyers et al. [45] researched the usage of flow diverters for large or giant wide-
neck intracranial aneurysms. Treatment of 180 patients in 26 medical centers
showed that in 62.8% of the cases the treatment was effective (complete aneurysm
occlusion, no significant parent artery stenosis, and no retreatment in 12 months).

In a multicenter cohort of 1088 patients, the treatment of intracranial aneurysms
with coiling and balloon-assisted coiling was analyzed. Two risks of these inter-
ventions are thrombotic events and intraoperative rupture. Thrombotic events
occurred in 113 of the 1088 patients, and of these 113 patients 29 were impaired
in their daily life after the intervention (Rankin scale score of 3-6). Intraoperative
rupture was less common, with 34 cases, but as dangerous (11 of 34 cases had
a Rankin scale score of 3-6). Risk factors for thromboembolic events were fe-
male gender and middle cerebral artery location. Anterior communicating artery
location and small aneurysm size were risk factors for intraoperative rupture [46].

Aneurysms can be occluded with flow diverters. These lead to an alternation
of the blood flow resulting in intra-aneurysmal thrombosis (see Fig.2.8). In con-
trast to surgical treatment, this does not take immediate effect [47].

Another treatment option for unruptured intracranial aneurysms is medication.
The anti-inflammatory effect of aspirin may decrease aneurysm growth and rup-
ture risk. Roa et al. [48] analyzed 96 unruptured intracranial aneurysms. The
wall enhancement in BBMRI was calculated based on the aneurysm-to-pituitary
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Figure 2.8: Process of aneurysm treatment with flow diverter [47]

(a) Treatment of ruptured aneurysms in
the United States between 2004 and
2014 [49]

(b) Treatment of unruptured aneurysms in
the United States between 2004 and
2014 [49]

Figure 2.9: Development of preferred treatment method of ruptured and unrup-
tured aneurysms

stalk contrast ratio. Wall enhancement was increased by age, aneurysm size over
7mm, and location in the anterior communicating, posterior communicating, and
basilar artery. Daily usage of aspirin over at least six months significantly de-
creased wall enhancement. The usage of BBMRI in aneurysm research is further
discussed in Section 3.3.

Another treatment option is the use of liquid embolic agents, for example Onyx
HD-500, to close the aneurysm. It might be used to treat large, saccular an-
eurysms which have a large neck and cannot be treated by clipping or coiling.
Due to the higher risk of unfavorable outcome (morbidity of up to 8%), its usage
declined [7].

Over the years the preferred treatment methods changed. In 2004, 37% of rup-
tured aneurysms and 52% of unruptured aneurysms were treated with coiling.
This largely increased over the years and in 2014 68% and 73% respectively, were
treated with coiling. Similarly, the treatment with clipping decreased (Fig. 2.9a
and Fig. 2.9b) [49].

Treatment of small unruptured aneurysms with surgical clipping or endovascular
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treatment are similar in terms of procedure-related complications and neurologi-
cal outcomes [50].

In a retrospective study, patients with ruptured aneurysms admitted to the Uni-
versity Hospital of Cologne and treated with microsurgical clipping between 2010
and 2019 were analyzed. The time of admission of the patient (during standard
working hours or during on-call duty) did not significantly influence the out-
come. Before multi-variable adjustment, an association between surgery during
night time and worse patient outcome was found [51].

The Barrow Ruptured Aneurysm Trial (BRAT), a series of papers published
between 2012 and 2015, evaluates the treatment of acutely ruptured cerebral an-
eurysms with clipping or coils. 358 patients who had undergone treatment were
evaluated after one year. 33.7% of the patients treated with clipping and 23.2%
of the patients treated with coiling had a modified Rankin Scale (mRS) score
over 2 [52]. After three years, the difference was smaller (35.8% for clipping and
30% for coiling). In terms of aneurysm obliteration and recurrence, clipping was
better [53]. This trend continued in the six-year follow-up. After six years, clip-
ping resulted in complete aneurysm obliteration in 96% of the patients, coiling
only in 48%. While the retreatment rates were higher for coiling, no recurrent
hemorrhages occurred [54].

2.2 Technical background - Image acquisition

In this section, several image acquisition techniques are described. The focus is
on the operating principle of image acquisitions. The commonly used techniques
of CT and MRI for aneurysm diagnostics and their advantages and limitations re-
garding intracranial aneurysms are discussed in Section 2.1.1. Section 3.2 further
discusses algorithms for processing histologic images and model generation from
histologic images. The practical implications of BBMRI and studies regarding
aneurysm wall enhancement in BBMRI are discussed in Section 3.3. Chapter
8 and 9 use 3D models derived from various imaging modalities used in clini-
cal routine. Chapter 8 also discusses how wall enhancement in BBMRI can be
segmented and which impact different imaging sequences have. Chapter 6 and
7 use histologic images for detailed insight into the intracranial aneurysm wall.
Section 2.2.4 describes other image modalities which can be used to analyse the
aneurysm wall.

2.2.1 CT

An early imaging technique used in medicine was X-ray imaging. This uses the X-
rays discovered in 1895 by Wilhelm Röntgen [55]. X-ray imaging exploits that the
energy of an X-ray passing material is attenuated by a material-specific amount.
X-rays cannot penetrate lead and are not reflected, refracted, diffracted, or de-
flected by electrical fields. X-ray imaging produces projection images. As the skull
would hide most of the other structures, X-ray imaging is not suitable for imaging
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intracranial structures. For this, CT, an imaging technique developed based on
X-ray imaging, can be used [56, 57, 58]. While X-ray images were produced by
a film blackened by X-rays, CT images are computed from several projections.
These are generated with a detector ring. With the ring, the X-ray source and
the detector are rotated around the patient. By placing the patient on a movable
table, a stack of images can be generated [59].

CT images require X-rays and therefore posses a risk for the patient. Radi-
ation dose and slice thickness are important factors for image resolution and
quality. Especially with smaller slice thickness imaging artifacts due to mov-
ing can occur. Another artifact is the partial volume effect due to attenuation
within a voxel not being consistent. In patients with implants metal artifacts can
arise.

In CT images, Hounsfield units with material-specific values are used. Air has -
1000 Houndsfield units, water 0, blood 30-45, white matter 20-20, and grey matter
37-45 Houndsfield units. Thus, the difference for soft tissues is small and the dis-
tinction between tissues is less clear. The usage of the standardized Houndsfield
units simplifies the comparison of several CT images [59].

As discussed in Section 2.1.1, CT images are used for aneurysm diagnosis.

2.2.2 MRI

Magnetic resonance imaging (MRI) is based on the spin of the nuclei. These are
aligned in an external magnetic field. MRI uses the response of hydrogen nuclei
to produce images. The hydrogen density varies in different human tissues, there-
fore MRI allows for a better soft tissue contrast than CT. Further advantages are
the lack of radiation, arbitrary slice orientation (for example used to generate
coronal or sagittal views), and several different subtypes of MRI for functional
attributes [59]. This work only uses BBMRI.

There are several different imaging techniques to create an MR angiogram [60]:

• Black Blood MRI: In BBMRI, also called dark blood MRI or vessel wall
MRI (VWMRI), the vessels appear black. This can be done by using the
T1 and T2 properties of blood or by accentuating flow-related dephasing.

• Fast Spin Echo (FSE)

• optimized for half Fourier parallel imaging

• long echo trains ( 100-250 echoes)

• low flip angles ( 30-120 degree)

• low specific absorption rates

• imaging times between 5 and 10 min

• Inversion recovery (IR)

• Susceptibility-weighted imaging (SWI)
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• Bright Blood MRI: In the currently more often used bright blood MRI the
vessels appear bright in the image.

• Non-contrast: These techniques rely on the MR properties of flowing
blood.

• Fast spin echo (FSE)

• Time-of-flight (TOF)

• Phase contrast (PC)

• steady-state free precession (SSFP)

• arterial spin labeling (ASL)

• Contrast-enhanced: After the injection of a gadolinium-based contrast
agent, the vessels are rendered bright on T1-weighted images.

In clinical practice, BBMRI is recommended to differentiate different causes of
intracranial arterial narrowing (for example intracranial atherosclerotic plaque,
vasculitis, arterial dissection) and to identify symptomatic, nonstenotic diseases
of intracranial arteries. Furthermore, it can be used to access atherosclerotic
plaque activity, access vasculitis activity, and determine which aneurysm has
ruptured in patients with several aneurysms. Current research focuses on the use
of BBMRI to predict the behavior of intracranial unruptured aneurysms [61, 62].

Delay alternating with nutation for tailored excitation (DANTE) pulse trains
were developed by Mosher and Smith [63]. It can be used for frequency-selective
excitation of a narrow frequency region in high-resolution nuclear magnetic res-
onance spectroscopy [64]. Li et al. [64] applied DANTE pulse trains with short
interpulse repeat times (< 5ms) together with a field gradient along the direction
of the flow. With this, an attenuation of flowing spins is achieved and, for exam-
ple, blood and cerebrospinal fluid appear black.

Van der Kolk et al. [65] used inversion recovery turbo spin-echo (TSE) sequence
to show the walls of intracranial vessels. They tested the sequence on 7 healthy
volunteers and 35 patients with ischemic stroke or transient ischemic attack. They
found that a good contrast between wall, blood and cerebrospinal fluid could be
achieved independent of the vessel orientation relative to the plane of acquisition.

Imaging of intracranial vessels is challenging due to the slow blood flow. In the
carotid artery residual blood signals are often detected, which could be falsely
interpreted as plaque [66]. Xie et al. [66] compared the combination of delay al-
ternating with nutation for tailored excitation (DANTE) and sampling perfection
with application-optimized contrasts using different flip angle evolution (SPACE)
to SPACE alone. As Fig. 2.10 shows, DANTE reduces artifacts and the vessel
lumen is clear.
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Figure 2.10: Comparison of SPACE and DANTE SPACE for a) carotid bifur-
cation of a healthy subject and b) internal carotid artery from a
patient suspected of stroke [66]

The heart rate has an impact on the blood flow and the wall enhancement, as
shown in Fig. 2.11. The figure shows a phantom that was modeled using a 7-T
MRI from a patient with a stable MCA aneurysm. On the phantom different
heart rates (48 and 77 beats per minute) were simulated. The images taken
with the lower heart rate suggest more wall enhancement than the images of the
faster heart rate. The wall intensities were dependent on the preparation. With
DANTE the near-wall signal intensities decreased by approximately 50% [67].
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Figure 2.11: Effect of different heart rates (HR) on the wall visibility in different
vessel wall imaging techniques with and without contrast agent [67]

Successful blood suppression with motion-sensitized driven equilibrium (MSDE)
sequence depends on several factors. Instrumental factors affecting the image
quality are eddy currents and B1 inhomogeneities. These are partially compen-
sated by the iMSDE sequence which has an extra 180° refocusing pulse. Wang
et al. [68] showed that the iMSDE sequence had a higher signal-to-noise ratio
(SNR) compared to the MSDE sequence in a phantom and in vivo study.

Cho et al. [69] also compared SPACE images with and without DANTE and
additionally compared them to BrainView with and without improved motion-
sensitized driven equilibrium (iMSDE). The images were collected from 14 healthy
volunteers. Two radiologists with more than five years of experience judged
the image quality, vessel wall delineation, black blood and cerebrospinal fluid
(CSF) signal, and the image acceptability. For the four imaging sequences no
significant difference in black blood effect, image quality and acceptability were
found. For cerebrospinal fluid, SPACE without DANTE was superior to SPACE
with DANTE and BrainVIEW without iMSDE was superior to BrainVIEW with
iMSDE. The signal-to-noise ratio in the vessel and the contrast-to-noise ratio
were higher in the SPACE images (with and without DANTE) compared to the
BrainVIEW images (with and without iMDSE).
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Figure 2.12: Traditional MSDE (top) and iMSDE (bottom) preparation pulse
sequence. Trapezoids: motion sensitizing gradients, S: spoil-
ing gradients, right: diagrams of m1 changes, assumed gradient
strengths of 20 mT/m [68]

Figure 2.13: SPACE with and without DANTE and BrainVIEW with and with-
out iMSDE sagittal images of a segment of the middle cranial
artery from a 37 year old healthy volunteer [69]

Cornelissen et al. [70] analyzed factors contributing to wall enhancement in in-
tracranial aneurysms. They included 14 aneurysms from 6 patients in their study.
10 aneurysms showed wall enhancement, 4 of these were unruptured. They could
not confirm the hypothesis that wall enhancement is related to inflammatory
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cell infiltration. In 60% of the cases, the intraluminal diameter was smaller in
BBMRI compared to TOF MRA. They concluded that in these cases the wall
enhancement was at least partially caused by slow intra-aneurysmal flow.

Currently, the research is mainly on saccular intracranial aneurysms. The re-
sults might not be applicable to dissecting or thrombosed aneurysms. Besides
pseudo-enhancement due to slow blood flow, the interpretation of wall enhance-
ment can be complicated by proximity to dura or adjacent veins [62].

Raz et al. [71] analyzed 28 variable flip-angle T1 black-blood MRI with DANTE
images of aneurysms treated with flow diverters. They recommend these ad-
vanced BBMRI for treatment evaluation as the evaluation of parent vessel and
aneurysm wall is superior to conventional MRI.

2.2.3 Histology

Histologic images are very detailed images of a tissue and show individual cells
and nuclei. Often the H&E staining is used (see Fig. 2.14).

Figure 2.14: Nuclei of cells in H&E staining [72]

To create histologic images, tissue is fixated, thinly sliced, stained, and viewed
under a microscope. Aneurysm tissue can only be collected after opening the
skull and therefore is not used for rupture prediction and treatment decisions.
Especially for research, aneurysm dome tissue is collected during clipping. Alter-
natively, aneurysms can be collected post mortem.

The five stages of histologic imaging are fixation, processing, embedding, sec-
tioning and staining [73].
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Table 2.1: Examples of different stainings, bold: stainings used in this thesis
[74, 75, 76, 77]

staining presented structures example

Alcian blue acid mucopolysaccarides medical necrosis
dissected aortic aneurysm

Elastin staining
(according to Weigert) elastic fibers (violet-black) elastic fibers in

aortic media

Elastica van Gieson (EvG)
collagen fibers (red)
elastic fibers (black-brown)
cytoplasma, musculature (yellow)

fibrosis in organs
liver cirrhosis

Hematoxylin-eosin (H&E)
cytoplasma (red)
erythocytes (red)
nuclei (blue)

routine staining

alpha-smooth muscle actin (aSMA) smooth muscle cells
myofibroblasts

stromal cells of
mammary carcinomas

Oil red O (Oro)
neutral fat
fatty acids
triglycerides

lipid storage diseases
fat embolism

Massons’s Trichrome (MT) acidophilic tissue
(cytoplasma, muscle)

routine stain for
liver and kidney
biopsies

1. Fixation: should preserve the structure of the cells, delay degradation and
harden the tissue for sectioning. Different fixatives are used, for example:

• Neutral buffered formalin: often used in combination with light mi-
croscopes, good tissue and cell structure preservation, but denatures
DNA, miRNA and mRNA

• Paraffin-formalin: requires fresh preparation to enhance effectiveness,
suitable for immunostainings

• Bouin’s fixative: preservation of nuclei and glycogen, used for embryo
and brain tissues, distorts mitochondria and kidney tissue

2. Processing: The tissue is dehydrated with ethanol and a hydrophobic clear-
ing substance like xylene. This helps to solidify the tissue and preparation
for sectioning.

3. Embedding: Often the tissue is embedded in paraffin wax. Alternatives are
plastic resin, wax or combinations of fixatives.

4. Sectioning: For microscopic slide examination the tissue is sectioned in a
series of thin slices.

5. Staining: To highlight important features and enhance contrast the tissue
is stained.

The tissue is stained to highlight different aspects of the tissue. Several dif-
ferent histologic stainings exist and are used for different situations, as shown in
Table 2.1.

31



Histologic images require the collection of tissue. Therefore, histologic analysis of
aneurysms can only be done on samples collected during surgery or post-mortem.
During surgery only a small part of the aneurysm can be collected. Samples col-
lected post mortem are rare and can include the whole aneurysm and part of the
parent vessel. Chapter 6 describes the reconstruction of a 3D model from post
mortem data, while Chapter 7 uses tissue collected during surgery and preoper-
ative images.

During the tissue collection and processing the shape of the tissue changes. Espe-
cially for whole aneurysms the missing blood flow alternates the shape. Current
research on image processing for histology, among other things virtual inflation,
is discussed in Section 3.2.

H&E Staining

Figure 2.15: Example of the often used H&E staining [72]

Hematoxylin and Eosin (H&E) staining is used for routine diagnoses to view cel-
lular and tissue structure details. The nuclei are dyed blue with hematoxylin (see
Fig. 2.15). The depth of the color depends on the amount of DNA in the nuclei
and on the time the sample spends in hematoxylin. Hematoxylin is extracted
from the tree Hematoxylin campechianum. The ability to attach to anionic com-
ponents of the tissue can be improved by adding a mordant. An often used
mordant is aluminum ammonium sulfate. Eosin is used to dye connective tissue
fibers in different shades of pink. Most commonly used is Eosin Y. To enhance
the red, phloxine can be added [75].

H&E stains can be divided into progressive, modified progressive, and regressive.
For progressive staining, hematoxylin is added to the tissue but not followed by a
differentiator to remove excess dye. This can be useful in tumor diagnosis where a
non-cellular material like mucin becomes stained with hematoxylin. In regressive
and modified progressive staining a differentiator is used. Modified progressive
staining uses a mild differentiator. This only removes background staining but
not the excess from the nuclei [78].

32



aSMA Staining

Figure 2.16: Examples of aSMA staining [79]

Alpha-smooth muscle actin (aSMA) (see Fig. 2.16) is a staining that helps to
identify smooth muscle cells and myofibroblasts in normal, reactive, or neoplastic
tissue. Besides in smooth muscle cells, alpha-smooth muscle actin is found in
stromal cells of mammary carcinomas and used in tumor diagnostics. The anti-
bodies which detect alpha-smooth actin were discovered in 1986 and they do not
detect other actin isoforms [80] [81].

Oro Staining

Figure 2.17: Example of Oro staining (Image provided by the Histology Re-
search Core Facility in the Department of Cell Biology and Phys-
iology at the University of North Carolina, Chapel Hill NC [76])
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Oil red O (Oro) is used to dye neutral fat, fatty acids and triglycerides. The fat-
soluble, hydrophobic diazo dye appears red (Fig. 2.17). As paraffin embedding
or alcohol-based fixation removes neutral lipids, it has to be applied in fresh or
frozen tissue. Common applications include muscle biopsies to assess the number
of sarcoplasmic lipid droplets and the diagnosis of lipid storage diseases, fat em-
bolism and steatosis in liver transplant biopsy. For complex phospholipids and
glycolipids that have polar groups (like found in peripheral nerves or biological
membranes), sudan black is better suited than Oro [76]. Blitz et al. [82] de-
veloped a method for quantification of fatty infiltration in skeletal muscle using
Oro staining and computer support. They stained tissue collected from mice
and acquired an image stack with 10µm step size. This stack was processed
semi-automatically using a thresholding algorithm and a watershed algorithm to
segment the images.

MT Staining

Figure 2.18: Example of MT staining [83]

Masson’s Trichrome stain (MT) consists of three dyes: Weigert’s hematoxylin to
dye the nuclei, Biebrich scarlet-acid fuchsin solutions to stain acidophilic tissue
elements (for example cytoplasm and muscle), and aniline blue to dye the collagen
(Fig. 2.18). After the tissue is stained the nuclei are black, cytoplasm, muscle,
and erythrocytes are red and the collagen is stained blue. This staining is a
routine stain for liver and kidney biopsies and can be used to differentiate between
collagen and smooth muscle cells [77].

2.2.4 Other imaging modalities

Especially for research additional imaging modalities can be used to get further
insight into vessel and aneurysm structures.

Optical coherence tomography

Analog to the usage of sound in ultrasound imaging, light is used in optical co-
herence tomography (OCT). By measuring backscattered or back-reflected light,
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Figure 2.19: Left: angiography image of ruptured aneurysm (arrow). Right:
OCT image (during open surgery), arrow: layer structure of the
wall [85]

high-resolution cross-sectional tomographic imaging is performed (Fig. 2.19).
OCT was first demonstrated in 1991. Initially, it was used for the eye. The
images have a resolution between 1 to 15 µm. The imaging depth is limited by
the optical attenuation of the tissue. In most tissues imaging up to 2 to 3 mm
is possible. OCT is not yet common in clinical routines. Several studies explore
possible applications, for example as guidance or alternative for challenging or
hazardous biopsy. For imaging of gastrointestinal, pulmonary and urinary tracts
and arterial imaging. catheter and endoscope OCT can be used [84].

Glaßer et al. [86] demonstrated the usage of OCT for intracranial aneurysms
on three post mortem explanted Circle of Willis. Intravascular OCT image ac-
quisition with an OCT catheter generated a 2D image stack. This stack was
aligned with corresponding histologic images of the tissue. To account for the
tissue deflation due to missing blood pressure they introduced virtual inflation
for the histologic and OCT images. Later work included the segmentation of the
nuclei in histologic images, analysis of the nuclei shape, and generation of nuclei
cluster. The framework allows brushing and linking between OCT and histologic
images and between original and virtual inflated images [87].

Another experiment combined 2D OCT with 3D structured light scanner data.
3D landmarks were collected using a touchprobe. In the OCT images, manual
segmentation of intima and adventitia was carried out. The OCT images were
aligned based on the centerline, and surface extraction for intima and adventitia
was performed. This generated a 3D vessel thickness model [88].

Serial block facing

A newer technique to visualize cells and nanostructure in biological tissue in
3D is the serial block-face scanning electron microscopy presented by Denk and
Horstmann in 2004 [89]. For this technique, a tissue sample is embedded in
plastic. An image of the surface of the plastic-embedded tissue is taken with a
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Figure 2.20: Serial block-face imaging: A) overview of the process, B) pilled up
slices, C) and D) mechanical design [89]

scanning electron microscope. After that, an ultrathin slice of the block is re-
moved with a diamond knife and the next image is taken. Occasionally, a pipette
is used to remove the cut-off slices which can pile up on the knife (see Fig. 2.20).
Serial block face imaging can achieve resolutions of up to 15-20nm. This tech-
nique is only suitable for very small samples (<5mm)[90].

O’Connel et al. [91] analyzed the nanostructures of a rat aorta using serial block-
face scanning. An example of a 22µm× 16µm× 25µm large tissue block sampled
from the aorta is shown in Figure 2.21. Mikula et al. [92] used serial block-
face imaging to visualize a whole mouse brain and segment single axons in the
brain.
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Figure 2.21: Serial block-face imaging of a rat aorta; SMC: SMC nuclei, EL:
elastic lamellae, ES: elastin structure, IEFSs: interlamellar elastin
fibers [91]

Multiphoton imaging

Over time optical imaging techniques have improved. With the introduction of
multiphoton imaging in 1990 by Denk et al. [93] images of over 100µm were
possible. This was further improved by Combs et al. [94] to image samples
up to 2mm (see Fig. 2.22). This can be improved by reducing scattering and
absorption of the tissue with optical clearing techniques. Alternatively, mul-
timodal techniques which combine light with acoustic detection can be used
[95].

Figure 2.22: Construction of a mulitphoton imaging system; PMT: photomul-
tiplier tube; IR: infrared [94]

37



Schriefl et al. [96] analyzed five post mortem collected human abdominal aortas.
Their optical clearing included rinsing the tissue samples with phosphate-buffered
saline to remove excess paraformaldehyde from the fixation step, dehydration
with ethanol, and a solution of benzyl alcohol to benzyl benzoate. The result
is shown in Fig. 2.23. With second-harmonic generation imaging and Fourier-
based image analysis, they assessed the fiber orientation in the tissue. The three
arterial layers differ in their fiber morphology (see Fig. 2.24, Section 2.1). Thick
fiber bundles were found in the adventitia. They were mostly oriented diagonal
to the major axes while the fiber in the media was organized in the circum-
ferential direction of the vessel. Isotropic fiber morphologies were found in the
intima.

Figure 2.23: Tissue before and after optical clearing [96]

Figure 2.24: Aortic wall; image acquired using second-harmonic generation
imaging. I: adventitia, II: media, III: intima [96]
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Intravascular ultrasound

Intravascular ultrasound (IVUS) can be used to show vascular structures. Like
other forms of ultrasound it is based on the varying acoustic impedance at the
interface of different tissue structures. A catheter with an ultrasound transducer
is placed in the vessel (see Fig. 2.25). IVUS imaging is not suitable to distinguish
between fibrotic and calcified tissues in plaques [97]. Due to this limitation,
Chapter 6 and 7 are using histologic images instead. IVUS is not used in clinical
routine for intracranial aneurysms, but might be used to assist endovascular repair
of aortic aneurysms [98].

Figure 2.25: a) Example of intravascular ultrasound image of an arterial cross-
section. b) Composition of an intravascular ultrasound imaging
system. c) Series of images acquired during pullback of the ultra-
sound transducer [97]

Imaging aneurysm pulsation

Another aspect of aneurysm imaging is measuring aneurysm pulsation. Pulsat-
ing intracranial aneurysms are more likely to grow and rupture [99]. At the
moment, no gold standard for this is available and imaging is challenging as
pulsations are in the order of current imaging modalities. Most studies use ECG-
gated 4D computed tomography angiography to get quantitative pulsatility mea-
surements (see Fig. 2.26). Other options are MR imaging or DSA, which is
rarely used for this. During a cardiac cycle, the aneurysm volume changes be-
tween 5% and 36%. This is correlated to the aneurysm diameter. Currently,
there are major variations in pulsatile measurements and it is unclear whether
this is because of true aneurysm pulsation or image noise and measurement er-
rors [100].
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Figure 2.26: Pulsation of left middle cerebral artery, yellow: contour of
aneurysm at time 0 ms, arrows: area of pulsation [101]
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2.3 Summary

Intracranial aneurysms are a disease of the brain vessels that is complex to di-
agnose and treat. With increased usage of medical imaging, more aneurysms
are incidentally found. These have to be evaluated regarding the patient-specific
rupture and treatment risk. Several different imaging modalities are used in
aneurysm research and in clinical routine.

Figure 2.27: Treatment of intracranial aneurysms and related research; green:
clinical routine, purple: ongoing research, blue: wall-related
aneurysm research presented in this thesis

Figure 2.27 shows various aspects in aneurysm research and treatment. Tis-
sue samples of the aneurysm wall can either be collected during treatment with
clips or in the pathology. Analysis of aneurysm wall tissue could provide helpful
insights into the wall composition and the processes leading to aneurysm devel-
opment and rupture, with the potential to develop new treatments to prevent
aneurysm rupture. Due to the risk of the currently available treatment methods,
the rupture risk and the treatment risk play a major role in the treatment decision.
In this thesis, only the rupture risk is considered. Several aspects influence the
rupture risk of intracranial aneurysms. Therefore, several projects covering vari-
ous aspects of aneurysm rupture are included in this thesis: wall composition, wall
enhancement and wall shear stress. This includes a pipeline for semi-automatic
mesh processing to analyze the aneurysm and surrounding vessels, mesh prepro-
cessing for hemodynamic simulations, objective wall enhancement segmentation
and geometric deep learning for rupture and wall shear stress prediction. In the
future, this could enhance the rupture risk assessment in clinical routine.
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The processes leading to aneurysm formation and rupture are an active research
topic. An important aspect are the wall and the changes in the aneurysm wall.
Imaging of the wall is challenging, as discussed in Section 2.2.4. To enhance the
understanding of the aneurysm wall, Chapter 6 and 7 present how a 3D model
based on histologic images can be generated and histologic information can be
combined with various other aspects. The histologic images allow the most de-
tailed view of the aneurysm wall and show individual cells of the tissue. While
research has identified a large number of risk factors, clinical practices uses sim-
ple, but unreliable and outdated scores. In this thesis, tools which enable the
usage of hemodynamic and morphological parameters are presented in Chapter 8
and 9. As they use deep learning on 3D models, they are fast and independent
of the used image modality.
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3 Related Work - Image processing

This chapter discusses related work regarding the analysis of the aneurysm wall
and image processing for aneurysm diagnosis and research. In Chapter 6 and
Chapter 7 the aneurysm wall structure will be assessed with histologic images.
The clinically oriented Chapter 8 uses BBMRI. Histologic images were selected
as they allow a detailed insight into the cells and tissues building the aneurysm
wall. BBMRI has the potential to be used in clinical routines in the future.
Other techniques used in research are briefly described in Section 3.1. These
are neither as detailed as histologic images nor can they be used in clinical rou-
tines.

3.1 Aneurysm wall analysis

The aneurysm wall is an important aspect of aneurysm formation and rupture.
Understanding the processes inside the wall could lead to new treatment options
aiming at influencing the wall. The aneurysm wall is not visible in CT or MR
images. Therefore, various other techniques are used. These are often in 2D and
only highlight isolated aspects of the wall. In Chapter 6, a new 3D wall model
based on histologic images is described. Chapter 7 describes the combination of
histologic wall information, preoperative 3D information and hemodynamic sim-
ulation results.

Several studies analyzing the wall and testing various wall attributes were pub-
lished in the last years. Research with a focus on the aneurysm wall mainly
explores tissue samples collected during surgical clipping. Common diagnostic
methods are polymerase chain reaction, immunostaining, western blotting, and
microscopy. The often small number of samples limits the explanatory power
of these studies [102]. Increased apoptosis, loss of smooth muscle cell layer,
endothelial layer damage, infiltration of M2 macrophages, activity of matrix
metalloproteinase-9, increase of intraluminal thrombus, lower number of collagen
fibers, and atherosclerotic lesions are indications of aneurysm rupture. According
to Jabbarli et al. [102], who compared the results of several studies, these had
a moderate to high evidence quality. The level of evidence was based on several
factors, for example, the number of patients and the existence of conflicting re-
sults from other studies. A detailed model of changes in the arterial wall, which
are suspected to lead to aneurysm development and rupture is presented in Fig.
3.1 [102].

Cebral et al. [103] analyzed the mechanical properties of 8 unruptured cerebral
aneurysms. After clipping, the aneurysms were tested with an uniaxial loading
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Figure 3.1: Model of pathopyhsiological processes and factors for intracra-
nial aneurysm development; black: anatomical targets in the ar-
terial wall, gray: processes. Abbreviations: eNOS = endothe-
lial nitric oxide synthase, MCP-1=monocyte chemotactic protein
1, ROS=reactive oxygen species, CAMs=cell adhesion molecules,
TNF-alpha=tumor necrosis factor alpha, IL-1beta = interleukin
1 beta, NF-kB = nuclear factor kappa b, MMP-2/-9=matrix
metalloproteinase-2/-9 [102]
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system with a multiphoton microscope, allowing imaging, especially of collagen
fibers, while mechanically testing the tissue. From preoperative 3D rotational an-
giography images, fluid simulations were derived. They found several correlations
between the fluid simulations and the mechanical properties of the aneurysm tis-
sue: The ultimate strain decreases with increasing inflow rate, mean velocity, and
mean wall shear stress (WSS). High-stress wall stiffness increased with velocity,
flow instability, WSS, and oscillatory shear index. Other relations were found
but were statistically irrelevant.

Jiang et al. [104] analyzed 28 middle cerebral artery aneurysms. They performed
hemodynamic simulation using models based on preoperative CTA. The simula-
tion results were combined with information about thin-wall regions identified by
intraoperative microscopy. Thin-wall regions correlated with higher pressure and
lower wall shear stress.

Hackenberg et al. [105] analyzed collagen turnover in tissue samples from in-
tracranial aneurysms. The collagen turnover rate was lower (32%) for patients
without risk factors (like smoking or hypertension) compared to patients with risk
factors (for example with arterial hypertension: annual collagen turnover rate of
2600% . Additionally, they found that spatial-temporal averaged wall shear stress
can predict rapid collagen turnover.

Cebral et al. [106] analyzed 65 aneurysms. From preoperative imaging, 3D models
were generated. Based on surgical videos, five different wall types (atheroscle-
rotic wall, hyperplastic wall, thin wall, rupture site, normal) were identified and
manually marked on the 3D model. Not all parts of the aneurysm were visible
in the video, on average 28.9%±25.6% were not visible. The visible areas were
compared with the results of a hemodynamic simulation. Slow flow was associ-
ated with an atherosclerotic and hyperplastic wall, while high flow was associated
with wall thinning.

3.2 Histologic image processing

In this section, algorithms to process histologic images are described. The most
used images in clinical and research settings are H&E stained images [107].

A problem for automated analysis is the color variation. Some slides are less
or more saturated than others. This is addressed by stain normalization. Stain
normalization can be done by histogram equalization per color channel or nor-
malization after separating the image in H-only and E-only images. As in H&E
stained images, two stains are successively applied to the tissue, one stain can be
too intense and the other too weak. That problem can be addressed by separating
the images into the two stains [108] (see Fig. 3.2 and Fig. 3.3).

During the processing, the tissue can be deformed. Two problematic artifacts
may occur: tears in the tissue and folds. While folds might be detected based on
color saturation [110], none of the deformation artifacts can be corrected [107].
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Figure 3.2: Different saturation of H&E staining [109]

Figure 3.3: Left: H&E staining. Right: stain seperation [108]

Another challenge is the processing of large tissues, which have to be imaged as
several pieces and the images have to be manually stitched together [107].

These deformations also make registration more complex. For 3D reconstruction
histologic images are registered to each other. This can be done using anatomi-
cal landmarks like blood vessels [111]. The registration is even more challenging
when histologic images from different stains should be registered, as each stain
emphasizes different structures [107]. Registration of histologic images to other
image modalities is rare. For example, H&E images have been registered to MRI
[112, 113] and CT, which will be further discussed in Section 3.2.4. This provides
additional challenges, as the surgical extraction of tissue for histologic images can
greatly deform the tissue.
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Figure 3.4: Mesh consisting of vertices and faces [114]

Figure 3.5: Example of a mesh showing the geometry of a heart [118]

3.2.1 3D models from histological images

3D models are generated from various image data. Popular methods are sta-
tistical shape models and statistical appearance models [115]. In recent years,
deep learning methods like variational autoencoders or autoencoder generative
adversarial nets also gained popularity [116, 117]. Due to the large difference
between these image data and histologic images, these approaches cannot be eas-
ily transferred to histologic image data. Surface meshes consist of vertices, faces
and edges. Commonly, the meshes are stored as a list of vertices and faces, as
illustrated in Figure 3.4. Figure 3.5 shows a surface mesh of a heart.

Feuerstein et al. [119] researched the reconstruction of 3D histologic images using
synthetic data and a rat kidney. Before the embedded tissue was cut, blockface
images were taken. These allowed registration of the histologic images with the
blockface images as well as a registration between consecutive slices. This regis-
tration is helpful to reduce artifacts in histologic images (like holes, folding and
tears) which occur during the cutting, staining and placement on microscopic
slides.
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Cifor et al. [120] described the reconstruction of 3D volumes from histologic
images without a reference volume from other imaging modalities. They applied
their approach to a Nissel-stained mouse brain. In the first step, they rigidly
registered consecutive slices. Then, the gray/white matter boundary is extracted
and the extracted surfaces are smoothed using mean curvature flow. From this
flow, a displacement field is estimated, and based on this transformations are
estimated and applied to the original 2D images.

Braumann et al. [121] reconstructed 3D tissue volumes from histologic images to
assess cervical tumor invasion. The serially sliced sections were registered with
a rigid registration, color adaption, and non-linear registration. The differences
between adjacent images were small and negligible for the registration.

In this thesis, histologic images for the 3D analysis of intracranial aneurysms
are used. The histologic images in Chapter 6 are collected post mortem and
therefore show the aneurysm and the parent vessel. In contrast to the images of
the previously described works, there are large gaps between the images. Chap-
ter 7 also uses histologic images. These images also have gaps between them.
Furthermore, several stainings are used.

Research question 1: How can a 3D model of the intracranial aneurysm wall
be derived from 2D histologic image data?
Histologic images can show fine details of the aneurysm wall. The available data
collected post mortem show the aneurysm as well as the parent vessel. These rare
and useful 2D data should be used to generate a 3D model of the aneurysm wall
for further analysis and realistic simulations. Due to the unique properties of the
intracranial aneurysm data (for example distance between slices, deformation due
to loss of blood flow) the previously described approaches are insufficient and a
new algorithm has to be developed.

Research question 1 a: How to generate a mesh from a point cloud if
the points are unevenly distributed?
This questions arises while answering the previous questions. Due to some
unique properties of histologic images unusual point clouds occur where com-
monly available mesh generation algorithms fail. Therefore, a new mesh
generation algorithm has to be developed.
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Figure 3.6: First row: original images, second row: segmentation using deep
learning without integrating contour information, bottom row: seg-
mentation result of contour-aware network [123]

3.2.2 Segmentation of histological images

Several approaches exist to support the analysis of histologic images. Typical
tasks are the segmentation of cells, nuclei, or tissue and the classification of im-
ages. These tasks are solved using image processing or machine learning.

Machine learning is often used to classify tissue (for example into different grades,
cancer/healthy tissue). Common supervised machine learning techniques in his-
tology are support vector machines, random forest and convolutional neural net-
works. Unless a deep learning approach is used, it is necessary to define features.
Unsupervised learning, like k-means, autoencoder, and principal component anal-
ysis, is used for clustering and anomaly detection [122].

Chen et al. [123] introduced deep-contour-aware networks for object instance
segmentation in histologic images. They used their net to segment glands and
nuclei. The integration of contour awareness improved the segmentation of over-
lapping structures, as hihglighted with arrows in Figure 3.6.

Histologic images are stained with different solutions. Depending on the tis-
sue preparation the tissue colors can vary. To reduce the inter-slide variability,
sometimes color normalization is applied. Zarella et al. [124] described an algo-
rithm to relate color with histological structures.

Janowczyk et al. [125] presented possible tasks of histophatologic image analysis
which could be solved with deep learning. The three main tasks were segmenta-
tion, detection and classification. They described the workflow of deep learning
for histopathologic image analysis. The first step is to decide on a neural net
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design. After that the selection of suitable image patches for training and vali-
dation has to be done. The success of the training heavily depends on a set of
training data which reflect all possible variations. The next step is the training
of the neural net and the last step of the workflow is the validation.

Taylor-Weine et al. [126] described the potential of machine learning for liver
biopsy evaluation. They used histologic images from 1992 patients. 45081 H&E
stained images and 20343 trichrome stained images were used. They first trained
a CNN to distinguish between unusable image parts (background, areas of poor
focus, debris, tissue folds) and usable tissue. Only the latter was used for fur-
ther analysis. Based on pixel-wise annotation from experienced pathologists they
trained additional CNNs to segment the usable tissue. From this, 198 features
(for example fraction of tissue area predicted to be fibrotic) were calculated and
used for machine learning prediction of cirrhosis and liver-related clinical events.

There are no techniques specific for histologic images of intracranial aneurysms.
Compared to histologic images routinely collected during biopsies, for example
for cancer diagnosis, histologic images of aneurysms are rare. In Chapter 6 dif-
ferent segmentation methods for histologic images of intracranial aneurysms are
explored.

Research question 1 b: What segmentation approach is suited to support
analysis of histologic images of intracranial aneurysms?
Automatic segmentation can be used to guide data exploration or prepare data
for further automatic processing and analysis. Histologic images can be analyzed
with various algorithms using classical image processing or deep learning. For
tissues where a histologic analysis is part of the clinical routine, for example liver
biopsy, various studies regarding automatic segmentation and tissue analysis ex-
ist. Histologic images of aneurysms are rare and not used in clinical routine.
Therefore, automatic segmentation is not yet available. Aneurysms are patho-
logical changes and a wide variance of the tissue in the aneurysm wall is ex-
pected.

3.2.3 Virtual inflation for histology

The post mortem ex vivo analysis of aneurysms is challenging, as the shape of
the aneurysms can be alternated during the extraction and fixation process. The
main difficulty is the collapsing of the vessel and aneurysm due to the loss of
blood flow inside. This was addressed by Saalfeld et al. [20]. They described vir-
tual inflation for histologic and OCT images of post mortem ex vivo aneurysms.
They manually segmented the inner and outer contours and equally sampled the
contours. Then, they calculated the wall thickness and the normals at the points
of the inner contour. The inner points are projected on a circle and the rest of
the wall is adjusted accordingly. With linear interpolation, several steps between
the original images and the inflated images with a perfect circular inner contour
can be calculated (see Fig. 3.7).
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Figure 3.7: Virtual inflation of histologic images [20]

Figure 3.8: Histologic images before (a) and after (b) inflation. c) corresponding
IVUS images [127]

Athanasiou et al. [127] proposed virtual inflation for histology and microCT
of vessels. Their inflation first requires manual registration of the images to in-
travascular ultrasound. The inflation is then based on the differences in the vessel
contours (see Fig. 3.8).

Research question 2: How can deformation during tissue collection be han-
dled?
Tissue collection for further imaging like histology or microCT leads to deforma-
tion of the tissue. Especially due to the loss of blood flow inside the vessel and
aneurysm the shape is alternated. This has to be considered in aneurysm wall
analysis using histologic images.
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3.2.4 Histology and microCT

Several studies used microCT as well as histologic images. microCT images are
CT images (recall Section 2.2.1) which allow the analysis of structures in the µm
range [128]. Often, histologic images are used to verify findings in other imaging
methods or to find a correlation between the presence of specific cell types, for
example inflammatory cells, and other aneurysm characteristics.

Senter-Zapata et al. [129] compared microCTs of tissue sections before and after
embedding in paraffin. They found that the volume decreases between 19.2% and
61.5%. Furthermore, they compared the widest cross-sectional microCT diameter
to the corresponding histologic slide. The histologic measure was 15.7% longer
than the microCT.

Jessen et al. [130] used microCT and histology to compare different stents. They
artificially created aneurysms in New Zealand white rabbits and explanted the
aneurysm at 30, 90, and 180 days after treatment (see Fig. 3.9). They did not
register the H&E stained images to the microCT images, but during the analysis
of the histologic images, the 3D microCT was used as a reference for the coil
positions.

Cebral et al. [131] derived a vascular model from preoperative 3D imaging and
performed hemodynamic simulation. During surgery, they collected a tissue sam-
ple and used microCT to reconstruct a tissue model. On this sample, they manu-
ally marked features identified on the surgical video or ex vivo photos of the tissue
sample. They also imaged the tissue sample using multiphoton microscopy. Thin
walls were associated with high WSS. Thicker regions were associated with lower
WSS and atherosclerotic and hyperplastic-looking wall parts.

In Chapter 7 a combination of preoperative imaging, hemodynamic simulation
and microCT and histologic images of intraoperatively collected tissue is pre-
sented.

Research question 3: How can various 2D and 3D information be combined
for exploration of the aneurysm wall?
Preoperative imaging, hemodynamic simulation, microCT and histologic images
provide a wide variation of information. For a new way to explore the aneurysm
wall, these should be combined and presented in a way that allows experts to gain
further insight into the aneurysm wall.
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Figure 3.9: Left: explanted aneurysm, middle: microCT, right: histologic im-
ages; 30,90 and 180 days after treatment with coil; FCC: foam-
coated coil, BPC: bare platinum coils [130]
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3.3 Black blood MRI in aneurysm research

Besides CT angiography and MRI angiography, a new imaging technique has re-
cently become interesting for aneurysm diagnosis: BBMRI. In contrast to classical
MRI, the blood appears dark and a part of the vessel wall is visible (recall Sec-
tion 2.2.2). While not yet widely used in clinical routine, this could change in the
future. In 2022 Raz et al. [71] recommended the usage of BBMRI for treatment
evaluation. In the following, several studies regarding the usage of BBMRI for
aneurysm analysis and rupture risk assessment are presented. A major problem
is the subjective wall enhancement segmentation. Chapter 8 will present a tool
for consistent, user-independent and objective wall enhancement segmentation.

Vessel wall enhancement is often divided into strong/avid, mild, and no wall
enhancement. In most studies, this classification is done subjectively by experi-
enced neuroradiologists. Objective approaches use post-contrast quantification of
signal intensity and measure focal aneurysmal wall enhancement and circumferen-
tial aneurysmal wall enhancement. While being a promising technique, currently
standardized protocols for image acquisition are missing. Vessel wall enhance-
ment is not well defined and the histologic correlate of aneurysm enhancement is
not consistent.

Liu et al. [132] analyzed 61 aneurysms. In 33 of these, wall enhancement was de-
tected by medical experts. Aneurysms with wall enhancement had a significantly
higher ISUIA grade (recall Section 2.1.2) than aneurysm without wall enhance-
ment. Larger aneurysms were more prone to show wall enhancement, but wall
enhancement was also found in smaller aneurysms. The authors suspect that wall
enhancement could be an indication for wall stability and as such improve the
risk evaluation of intracranial aneurysms.

Antiga et al. [133] used a thin-walled carotid bifurcation phantom to analyze
the reliability of wall thickness estimation based on black blood MRI. Figure 3.10
shows the difference of measured and predicted wall thickness for an artificial nor-
mal carotid bifurcation. The two main sources for differences are partial volume
errors and obliqueness artefacts.

In a study by Fu et al. [134] a correlation between symptoms and wall enhance-
ment was found. Two radiologists were asked to determine whether aneurysm
wall enhancement was present or not. With a similar approach, Edjlali et al.
[135] observed that wall enhancement can be more frequently found in unstable
aneurysms than in stable aneurysms.

Roa et al. [136] compared different objective measurements for wall enhance-
ment and concluded that a measurement based on the aneurysm–to–pituitary
stalk contrast ratio is the most reliable method and robust regarding different
manufactures and magnet strength. They only classified the aneurysms into an-
eurysms with or without wall enhancement.
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Figure 3.10: Top row: thickness computed from lumen and outer wall surface
reconstruction from MRI images; bottom row: prediction from
analytical model based on true thickness of the carotid bifurcation
model [133]

Hemodynamic parameters are often used in aneurysm research. Several studies
analyzed the relation between wall enhancement and hemodynamic parameters.
Blood flow simulation and hemdoynamic parameters for intracranial aneurysms
are explained in Section 3.1. Aneurysms of 22 patients, of whom 16 showed
wall enhancement, were analyzed by Khan et al. [137]. Wall enhancement was
correlated with lower wall shear stress, lower sac-averaged velocity, and larger
aneurysm size and size ration. Zwarzany et al. [138] analyzed 64 small unrup-
tured intracranial aneurysms and found that aneurysms with wall enhancement
were larger, had a higher dome-to-neck ratio, and a more irregular shape than
aneurysms without wall enhancement.

Fanning et al. [139] researched aneurysm wall enhancement in the context of
follow-up imaging after treatment with coils. In 18.6% of the patients treated
with bare platinum coils wall enhancement occurred. The authors suspect that
the wall enhancement represents a normal healing response.

In a study by Edjlali et al. [140] two readers with more than four years of
experience determined for 108 aneurysms whether circumferential wall enhance-
ment was present (see Fig. 3.11). Wall enhancement was not connected to the
aneurysm size, but occurred more often in unstable aneurysms.

Nagahata et al. [141] analyzed 61 ruptured and 83 unruptured aneurysms of
117 patients. Using pre-and post-contrast MRT images they classified the an-
eurysms into aneurysms with strong, faint, and no wall enhancement. 81.9% of
the unruptured aneurysms did not show wall enhancement, 13.3% showed faint
wall enhancement and 4.8% strong wall enhancement. Only 1.6% of the ruptured
aneurysms did not show wall enhancement, 24.6% showed faint wall enhancement
and 73.8% of the ruptured aneurysms had strong wall enhancement.
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Figure 3.11: Wall enhancement in BBMRI [140]

Hadad et al. [142] et al. analyzed 23 unruptured aneurysms from 20 patients. For
each aneurysm, a hemodynamic simulation was carried out. Wall enhancement
was manually segmented by two teams of experienced researchers. Overall 72
wall enhancement regions were identified, 40.56% in the aneurysm body, 18.25%
at the dome and 14.19% at the neck. Wall enhancement regions had a lower mean
wall shear stress.

A study of 38 aneurysms showed that wall enhancement is effective for differenti-
ating stable, unruptured aneurysms and evolving (growing or causing symptoms,
e.g. a neurological deficit) aneurysms. For a quantitative wall enhancement anal-
ysis pre- and post-contrast images were used. A significant difference was only
found in the extent of the enhancement, but not in the strength of the enhance-
ment [143].

In a recent study, Fu et al. [144] analyzed the wall enhancement of 341 unruptured
aneurysms of 267 patients. Out of these aneurysms, 93 were symptomatic with
sentinel headache or oculomotor nerve palsy. Two experts determined whether
no wall enhancement, focal wall enhancement, or circumferential wall enhance-
ment was present. In addition to this qualitative analysis, a quantitative wall
enhancement index was calculated based on pre- and post-contrast wall inten-
sities and pre- and post-contrast white matter intensities. Circumferential wall
enhancement and a higher wall enhancement index were more frequently observed
in symptomatic than in asymptomatic aneurysms.
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Omodaka et al. [145] also calculated a wall enhancement index (WEI). With
a volume of interest (VOI), they manually traced enhanced regions and searched
for the VOI with the largest average signal intensities. Their WEI calculation
also took the signal intensity of the stalk and brain parenchyma in post- and pre-
contrast images into account. The VOI for the average signal intensity calculation
of the wall enhancement was 0.125mm3, for the brain parenchyma 8.0mm3 and
for the stalk 1.0mm3. The WEI in ruptured aneurysms was significantly higher
than in unruptured aneurysms.

Galloy et al. [146] analyzed 21 aneurysms. Out of these, 14 aneurysms had
signals with an intensity of 0.6 or more of the pituitary stalk intensity and were
therefore classified as enhanced. Wall tension was higher in aneurysms displaying
wall enhancement. Areas of low wall tension were mainly found around aneurysm
blebs.

In a small study with only 39 participants with overall 40 aneurysms, vessel
wall enhancement after endovascular treatment was common and not useful for
aneurysm recurrence prediction. Besides subjective assessment, the aneurysm-
to-pituitary stalk contrast enhancement ratio was determined [147].

Pradivtseva et al. [148] analyzed the impact of different image acquisition pa-
rameters on the vessel wall enhancement. They also found that slow blood flow
increased signal intensities and MSDE reduced flow-related signal enhancement.
Regarding the voxel size, the results varied. For one of the three patients, a
smaller voxel size (0.7mm3) lead to more efficient blood suppression, while for
the other two a larger voxel size (0.9mm3) was better.

Research question 4: How can the aneurysm wall be included in rupture
prediction?
BBMRI can show wall enhancement around intracranial aneurysms. This non-
invasive imaging technique has the potential to be used in clinical routine. Previ-
ous studies suggest that wall enhancement can be used as indicator for aneurysm
rupture. Including BBMRI could provide useful information for individual treat-
ment decisions. Automatic segmentation of wall enhancement could simplify the
usage of BBMRI.

Research question 4 a: How can wall enhancement be segmented?
A major limitation of the previous presented studies is the subjective wall en-
hancement identification. An objective, user-independent wall enhancement
segmentation is needed.
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3.4 Summary

The intracranial aneurysm wall is an important factor in aneurysm rupture. Imag-
ing of the wall is challenging. For clinical routine, black blood MRI could be used.
This still requires further research. Previous wall enhancement research heavily
relies on manual, subjective wall enhancement segmentation. In Chapter 8, a tool
for semi-automatic, objective wall enhancement segmentation is presented.

Histologic images provide a detailed insight into the aneurysm wall. They require
several processing steps, for example segmentation of tissue and virtual inflation.
Chapter 6 and Chapter 7 describe algorithms for processing histologic images of
intracranial aneurysms with large gaps and various stainings.
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4 Related Work - Mesh processing
and hemodynamic analysis

This section first describes the diagnosis, treatment, and ongoing research on
intracranial aneurysms. Then, different image acquisition techniques and their
usage in vessel and aneurysm imaging are presented. After that, related works
on histologic image processing, BB-MRI, and 3D models of aneurysms are sum-
marized.

4.1 Mesh processing for surface meshes

In this section, several mesh processing algorithms with a focus on mesh process-
ing for surface meshes (see Section 3.2.1) of intracranial aneurysms are described.
Meshes of intracranial aneurysms are used for various tasks, for example the
calculation of morphological parameters or hemodynamic simulation. Especially
mesh processing for aneurysms with geometric deep learning is discussed. Deep
learning on images has been successfully used in various tasks, including aneurysm
detection [149, 150, 151]. In this work, geometric deep learning on point cloud
and meshes is used. These neural nets can be applied independent from the im-
age modality. Major limitations of these neural nets are their high computational
and memory cost [152]. Popular benchmarks show everyday objects and humans
and are less complicated and smaller than medical meshes. These limitations are
addressed in Section 9.1.1.

4.1.1 Mesh segmentation and classification for aneurysms

Mesh segmentation divides the mesh into several parts, as shown in Figure 4.1.
Closely related is also the segmentation of point clouds. Very few works on
aneurysm segmentation exist. Mesh segmentation can be done with or without
machine learning and some deep learning approaches exist. Most common in
intracranial aneurysm research is the segmentation into aneurysm and parent
vessel (Fig. 4.2). This requires th preprocessing of the mesh to only include a
small part of the vessel.
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Figure 4.1: Examples of mesh segmentation [153]

Early approaches of mesh segmentation contained region growing, hierarchical
clustering, iterative clustering, spectral analysis, and implicit methods. In these,
different mesh attributes are used, for example, planarity, higher degree geomet-
ric proxies (spheres, cylinders, cones, quadrics), differences of normals or dihedral
angles, curvature, geodesic distances on the mesh, symmetry, convexity, medial
axis, and shape diameter [154].

Figure 4.2: Aneurysm (green), neck curve (blue) and parent vessel (red) in an-
notation tool by Yang et al. [155]

Kaick et al. [156] presented a non-parametric segmentation algorithm for point
clouds and meshes. Their algorithm is suitable for point clouds with missing
parts. The number of segments is not defined before the segmentation. First, the
point cloud is divided into weakly convex parts based on the visibility (see Fig.
4.3). These segments are then merged by analyzing the volumetric signature. In
the last step, the borders of the segments are refined with point-level graph cut
optimization.
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Figure 4.3: Part characterization: (a) A point cloud with missing parts is given.
(b) We compute the visibility between points in the shape. (c) The
visibility information is used to decompose the shape into weakly-
convex parts. Here, lines of sight within components are colored
according to their component colors, while lines of sight between
different components are grey. (d) The weakly-convex parts are an-
alyzed to find adjacent parts with similar geometric properties. (e)
Adjacent similar parts are merged to produce the final segmentation
of the shape [156]

MeshCNN [157] provides deep learning for mesh classification and segmentation.
Five edge features (dihedral angle, two inner angles, edge-length ratio of each
adjacent triangle) are used. The segmentation net follows the U-net design. In
the pooling layer, the mesh is reduced to its relevant parts by an edge collapse
operation (Fig.4.4).

Zhang et al. [158] segmented intracranial aneurysms into aneurysm and parent
vessel. As shown in Figure 4.5, they used several regional and global descriptors.
Using gentle AdaBoost they trained a binary classification model. They only
used 8 aneurysms, which all had the same topology (one aneurysm, one inlet,
two outlets). With the high variance in aneurysm and vessel shapes, this is too
limited for broad use.

Yang et al. [155] compared several deep learning algorithms for binary segmen-
tation into aneurysm and parent vessel. Furthermore, they compared several
deep learning algorithms for point clouds and meshes with different resolutions.
The best results for the vessel segmentation were achieved with PointConv [159]
on 2048 points (IoU 94.65% for vessel and 79.53% for aneurysm) and the best
aneurysm segmentation with SO-Net [160] on 2048 points (IoU 94.46% for vessel
and 81.40% for aneurysm). MeshCNN achieved 90.34% on vessels and 71.60%
on aneurysms. In general, segmentation results were worse for aneurysms with
a small size ratio. Based on this, a pipeline for aneurysm segmentation was de-
veloped. After semi-automatic reconstruction of surface models of brain arteries,
intracranial aneurysms are automatically detected. Small fragments of the sur-
face model are sampled and PointNet++ is used to classify these into segments
with or without aneurysms. SO-Net is used to segment the aneurysms in the frag-
ments where an aneurysm is present. This avoids the major problem of a large
class imbalance when segmenting the aneurysm on the whole surface model [161].
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Figure 4.4: Pooling operation in MeshCNN: Depending on the task different
edges are collapsed [157]

Figure 4.5: Features used for aneurysm and parent vessel segmentation: cur-
vature, shape direction (based on covariance of coordinates), shape
diameter function (SDF), volumetric shape image (VSI), average
geodesic distance (AGD) [158]
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Thomas et al. [162] presented Kernel Point Convolution (KPConv) for deep
learning point cloud segmentation and classification. These performed well on
ModelNet40 (92.2% accuracy) and segmentation of complex point clouds of out-
door (Semantic3D, 74.6 mIoU) and indoor (S3DIS, 67.1%) scenes.

Another algorithm for mesh classification was presented by Zheng et al. [163].
Surface patches are approximated with polynomials. A patch is characterized by
the polynomial parameters, the center point coordinates, and the normal vectors
of the surface. Their neural net architecture is based on capsule networks. On
the SHREC15 dataset, the MeshCaps neural net achieved an accuracy of 93.8%.

Invantsits et al. [164] presented deep learning rupture prediction using point
clouds. They used point-cloud encoding to capture the shape of the aneurysm.
For each point, the wall shear stress was included. Furthermore, patient age, sex
and aneurysm location are used. The combined feature vector is the input to a
fully connected neural network. It achieves an accuracy of 64% and an F2 score
of 0.73.

In Chapter 8, a variation of MeshCNN for classification of aneurysms as rup-
tured or unruptured is presented. Additionally, a user interface to explain the
results for users without deep learning knowledge is described. In Chapter 9,
variations of MeshCNN and KPConv for wall shear stress prediction are pre-
sented.

Research question 4 b: How can the aneurysm shape be used for rupture
prediction?
In Section 3.3, the inclusion of wall enhancement into clinical routine was dis-
cussed. However, wall enhancement alone might not be enough to predict aneurysm
rupture. A major factor is the shape of the aneurysm, which can be described using
several morphological parameters (Section 2.1.2). They can be complex and most
of them are not used in clinical routine. The deep learning approaches described
in this section can be used to classify the shape of an object without manually
defined morphological parameters. This could be used for shape-based rupture risk
prediction.
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4.1.2 Centerline & vessel graph

Aneurysm meshes are used for several further calculations, for example for mor-
phological parameters (recall Section 2.1.2) or hemodynamic simulations (Section
4.2). Some of these need further processing of the aneurysm mesh, for exam-
ple, centerline calculation (Fig. 4.6) or composing a graph representation of the
aneurysm based on the mesh (Fig. 4.7). Structured mesh generation for hemo-
dynamic simulation also requires a centerline.

Figure 4.6: Example of centerline inside aneurysm [165]

Centerlines can be detected in 2D and 3D images and meshes. In images, ei-
ther hand-crafted filters or learned filters are used. Sironi et al. [166] presented
a deep learning centerline detection by training regressors to return the distance
closest to the centerline. This was successful for aerial images, brightfield mi-
croscopy images, and photon images. A great disadvantage of the technique is
that for each image type a new neural net has to be trained.

Antiga et al. [167] proposed a centerline calculation for vessels using Voronoi
diagrams. Each point of the Voronoi diagram is associated with a maximum
inscribed sphere. Centerlines between given points minimize the integral of the
radius of maximum inscribed spheres along the path.

Another approach was presented by Wei et al. [168]. They first split the mesh
into several cylindrical parts and then calculate the centerline for each cylinder.
The centerline extraction is done by optimizing the distance between a centerline
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Figure 4.7: Aneurysm and corresponding graph from [176], red: outlet, green:
inlet, white: bifurcation

point and surrounding mesh vertices. The algorithm has seven parameters. Es-
pecially for the segmentation based on k-means clustering the correct choice of
clusters and cluster centers is important.

Bitter et al. [169] presented a centerline algorithm based on binary voxel represen-
tations of the objects. They first calculated the distance to the object boundary
and generated an gradient vector field. Based on this, they compute an initial
centerline. This is then refined. Calculating a sphere around the initial centerline
points helps adding branches to the centerline. The sphere calculation has two
parameters which have to be set according to the application.

More recent centerline extraction algorithms often utilize deep learning. Gao
et al. [170] and Wolterink et al. [171] presented deep learning-based centerline
extraction for coronary arteries. Iteratively, a CNN Tracker is used to predict the
artery direction and radius. The prediction is done on CT angiography images.
Other image-based approaches use the U-Net architectures [172, 173]. A disad-
vantage of these approaches is the task and image modality-specific training.

Antiga et al. [174] presented an algorithm to decompose models of carotid bi-
furcation into separate branches. Based on the centerline and the maximum
inscribed sphere radius the models were divided into branches. Branches connect
at splitting lines. They tested their algorithm on idealized models of branching
vessels. Based on their algorithm, Chnafa et al. [175] generated a reduced-order
model for estimation of outflow rates with less computational resources compared
to 3D simulations. Their model consists of nodes and edges with information like
length, equivalent radius, and vectors at the extremities.

Saalfeld et al. [176] used a vessel graph extracted based on the centerline for
outflow splitting on multiple aneurysms. The graph included the inlet vessel,
outlet vessels and bifurcations. The aneurysm itself was not visible in the graph
representation.
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In Chapter 9, a new aneurysm graph based on a deep learning mesh segmentation
is presented and compared to the graphs introduced here.

Research question 5: How can wall shear stress be included in rupture pre-
diction?
Previous studies showed that hemodynamic parameters like the wall shear stress
are related to aneurysm rupture. The simulation requires a time-consuming, often
manual, mesh processing. To include wall shear stress into clinical routine, faster
and easier hemodynamic parameter determination is necessary.

Research question 5 a: How can mesh processing be improved?
By replacing manual mesh processing steps with automatic or semi-automatic
approaches the overall effort for simulation can be decreased.

4.2 Aneurysmal blood flow

The blood flow inside the aneurysm is an important factor for aneurysm rupture.
However, blood flow inside the aneurysm cannot be measured directly. Exten-
sive research on modeling and simulation of patient-specific blood flow has been
done. In the following, studies on the relation between blood flow and aneurysm
rupture are presented. Commonly used hemodynamic features are shown in Fig-
ure 4.8. In Chapter 9, tools to support the generation of patient-specific meshes
for simulation are presented. A major problem is the transfer from research re-
sults into clinical routine as the blood flow simulations are very time-consuming
and require expert knowledge. Therefore, Chapter 9 presents deep learning for
fast prediction of hemodynamic parameters.

Berg et al. [178] summarized the steps and challenges of hemodynamic mod-
eling of intracranial aneurysms. The basis for simulation are the image, image
segmentation, and 3D-model generation from the images. Together with sim-
ulation parameters, for example, boundary conditions or blood approximation
(Newtonian/non-Newtonian), this heavily influences the simulation results.

The result of a simulation depends on a large number of parameters (for example
mesh resolution, distribution of cells in the domain, solver settings). Different
teams vary in their decision for simulations. Common assumptions are blood as
a Newtonian fluid with a density of 1.05 and 1.06 g/cm3 and a viscosity of 3.5
or 4.0 cP [179]. Zimmermann et al. [180] analyzed synthetic and patient-specific
aorta data. Important factors for correct WSS prediction based on 4D flow MRI
data are sufficient spatial resolution and accurate vessel wall segmentation.
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Figure 4.8: Examples of common hemodynamic parameters (velocity, Q-
criterion, wall shear stress (WSS), oscillatory shear index OSI) on
four aneurysms [177]
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Several studies used intraoperative images to examine the aneurysm wall. Re-
garding wall thickness and WSS conflicting results were reported. Some studies
found a connection between high WSS and thin wall, while others showed a con-
nection between low WSS and thin walls [181].

While not being the sole factor for aneurysm formation and rupture, high flow is
an initiator for intracranial aneurysm formation. Flow can trigger inflammatory
reactions and determines whether an aneurysm is stable or ruptures [182].

Saqr et al. [183] reviewed 1773 articles about computational fluid dynamics for
intracranial aneurysms published between 1998 and 2018. 90% of the hemody-
namic simulations modeled the blood flow inside the aneurysms as Newtonian.
This assumption has a major impact on the calculation of rupture prediction pa-
rameters. Newton fluids tend to overpredict the wall shear stress at the aneurysm
neck and dome.

Valen-Senstad et al. [184] performed high-resolution CFD on 12 aneurysms (five
ruptured, seven unruptured) at or near the middle cerebral artery. The images
were collected using CTA and segmented with the Vascular Modeling ToolKit
(vmtk) [185]. Eight aneurysms were bifurcation aneurysms. The other four
did not arise at the apex of the bifurcation and were classified as sidewall an-
eurysms. They classified the aneurysms as stable and unstable based on the
turbulent kinetic energy. All sidewall aneurysms were classified as stable as they
exhibit energies under 10-4m2/s2. Five of the bifurcation aneurysms were unsta-
ble.

4.2.1 Deep learning for hemodynamic simulations

As discussed in the previous section, hemodynamic parameters could help to
accesses the patient-specific rupture risk of an aneurysm. They are not used
in clinical routine, as they are too labor- and time-intensive. In the context of
hemodynamic simulations, deep learning is used for various task, which can be
summarized in two categories. The first category is the usage of deep learning
to improve the mesh quality for simulations. The second category is the deep
learning prediction of simulation results with the goal to replace time-consuming
simulations with fast neural nets.

Huang et al. [186] present deep learning mesh refinement to produce optimal
meshes for computational fluid dynamics. Their deep learning approach was re-
stricted to 2D. With a U-net they predicted the number of cells in an area. Vertice
and edge positions were not captured by this representation.

Si et al. [187] used deep learning to evaluate the quality of grid surface meshes.
The surfaces consisted of up to 121×121 points, equally distributed in two direc-
tions and presented in 2D images. With VGG16 [188] a test precision of 0.9863
was reached. An effective evaluation of the mesh quality is important, as it has
a large impact on the simulation. The presented deep learning by Si et al. is
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restricted to very specific grid surface meshes and cannot be easily extended to
work with complex data like patient-specific aneurysm meshes.

Li et al. [189] proposed a neural net architecture based on a point net to predict
hemodynamic parameters of coronary arteries. Their network (see Fig. 4.9 and
Fig. 4.10) had two different point clouds as input: the model point cloud, which
only had the outer points of the model, and the query point cloud, which had
the remaining inner points. They used data from 110 patients and added geo-
metric modifications to increase the number of training samples. With sufficient
point density (over 2 million points), an accuracy of around 90% was reached.
After training, predictions could be obtained within 1 second with deep learning
compared to 10 mins with CFD.

Figure 4.9: Deep learning architecture for hemodynamic parameter predictions
based on point clouds [189]
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Figure 4.10: Ground truth streamlines and deep learning prediction, black ar-
row: region of ascending aorta [189]

Gharleghi et al. [190] used deep learning to predict time-averaged wall shear
stress in the left main coronary arteries. The prediction took 2 seconds compared
to 5 hours CFD simulation. The error was around 10%. They used 127 patient
geometries. From the 3D geometries 2D feature maps were derived on which a
CNN was trained.

Thamsen et al. [191] evaluated synthetic aorta models for machine learning.
Using 154 patients and statistical shape modeling, they created 2652 synthetic
cases with hemodynamic properties. They compared static pressure, wall shear
stress, secondary flow degree, and kinetic energy over all real and all synthetic
data sets, respectively. Real and synthetic data sets showed similar character-
istics. They concluded that synthetic data is suitable to be used in machine
learning for cardiovascular diseases.

Liang et al. [192] built a statistical shape model using 25 patients and gener-
ated 729 thoracic aorta shapes. The surface meshes had 5000 vertices. They first
trained an autoencoder on the 3D coordinates from the vertices to capture the
shape. Next, the decoder part of the network was replaced to predict either the
pressure field, the velocity magnitude field, or the velocity field. The results were
consistent with hemodynamic simulation, but took only 1 second instead of 15
min. or more.
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Another approach is the usage of graph deep learning. Suk et al. [193] modelled
meshes of artificial coronary arteries as graphs. The defined translation invariant
features for each vertex based on the normals of the vertices inside a ball. As
an indication for the flow direction, for each vertex the geodesic distance to the
inlet is given. The neural net architecture is similar to the U-net structure. They
created 2000 artificial models of arteries. With an accuracy of 90.5% the WSS
vectors could be predicted.

First deep learning approaches for hemodynamic simulations exists. These are
mainly developed for aorta models. In Chapter 9, deep learning for wall shear
stress prediction of artificial and patient-specific intracranial aneurysms is pre-
sented.

Research question 5 b: How can wall shear stress be used in clinical rou-
tine?
Hemodynamic simulations require expert knowledge and take a lot of time. Both
factors make them unpractical in clinics. As an alternative, WSS prediction with
deep learning might be used.

4.2.2 Explainable artificial intelligence

Deep learning has been successful in various tasks. However, often the black box
character of deep learning is problematic. To explain what the network is learning
and to gain trust, several visualisation tools exist. This is crucial, as deep learning
can focus on correlated but not on causal information. For example, visualization
of the relevant areas of an image revealed that a deep learning algorithm predicted
horses based on the presence of a source tag in the image [194] (Fig. 4.12). An
other neural net, trained to classify skin lesions, used the presence of rulers in
the images as indication for malignant skin lesions [195]. Explainable artificial
intelligence has recently gained popularity [196].

Figure 4.11: Explainable artificial intelligence reveals problematic reasoning, for
example detecting a horse based on the source tag [194]

71



While the term "explainable artificial intelligence" is only used since 2002, earlier
diagnosis systems for bacteria-related infections in 1980 were already designed to
explain their reasoning [197].

Gillmann et al. [198] presented a visualisation tool for U-nets trained for brain
lesion segmentation. There, visualization consists of a selection view (filter and
select images), a network view, which shows the network output and the ground
truth and AUC, and a context view, where the user can select specific areas of
the brain based on the brain atlas to highlight the area in the image. The system
was used by experts to answer questions asked by medical collaborators.

Yu and Shi [199] describe four target groups for deep learning visualization (begin-
ners, practitioners, developers and experts) and four visualization goals (teaching
concepts, architecture assessment, debugging and improving models and visual
explanation). For common deep learning architectures several visualisations for
the different tasks exist. In the visual explanation category they further define
feature visualization, describing the features various layers pay attention to, and
attribution, describing which area of an image is important for the neural net.
The classification by Yu and Shi [199] and their examples of deep learning visu-
alization did not include meshes or point clouds.

Lötsch et al. [200] summarized goals of explainable artificial intelligence in
biomedicine. The main goal is to achieve trustworthiness of the machine learn-
ing system. This is supported by transparency, especially with explanations
also understandable for physicians and patients (in contrast to explanations only
understandable for mathematicians and computer scientists). Furthermore, the
reasoning of the machine learning should follow a logical deduction and be com-
prehensive for humans. Explanations should be informative and simplify com-
plex machine learning such as deep learning. Similar, Yang et al. [196] present
four characteristics of trustable artificial intelligence: valid, responsible, privacy-
preserving and explainable.

Rios et al. [201] presented a visualization for the encoding part in point cloud au-
toencoders. The visualization is based on a 1D convolution operator. The size of
the point cloud is preserved throughout the layers and there is a direct correspon-
dence between the activation matrices and the input points. The activation is
displayed with color on a scatter plot of the input point cloud. The visualization
revealed that the encoder did not learn geometric characteristics but occupancy
in the input space. Zhang et al. [202] categorized explainable artificial intelli-
gence methods into intrinsic and post hoc methods (see Fig. 4.12). In the area of
medical applications, post hoc methods are more common. While the number of
studies including explanation for artificial intelligence rises, only very few provide
evaluation. Especially evaluation of the effectiveness by medical experts is rare.
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Figure 4.12: Classification of explainable artificial intelligence by Zhang et al.
[202]

In this thesis, several deep learning tools are presented. Especially for the rupture
prediction with deep learning a high accuracy is not sufficient to gain the trust
of medical experts and patients. Therefore, a user interface to explain what
influences the decision of the neural net is needed (Section 8.3). This aligns with
the goals by Lötsch et al. [200], as described above.

4.3 Summary

Hemodynamic simulations provide useful insights into the aneurysm. Hemody-
namic parameters can be used to estimate the rupture risk of an aneurysm. The
simulations are time-consuming and preprocessing of the meshes for simulation
requires manual effort. To address the problem of time-consuming simulations,
deep learning might be used. Chapter 9 presents tools to reduce the manual
effort for mesh processing. Furthermore, instead of time-consuming simulations
a geometric deep learning approach for fast prediction of wall shear stress of
intracranial aneurysms is presented.
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5 Research questions

Currently, the processes leading to aneurysm formation and rupture are not fully
understood. Understanding these and predicting aneurysm rupture are crucial
elements for optimal treatment of intracranial aneurysms. While the overall ques-
tions are too comprehensive to be fully answered in this thesis, several aspects of
these are discussed and tools to support further research with histologic images
and BBMRI are developed. Here, the research questions raised in the previ-
ous chapters are summarized. The questions are answered throughout the next
chapters. A summary of the results is given in Chapter 10. An overview of the
research topics is shown in Figure 5.1.

Figure 5.1: Overview of topics in this thesis. Research-oriented wall analysis
using post mortem data and pre- and post-operatively collected data
(research questions 1-3) and clinical-oriented wall analysis based on
BBMRI (research question 4). Geometric deep learning might be
used to include hemodynamic parameters into clinical routines in
the future (research question 5).
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1) How can a 3D model of the intracranial aneurysm wall be derived from
2D histologic image data?
Currently, histologic images are the main imaging technique to show details of the
aneurysm wall. However, they are only available in 2D (see Section 3.2.1).

a) How to generate a mesh from a point cloud if the points are unevenly
distributed?
This questions arises while answering the previous questions. Due to some
unique properties of histologic images unusual point clouds occur where com-
monly available mesh generation algorithms fail (see Section 3.2.1).

b) Which segmentation approach is suited to support the analysis of
histologic images of intracranial aneurysms?
Automatic segmentation can be used to guide data exploration or prepare
data for further automatic processing and analysis. As they are not used in
clinical routines, histologic images are rare and automatic segmentation of
the wall tissue is unavailable (see Section 3.2.2).

2) How can deformation during tissue collection be handled?
Tissue collection for further imaging like histology or microCT leads to deforma-
tion of the tissue. This has to be taken into account when the aneurysm wall is
analyzed using histologic images (see Section 3.2.3).

3) How can various 2D and 3D information be combined for exploration of
the aneurysm wall?
Preoperative imaging, hemodynamic simulation, microCT and histologic images
provide a wide variation of information. These should be combined for thorough
insight into the aneurysm wall (see Section 3.2.4).

4) How can the aneurysm wall be included in rupture prediction?
With black blood MRI some wall parts can be visible. These have to be objec-
tively evaluated to study the correlation between wall enhancement and aneurysm
rupture. Another aspect of rupture prediction is the aneurysm shape (see Sec-
tion 3.3).

a) How can wall enhancement be segmented? A major limitation of the
previous wall enhancement studies is the subjective wall enhancement iden-
tification. An easy to use tool for objective wall enhancement segmentation
should be developed (see Section 3.3).
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b) How can the aneurysm shape be used for rupture prediction? Aneurysm
rupture prediction for clinical routine should have a minimum user effort, be
fast and trusted by doctors and patients. Most complex morphological pa-
rameters developed in aneurysm research are never used in clinical routines.
Geometric deep learning might be useful for fast predictions based on the
aneurysm shape (see Section 4.1.1).

5) How can wall shear stress be included in rupture prediction? Two parts
are included here: the improvement of preprocessing data for simulation (see Sec-
tion 4.1) and the inclusion of WSS in clinical routine (see Section 4.2).

a) How can mesh processing be improved? A variety of often manual and
time-consuming processing steps is necessary to produce meshes suitable for
hemodynamic simulation and WSS calculation (see Section 4.1.2). Replacing
manual processing steps with automatic mesh processing could reduce the
effort and time needed.

b) How can wall shear stress be used in clinical routine? Hemodynamic
simulations require expert knowledge and take a lot of time. Both factors
make them unpractical in clinics. As an alternative, WSS prediction with
deep learning might be used (see Section 4.2.1).
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6 Understanding aneurysm wall
composition - Histology

3D exploration of the intracranial aneurysm wall could enhance the understanding
of the processes in the wall. Here, the construction of a 3D wall model based on
histologic images is described. Besides a unique 3D view of the wall and the tissues
inside the wall, the model can be used for simulations an research of wall interac-
tions. The model does not only include the aneurysm, but also the aneurysm neck
and part of the parent vessel. The analysis of the wall and 3D modelling consists
of several steps. First, the tissue is segmented (Section 6.2) and a virtual inflation
is applied (Section 6.3). Due to the unusual characteristics of the images a new
mesh generation algorithm was developed (Section 6.4). Then, a 3D model of the
wall and the tissues inside was built (Section 6.5).

6.1 Dataset

From three human cadavers, the Circle of Willis was explanted post-mortem and
embedded in paraffin. For a study by Glaßer et al. [20] the aneurysms were
marked with red and black ink which was still visible on the histologic images.
Cross-sections of the aneurysms were cut using a microtome. The slices are 2
µm thick and 50 µm apart. After H&E staining the slides were digitized using a
Hamamatsu Nanozoomer (Hamamatsu Photonics, Hamamatsu, Japan) and have
a resolution of .23 µm per pixel. An example is shown in Figure 6.1.

The original images contained two histologic slices per image. These were post-
processed, such that one image shows one slice [203]. The pipeline of the model
generation is shown in Figure 6.2. The steps are described in detail in the next
sections.

6.2 Segmentation

The first step is the segmentation of the aneurysm wall. Three different ap-
proaches are compared. For the later steps of the model generation the man-
ual segmentation, which was also used for training the neural net in the deep
learning approach, was used to minimize errors. The H&E stained histologic im-
ages were segmented to show the changes inside the aneurysm wall. Different
tissue types differ by the colour (recall Section 2.2.3), nuclei shape and nuclei
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Figure 6.1: Example of histologic slice

Figure 6.2: Based on segmented histolgic 2D images (A) a model is generated.
First, the images are virtually inflated (B) and contours of differ-
ent tissue types are extracted (C). Then, 3D point clouds (D) and
meshes (E) describing the patient-specific wall thickness and wall
composition are generated [204].
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density. Different tissue types behave differently and have different mechani-
cal attributes, which is relevant for simulations. For a deep learning segmenta-
tion of the images tissue classes defined by an expert were used (Section 6.2.3).
The advantages and disadvantages of the segmentations are discussed in Sec-
tion 6.2.4.

6.2.1 Texture analysis and cluster

The first possibility discussed here is semi-supervised clustering. The tissue is
segmented into several small parts with similar appearance. The image is parti-
tioned into overlapping 50*50 pixels large patches. For each patch 249 features
(83 features for 3 different patch sizes (50*50, 100*100, 150*150)) are calcu-
lated. This allows assessment of the patch and its surrounding area. The fea-
tures calculated are features that were previously used by Kather et al. [205]
to successfully segment histologic images. Additionally, features describing the
nuclei in the patch are used. The necessary nuclei detection and parametric
description were described by Saalfeld et al. [20]. The following features are
used:

•histogram:

•mean

•variance

•skewness

•kurtosis

•5th central moment

•2th-11th central moment

•local binary patterns

•gray-level co-occurrence matrix

•perception-like filters

•coarseness

•contrast

•directionality

•line-likeness

•roughness

•nuclei
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•number of nuclei

•average elongation

•average thickness

•average area

•distance from patch center to closest nuclei

Using the Calinski-Harabasz criterion [206] the optimal number of clusters (from
possible values between 1 and 40) was determined to be 37. The Calinski-
Harabasz criterion evaluates the between-cluster variance (which should be large)
and the within-cluster variance (which should be small). Every patch was asso-
ciated with a cluster and the most likely cluster for each pixel was determined.
After that, the results were visually inspected and several clusters were com-
bined. One of the clusters contained the wall parts which had no or very few
nuclei. These clusters were further fractionated calculating two automatic thresh-
olds using Otsu’s method [207]. The results were smoothed using a median fil-
ter.

6.2.2 Filter- and threshold-based segmentation

Figure 6.3: Intermediate results of filter- and threshold-based classification:
top left: Prewitt Filter and morphological operations, top right:
threshold-based segmentation, bottom left: combination of both;
bottom right: final segmentation result [208]
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The second segmentation approach uses filter- and threshold-based segmenta-
tion. Two aspects of the image are analyzed: edges and intensities. Several steps
of this method are shown in Figure 6.3. In the first part of the segmentation,
the edges are enhanced using the Prewitt filter [209]. To depict areas with high
edge density, morphological operations are used to merge edges into larger ar-
eas. Edges inside the aneurysm tissue are often the outline of nuclei. Therefore,
with the first step, nuclei-rich areas are detected. Tissue without nuclei or only a
few nuclei is segmented with an intensity analysis. The image is segmented with
eight thresholds, which were determined with Otsu’s method [207]. Both analyses
(edge-based and threshold-based image analysis) are carried out independently.
Afterwards, the segmentations are combined. This yields an over-segmentation
with many small areas. The next step is the combination of these small areas
to larger areas. Areas are combined with their neighboring areas until one of
two stopping criteria are fulfilled. The first stopping criterium is the minimum
area size. The second criterium is the number of different areas segmented. The
selection of values for these parameters depends on the tissue, the expected num-
ber of different tissues and changes of tissues, and the desired resolution of the
segmentation. A low minimum area size and a high maximum number of areas
is suitable for tissue with frequent changes. With a manual segmentation of the
outer and inner aneurysm contour, the background was set to zero [203]. In
contrast to the deep learning segmentation (Section 6.2.3) no tissue classes are
defined. The image is segmented into areas with similar appearance. The number
of tissue areas is often larger than the number of classes because several small,
not connected areas can belong to the same class.

6.2.3 Deep learning segmentation

For the third approach a deep learning-based segmentation was developed. Unlike
the previously described approaches, this requires the definition of different tissues
and manual segmentation to train the neural net. Together with two medical ex-
perts, nine different tissue classes were defined (see Fig.6.4) [204]:

• Mixed textures (1) include all areas that cannot be classified into one of
the other classes. This includes unusual findings and areas where a reliable
identification is not possible. In the patch in Figure 6.4, infiltrating red
blood cells between connective tissue bundles are shown.

• Inflammatory cells (2) show regions with an increased amount of inflam-
matory cells.

• Myointimal hyperplasia (3) (MH).

• Degenerated wall (4) shows wall tissues of the aneurysm wall with signs of
wall degeneration, defined as loss of mural cells.

• Decellularized Organizing thrombus (OT) (5) shows decellularized tissue.
In histologic images the origin of this tissue is difficult to determine.

Three textures are used to describe the thrombus:
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– Red thrombus (6) (RT), i.e., a fresh thrombus with a lot of red blood
cells.

– Organizing thrombus (7) (OT).

– White thrombus (8) , i.e., a thrombus made of fibrin with very few red
blood cells.

• Intact wall (9) shows intact wall tissue with linearly organized mural cells,
of most likely smooth muscle cells based on the morphology and location.

1

mixed textures

4

degenerated
wall

7

organizing
thrombus

2

inflammatory
cells

5

decellularized
OT / MH

8

white thrombus

3

myointimal
hyperplasia

6

red thrombus

9

intact wall

Figure 6.4: Example patches for tissue classification for histologic images of in-
tracranial aneurysms [204]

Due to the image size, it was not possible to use the whole image for deep learn-
ing. Resizing the images was not possible, as small details, for example the
nuclei, were important characteristics of the classes. Therefore, a patch-based
deep learning approach was used. Images were split in 256×256 patches. This
results in a very unbalanced dataset with a high number of patches for the back-
ground. To reduce the imbalance, not all background patches were selected for
the training. The dataset was still imbalanced, as several tissue classes were
rarely present in the images. The data was split 60:20:20 for training, test and
validation. A U-net [149] with eighteen layers was trained to segment the patches
into ten different classes (nine tissue classes and one background class). The net
used the adam optimizer and categorical cross-entropy and was trained for 50
epochs.
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Figure 6.5: Original image Figure 6.6: Result of image segmenta-
tion based on cluster

Result of image segmentation
based on cluster

Result of filter- and
threshold-based segmentation

Figure 6.7: Comparison of cluster and filter- and threshold-based segmentation

6.2.4 Comparison of different segmentation approaches

Figure 6.7 shows the segmentation of the cluster-based segmentation and the
filter- and threshold-based segmentation. The grey values in the image process-
ing segmentation do not have a meaning and different grey values are only used
to show the separated areas. In the cluster-based segmentation, the different grey
values show the different clusters.

Deep learning achieved an overall accuracy of 60.68% (see Table 6.1). The re-
sults differ between the classes; visual inspection revealed that the best results
were achieved for red thrombus and myointimal hyperplasia. For white throm-
bus, intact wall, and infiltrating blood moderate results were achieved. The most
problematic classes were rare classes like organizing thrombus (OT) and decellu-
larized OT, which was mostly segmented as white thrombus. Some examples are
shown in Fig. 6.8.

83



Figure 6.8: Examples of deep learning segmentation; blue: myointimal hyper-
plasia, red: red thrombus, green: degenerated wall, blue: myoinit-
mal hyperplasia, yellow: white thrombus.

Table 6.1: Results of semantic segmentation with deep learning
Metric accuracy Tversky loss Dice coefficent
Training 75.66% 9.2378 0.8718
Validation 57.67% 9.3738 0.7534
Test 60.68% 9.2932 0.8461
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The results of the other approaches depend on various parameters. For image
processing the expected number of objects and the minimum object size requires
careful fine-tuning and the clustering approach strongly depends on the selected
features. With the features used here, discriminating different tissues with few
or no nuclei was challenging.

The resolution of the manual ground truth segmentation for training the neural
network is limited. Small gaps between the tissues or small tissue changes are not
segmented. During the segmentation clear borders between different tissue types
are drawn. These are not able to reflect slow transitions between different tissue
classes. Accuracy calculation for the deep learning segmentation turned out to
be unreliable due to different levels of details in the automatic and manual seg-
mentation. The deep learning approach was more detailed, especially small tissue
gaps, which were not segmented manually, were successfully detected. Despite
being better than the manual segmentation, these areas have a negative impact
on the calculated accuracy.

The combination of a high number of classes, a limited number of training exam-
ples and highly imbalanced classes was challenging for the deep learning-based
approach.

Here, a patch-based approach was used due to the image resolution and current
technical limitations. The patches often only show 1-2 classes. Different tissues
are not equally distributed over the aneurysm wall. For example, plaques occur
on the inside of the vessel, but not on the outside. The patch-based approach
omits some information about the tissue position in the wall, which might be
helpful for classification.

For the deep learning, a supervised machine learning algorithm, the ground truth,
is important. The manual segmentation is a very time-consuming task. The re-
liability of the manual ground truth segmentation limits the deep learning. The
manual segmentation, and therefore the deep learning segmentation, tends to pro-
duce larger tissue segments compared to the other algorithms.

In contrast to the other segmentation approaches, deep learning is heavily re-
stricted to the tissue classes present in the training data. Especially in pathologi-
cal structures like intracranial aneurysms, where a high variance is expected, the
more flexible filter- and threshold-based and cluster approach might be advanta-
geous.

6.3 Virtual Inflation

During the acquisition of histologic images, some deformations may occur. One
problem are detaching parts at the border of the slice. As the segmentation of
these borders was performed manually, this problem could be minimized. The
main problem is the deformation due to the missing blood perfusion. After re-
moving the vessel with the aneurysm from the brain and before the fixation in
paraffin, the blood is flushed out. The vessel collapses and thus alternates the
form significantly (see Fig. 6.9). This would lead to major errors in fluid dynamic
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Segmented image
before the virtual
inflation is applied

Intermediate step 2
of the virtual infla-
tion

Intermediate step 4
of the virtual infla-
tion

Intermediate step 6
of the virtual infla-
tion

Intermediate step 8
of the virtual infla-
tion

Step 10 of the vir-
tual inflation

Figure 6.9: Different steps of virtual inflation

simulations. As for these datasets only post mortem, ex vivo images (OCT and
histologic images) exist, it was not possible to register the histologic images to
images which correctly depict the aneurysm shape, for example in vivo CT or
MRT images. Instead, the correction of the aneurysm shape is based on the as-
sumption that the inner vessel and the aneurysm contour, respectively are nearly
circular shaped. The inner border shape is influenced by the blood flow filling
the vessel and the outer border might be less round due to the influence of sur-
rounding objects. The assumption of a round inner contour of the vessel and
aneurysm was supported by observing the behavior when filled with fluid. The
segmented images are reduced to 15% of the resolution of the original images.
This large reduction is possible because unlike the histologic images, where im-
portant information (for example nuclei position and shape) were stored in small
details, the segmented images only contain large, uniform areas. The contour
points are adjusted to fit the new image resolution. The inner and outer contours
were resampled to consist of 4000 points each. For the morphing, 10 intermediate
stages were calculated (see Fig. 6.9).
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(a) (b) (c)

Figure 6.10: a) last contour of a segmented area (as 3D point cloud), b) cor-
responding binary image, red line: points left after thinning, blue
circle: center of the contour, c) example of a dome added to a
contour in 3D, red: top contour, blue: added points for the dome
[203]

6.4 Mesh generation from histologic images

To generate a 3D mode of the aneurysm, surface meshes of the aneurysm and the
various tissue sections have to be constructed. The large gaps between the im-
ages are challenging for the mesh generation. Therefore, a new mesh generation
algorithm was developed.

After applying virtual inflation to the segmented images, point clouds are de-
rived. During the virtual inflation, the image values are interpolated and the
resulting image has more colors than the 10 discrete values used for the segmen-
tation. Before the contours are determined, this is corrected and the image is
discretized to 10 colors. For each color a binary image is generated. In this
binary image, showing the elements from one label, the contours are extracted
using the Moore tracing algorithm modified by Jacob’s stopping criteria [210].
Moore-Tracing starts at one point of the object and follows the contour until the
start pixel is reached a second time. These contours and the corresponding labels
are saved. In the next step, the point clouds are generated. Starting from the first
contour, the contours of the following slice are iteratively added. Contours get
the slice number times slice-distance as z-coordinate, and contours are grouped
as a point cloud if they match. Matching of contours is determined by the label
(only contours of the same label can be grouped), the distance between centers
of the contour, and the average distance between contour points. After the point
clouds are generated this way, they have flat ends (see Figure 6.10). While not
visible in the slices, it is expected that the tissue continues between the slices and
the elements should be smooth. Therefore, domes are added to the ends. A dome
is added by shrinking the contour while keeping the contour centroid constant
and adding these points above or below the last and first contour, respectively.
Between this new contour and the previous end contour, several contours are in-
terpolated, forming a dome. To determine a centroid inside the contour, even for
concave shapes, the following approach was used. The contours were transformed
into binary images. In the image, the shape was reduced to a line using a thinning
algorithm [210]. The points of this line are inside the shape and are candidates
for the centroid. From these candidates, the point with the greatest distance to
the closest contour point is selected (see Fig. 6.10).
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(a) (b)

(c) (d)

Figure 6.11: (a) Point cloud from vessel contours; (b) The mesh generated by
MeshLabs screened Poisson surface reconstruction algorithm; (c)
The mesh generated by MeshLabs ball pivoting algorithm; (d) The
mesh generated by our shrinking tube mesh algorithm [211, 212].

The point cloud of the contours is used for the mesh generation. It differs from
typical point clouds as the points are not evenly distributed. Instead, there are
small spaces between points from the same slice and larger spaces between dif-
ferent slices. The second important difference between point clouds for medical
applications and other point clouds is the occurrence of edges. In most appli-
cations, edges provide important information and point cloud-based mesh gen-
eration algorithms try to preserve sharp edges. The contrary occurs for medical
images. Here, sharp edges are not expected.

The mesh generation from point clouds often requires a preprocessing or post-
processing step to filter noisy points or smooth the mesh.

Figure 6.11 shows how common mesh generation algorithms fail to generate a
mesh of the rather untypical point cloud. Therefore, a new mesh generation has
been implemented to generate the meshes. In the following, a mesh generation is
presented that can produce a smooth mesh without additional preprocessing of
the points or mesh smoothing.
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(a) (b) (c)

Figure 6.12: (a) Shrinking tube, (b) during heat, (c) fitted shrinking tube [213,
212]

6.4.1 Shrinking tube mesh generation

The presented algorithm models the behavior of a shrinking tube, as illustrated
in Fig. 6.12. A shrinking tube is a plastic tube that can be used to isolate wires
and is tightly fitted to them by applying heat.

First, a start shape (the shrinking tube) is generated. This mesh is then adjusted
to fit the point cloud (Algorithm 1).

Start shape

Three options are tested for the "shrinking tube" shape: a straight cylinder (Cs),
the convex hull (CH) of the point cloud, or a cylinder based on the maximum
diameter of each slice (Cmax). To get a cylinder based on the varying diameter for
each slice, the diameters are determined. By fitting a spline through these values
a function is generated. From the function a cylinder is derived by rotating the
function around the x-axis. Optionally, the function can be smoothed before the
rotation and therefore creates a smoother cylinder.

Fitting step

The mesh is then adjusted to fit the point cloud. In analogy to a shrinking
tube, this step has two parameters: the number of time steps (iterations) and the
temperature. Iteratively the mesh is moved closer to the point cloud. It depends
on the distance of the point to the mesh how large the influence of a point on the
mesh is. The number of mesh points that are adjusted is linear to the distance
of a point from the point cloud to the mesh. The distance the mesh vertices
are moved towards the point cloud depends on two factors: the temperature
parameter of the algorithm and the distance of the point to the mesh. As small
distances are likely noisy and very large distances are expected to be the result
of artifacts in the segmentation, these should have a smaller impact on the mesh.
Therefore, the factor for the distance-based moving is calculated with a quadratic
function.
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Algorithm 1 ShrinkingtubeMeshGeneration
[v,f] ← startmesh
a,b,c ← parabelparameter
for i=1:1:timesteps do

for j=1:1:size(pointcloud) do
idxMeshNeighbour ← meshpoint closest to pointcloud(j)
moveDir ← pointcloud(j)-v(idxMeshNeighbour)
dis ← distance(pointcloud(j),v(idxMeshNeighbour)
moveFactor=temperature*(a*dis*dis+b*dis+c)
v(idxMeshNeighbour) ← v(idxMeshNeighbout)+moveFactor*moveDir;
InfluenceArea ← factorInfluenceArea*dis
for k=1:1:size(InfluenceArea do

move Neighbours in direction of new Meshpointposition
end for

end for
end for

6.4.2 Results of the shrinking tube mesh generation

The presented shrinking tube mesh generation depends on several parameters.
Given that suitable parameters are chosen, it can be applied to a wide variety of
point clouds.

The selection of the start shape is crucial. A more tightly fitted start shape
like the maximum cylinder with a low smoothing factor is better in preserving
the shape while the straight cylinder is optimal to reconstruct cylindrical shape
structures (for example vessels) from noisy point clouds.

The presented algorithm produces smooth meshes. Several factors are influencing
the result: the time steps and temperature parameters of the fitting step, the start
shape, and the parameters of the quadratic function used to calculate the strength
of the moving.

Start shape

Two major factors influencing the result are the start shape and the number of
vertices. Figure 6.13 shows the different start shapes. CS and Cmax will con-
verge to similar results after sufficient time steps. Compared to them, the fitting
progress using CH is faster.

Algorithm parameters

Next, the influence of the parameters is analyzed. The fitting of the mesh, de-
fined as the sum of the distances between each vertex of the mesh and the closest
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(c) (d)

(e) (f)

(g)
(h)

Figure 6.13: Start shapes and behaviour: (a) Start shape: CH, (b) Result of
shrinking tube mesh generation from convex hull, (c) Start shape:
Cmax, (d) Start shape: CS, (e) Intermediate result of mesh genera-
tion from c, (f) Intermediate result of mesh generation from d, (g)
Result of mesh generation from c, (h) Result of mesh generation
from d.
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(a) (b)

(c) (d)

Figure 6.14: Influence of parameter on the fitting of the mesh to the point cloud:
(a) temperature, (c) factor influence area, (d) time steps; Influence
on time: (b) factor influence area.

point of the point cloud, is calculated. Additionally, the calculation time is mea-
sured.

Varying only the temperature (between 0 and 1), the difference between the
points of the mesh and the nearest points of the point cloud decreases, as shown
in Figure 6.14.

A larger influence area leads to a smoother mesh that is fitted closer to the points.
The time needed for the shrinking tube mesh generation increases exponentially
with the influence area factor (Fig. 6.14). For a mesh with 31,973 vertices and a
point cloud with 398,459 points the mesh needed around 90 seconds on standard
hardware with an influence factor of 5. This factor results in up to 66 iterations
of moving mesh-neighbors. While the time increases linearly with the number of
time steps, the mesh does not improve linearly (Fig. 6.14). The optimal values
for the parameters depend on the point cloud shape, the target structure, and the
number of vertices of the start shape. At the moment, no general recommendation
for parameter settings can be given.

Moving factor function

Each vertex is moved depending on the temperature parameter and its distance to
the point cloud. The moving factor function regulates the distance of the move-
ment based on the distance between vertex and point cloud. It is selected under
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(a) (b)

Figure 6.15: (a) Fitting of mesh depending on the position of the maximum of
the parable; (b) Challenging point cloud configuration for shrink-
ing tube mesh generation.

the assumption that a small distance (likely noise) and a very large distance (likely
artifact) should lead to small vertex movements.

A quadratic equation y = ax2 + bx + c has three coefficients (a,b,c). In this case,
some restrictions are known and help to limit the possible coefficient values. The
zero crossings of the function should occur at x=0 and x=maximum distance of a
point cloud to the mesh. The function needs to have a maximum with ymax=1.
The only variation we looked at was the x-value at which the maximum occurred
in relation to the maximum distance of a point cloud to the mesh. Figure 6.15
shows that for the selected mesh a parable with a maximum at half the maximum
distance of a point cloud to the mesh is optimal.

Summary of the shrinking tube mesh algorithm

The shrinking tube mesh generation produces smooth meshes without additional
postprocessing. It can be applied to imperfect segmentations and might be used
for different applications. Compared to image stacks, point clouds from contours
only describe the information necessary for the model (for example, no informa-
tion about the background is stored). The algorithm is robust against the uneven
distribution of points. Various parameters influence the behavior and outcome
of the algorithm. With enough time steps or a high value for the temperature
parameter, the resulting mesh will be tightly fitted to the point cloud.
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Due to the medical application and resulting assumption that sharp edges rarely
occur, these are not preserved. The algorithm makes some assumptions about
the relevance of the points. It is expected that noise and artifacts have a certain
characteristic, reflected by the distance between point cloud and mesh. The pre-
sented algorithm was used to successfully generate meshes of the aneurysm wall
and different tissues inside the wall.

A point cloud derived from nearly closed circles (as shown in Fig. 6.15) is prob-
lematic for the algorithm described above. This challenge might be addressed by
splitting the point cloud into several smaller point clouds, applying the shrinking
tube mesh generation to these, and combining the resulting meshes.

While allowing for adaption to different problems and point clouds, the algo-
rithm has a large number of parameters, and optimizing these can be time-
consuming.

6.4.3 3D Model of an intracranial aneurysm

With the previously described algorithm meshes of each tissue segment and the
aneurysm outer and inner contours are generated. The meshes are combined to
build a model of an intracranial aneurysm. The aneurysm model consists of one
mesh describing the inner aneurysm wall, one mesh describing the outer aneurysm
wall, and 94 meshes of different wall tissue types (see Fig. 6.16). Most tissue
sections can only be traced over a few slices. This results in many small meshes.
The mesh generation and the addition of a dome tend to produce meshes slightly
larger than the point cloud, therefore small overlappings can occur. For each
mesh potential intersecting meshes are determined based on the x-coordinates of
the meshes. Then, the candidates are tested for intersections. Using Boolean
operations the intersections are removed.
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Figure 6.16: Resulting model for one of the aneurysm datasets (without outer
mesh) from two different views. White: mesh of inner wall, colored
meshes: selected different tissue segments; the model is based on
22 consecutive slices, distance between slices 100 µm, image reso-
lution per slice around 18500 × 6000 the 3D model based on 22
consecutive histologic slices, distance between slices 100 µm, im-
age resolution per slice around 18500 × 6000, white: inner mesh,
coloured meshes: various tissue segments, outer mesh is not dis-
played [203]

Not all parts of the aneurysm wall are included in one of the tissue meshes.
Especially in regions with a very heterogeneous wall, the tissue parts can be too
small to generate a mesh. Here, only tissues that are visible in at least two
slices are included. With the presented adding of a dome, it would be possible
to generate 3D meshes from tissue parts even if it is only visible in one slice.
However, this would result in even more and smaller meshes, which is - at the
current time - not useful for many applications (for example simulations) due to
limited computational resources.

6.4.4 Wall tissue analysis in 2D and 3D

In this section, the statistical analysis of the histologic images is described. The
area (in the 2D images) and the volume (in the 3D model) of each tissue class
are calculated.

2D analysis

The most common classes were myointimal hyperplasia and red thrombus, fol-
lowed by white thrombus (Fig. 6.17). Myointimal hyperplasia and degener-
ated wall were mainly found at the outer part and the parent vessel. At the
aneurysm dome, decellularized organizing thrombus and organizing thrombus
were found. The white thrombus is most present in the first slices, at the
aneurysm and one side of the parent vessel (Fig. 6.19). In the next slices,
the white thrombus is replaced by the red thrombus. In the following slices,
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white and red thrombus are visible inside the aneurysm and the whole parent
vessel.

Figure 6.17: Distribution of different tissue types occurring in all histologic im-
ages.

3D analysis

Similar to the segmentation in 2D the most present class was myointimal hyper-
plasia. 20.42% of the aneurysm mesh were not assigned to a class.

In the mesh representation the distribution of the classes changes. This has
several reasons. Not all segmented sections are included. A section must be
visible in two consecutive slices to be included as a mesh in the 3D representation.
Furthermore, the center and the contour have to be similar to connect sections to
a mesh. Therefore, small sections, fast-changing sections or very irregular shaped
sections are not visible in the mesh representation. These two factors contribute
to the vanishing of the classes rarely presented in 2D, liked inflammatory cells
and degenerated wall.

While there are many tissue sections of red thrombus in the images, they are
underrepresented in the 3D mesh representation. Independent from the tissue
segmentation, a segmentation into inner and outer contour was performed. This
segmentation was necessary for the virtual inflation, where the inner contour was
moved to a more circular shape. As visible in Fig.6.18, there are large sections of
disconnected red thrombus in the middle. These are not included in the 3D wall
model, as they are inside the vessel. A similar problem occurred for the white
thrombus.

This study had several limitations. While the class definition was done by a medi-
cal expert, the image segmentation was done by computer scientists.
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Figure 6.18: Selected segmentations illustrating the behaviour of the thrombus

Table 6.2: Comparison of class distribution in image segmentation and resulting
3D mesh model

class images meshes
myointimal hyperplasia 43,20% 66,58%
red thrombus 20,77% 4,83%
white thrombus 14,12% 0,52%
inflammatory cells 7,31% 0,18%
decellularized organizing thrombus 5,03% 1,66%
degenrated wall 3,37% 0,00%
mixed textures 3,37% 4,05%
organizing thrombus 2,82% 1,75%
not segmented 0,00% 20,42%
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Figure 6.19: Distribution of different tissue types occurring in the histologic
images per image; blue: myointimal hyperplasia, yellow: white
thrombus, rose: decellularized organizing thrombus, green: degen-
erated wall, orange: inflammatory cells, grey: mixed textures, red:
red thrombus, purple: organizing thrombus

The 3D model has several restrictions. Especially due to the slice distance, small
tissue sections are not presented in the 3D model, as they cannot be traced
through several slices. The images have a resolution of 0.23 µm per pixel and
a slice gap of 50 µm. The mesh representation does not include tissue sections
only visible in one slice. Including these has several challenges. The tissue shape
between the slices has to be estimated without further information. The inclusion
of small tissue segments will largely increase the number of meshes used to de-
scribe the aneurysm wall in 3D. This would be unpractical and due to technical
limitations not usable in current simulations. In Fig.6.18 each row shows two
consecutive slices. In the middle row, each slide contains some degenerated wall
(green), but at clearly different positions. Therefore, they cannot be connected
and are not included in the mesh representation.

Another aspect is the virtual inflation. For a more realistic 3D shape, virtual
inflation is applied during the model generation. This changes the shape of the
aneurysm wall and the tissue segments. Together with the large space between
slices, this hinders the tracing of tissue sections.

The 2D segmentation includes all visible tissues. For the 3D reconstruction, only
the aneurysm wall is used. As visible in Figure 6.18, especially in the top row and
the bottom left, the 2D segmentation also contains some small tissue parts, which
are not connected to the aneurysm or the vessel.

While the 3D model includes important information and can be used for more
realistic simulations of the aneurysm, not all details are captured. For a reliable
analysis of the tissue present in the aneurysm wall, the 2D images should be
used.
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6.4.5 Results of the model generation

The proposed pipeline and the presented algorithms were used to generate a
detailed aneurysm wall model from H&E stained images. The aneurysm model
has two global meshes describing the inner and outer wall. Smaller meshes in
between these two show individual sections of different tissue types. These meshes
are often rather small, as most tissues can only be traced over a few slices. Overall,
the model consists of 96 meshes, one each for the inner and outer wall, and 94
meshes of tissue segments. Some of these are shown in Figure 6.16. The meshes
are generated based on 22 consecutive histologic slices. Smaller tissue segments
are not captured by the model, as it requires presence of the tissue in at least
two consecutive slices. Therefore, not the whole volume between inner and outer
mesh is covered by tissue meshes.

For structural simulations, the whole model with the large number of meshes
is challenging. Therefore, two reduced models consisting of three (Model A) and
ten (Model B) slices were generated. Figure 6.20 shows the results of the struc-
tural simulation done by Samuel Voß based on the reduced models A and B. For
each of the models a homogeneous and a heterogeneous configuration is tested.
The heterogeneous configuration consists of up to seven different tissue classes.
In areas of intact tissue identical wall stress patterns were observed. A more
heterogeneous wall stress distribution was caused by the clustering of several
tissue classes. The varying mechanical tissue elasticity allows individual compo-
nents to compensate for the load at different levels. Flexible components have a
smaller influence on the stability than stiffer components. Local deformation of
the aneurysm wall and mechanical stresses are the result of intraluminal pressure.
If the pressure increases, the wall stress also increases until the maximum wall
strength is exceeded and aneurysm rupture occurs.

The in-plane resolution of the histologic images was excellent and showed a high
level of detail. Due to the large gaps between slices, the resolution in the third
direction is limited. The model only includes tissues visible in several slices.
Therefore, tissue parts which are too small compared to the large gap between
slices are disregarded.

The heterogeneous tissue class presentation inside the wall provides a challenge
for the reconstruction. Over time, the aneurysm wall changes due to remodeling
and thrombosis of the wall. These frequent changes result in many different,
small sections while large regions of the same texture are rare.

The presented model shows clear borders between different tissues. As in re-
ality there is a smooth transition and borders are blurred, the expressiveness
of the model is limited. Using surface meshes to represent the different tissues
requires clear borders. In the future, transition classes or a representation as vol-
ume mesh with cell-specific properties could be used to generate a more realistic
model.
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Figure 6.20: Reduced models A and B of the patient-specific vasculature as
homogeneous configuration and heterogeneous configuration. Top:
model composition from different tissue classes; middle: resulting
mechanical wall stress distribution of the structural simulations of
the wall under intraluminal blood pressure; bottom: detailed view
of the local wall stress distribution [203]
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Each tissue mesh contains a single tissue type. Within this tissue type nor fur-
ther details are available. The model might be further enhanced by including
information like fiber direction instead of a uniform tissue model.

As no in-vivo information about the lumen shape was available, the artificial
inflation assumed a round shape.

The presented 3D model can be used for simulation. Very small tissue sections
are not included in the model. Therefore, for small details the 2D image data
is superior to the 3D view. While healthy vessels show three distinctive lay-
ers, aneurysm walls are pathological and differ greatly. Therefore, models based
on healthy tissue can only be partially transferred to intracranial aneurysms.
To asses the individual strength of an aneurysm, a detailed and patient-specific
model is necessary. As the simulation results show, inclusion of different tissues
affects the simulation outcome. A mix of several different tissue sections results
in a more heterogeneous wall stress distribution. Advanced wall models allow
more realistic and reliable simulations. The described pipeline represents early
steps towards such modeling approaches.
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7 Understanding aneurysm wall
composition - Histology and
microCT

While the previous chapter focused on reconstruction solely from histologic data,
here a different approach using multimodal image data is described. Histo-
logic images are combined with microCT of the collected tissue and preopera-
tive imaging of the aneurysm lumen. The wide selection of image modalities
allows a comprehensive exploration of the wall (see Fig. 7.1). MicroCT and
histologic images using various stainings show the tissue inside the wall. The
aneurysm shape is available from preoperative imaging. Hemodynamic simula-
tion adds further information about the wall, for example the wall shear stress.

7.1 Dataset

The multimodal data was acquired from a patient with an intracranial aneurysm
at the middle cerebral artery. Pre-operative 3D angiography data was used to
extract a 3D surface model of the aneurysm and its parent vessel. During sur-
gical intervention, the aneurysm dome was resected and scanned afterwards via
microCT yielding a stack of microCT image data. Hence, during surgery and
tissue collection the shape of the tissue is strongly alternated. From this dataset,
calcification masks were generated [131]. Next, histologic images based on the
fixated, stained and sliced aneurysm dome were photographed. Four histologic
stains were used (Fig. 7.2): Hematoxylin and eosin (H&E), alpha smooth muscle
actin (aSMA), Oil Red o (Oro) and masson trichrome (MT). The stainings are
further explained in Section 2.2.3.

7.2 Image preprocessing

Before the data is visualized, several preprocessing steps for the histologic data
and the microCT data were necessary.
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Figure 7.1: Pipeline overview with a) histologic and microCT data, calcification
segmentation and 3D IA surface model (grey) and 3D resected dome
surface model (pink), b) the steps to combine this data and c) the
resulting visual exploration.

(a) H&E (b) MT (c) Oro (d) aSMA

Figure 7.2: Segmentation of different stainings used in the histologic images
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7.2.1 Stain classification

As different stainings have different image characteristics, the first step is to
identify the staining. To classify the stainings into four classes (H&E, MT,
aSMA and Oro) a deep neural net using the GoogLeNet architecture is used.
The network is 22 layers deep and trained with downsized RGB images with
500x500.

7.2.2 Tissue segmentation

The images are segmented in tissue and background. The different staining meth-
ods result in different colors and saturation. H&E and MT where clearly darker
and could be easily distinguished from the light background in contrast to ORO
and aSMA stainings.

For aSMA, H&E and ORO-stained images, two thresholds were determined using
Otsu’s method [207]. One threshold separated the object from the black padding
of the scanning process, the other roughly segmented the tissue from the slide
background yielding a binary segmentation mask. As the slides can contain some
dissected tissues or other impurities, the mask may falsely contain small objects
that were removed. The final segmentation was refined with geodesic active con-
tours [214] using the masks as initial state.

For MT stained images, all steps apart from the active contour method were
repeated, since the dark staining achieved a better contrast to the background
and mask refinement was not necessary.

7.2.3 Processing of microCT images

Including microCT images of the tissue before sectioning allows visualization of
the shape of the tissue sample and detecting calcification inside the aneurysm
wall.

The microCT images corresponding to the histologic images are generated. There-
fore, a 3D image is constructed by stacking the 2D microCT images. To generate
the new microCt images, the positions of the histologic images have to be de-
termined. During the image collection, part of the tissue was removed or slices
were corrupted and discarded. These missing slides are not documented. More
slices than available for the project were collected, but the exact number of slices
is unknown. This missing information complicates the reconstruction of the slice
positions.

A tool to guide the slice position selection was developed (see Fig.7.3). First,
the overall number of slices (available slices and placeholder slices for removed
sections) is set and the possible slice thicknesses, which depend on the settings
used for cutting, are set. A start point and an end point define the line along which
the tissue was cut. On the left side, the sections (colored: available, grey: removed
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Figure 7.3: User interface for alignment of the histologic slides. On the left,
the sections (colored: available, grey: removed tissue or unavailable
slides) are shown. On the right, a 3D model extracted from the
microCT is shown together with the estimated slide positions.

tissue or unavailable slices) are shown. For each section, the thickness and the
status can be set. On the right side, a 3D model of the tissue generated based on
the 3D microCT image is shown together with the estimated slice positions. The
user can set the estimated length of the tissue sample and compare this to the
sum of the histologic slices. A preview of all images allows comparing the current
selection with the histologic images (Fig. 7.4). The mesh is color-coded with the
mesh thickness to further guide the user. A 3D image of the same size as the
3D image from the microCT data is generated. The vertices of the surface mesh
are mapped into the image, resulting in a 3D image showing the outline of the
aneurysm and the calcifications. The image is then filled and registered to the
3D microCT image with a rigid transformation based on the normalized gradient
field similarity measure [215].

The registered 3D image of the calcification is then sliced with the same planes
as the microCT image (Fig. 7.5).

7.2.4 Combining histology and microCT

After the described processing, for each histologic image a corresponding microCT
image and a segmentation mask showing calcifications are available. These in-
formation are combined. This is achieved by transferring the histologic image
information into a mask of the microCT image.

The image and the mask of the microCT image are registered based on the
outer contour of the tissue. The contour of the aneurysm dome in the microCT
image and the contours of the histologic image are each split into outer and inner
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Figure 7.4: Left: image preview from microCT cutting, right: histologic images

Figure 7.5: Mesh with outline of section, corresponding histologic section and
microCT image
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Figure 7.6: Surface mesh with calcification

contours. To do this, the center of the contour is calculated. For each contour
point, intersections of the line between the center and the contour point and the
polygon described by the contour are determined. If no intersections beside the
contour point itself are found, the point belongs to the inner contour, otherwise,
the contour point is added to the outer contour (see Fig. 7.7). While the majority
of the points is correctly classified, a small number of points is falsely labeled as
outer contour. These are identified in a postprocessing step and added to the
inner contour.

The information from the histologic images is then transferred to the segmen-
tation mask of the microCT image. A line between an inner contour point and
an approximately opposite outer contour point is selected in the histologic image.
Based on the previous registration the corresponding line in the microCT mask
is determined. The values along the line in the histologic image are transferred
to the line in the microCT image. The calcification segmentation is used to check
if the values are mapped to an area where calcification was present. In that case,
the corresponding histologic image coordinates are stored and used to show the
approximate area of calcification in the histologic image. This is repeated for
all inner contour points, and for each inner contour point several lines to outer
contour points are selected. Due to this, some pixels in the mask will get visited
several times and the average value is used. To reduce blurring the number of
times a pixel value can be updated is limited.
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Figure 7.7: MT stained image with inner (blue) and outer (orange) contour.

In order to obtain hemodynamic parameters, like wall shear stress, a hemody-
namic simulation was carried out. The preoperative 3D intracranial aneurysm
model was used for hemodynamic simulation carried out in STAR-CCM+ 2020.1
(Siemens PLM Software Inc., Plano, TX, USA). Blood was modeled as an incom-
pressible and Newtonian fluid with a density of 1055 kg

m3 and dynamic viscosity of
0.004 Pa · s. Boundary conditions of the domain were modeled as follows: Time-
dependent flow waveform from a healthy volunteer, rigid vessel walls with no-slip
condition, and zero-pressure assumption at the outlets [216]. The simulation was
provided by Philipp Berg (Laboratory of Fluid Dynamics and Technical Flows,
Otto von Guericke University).

7.3 Shape correction based on preoperative
aneurysm model

During the tissue collection, the sample changes its shape. The tissue sample used
here has two major alternations: a fold on top of the tissue and sides which are
squeezed together. The fold on top cannot be removed with the available informa-
tion. The preoperative aneurysm model is used to adjust the tissue shape. The in-
ner contour of the tissue should follow the aneurysm shape.
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The first step is the separation of the tissue mesh vertices into inner and outer
points. The inner points of the bowl-shaped dome sample are the points that
build the outline of the aneurysm lumen and should follow the shape of the
preoperative aneurysm mesh. First, the mesh center is calculated. All vertices
are assigned a label (inside or outside) based on their visibility from the center.
The tissue is not a perfect semi-sphere, so some points at the inner tissue side
are not visible from the center. In the next step, this is addressed by looking at
the neighbors of the vertices and assigning the most frequent label to the vertex.
The result is shown in Figure 7.8.

Figure 7.8: Tissue mesh with inner (red) and outer (blue) vertices

After determining the inner points of the tissue mesh, these are moved to fit
the shape of the aneurysm mesh. The initial tissue shape is manually registered
to the aneurysm. The tissue mesh is then iteratively deformed. In each iteration,
the inner points are moved in direction to the center of the nearest aneurysm
mesh points. After all inner points are moved, the outer points are moved based
on the average movement of the nearest inner points. The results are shown in
Figure 7.9.
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Figure 7.9: In a), the 3D aneurysm mesh (grey) and resected dome mesh (pink)
is shown. In b), the virtual inflation was applied to the dome surface
mesh.

7.4 Visual exploration

To explore the aneurysm wall, a visualization combining the various information
was developed. The microCT and histologic images are combined as described in
Chapter 7.2.4.

For a mapping of hemodynamic information (e.g. WSS), the values are assigned
to each vertex of the 3D IA surface model. The 3D surface of the resected IA
dome (which is already co-aligned to the 3D IA surface model) is co-registered to
the 3D surface extracted from the microCT data via the iterative closest point
algorithm [217]. The transformation matrix from this co-registration is then ap-
plied to the 3D IA surface model as well. Finally, each voxel of the microCT is
assigned with the parameter values of the closest aneurysm mesh vertex.

We repeat this procedure for the inflated surface mesh of the IA dome. The
inflated mesh is cut at the extracted positions of the histologic slices. This pro-
duces binary images corresponding to the histologic slices but showing the inflated
2D shapes of the tissue. Similar to the microCT data, the information of the his-
tologic images is mapped to the inflated 2D shapes as well.

The information are combined in a visual exploration tool (see Fig. 7.10). On
a 3D model of the tissue the WSS is depicted with color. A white line on the
model indicates the currently selected slide. The segmented histologic image
is shown on the right and the segmented microCT image in the middle. For
the microCT image, three different views are possible: the segmented microCT
image, the microCT image with WSS values, or the microCT image with calci-
fication segmentation. For the histologic image the user can choose between the
histologic image or the histologic image mapped to the microCT shape. Further-
more, the correlation can be explored by selecting a point on the microCT image
which will show a circle around the corresponding area in the histologic image.
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Figure 7.10: Visual exploration of combined microCT and histology; left: 3D
model with WSS, white line indicates the current slice; middle:
segmented microCT image, right: segmented, corresponding MT-
stained histologic image

7.5 Results and discussion

In Figure 7.11, Figure 7.12 and Figure 7.13 the microCT image with calcification,
the segmented histologic image with the estimated position of the calcification,
and the histologic image mapped to the microCT image for different stainings
are shown. Figure 7.14 shows the mapping from a histologic image to microCT,
where large differences between the histologic and the microCT image occur.

The algorithm achieved the best results for the middle part of the aneurysms.
One problem is the estimation of the image position and generation of corre-
sponding microCT images. In the middle part of the aneurysm, there are less
variations and small differences in the position still generate very similar images.
At the outer parts, small variations of the estimated image position can lead
to larger variations in the microCT images. The second challenge is the split
into inner and outercontour. For the middle part, the u-shape allows to clearly
distinguish between inner and outercontour. Both contours can be found in the
histologic images as well as in the microCT images. For roughly oval shape these
cannot be defined. While a split in two contour parts is possible (for example left
and right contour or upper and lower contour), these are not necessarily corre-
sponding in both images due to rotation and flipping during the image collection.

The mapping of image values into another shape was further validated by mapping
the histologic image to its own segmentation mask. Then, the similarity between
histologic image and mask was systematically decreased by applying dilation with
different sized disks on the mask. Mapping to the histologic segmentation mask
produced an image very similar to the original image (correlation coefficient of
gray images 0.989). The correlation coefficient decreased with increasing dilation
(0.9496 for disk size 5, 0.9107 for disk size 15, 0.8412 for disk size 50). With the
increasing difference between the original shape and the target, the mapping gets
more blurred and details are lost (Fig. 7.15).
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Figure 7.11: Oro, left: mapped to microCT, middle: segmented image with
estimation of calcification position (green), right: microCT image
with calcification segmentation (yellow)

Figure 7.12: H&E, left: mapped to microCT, middle: segmented image with
estimation of calcification position (green), right: microCT image
with calcification segmentation (yellow)
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Figure 7.13: MT, left: mapped to microCT, middle: segmented image with
estimation of calcification position (green), right: microCT image
with calcification segmentation (yellow)

Figure 7.14: MT, left: mapped to microCT, middle: segmented image with
estimation of calcification position (green), right: microCT image
with calcification segmentation (yellow)

Figure 7.15: Detail view of mapping into own segmentation mask (left), slightly
dilated mask (disk size 15, middle) and more dilated mask (disk
size 50, right).
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The presented datasets are very rarely available and with an increasing number of
endovascular intracranial aneurysm treatments, fewer surgical interventions are
performed (recall Section 2.1.3). This further limits the collection of resected
dome tissue for research purposes, and histologic analysis becomes less avail-
able. Although strong deformation during the tissue processing and differences
in histologic stainings prevent an automatic co-registration, the histologic infor-
mation is necessary for understanding aneurysm wall composition. The presented
pipeline can combine the multimodal data and provides insight into the complex
intracranial aneurysm wall even when an automatic registration is not possible.
For the presented approach, the length of the sample was approximated based on
the sum of all section thicknesses and was used as a guide in the slide position-
ing tool. This must be used carefully, as it might be misleading. Senter-Zapta
et al. [129] measured the diameter of the largest cross-section in histology and
microCT yielding a 15.7% larger diameter in histology. Further studies on mea-
sures in microCT and histology are needed to evaluate how the tissue changes at
different stages during tissue processing.

During surgery, only a small part of the aneurysm wall can be collected and the
tissue is deformed during the process and afterwards. The preoperative 3D model
only shows the aneurysm lumen and not the aneurysm wall tissue. This compli-
cates the registration of the aneurysm to the collected tissue. Therefore, the accu-
racy of the WSS mapped to the microCT image is limited.

Here, no correlation between histology, calcification and WSS was evident. A
major limitation is the small variance of the WSS at the collected tissue. Tis-
sues from other areas or intracranial aneurysms with varying hemodynamic forces
might be more expressive.

Two medical experts with experience in histologic image analysis analyzed the
data based on the program. The resected dome only covered a small part of
the IA. Compared to the rest of the aneurysm, the WSS was not conspicuous.
Focusing on the WSS at the resected dome, the middle part of the tissue had
a lower WSS than the outer parts. The experts stated that the transition from
low WSS to high WSS is interesting, especially the possibility to compare this
region with the different histological stainings. In the resected dome sample no
correlation between calcification and particularities in the histologic images were
found.

Calcification was mostly present in one half of the tissue. In this part, the WSS
was slightly higher.

The experts also compared the thicker part of the resected tissue with the dif-
ferent histologic images provided by our visual exploration approach. First,
they focused on the wall thickness and cellularity evaluation and analyzed the
correlated HE and MT stainings. In addition, they defined a lipid accumula-
tion in the ORO-stained images and a slight loss of smooth muscle cells in the
aSMA-stained images, see Figure 7.16. These findings are very important for
understanding the IA wall composition. The presented pipeline is suitable for
comprehensive multimodal visual exploration of the aneurysm and the aneurysm
wall. It combines histologic and microCT images and 3D surface meshes of the
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Figure 7.16: Exploration of the resected IA dome by mapping the wall thick-
ness to color (a) and analyzing corresponding histological images.
The ORO staining shows a lipid accumulation (red) especially in
the region with increased wall thickness (b). The aSMA staining
reveals a smooth muscle cell structure that is globally organized
for this area. Also a slight loss of smooth muscle cells was visible
in the area of lipid, when comparing the adjacent sections.

aneurysm and the resected dome. The tool combines 2D and 3D data. The
histologic data uses a variety of stainings, is incomplete and insufficient for 3D
reconstruction on its own. The pipeline can be easily extended to include further
stainings. The tool enables the user to find a correlation between wall charac-
teristics (histologic structures, wall thickness or calcification) and hemodynamic
forces.
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8 Understanding aneurysm wall in
clinical routine - Vessel wall
imaging

This chapter covers two aspects: the objective segmentation of wall enhancement
and rupture prediction based on the aneurysm shape. Here, the focus is solely
on the segmentation of wall enhancement and provide tools for future objective
and reliable wall enhancement research. As this imaging technique is not yet
widely used, the number of datasets available here is too limited for a meaningful
analysis of the relation of wall enhancement and aneurysm rupture. While a large
number of morphological parameters exists in aneurysm research, these are rarely
used in clinical routine as they are too complicated to extract. Here, a geometric
deep learning approach is described. With deep learning the aneurysm shape
can be extracted without complex parameter calculation. To build trust into
the deep learning prediction a user interface showing what the neural net learns
is also developed. Geometric deep learning is a promising approach to predict
aneurysm rupture. In the future, the shape-based deep learning prediction could
be combined with the wall enhancement analysis to further enhance aneurysm
rupture prediction.

8.1 Dataset

For the analysis of wall enhancement in black blood magnetic resonance imaging
(BBMRI) 25 images were available. Two of these showed patients with aneurysms
but without wall enhancement. For the other images, segmentations of the wall
enhancement by experts were available.

From the segmented aneurysm, 3D surface models can be generated and ana-
lyzed. Besides the segmentation and analysis of wall enhancement, these could
also be analyzed and used for rupture risk assessment. Therefore, aneurysm sur-
face mesh processing and analysis will also be described in this chapter. However,
only very limited BBMRI data was available and the data used for mesh process-
ing and analysis also uses surface meshes from other imaging modalities. This
includes meshes from an internal database, as well as meshes from the Aneurysik
database [9].
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8.2 Wall enhancement in vessel wall imaging

As discussed in Section 3.3., wall enhancement might be used for rupture risk
assessment of intracranial aneurysms. To support an objective identification and
segmentation of wall enhancement, a semi-automatic segmentation tool was de-
veloped. This was then used to compare wall enhancement in different imaging
sequences.

8.2.1 Wall enhancement definition

Here, wall enhancement is defined as light grey values near the aneurysm. As
the absolute grey values in MRI images cannot be compared directly, the in-
tensities are evaluated in comparison to a reference value from the same image.
The threshold for the values which are determined as enhanced is set as percent-
ages of a reference value. As a reference value, the grey value of the pituary
stalk is used. Several nuances of wall enhancement are segmented to allow for
a refined evaluation of wall enhancement and its connection to aneurysm rup-
ture.

8.2.2 Segmentation tool

First, a BBMRI image is loaded. Then, the pituitary is estimated by searching for
bright circles near the center in the image slices. The brightest value is proposed
as the reference value. The user has three options to adjust the reference value:
set the reference value to the brightest value occurring in the image, manually
type in a value or select a new value by selecting a point in the image. In the last
case, the brightest value near the selected point is used to account for imprecise
point selection. With that option, a faulty automatic pituitary selection can be
easily corrected.

The user can select between 1 and 10 nuances for wall enhancement and set
the corresponding thresholds as percentages of the reference value. While 1 or
2 wall enhancement classes (strong/weak wall enhancement) align with previous
research, a more fine-graded segmentation might be useful for further research on
the relation of wall enhancement and rupture. Additional to the semi-automatic
reference value selection it is necessary to segment the aneurysm. This is done by
setting a seed point in the middle of the aneurysm and performing region grow-
ing. After the aneurysm segmentation is performed, the neighboring voxels can
be determined and, according to their values, the amount of enhancement can be
defined. The segmentations are displayed in the tool. The aneurysm segmenta-
tion is overlayed in blue and the wall enhancement segmentation in red, where a
darker red depicts a higher wall enhancement and a transparent red a lower wall
enhancement. A summary of the wall enhancement segmentation is displayed
and shows the amount of voxel and volume of each enhancement nuance.

117



Figure 8.1: Prototype of wall enhancement segmentation tool with zoomed in
view of segmentation (green rectangles). Blue: aneurysm/vessel, red
cross: cursor position, red overlay: segmented wall enhancement.

Table 8.1: Thresholds used for wall enhancement segmentation
class 1 class 2 class 3 class 4 class 5

a 85% 75% 70% 65% 60%
b 75% 65% 55% 45% 35%
c 70% 60% 50% 40% 30%
d 60% 50% 40% 30% 20%

8.2.3 Experiments

The wall enhancement segmentation tool was used in two different experiments.
In the first experiment, the segmentation tool was used to segment wall enhance-
ment around intracranial aneurysms for ten patients. The wall enhancement
segmentation divided the wall enhancement into five groups. The thresholds are
given as a percentage of the intensity at the pituitary. Four sets of thresholds
(a,b,c,d) are explored (Table 8.1).

The wall enhancement segmentations of the tool were compared with manual,
binary segmentations.

In the second experiment the tool was used to compare two BBMRI sequences,
VISTA and MSDE (recall Section 2.2.2). The same thresholds as above were
used. For eleven patients the segmentation images from both sequences were
segmented.
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8.2.4 Results and discussion

With the presented segmentation tool the wall enhancement of several patients
was segmented. The segmentations were compared to manual segmentations.

Comparison to manual segmentation

The segmentation results of the automatic segmentation differ depending on the
selected thresholds. When all classes are combined, the automatic segmentation
includes a larger volume than the manual segmentation. Figure 8.5 shows this
exemplary for patient 1 and patient 4. For patient 4, the additional segmentation
volume increases with lower thresholds. For patient 1, this does not happen, as
already all voxels in the search area around the aneurysm are segmented with the
highest threshold set (a). In both cases, the volume of the higher wall enhance-
ment classes increases with lower thresholds. The same can be seen in Figure 8.4,
where the segmented volume of each wall enhancement class is shown for patient
7 and patient 12.

Sometimes the manual segmentation includes voxels with intensities much small-
er than the reference value at the pituitary. For example, in patient 10, the man-
ual segmentation includes many voxels of low intensities. As Figure 8.6 shows,
even with the lowest threshold combination (d), where the minimum threshold
to include voxels in the wall enhancement segmentations is 20% of the maxi-
mal pituitary intensity, some voxels of the manual segmentation are below this
threshold. With lower thresholds, more of the manual segmentation is included
and sorted in a higher wall enhancement class (Fig. 8.2).

In Figure 8.3, the manual segmentation volume is compared to the volume seg-
mented as wall enhancement class 1. The necessary threshold to achieve a seg-
mentation volume of wall enhancement class 1 comparable to the manual seg-
mentation is between 55% and 65%. For patient 5 a threshold between 45% and
55% would be optimal.

Small inaccuracies might be present in the manual segmentation due to several cir-
cumstances. The voxelization of the smooth contours can lead to small differences
at the segmentation border. The algorithm evaluates each voxel individually and
decides whether wall enhancement is visible and which wall enhancement class
the voxel belongs to. Partial volume effects might influence the segmentation. It
is unlikely that a manual segmentation would be that detailed. Instead, an expert
likely evaluates several voxels together. Therefore, the manual segmentation is
more prone to include voxels with darker intensity.

A problem for manual segmentation might be the unreliable perception of grey
values [218, 219]. While the computer evaluates the exact intensity value and
compares it to the reference value, human perception of grey intensities is influ-
enced by the surrounding values. Depending on the adjacent voxels the same
value might appear lighter or darker to a human performing the segmentation.
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Figure 8.2: Comparison of wall enhancement segmentation of our tool with
manual segmentation for patient 5 and 10: missed volume (vol-
ume segmented by expert but not by the tool) and correct volume
(volume segmented by both; for the tool the corresponding wall en-
hancement class of the segmentation is shown)

Figure 8.3: Comparison of segmented volume of manual enhancement and au-
tomatic segmentation of wall enhancement class 1 for patient 4 and
5
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Figure 8.4: Result of automatic segmentation: Volume of each wall enhance-
ment class for patient 7 and patient 9 (wall enhancement class 1
and 2 occur in 9c and 9d in very small amounts (less than 5 mm3)

Figure 8.5: Additionally segmented volume of each wall enhancement class in
patient 1 and 4
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Figure 8.6: Histogram of voxel intensities inside manual segmention of patient
10 and corresponding thresholds d

The automatic segmentation is therefore more constant and reliable in the eval-
uation of grey intensities.

Here, the automatic segmentation was only compared to one manual segmen-
tation per patient. Different persons might provide slightly different segmenta-
tions and it would be interesting to compare the automatic segmentation to other
manual segmentations. Additionally, further configurations for the automatic seg-
mentation (number of wall enhancement classes, thresholds) could be considered.

This segmentation works on individual voxels. To better correspond with hu-
man segmentations it might be useful to develop an algorithm that decides on
wall enhancement not on individual voxels but on small groups. Furthermore,
the overall shape (for example avoiding small holes) might be taken into account
to fit manual segmentations.

While a consistent and reproducible definition of wall enhancement is used, it
is challenging to find thresholds suitable for all datasets. To include all of the
manually segmented wall enhancement areas, low thresholds (<20% or smaller)
can be necessary. At the same time, these tend to include larger areas not in-
cluded in the manual segmentations and increase the volume of the higher wall
enhancement classes. The optimal thresholds might be further evaluated by com-
paring the different segmentation and resulting volumes for the wall enhance-
ment classes to the rupture risk. That might determine which configuration for
the automatic segmentation produces the best results for rupture risk predic-
tion.

Comparison of different sequences

The overview (Fig. 8.7) shows that often in MSDE a larger area is segmented
than in VISTA. For the higher wall enhancement classes (Fig. 8.7, block 1-3), the
difference is small. In the lower wall enhancement classes, the differences between
the sequences are larger.
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Figure 8.7: Difference between wall enhancement area in MSDE and VISTA;
rows: patient id; column: threshold set; block: wall enhancement
class; yellow/red: wall enhancement in MSDE larger than in VISTA,
blue: wall enhancement in VISTA larger than in MSDE

Figure 8.8: Patient 1, wall enhance-
ment in MSDE

Figure 8.9: Patient 1, wall enhance-
ment in VISTA

Figure 8.8 and Figure 8.9 show the wall enhancement with lowest thresholds
(60%, 50%, 40%, 30% and 20% of the pituitary are used as thresholds for wall
enhancement classes 1 to 5).
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Figure 8.10: Example of meshes used for training (aneurysm with parent vessel)

8.3 Aneurysm rupture prediction with deep learning

This section first describes several experiments on the prediction of aneurysm
rupture with deep learning on patient-specific 3D geometries. The second part
focuses on the visualization of the results for doctors to build trust in deep learning
predictions and understand what is learned by the neural net.

8.3.1 Geometric deep learning aneurysm rupture prediction

In this study, 3D meshes of intracranial aneurysms from the publicly available
Aneurisk dataset [9] and meshes derived from aneurysm images collected at the
University Hospital Magdeburg between 2010 and 2020 were used.

Each mesh shows at least one aneurysm and various surrounding vessels. The
meshes are cut so that each mesh only shows the aneurysm and the parent ves-
sel (see Fig. 8.10). Two different mesh cutting approaches are used: manual
mesh cutting using MeshLab and a semi-automatic mesh cutting. For the semi-
automatic approach, the meshes were first automatically segmented into parts
based on convexity [220] (see also Section 2.5.1). The next step is the man-
ual identification of sections belonging to the aneurysm and the vessel sections
directly at the aneurysm (parent vessel). Figure 8.11 shows the result of the au-
tomatic part segmentation. From these partsy the user selects the aneurysm and
the parent vessel. Figure 8.12 shows an example of the mesh after semi-automatic
mesh cutting.

Next, the meshes are remeshed to a similar number of faces.
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Figure 8.11: Semi-automatic mesh cutting: after automatic part segmentation
the aneurysm and parent vessel are selected. Each automatically
segmented section is shown in a different color.

Figure 8.12: Result of semi-automatic mesh cutting: right: mesh showing only
the aneurym, and left: mesh of aneurysm with parent vessel
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Several algorithms were used: MeshNet [221] and MedMeshCNN [222] for classi-
fication of meshes, and Pointnet++[223] for point cloud classification. Each algo-
rithm has a different focus. Pointnet++ only uses the vertices of the mesh. Mesh-
Net calculates several features for each face of the mesh, while MedMeshCNN
calculates features per edge.

Pointnet++ is the extension of Pointnet [224]. It adds a hierarchical point
set feature learning. Pointnet++ can be used for classification and segmenta-
tion.

MeshNet uses the face centers as a spatial descriptor. The mesh structure is cap-
tured using the face corners and normals. In mesh convolution blocks these fea-
tures are aggregated with neighboring information.

MedMeshCNN uses five features per edge: dihedral angle, inner angles of the two
adjacent faces and edge-length ratio for each face. Then, an edge collapse process
is used for mesh pooling (recall Section 4.1.1).

8.3.2 Results of rupture prediction

Table 8.2 shows selected results of deep learning classification for intracranial
aneurysms.

The best classification was achieved with MeshNet on meshes showing the aneurysm
and parent vessel according to the semi-automatic, convexity-based mesh cut-
ting. The test accuracy on 20 ruptured and 20 unruptured aneurysms was
82.5%. The training data consisted of 150 aneurysms (89 ruptured/61 unrup-
tured).

Both mesh-based classifications (MeshNet and MeshCNN) were superior to the
classification on point clouds.

MeshNet was best in classification of meshes showing the aneurysm and parent
based on semi-automatic cutting. The performance on meshes showing only the
aneurysm, likewise using the semi-automatic mesh cutting, was slightly worse.

In this study, for MedMeshCNN the manually cut meshes were better than the
semi-automatic ones. On the contrary, the semi-automatic meshes were better
for MeshNet.

While the results suggest that deep learning on 3D data might be useful for
aneurysm rupture prediction, there are several limitations. The number of train-
ing data is small, especially as there is a high variance in intracranial aneurysm
shape.

Each algorithm has a large number of parameters. Additionally, several choices
of data preprocessing are possible. The possibility cannot be ruled out that other
parameter choices lead to different results.

Some parameter combinations are limited by current hardware capacity. Due to
technical limitations, batch size, mesh size and neural net size cannot be changed
independently.
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Table 8.2: Selected results of deep learning aneurysm classification (RIA:
ruptured intracranial aneurysm, UIA: unruptured intracranial
aneurysm)

algorithm dataset training data test data parameters accuracy

MeshNet aneurysm and parent,
based on convex split

RIA: 89
UIA: 61

ruptured: 20
unruptured: 20

max number faces: 1025
learn rate: 0.0001
batch size: 2

test: 82,5%
train: 99,33%
at epoch 73

MeshNet only aneurysm RIA: 42
UIA: 42

ruptured: 20
unruptured: 20

max number faces: 5000
learn rate: 0.0001
batch size: 2

test: 80%
train: 100%
at epoch 95

MeshNet manual cut,
only bifurcation aneurysms

RIA: 34
UIA: 26

ruptured: 10
unruptured: 10

max number faces: 5000
learn rate: 0.0004
batch size: 2

test: 80%
train: 85%
at epoch 92

MeshNet aneurysm and parent,
based on convex split

RIA: 61
UIA: 61

ruptured: 20
unruptured: 20

max number faces: 5000
learn rate: 0.0004
batch size: 2

test: 72,5%
train: 90,98%
at epoch 138

MedMeshCNN aneurysm and parent,
manual cut

RIA: 108
UIA: 198

ruptured: 10
unruptured: 10

max input edges: 17000
learn rate: 0.0002
batch size: 8

test: 70%
at epoch 21

MedMeshCNN aneurysm and parent,
based on convex split

RIA: 62
UIA: 62

ruptured: 20
unruptured: 20

max input edges: 17000
learn rate: 0.0001
batch size: 2
without curvature

test: 65.0%
at epoch 4

PointNet++ aneurysm and parent,
manual cut

RIA: 73
UIA: 73

ruptured: 20
unruptured: 20

number of points: 5000
learn rate: 0.002
batch size: 4

test: 67,5%
epoch: 197

The semi-automatic cutting based on the automatic, convexity-based part seg-
mentation encourages consistent mesh cutting between users. While the variation
between users is minimized compared to the manual cutting, the variation be-
tween aneurysms increases. The length of the included parent vessel changes, as
the automatic part segmentation can split up the parent vessel into a few large
or several smaller parts, depending on the curvature. In contrast, the manual
cutting includes similar large portions of the parent vessel. Therefore, this split-
ting could add some useful attributes, as it indirectly encodes the curvature of
the vessel, or hinder the deep learning with unnecessary information and larger
variation between data.

Compared to other mesh classification tasks, like classification of furniture, aneu-
rysm classification is not easily solvable for a human. Risk factors like female
gender, age and smoking might not be visible in the aneurysm shape. Currently,
the available data is too small to evaluate whether shape as sole basis for rupture
prediction is feasible or not. Very similar shapes might have a different outcome
depending on other patient attributes. Including patient features might improve
the results. In the future, rupture prediction based on a combination of shape, pa-
tient features and wall enhancement could be used.
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8.3.3 Visualization of deep learning rupture prediction

Here, a visualization for the MedMeshCNN deep learning classification is de-
scribed. The visualization is aimed at persons of the medical field with no or
limited deep learning knowledge.

Datasets and neural net training

Due to the time-consuming training of neural nets a very small dataset was used
for the prototype. The dataset consists of 46 aneurysm surface meshes for training
(23 ruptured and 23 unruptured) and 10 meshes for testing (5 ruptured and 5
unruptured). The meshes were remeshed to around 5000 edges. 25 epochs of
training on a NVIDIA GeForce RTX 2070 8GB took around 23 hours. The
patient-specific meshes were randomly selected from the Aneurisk database and
an own database, which includes aneurysm data collected between 2010 and 2021
together with clinical partners at various hospitals.

Several neural nets based on the MedMeshCNN architecture were trained. The
training parameters were constant (maximum number of input edges 9000, convo-
lution filter 32 64 128 256 512, pooling resolution 7000 5000 4000 2000 1000 , batch
size 6, learn rate 0.00002). The original features (dihedral angle, symmetric oppo-
site angles, symmetric ratios) as well as curvature are considered. Several neural
nets using one or more of these features are trained.

User interface design

The user interface consists of five different sections, shown as tabs at the top. The
first section shows a short information page. The remaining sections are mesh,
accuracy, confusion matrix and data overview. With exception of data overview,
each of these sections consists of control elements in the left third of the tool and
displays the desired information on the right side. The control panel also offers
an information section for the current view.

Mesh This section focuses on a single patient. A specific patient and a neural
net are selected by the user. The prediction of the neural net is shown. The user
can switch between the reduced mesh view (generated during the MedMeshCNN
training, Fig. 8.14) or a colormap. The colormap shows the distance to the
closest point and the most important areas, respectively. A large distance (less
important area) is shown in blue, a short distance in yellow. If the reduced mesh
is selected, the original mesh is displayed above the reduced mesh. Underneath
the mesh of the current patient, two smaller meshes showing similar patients
and their attributes as well as rupture status are shown (Fig. 8.13). It is also
possible to compare two patients or different neural nets for one patient (Fig.
8.15).
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Figure 8.13: Patient-centered mesh view; left: control elements to select patient
and mesh, right: large color-coded mesh showing relevant areas for
deep learning (blue: less relevant, yellow: highly relevant) of the
selected patient; bottom: meshes and information of two similar
patients

Figure 8.14: Patient-centered mesh view; left: control elements to select patient
and mesh, right: reduced mesh view of the selected patient, the
original mesh is shown in the top left corner; bottom: meshes and
information of two similar patients
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Figure 8.15: Patient-centered mesh view; left: control elements to select patient
and mesh, right: large color-coded mesh showing relevant areas for
deep learning (blue: less relevant, yellow: highly relevant) of two
selected patients

Accuracy Accuracy shows the training and test accuracy for different neural
nets. While training, test and validation are commonly used in deep learning
evaluation, in this visualization aimed at non-experts only training and test data
are shown. In the first, simpler view the user can select two neural nets to
compare. For each one a short comment can be displayed. In the second view,
all possible neural nets can be selected using check boxes. The user can select as
many neural nets as they want and compare them.

Confusion Matrix Again on the left side, the user can select the neural net
for which the results are displayed. Additionally, a specific dataset can be se-
lected. If the dataset contains the necessary patient information, the user can
further filter the dataset by characteristics often used in aneurysm diagnosis (sex,
age, previous SAH, location, size, hypertension, recall Section 2.1.2). The con-
fusion matrix shows the number of patients for each prediction and the true
rupture status combination. If one of the confusion matrix fields is selected,
examples of aneurysms of this category are shown next to the confusion ma-
trix.

Data overview The data overview shows nine example meshes from the data
set. They are sorted into three categories based on the predictions of all neural
nets: consistently wrong, consistently right and neural net depending.
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Figure 8.16: Train and test accuracy for two neural nets and explanatory com-
ments

Figure 8.17: Accuracy matrix for various neural nets and filters for patient at-
tributes; right: examples of aneurysms correctly classified as rup-
tured
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8.3.4 Results and discussion

MedMeshCNN uses several features (dihedral angle, curvature, symmetric ratios,
symmetric opposite angles) to capture the mesh. In the presented visualization
tool, several neural nets using only one of the features are included. This allows
the exploration of how different features impact the deep learning. However,
this is not a feature visualization as described in the deep learning visualization
overview by Yu and Shi [199]. In contrast to image deep learning, mesh deep
learning requires to present the mesh in a way that can be used for deep learning.
This is done using mesh features. These features are different to the features the
neural net learns.

The tool was presented to physicians and medical engineers, who are familiar
with intracranial aneurysms. None of the participants had in-depth knowledge of
deep learning. There was no time limit and the option to ask questions during
the presentation. Afterwards, the participants were asked to fill out a structured
questionnaire regarding the tool. Free comments were also welcome. Five partic-
ipants had a medical background in neurosurgery and five participants were from
computer science or fluid simulation.
The visualization tool is able to answer several questions:

• Which area of the aneurysm is relevant for the deep learning prediction?
This can be seen in the mesh view. The color-coded meshes show which
areas are most important to the selected neural net.

• How do different surface features impact the result?
We trained several neural nets using the features described in the MeshCNN
architecture and Gaussian curvature. The mesh view shows how each fea-
ture results in neural nets focusing on different areas of the aneurysm. The
accuracy view shows the behavior during the training.

• Is this neural net reliable for this patient?
The mesh view enables the user to see which parts were relevant for the
neural net and check if that is sensible, for example a prediction solely based
on the parent vessel might be less convincing. Furthermore, the user can
compare the result to similar patients and validate whether the prediction is
consistent with previous cases. Another option is using the confusion matrix
view and filtering for similar patients based on patient characteristics. This
can reveal how reliable the neural net is for a certain sub-group.

• How accurate is the prediction and when does it fail?
This can mainly be seen in the accuracy and confusion matrix view. In the
confusion matrix view, examples of meshes which were wrongly classified
are shown.
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Figure 8.18: Answers to overall impression; left: physicians, right: other par-
ticipants

User feedback

All participants agreed that the tool provides useful insights into deep learning.
The agreement was slightly stronger in the group of the physicians (all five com-
pletely agreed) than in the other group (three completely agreed, two mostly
agreed, see Fig. 8.18). All physicians could imagine using the tool in clinical
routine.

Nine participants found the color-coded mesh very easy to understand, one found
the color-coded mesh easy to understand. Several comments on the color scale
endorse the usage of blue for less relevant areas, but would prefer red for the
most relevant parts. One participant commented that he would prefer a reverse
color coding, with blue indicating the most relevant area. The reduced mesh
was considerably harder to interpret, especially for the physicians. All physicians
all agreed that the mesh view was useful for understanding deep learning and
evaluating the patient-specific reliability of the neural net by comparing the pre-
diction to similar patients and validating the plausibility of the areas with larger
impact on the result. The confusion matrix was well liked and the participants
agreed that it is easy to understand and useful in accessing the reliability of the
deep learning predictions. The data overview received mixed responses. On the
structured questionnaire, one person indicated that the data overview was hard
to understand, one response was neutral and the rest found it understandable.
The comments revealed that further information would be interesting for the
user. For example, also displaying the patient information along the meshes and
showing the color-coded versions from the mesh view. The accuracy view was
also perceived as useful and easy to understand.
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Impact of features

Especially the combination of mesh view and accuracy view are also helpful
for analyzing neural nets from a developer point of view. Training with a re-
duced number of features compared to the original architecture allows analyzing
the neural net in an ablation study and analyzing the impact that each feature
has.

Figure 8.19 shows how different neural nets process the same aneurysm. The blue
areas were less important than the yellow areas. The results of five different neural
nets are show. Four of these only use one feature (dihedral angle, opposite angles,
symmetric ratios or Gaussian curvature). The last one includes all features. The
parent vessel was relevant for most neural nets. The neural net using only the
dihedral angle was less interested in the parent vessel, as only a small part near
the outlet was important to this neural net. The other single feature neural nets
displayed moderate interest in the overall parent vessel with several small more
interesting spots at various places. For the neural net trained with all features,
the whole parent vessel is important.

For the neural net with all features, the neck between parent vessel and aneu-
rysm is less important. This can also be seen in the neural nets using opposite
angles and Gaussian curvature. In contrast, the neural nets using dihedral angle
and symmetric ratios stronger emphasize the neck area. For the neck area, the
opposite angles seem to have a large impact.

On the aneurysm itself, each neural net displays a different behavior. In the
aneurysm area, the neural net with all features is most similar to the neural net
with only symmetric ratios. Similarly, on the bleb different areas are important
to different neural nets.

Despite only including one of the features from original MeshCNN architecture,
all neural nets were able to learn the classification task (see Fig. 8.20). The neural
net using only Gaussian curvature as feature was slowly learning compared to the
other neural nets. The neural net using opposite angles was very fast in learning
the classification and reached a training accuracy of over 90% in less than 25
epochs. While not as fast, the neural net using only the dihedral angle was less
prone to overfitting than the others and reached a test accuracy of 70%. The
neural net with all features achieved a train accuracy of 93.4%, but only 60% test
accuracy.

The overall responses, especially from the physicians, were positive and encourag-
ing. In the future, deep learning-based rupture risk assessment could be a helpful
tool in clinical routine. While the non-physician group overall also found the
tool useful, their responses were slightly more critical. As these participants were
from computer science or hemodynamics, likely a more in-depth, mathematical-
technical explanation would have been better suited.

For the prototype, similar meshes were manually selected and comments on the
training and test data plots where manually written. This could be replaced
by an automatic selection of similar patients and computer-generated comments
based on automatic analysis of the plots [225].
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Figure 8.19: Yellow: area relevant for neural net, blue: area less relevant; neural
net using a) all features, b) only dihedral angle, c) only opposite
angles, d) only symmetric ratios, e) only Gaussian curvature

Figure 8.20: Train accuracy for neural net using dihedral angle (blue), symmet-
ric opposite angles (red), symmetric ratios (yellow) or Gaussian
curvature (purple)
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Focus of this study was the evaluation of the visualization. Therefore, only a very
small dataset was used to keep the training time reasonable. However, we expect
a larger dataset to display a similar behavior. Not all features are necessary, as
the neural nets were able to learn with only one feature. If trained with only
one feature, using only the opposite angles could be promising if overfitting can
be reduced with a larger number of training data. Otherwise, a neural net only
based on the dihedral angle might be the best choice. Despite the low number of
training data, a test accuracy of 70% was reached.
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The neural net using all features does not focus on the neck area. While a
rupture on the aneurysm neck is very rare, the neck is commonly used in mor-
phological features, for example in the aspect ratio (aneurysm height/aneurysm
neck width).
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9 Understanding aneurysm wall in
clinical routine - Wall shear stress

An important aspect of aneurysm research is the analysis of hemodynamic pa-
rameters like the wall shear stress. Preparing high-quality meshes for hemody-
namic simulations can be a complex and time-consuming task. Several mesh
processing steps require user input. Here, several mesh processing options for
consistent and easy mesh preparation for hemodynamic simulation and other
analysies are presented. The second part of this chapter focuses on the inclusion
of WSS in clinical routine. Not only the mesh processing but also the simula-
tion itself is time-consuming. This is impractical for clinical routine. Instead of
time-consuming simulations, the WSS could be predicted with geometric deep
learning. Section 9.2 describes wall shear stress prediction with geometric deep
learning for artificial aneurysms. Section 9.3 presents wall shear stress prediction
for patient-specific meshes.

9.1 Aneurysm mesh processing

From CT or MRI a surface mesh of the aneurysm is generated and further pro-
cessed to calculate the wall shear stress and evaluate the rupture risk. Here,
several tools for (semi-)automatic mesh processing and analysis are presented.
An overview of the steps is shown in Figure 9.1. After the mesh is segmented
into parts and information about the parts are collected in the semantic graph,
and centerline and outlets are calculated, these can be used for various applica-
tions. The currently most commonly used approaches for rupture risk prediction,
morphological parameters, and hemodynamic simulations can benefit from the
presented aneurysm processing.
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Figure 9.1: Overview of aneurysm processing and analysis

9.1.1 Mesh segmentation

To support further processing of the aneurysm mesh, the mesh is segmented into
several parts. These parts are aneurysm, vessel, inlet vessel, and bifurcation.
This segmentation is done with a variation of the MeshCNN neural net. The
neural net was alternated to use sparse matrices, which decreased the memory
consumption and allowed to work with larger meshes. Additionally, the loss func-
tion was adjusted to include weights to handle the imbalanced distribution of the
segmentation classes. This was done by Lisa Schneider in her master thesis and
published as medMeshCNN [222].

MeshCNN and medMeshCNN label the edges of a surface mesh. Overall 94 sur-
face meshes from the Aneursik dataset [9] and aneurysms from previous projects
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Figure 9.2: Segmentation of an intracranial aneurysm in inlet (yellow), vessels
(blue), bifurcations (green) and aneurysm (red); edge segmentation
mapped to faces

at the university were manually segmented with blender [226]. With a mean of
51.6% and 28.7%, vessel and inlet were the most common classes and bifurcation
(11.6%) and aneurysm (8.2%) were the less common classes. 66 meshes were
used for training; test and validation each used 14 meshes. The weights for the
weighted cross-entropy loss function were 0.3 for aneurysm and bifurcation and
0.2 for inlet and vessel.

Deep learning can also be used to segment the vascular domain. The vascular
domain is the area around the aneurysm (Fig. 9.3). Before a hemodynamic
simulation is carried out, a mesh is often reduced to the vascular domain. The
vascular domain is not well defined and more arbitrary than the part segmen-
tation discussed above. Two deep learning approaches are compared for mesh
segmentations of the vascular domain: MedMeshCNN and graph deep learning.
Expert segmentation of 40 meshes for training and 10 meshes for testing were
used.

For MedMeshCNN, edges in the region of interest are labeled one, and all other
edges that should be removed from the mesh, as zero. The meshes were remeshed
to have 19,200 faces. Table 9.1 shows the parameters used for MedMeshCNN. A
suitable number of pooling layers and convolutional filter sizes was empirically
determined. Based on these, further experiments regarding the variance in mesh
size and the weighted loss function were carried out.

As an alternative to the edge-based MedMeshCNN approach, graph deep learn-
ing was tested. In this case, the segmentation into two classes is modeled as a
node classification problem. Each node represents a vertex of the mesh and is la-
beled one or zero, like the edge labels for MedMeshCNN. The net consists of two
graph layers and a linear layer for classification, as shown in Figure 9.4. The net is
trained for 10 epochs with Adam optimizer and batch size 1.
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Figure 9.3: Example of initial 3D model containing an aneurysm (arrow) with
surrounding vessels. The vascular domain that is of interest is de-
picted in red.

Table 9.1: Parameters for MedMeshCNN segmentation of the vascular domain

Parameters
batch size 2
maximum input edges 30,000
convolution filters 16; 32; 64; 128; 256
pooling layers 25,000; 20,000; 10,000; 5,000
residual blocks 1
number of augmented meshes 20
learning rate policy lambda
learning rate 0.001

For the graph deep learning approach, the meshes are not remeshed. The mesh is
transformed to an undirected graph. Each vertex becomes a node and these are
connected based on the edges defined by the faces of the mesh. To add spatial
information to this graph representation, several node features are assigned to
each node: the vertex normal, the edge length and the vertex angle (see Fig.
9.5). These features describe the position of a vertex in relation to the surrounding
vertices. We also consider coordinates as features. While the features coordinates
and vertex normal have a fixed length, the length of the number of face angles
depends on the number of faces which include the vertex. We considered two
options for this problem: padding with 0 to match the largest number of features
or to average. This leads to 41 and 15 features per node, respectively. Two
options for the edge weights of the graph are explored: a constant edge weight of
one or the edge length.
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Figure 9.4: Graph deep learning architecture for mesh cutting

Figure 9.5: Node features used for graph deep learning
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9.1.2 Outlet detection

Another step in mesh processing is the detection of outlets. For this, the first
step is the extraction of feature edges. A feature edge is defined as an edge,
which belongs to only one triangle, or an edge which belongs to more than two
triangles, or an edge whose adjacent triangles have an angular deviation greater
than theta [227]. Due to the preprocessing of the mesh for the segmentation
algorithm, the second case (more than two triangles) should not occur. If the
aneurysm mesh has open endings, the first case occurs at these endings. The last
case occurs, if the aneurysm mesh is closed. A closed aneurysm mesh typically
has an approximate 90 degree at the end, while at most other places the mesh is
smoother and less sharp angles occur. Therefore, theta is set as 70 degree. While
this identifies feature edges, which often represent the outlets, sometimes feature
edges can occur at other places. To filter out the false-positive results, groups
of close feature edges are analyzed. To describe an outlet, the feature edges
have to describe a roughly circular structure and the included vertices should
be approximately in one plane. For groups of edges, where these conditions are
fullfilled, the corresponding vertices and faces are determined. The largest outlet
of the mesh is defined as the inlet.

9.1.3 Centerline

The centerline is often used for further calculations. The centerline should not
be alternated by or calculated inside the aneurysm. Here, the part segmentation
helps to split the problem of centerline calculation into smaller problems. As the
aneurysm is segmented, this part can be skipped during the centerline calcula-
tion. The centerline is only calculated inside the vessels. These have a tubular
structure. Each vessel is handled separately. The centerline is calculated using
vmtk and the seed points are automatically set based on an automatic outlet
detection.

9.1.4 Aneurysm graph from part segmentation

Based on the part segmentation, a semantic graph representation of the aneurysm
and the vessels is generated. The segmentation of the parts works on edges and
returns a label for each edge. The segmentation does not further distinguish
between two different vessels. This distinction is added after the segmentation.
Each part is assigned a unique numeric label, where the hundreds digit repre-
sents the label given by mesh segmentation and further digits are used to create
a unique identifier. For each vertex, the labels of the corresponding edges are
analyzed. If different edge labels occur at the same vertex, these indicate a con-
nection between the two parts. A graph reflecting the part connections is built.

The next step is analyzing the graph to gain more information about the relation
between the different parts (see Fig. 9.7). Based on the number of bifurcations
between a vessel and the aneurysm, each vessel is assigned a level. Vessels directly
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Figure 9.6: Segmented surface mesh; distinction between aneurysm vessel, par-
ent vessel and other vessels is done in the semantic graph represen-
tation, as shown in Fig. 9.7

at the aneurysm are labeled aneurysm vessels. The bifurcation underneath the
aneurysm is labeled as the aneurysm bifurcation. Parent vessels are vessels di-
rectly connected to the aneurysm bifurcation. This process automatically refines
the segmentation labels and provides helpful information for further processing.

9.1.5 Aneurysm analysis

The results of mesh segmentation, centerline, outlet detection and semantic graph
can be used in various applications. Some of these are discussed in the follow-
ing.

While several approaches for parent vessel reconstruction exist, this segmenta-
tion offers the possibility to solely measure the parent vessel without relying on
interpolated and approximated data.
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Figure 9.7: Abstract semantic representation as graph, corresponding aneurysm
is shown in Fig. 9.6

Preprocessing for simulations

Hemodynamic simulation can provide valuable information for aneurysm rupture
risk assessment. At the moment, the surface mesh is often manually processed
to prepare for simulation, for example, cutting and inlet and outlet definition.
Therefore, results may vary and the process is time-consuming. The presented
segmentation and semantic graph can be a step towards scripted, automatic sim-
ulations.

Mesh cutting

Previously, deep learning to segment the vascular domain was described. Based
on previous, manual, ambiguous segmentations, this area can be automatically
segmented and used for simulation. The results depend on the training segmen-
tations. Alternatively, the mesh segmentation into different parts could be used
to segment a user-independent area around the aneurysms based on objective
criteria.

For hemodynamic simulations, inlets and outlets are defined. The positions of
these are crucial for the simulation results. To keep the conditions constant over
several aneurysms and receive comparable results, a constant inlet and outlet def-
inition is required. With the aneurysm graph, segmentation information about
the vessel level is extracted. These can be used to decide on the included vessels
around the aneurysms, for example only the parent vessel or all vessels up to a
certain level. As the bifurcation areas are known, it is easily avoidable to cut
those areas, as they might produce misleading outlets.
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The distinction into near and far vessels by Cebral et al. [228] was based on
the distance to the ostium. The presented segmentation indirectly includes the
segmentation of the ostium as the edges between the aneurysm and the aneurysm
bifurcation. Therefore, the provided segmentation can be used to automatically
generate the classification described by Cebral et al. [228]. A major disadvantage
of the solely distance-based method is the risk to get hemodynamic measures at
bifurcations instead of vessels.

Morphological parameter

The segmentation into aneurysm and other parts is common in aneurysm anal-
ysis and preprocessing for morphological parameter calculation. Several semi-
automatic and automatic algorithms for this task already exist. This normally
only includes the aneurysm and the parent vessel. Here, the surrounding vessels
are also included as vessel level-specific morphological parameters.

The presented segmentation allows a precise calculation of the parent vessel di-
ameter. The area beneath the aneurysm is identified as the aneurysm bifurcation.
As the aneurysm could change the diameter at that part of the parent vessel, this
section is excluded from the parent vessel diameter calculation. The start and
end of the parent vessel are defined by the bifurcations. This allows a uniform
parent vessel evaluation and reliable comparison between parent vessels of dif-
ferent aneurysms. As parent vessel diameter either the average or the maximum
diameter of the parent vessel can be measured.

9.1.6 Results and discussion

In this Section, the results of various mesh processing steps are presented and
discussed. This includes various mesh segmentations, centerline detection, com-
parison of the presented aneurysm graph to other graphs and analysis of mor-
phological parameters based on the graph.

Mesh segmentation

The segmentation was evaluated as the Intersection over Union (IoU). The seg-
mentation varied between the classes, with only 37.0% for the bifurcation, 69.8%
for the inlet, 71.4% for the aneurysm and 74.8% for the vessels.

Once the training is completed, the aneurysm segmentation can be performed
automatically. Currently, the automatic segmentation for aneurysm meshes is
focused on separating aneurysm and parent vessel. This segmentation is more
advanced and allows for a complex and meaningful segmentation of the mesh.

Another automatic segmentation method is mesh segmentation based on con-
vexity [156]. For aneurysms without blebs it can automatically segment the
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aneurysm and several vessel parts. However, these parts are missing the seman-
tic interpretation offered by the deep learning segmentation. Additionally, the
deep learning segmentation is better in capturing the wide variation of aneurysm
shapes, for example, aneurysms with blebs.

Figure 9.8: Aneurysm and bleb are separated by the automatic part segmenta-
tion of Kaick et al. [156]

Figure 9.9: Result of deep learning mesh segmentation

The highest accuracy for segmentation of the vascular domain was 88%. Figure
9.10 shows an example of the MedMeshCNN prediction on a mesh from the
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Figure 9.10: Prediction of MedMeshCNN (left) for the region of interest of the
vascular domain compared to the labeled test data set (right). The
same color-coding as in Fig. 9.11 is applied.

Table 9.2: Results of MedMeshCNN with different weights

weights [0.4, 0.6] [0.125, 0.125]
accuracy 86 88
IoU vessel 84 85
IoU vascular domain 59 61
Mean IoU 72 73

test data set. The neural net predicts a connected area around the aneurysm.
In some cases, like shown in Figure 9.11, small vessels are not included in the
segmentation.

As Table 9.2 shows, the results are only slightly impacted by changing the weights
of the loss function. A larger impact could be observed based on the variance in
the dataset. With a reduced dataset, where the number of vertices was between
24k and 36k compared to the whole dataset with 19k to 159k vertices before
remeshing, an IoU of 0.81 was reached.

The graph neural network achieved an accuracy of 76%. However, there was a
major problem with the class imbalance leading to an IoU of 76% for the vessel
area and only 0.03% for the vascular domain. Visual inspections also confirmed
that while a high accuracy was reached, the segmentation was insufficient (see
Fig. 9.12).

The experiments showed that, despite reducing the information available from
some vertices, using the average number instead of padding to accommodate
nodes with a large number of adjacent faces did not change the accuracy. Adding
the coordinates as node features also improved the results (see Table 9.3). As
Table 9.4 shows that including the edge length as edge weights in the graph

148



Figure 9.11: Prediction of MedMeshCNN (left) for the region of interest of the
vascular domain compared to the labeled test data set (right).
Some smaller branches are not segmented. The region of interest
is color-coded in red, the whole vascular domain is color-coded in
blue.

Table 9.3: Influence of coordinates as feature, padding to average
without coordinates with coordinates

accuracy 76 76
IoU vessels 76 76
IoU vascular domain 0.03 5
mean IoU 38 38

representation of the mesh does not improve the performance compared to a
constant edge length of one.

Segmentation of the vascular domain is a complex and, as automatic solutions are
unavailable, time-consuming task. The main difference between the mesh cutting
presented here and previously described aneurysm mesh segmentation [222, 155]
is the arbitrary character of the segmentation. While bifurcations and aneurysms
are distinctive geometric properties of the mesh, the vascular domain is more
complex to define. Vessels included in the vascular domain and vessels outside
of the domain mainly differ in their position relative to the aneurysm, but not in
shape. The vascular domain normally includes part of the vessel the aneurysm
occurs at. The length of the included vessel area is not well defined and there is
no change in the mesh itself marking the end of the vascular domain. It can be
influenced by the distribution of other vessels along the parent vessel and near
the aneurysm and the study goal. Especially for hemodynamic studies, where
extrusion of the outlets is desired, cutting the vessel in a way to leave space for
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Table 9.4: Influence of edge length as edge weight, padding to average, inclusion
of coordinates

constant edge weight edge length
accuracy 76 76
IoU vessels 76 76
IoU vascular domain 5 0.03
mean IoU 38 38

Figure 9.12: Prediction of mesh GNN (left) for the region of interest of the
vascular domain compared to the labeled test data set (right).
The same color-coding as in Fig. 9.11 is applied.

extrusion of the outlet can be challenging.

Due to the limited amount of data, the mesh cutting process cannot be reliably
extended to all aneurysms yet. However, first experiments show promising results
and suggest that automation might be possible once sufficient data is collected.
Especially with MedMeshCNN the prediction of the vascular domain is possible.
While graph deep learning did not yield as good results as MedMeshCNN, there
are various design choices which are not tested yet. In the first experiments a
lower number of features did not change the accuracy and a constant edge weight
decreased the segmentation quality. Adding coordinates as node features did
slightly improve the results. In the future, other node features might further
improve the segmentation with graph deep learning. In the future, this could
be further explored, for example by enhancing the coordinates with constant
position and alignment of the mesh by positioning the aneurysm at the origin with
the parent vessel along (for sideway aneurysms) or orthogonal (for bifurcation
aneurysms) to the x-axis.
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Comparison of graph representations

Graph representations of aneurysms have been used for simulations. We compare
our semantic graph with other aneurysm graphs.

Figure 9.13: Aneurysm and corresponding graph from [175]

Chnafa et al. [175] introduced a graph representation of aneurysms for outflow
rate estimation. The presented segmentation provides the necessary information
for these abstractions. Unlike the aneurysm graph presented here, their graph
splits each bifurcation into several parts. The presented segmentation could be
refined to include this information.

Inlet

Outlet
Bifurcation

Figure 9.14: Aneurysm and corresponding graph from [176], red: outlet, green:
inlet, white: bifurcation
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Another graph was presented by Saalfeld et al. [176]. None of the graph repre-
sentations shows the aneurysm itself. The semantic graph presented here does
include the aneurysm.

Morphological parameter

In previous studies, the aneurysm location was an important factor in accessing
aneurysm rupture (recall Section 2.1.2). This opens up the question why aneu-
rysms at specific locations are more likely to rupture. The aneurysm location
contains information about the local surrounding structures, for example, the di-
ameter and curvature of the vessels leading to the aneurysm. This information
can be extracted by using the previously presented part segmentation.

For five levels of vessel segments the number of vessels at this level, the average
vessel length at this level and the average, minimum, maximum, and variance of
radius, curvature, and torsion are calculated. All parameters are calculated based
on the centerline. The radius is calculated as the radius of maximum inscribed
spheres.

Figure 9.15: Average vessel length per vessel level
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Figure 9.16: Average curvature per vessel level

Figure 9.17: Average torsion per vessel level

153



Figure 9.18 shows the number of vessels occurring at each vessel level for rup-
tured and unruptured aneurysms. 23 ruptured and 30 unruptured aneurysms
were used for this comparison. Up to five vessel levels were included. Not all
aneurysm models included vessels up to level five. Ruptured aneurysms tend to
have slightly more vessels at level two and three compared to unruptured aneu-
rysms. As most of the meshes used in this study only have vessels up to level
four, only the first four levels were included for further analysis.

The average torsion and curvature for all levels was slightly higher in ruptured
aneurysms than in unruptured aneurysms (see Fig. 9.17 and Fig. 9.16). The
average vessel length of the first two levels was higher in unruptured aneu-
rysms.

Figure 9.18: Number of vessels per level for ruptured and unruptured aneurysms

9.2 Deep learning wall shear stress prediction for
artificial aneurysms

Hemodynamic simulations of the blood flow inside the aneurysm provide helpful
information about several parameters, for example, wall shear stress. However,
they are time-consuming and require expert knowledge. Therefore, they cannot
be done directly in the clinic, but have to be outsourced instead. This process
delays treatment decisions, and additional time is needed for second consultations
after the results are returned to the doctor.
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Table 9.5: Parameters of real world aneurysms that were characterized by a
roundly shaped saccular aneurysm at the vessel bifurcation. Provided
are min, max and average values (in degree and mm, respectively)
for the parameters described in Fig. 9.19

ri r1 r2 ra d α β
average 2.53 1.87 1.75 2.09 3.67 97.31 93.77

min 1.81 0.96 1.04 1.11 1.65 64.00 60.00
max 3.38 2.48 2.58 3.44 6.15 157.00 120.00

Figure 9.19: Overview of parameters for artificial aneurysm creation; a) exam-
ple of reference aneurysm with measure of aneurysm diameter; b)
concept of artificial aneurysm creation with seven parameters

9.2.1 Artificial aneurysm configuration

The simplified, artificial bifurcation aneurysms were created with CAD software
by Philipp Berg. Each geometry consists of three cylinders, representing one inlet
vessel and two outlets and a sphere for the saccular bifurcation aneurysm. The
aneurysm creation has seven adjustable parameters (see Fig. 9.19): the radius
of the inlet (ri), the radius of the first outlet (r1), the radius of the second out-
let (r2), the radius of the aneurysm (ra), the distance between aneurysm center
and bifurcation (d), the angle between the first outlet and the inlet (α), and the
angle between the second outlet and the inlet (β). In order to extract realis-
tic default values for these parameters, 200 patient-specific 3D aneurysm models
from previous studies were analyzed. The cases which have a high agreement
with the artificial configuration (i.e. spherical, saccular bifurcation aneurysm)
were selected, yielding 13 reference cases. Their average, minimum and maxi-
mum values are shown in Table 1. The artificial aneurysms were created with
randomly generated parameters in the same range of the values of the reference
aneurysms.

155



Figure 9.20: Depiction of the resulting WSS (left) and a corresponding ground
truth segmentation for training (right).

9.2.2 Hemodynamic simulations

Hemodynamic simulations were performed by Samuel Voß in order to assess
the WSS of the artificial aneurysm geometries. For this purpose, each flow do-
main, containing vessels and aneurysm, was spatially discretized into volumetric
cells (1.2 to 2.4 million cells for each configuration depending on the domain
size). Blood was modeled as incompressible and laminar fluid with a density
of 1055 kg/m3 and dynamic viscosity of 0.004 Pa s. Boundary conditions of the
domain were modeled as follows: Constant velocity of 0.3 m/s as inflow into the
parent artery, rigid vessel walls with no-slip condition, and zero-pressure assump-
tion at the outlets. The total simulation time was 5 s (quasi-steady, time step
of 0.01 s) while only the time range of [3-5] s was used for temporally averaging
the WSS field. In total, 145 artificial aneurysms were simulated with STAR-
CCM+ 13.06 (Siemens PLM Software Inc., Plano, TX, USA). Finally, aneurysm
surface and temporal averaged WSS magnitude values were exported for further
analysis.

The aneurysm surfaces are remeshed using the ACVD algorithm [229] to obtain
a similar number of edges. The deep learning approach requires one label per
edge while the WSS magnitude values from the flow simulation were obtained
at vertices. Thus, the edge labels are calculated as the average WSS of the
associated vertices. Areas of high WSS are defined based on a reference value.
This reference value is the median of the maximum WSS per aneurysm. Areas,
where the WSS is larger than 0.4 times the reference value, are defined as areas
of high WSS. An example is shown in Figure 9.20.

A deep learning mesh segmentation is trained using the medMeshCNN architec-
ture [222]. For the first experiment, a small dataset consisting of 24 training
meshes and 3 test meshes is used. The second experiment included 123 training
and 10 test meshes. Due to problems in the feature calculation, the last experi-
ment comprised 118 training and 9 test meshes.

Instead of transforming the mesh information to 2D, the algorithm directly works
with 3D surface meshes. Deep learning segmentation is used to predict areas of
high WSS. Further experiments included a variation of the edge features used.
In experiments 3,4 and 5 Gaussian curvature [230] and in experiment 5 mesh
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Table 9.6: Parameters of the experiments, where # denotes the experiment
number, GC the Gaussian curvature and MC the mean Gaussian
curvature.

# training test additional
features

pooling
resolution

batch
size

weighted
loss

1 15 3 - 2500 2000 1500 1000 750 10 0.2 0.8
2 123 10 - 2500 2000 1500 1000 750 10 0.2 0.8
3 123 10 GC 2500 2000 1500 1000 750 10 0.2 0.8
4 123 10 GC & MC 2500 2000 1500 1000 750 500 5 0.01 0.99
5 118 9 GC & thickness 2500 2000 1500 1000 750 500 5 0.01 0.99

Figure 9.21: Training (left) and test (right) accuracy per epoch of experiment
2 (without additional features; red), experiment 3 (GC; green),
experiment 4 (GC&MC; blue).

thickness [231] (defined as the diameter of the maximum inscribed sphere) are
added to the feature calculation. Both features were first calculated for each
vertex and then mapped to the corresponding edges. The parameters of each
experiment are summarized in Table 9.6.

9.2.3 Results and discussion

The training accuracy of the first experiment was constantly increasing and ap-
proaching 100 %. However, the test accuracy was far worse (between 61 % and
68 %) and decreasing after 50 epochs.

Increasing the number of training meshes improved the test accuracy, as shown
by the second experiment (see Fig. 9.21). Again, overfitting occurred and the
test accuracy decreased after epoch 40. In Figure 9.22, the result for one of the
test meshes is shown. The corresponding simulation result and ground truth
are shown in Figure 9.20. While an accuracy of over 85 % is reached, the vi-
sual inspection shows some differences. Only a small part of the large WSS
area is predicted by the net. But additional spots on the wall are falsely pre-
dicted.

For the third experiment, the Gaussian curvature was included as a feature. As
visible in Figure 9.21, this leads to a test accuracy of over 91 %. Unfortunately,
this accuracy was reached by labeling most edges as normal WSS, omitting the
high WSS class.
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Figure 9.22: Result of experiment 2 (left), 4 (middle) and 5 (right).

To overcome the problem of the vanishing high WSS class, the weights of the loss
function were adjusted. Experiment 4 additionally included the mean Gaussian
curvature as a feature. Thus, an accuracy of 85% was reached (compare Fig.
9.21). Figure 9.22 shows the prediction of the net. Compared to experiment 2,
there are fewer but larger predicted high WSS areas. The net from experiment 4
predicts a larger area as high WSS than the ground truth segmentation for the
deep learning shows. Compared with the original simulation result, both areas
of high WSS are segmented by the net. The high WSS in the larger vessel is not
completely segmented.

In experiment 5, in addition to the curvature features, the mesh thickness was in-
cluded. This did not improve the results. The test accuracy stayed below 80% and
WSS areas were scattered over the whole mesh (see Fig. 9.22).

Prediction of high WSS areas with the trained net needed 43 seconds on average
per mesh.

A major limitation is the used dataset. As seen in the first two experiments,
increasing the number of training examples improves the test accuracy. Here,
artificially created intracranial aneurysms were used. These shared the same
basic geometry, a bifurcation aneurysm with a proximal parent and two distal
outflow vessels. medMeshCNN is able to learn the geometry based on meshes
and mesh features. While the geometries of the meshes are similar, the variance
in the segmentation is higher. This might hinder the training and complicate
generalization. Including the curvature and adjusting the weights of the loss
function improves the results.

Another factor that needs further research is the choice of suitable thresholds for
the generation of the segmentation ground truth data. In experiment 4, a larger
high WSS area around the junction was predicted than shown in the ground
truth. A modified threshold value (lower reference value) might result in a better
agreement between ground truth segmentation, deep learning WSS prediction,
and simulation results.

9.3 Deep learning wall shear stress prediction for
patient-specific aneurysms

In further experiments the WSS prediction was applied to patient-specific aneurysm
geometries.
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Compared to deep learning on meshes, deep learning on point clouds is slightly
better established and used more often. It also has been used successfully used in
deep learning WSS prediction (see also 4.2.1). For the deep learning WSS predic-
tion on patient-specific geometries the KPConv-Net [162] architecture was used.
As with the previous MedMeshCNN, additional features are included. Here, cur-
vature, FFPH [232] and SHOT [233] are used as additional features.

9.3.1 Data collection and preprocessing

In a shared data base of the Computer Science Faculty and the Laboratory
of Fluid Dynamics and Technical Flows from the Otto-von-Guericke University
Magdeburg and the STIMULATE Research Campus results of several projects
for aneurysm research were collected retrospectively from 2010 to 2021. From
these databases 118 meshes showing 130 aneurysms were collected for the WSS
prediction.

In contrast to the previous study on artificial aneurysms, parameter choices
and boundary conditions for the hemodynamic simulations are not constant, as
the simulation data was collected retrospectively from several studies. We as-
sume that all considered simulations meet the current standard of hemodynamic
aneurysm research and that the patient-specific WSS is representative. 12 out-
liers were removed based on mesh quality and unusual WSS values. The number
of vertices varies between the meshes in a range from 20k to over 140k.

To prepare the simulation data for deep learning, extensive preprocessing is nec-
essary. The first step is loading the simulation result and exporting the surface
mesh and the WSS values in a format suitable for further processing. This is done
using Paraview [234]. In the next step, Meshlab [211] is used for mesh simplifica-
tion and removing non-manifold faces. Additional parameters are calculated in
Python. The pipeline is shown in Fig. 9.23.

9.3.2 Deep learning segmentation

The neural net was trained with 80 point clouds of aneurysms, 25 were used for
validation and 13 for testing. The experiments cover a variation of the neural net
parameters (learning rate, gradient descent, sampling values) and of preprocessing
variables (number of classes, scaling, class division; see Tab. 9.7).

As additional features Gaussian curvature, FFPH and SHOT were used. FFPH
and SHOT were calculated solely on the vertices of the mesh. To limit the size
of each dataset, principal component analysis (PCA) [236] is applied to FFPH
and SHOT separately to reduce the number of features to 2 and 3, respectively.
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Figure 9.23: Preprocessing pipeline to prepare simulation data for deep learning
[235]

9.3.3 Results and discussion

The results are shown in Table 9.8. The WSS prediction on patient-specific ge-
ometries reached an accuracy of 90.80% and an mIoU of 39.02.

Several parameters affect the deep learning. The subsampling rate, which de-
scribes the number of sampling points that are fed into the network, has an
impact on the run time. A subsampling rate of 0.02 was faster and achieved a
better overall accuracy compared to a subsampling rate of 0.005 (20-25 seconds/
130-140 seconds per epoch).

A learning rate of 0.001 was slightly better than a learning rate of 0.01. A learning
rate of 0.1 was unsuitable and the loss curve was volatile.

The two classes used for the artificial aneurysms severely limits the informa-
tion of the WSS distribution. Here, we explored deep learning segmentation
into 3, 5 and 7 classes. The number of classes and the thresholds used for
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Table 9.7: Experiments for deep learning WSS prediction; *manually set values;
M: mean curvature, G: Gaussian curvature, F: FPFH descriptor, S:
SHOT descriptor

ID features classes weights scaling class division
1 M 5 0.08, 0.08, 0.11, 0.20, 0.51 Local [0, 0.2, 0.4, 0.6, 0.8, 1]
2 MG 5 0.08, 0.08, 0.11, 0.20, 0.51 Local [0, 0.2, 0.4, 0.6, 0.8, 1]
3 MGFS 5 0.04, 0.06, 0.12, 0.25, 0.52 Local [0, 0.2, 0.4, 0.6, 0.8, 1]
4 MGF 3 0.11, 0.18, 0.71 Local [0, 0.33, 0.66 ,1]
5 MGF 3 0.10, 0.10, 0.80* Local [0, 0.33, 0.66 ,1]
6 MGF 3 0.32, 0.21, 0.47 Global [0, 0.02, 0.12, 1]*
7 MGF 3 0.36, 0.26, 0.38 Global [0, 0.02, 0.12, 1]*
8 MGF 3 0.10, 0.10, 0.80* Global [0, 0.02, 0.12, 1]*
9 MGF 3 0.01, 0.01, 0.98* Global [0, 0.02, 0.12, 1]*

Table 9.8: Results of deep learning WSS prediction
ID train acc val acc test mIoU train mIoU val mIoU test mIoU
1 81.00 73.76 65.67 48.10 31.20 24.07
2 80.50 75.21 67.96 44.40 31.50 26.09
3 81.40 71.69 63.35 48.40 27.69 23.41
4 89.80 82.15 81.25 62.00 40.89 39.02
5 90.80 84.49 82.33 55.10 42.65 36.26
6 81.20 66.16 53.58 66.70 46.94 30.20
7 81.20 60.88 55.90 69.00 43.29 36.69
8 69.70 57.76 54.43 52.20 40.80 36.83
9 52.20 40.91 39.53 30.90 24.13 23.30

the WSS class influence the imbalance between classes and the variation within
classes. In these experiments, the accuracy decreased with a higher number
of classes. For 3 classes an accuracy over 80% was feasible, for 5 classes the
accuracy was between 60% and 80% and for 7 classes the accuracy stayed be-
low 60%.

Different scalings were tested for 3 and 5 classes. Global scaling of the WSS over
all datasets and local scaling for each dataset to [0,1] was compared. Equal class
division (for example ≤0.33, between 0.33 and 0.66,>0.66 for three classes) and
customized unequal class division was compared. Global scaling with equal class
division was unsuitable, as it resulted in a skewed distribution where over 80%
of the points were in the lowest WSS class. While local scaling achieved the best
results in terms of accuracy and IoU, visual inspection favors global scaling with
unequal class distribution (see Fig. 9.24).

While additional features were necessary for WSS prediction with MedMeshCNN,
here only a small improvement was observed. Adding FPFH and SHOT together
with mean curvature as feature to the point cloud resulted in an improvement of
5% mean IoU after 100 epochs.

Here, the WSS prediction was reduced to a segmentation of different WSS classes.
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Figure 9.24: Comparison of labeled data (left) and prediction (right) for five
classes and global unequal scaling (top row) and five classes with
local scaling (bottom row).

This is sufficient to quickly identify regions of high or low WSS, for example in
a clinical setting. For other use cases where more detailed and concrete values
are needed, this is unsuitable. In this case, prediction of values, for example with
deep learning regression, might be better.

While for our experiments a lower number of classes achieved better results, only
a limited number of possibilities was tested. It is possible that a higher number
of classes and different thresholds could lead to less variance within a class and
therefore be easier to learn.

Current technical limitations restrict the size of data suitable for deep learning.
Here, downsampling is used to reduce the point cloud and PCA to focus on the
most relevant features. Both steps also omit some information.

Section 9.2 and Section 9.3 showed that fast prediction of wall shear stress with
geometric deep learning is possible. While refinement of the described approaches
and extension to other hemodynamic parameters is still needed, in the future this
could be used to include hemodynamic parameters into clinical routines. Further
research in the area of geometric deep learning for hemodynamic parameters also
requires sufficient ground truth data. For this and other hemodynamic research,
further automation of the mesh processing, as described in 9.1, could be an ad-
vantage.
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Figure 9.25: Comparison of labeled data (left) and (right) from experiment 4
(top row) and experiment 5 (bottom row).
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10 New insights into the
intracranial aneurysm wall

In this thesis, several tools for the analysis of the intracranial aneurysm wall were
developed. The results were presented in several papers [208, 212, 203, 204, 237,
222, 238].

10.1 Answers to previously derived research
questions

Here, short answers to the questions asked in Chapter 5 are given. Questions
1-3 aim at an improved understanding of the aneurysm wall and the processes
occurring in the wall during aneurysm formation. Several tools to provide a new
view and a new way to explore the wall are presented. Questions 4 and 5 ask for
ideas that allow for an inclusion of wall information (like wall enhancement and
wall shear stress) into clinical routine in the future.

1) How can a 3D model of the intracranial aneurysm wall be derived from
2D histologic image data?
A 3D model can be generated by segmenting the images, deriving point clouds
of different tissue types and generating 3D models from sparse point clouds
(Sec. 6, [203, 204]). The large gaps between slides and the deformation dur-
ing tissue collection and image generation are major challenges for 3D model
generation. A virtual inflation (Sec. 6.3 and Sec. 7.3) can be used to reduce
this.

a) How to generate a mesh from a point cloud if the points are unevenly
distributed?
Due to the unique properties of histologic images unusual point clouds occur
and commonly available mesh generation algorithms fail. This can be ad-
dressed by an algorithm which models the behavior of a shrinking tube and is
iteratively fitted to the points to generate a smooth mesh (Sec. 6.4.1,[212]).
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b) Which segmentation approach is suited to support the analysis of
histologic images of intracranial aneurysms?
Several different tissue types are found inside the aneurysm wall. In Sec-
tion 6.2.3, ten classes (inflammatory cells, myointimal hyperplasia, degen-
erated wall, decellularized wall, red thrombus, white thrombus, organizing
thrombus, mixed textures, intact wall) are defined. These can be segmented
with deep learning. The inside of the aneurysm wall is highly heteroge-
neous [204, 208]. After analyzing three different approaches, deep learning
segmentation is most promising for the generation of 3D models with se-
mantic information of the aneurysm wall. However, it is restricted to known
tissue types and adequate training data is challenging to collect (Sec. 6.2).

2) How can deformation during tissue collection be handled?
Tissue collection for further imaging like histology or microCT leads to defor-
mation of the tissue. In Section 6.3, a virtual inflation for 2D histologic images
is applied. Section 7.3 describes a virtual inflation in 3D based on preoperative
imaging [204, 239].

3) How can various 2D and 3D information be combined for exploration of
the aneurysm wall?
Preoperative imaging, hemodynamic simulation, microCT and histologic images
provide a wide variation of information. In Section 7, a pipeline to combine
these is described. This includes stain classification, guided user interaction to
match histology and microCT, mapping between histologic images and microCT
images and virtual inflation. The information are combined in a visual exploration
tool [240].

4) How can the aneurysm wall be included in rupture prediction?
With black blood MRI some wall parts can be visible. These have to be objec-
tively evaluated to study the correlation between wall enhancement and aneurysm
rupture. Another aspect of rupture prediction is the aneurysm shape.

a) How can wall enhancement be segmented?
For an objective analysis of wall enhancement in black blood MRI a semi-
automatic segmentation tool, which evaluates the enhancement based on the
pituitary stalk intensity, was developed (Sec. 8.2, [238]).

b) How can the aneurysm shape be used for rupture prediction?
Aneurysm rupture prediction for clinical routine should have a minimum
user effort, be fast and trusted by doctors and patients. Here, deep learning-
based approaches with minimum user effort were presented. For analysis
of the vessels around the aneurysm, the first step is a mesh deep learning
segmentation. For this, MeshCNN was extended to work with complex and
large medical data. After segmentation into aneurysm, vessels and bifurca-
tions, an aneurysm graph is generated. Based on the additional information
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of the graph, analysis of the surrounding vessels was carried out (Sec. 9.1.5,
[239]). Based on this segmentation and graph, parameters describing the ves-
sels around the aneurysm were derived. Vessels near a ruptured aneurysm
showed a slightly higher average torsion and curvature than unruptured an-
eurysms (Sec. 9.1.6, [239]). Instead of using manually defined features, deep
learning could be used to capture the aneurysm shape. Geometric deep
learning is able to capture the aneurysm shape and predict aneurysm rup-
ture. A user interface was able to explain the deep learning prediction to
medical experts (Sec. 8.3.1, [241]).

5) How can wall shear stress be included in rupture prediction?
Two parts are included here: the improvement of preprocessing data for simula-
tion and the inclusion of WSS in clinical routine.

a) How can mesh processing be improved?
The mesh processing can be improved by automating steps and reducing the
required user interaction. A variety of often manual and time-consuming
processing steps is necessary to produce meshes suitable for hemodynamic
simulation and WSS calculation. This includes mesh segmentation, outlet
detection and centerline calculation (Sec. 9.1, [242]).

b) How can wall shear stress be used in clinical routine?
Hemodynamic simulations require expert knowledge and take a lot of time.
Both factors make them unpractical in clinics. Deep learning on point clouds
or meshes could be used to predict WSS in a very short time without expert
input. This was shown on artificial aneurysms (Sec. 9.2, [237]) and patient-
specific aneurysm models (Sec. 9.3.2, [243]).
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10.2 Future work

In the future, the presented work should be extended and the presented algorithm
should be applied to more data. Insight into the aneurysm wall is a crucial
factor for understanding the processes of aneurysm formation and development.
In the future, this could lead to new treatment options, for example if part of
the process could be stopped with medication. Histologic images provide the
most detailed view of the wall. Here, a 3D model based on these images was
constructed. This could be further enhanced if images with a smaller gap between
them are collected. As the tissue has to be removed, histologic images from
aneurysms can only show the aneurysm wall at that moment. It is not possible
to observe the aneurysm wall at several time steps. To understand how the
healthy vessel wall is remodeled and an aneurysm occurs, images and 3D models
from various patients are needed. In the future, the presented approach could
be used to reconstruct more 3D models showing the aneurysm wall from various
patients.

As described in Section 2.2.4, more image modalities showing various aspects
of vessel walls have been developed. Similar to the pipeline in Chapter 7, a
combination of various image modalities could generate new insights into the
aneurysm wall. The proposed pipeline might be extended with additional images,
for example OCT. Additionally, the deformation occurring during tissue collection
has to be tested. Currently, this is hindered by the limitation of preoperative
imaging of the wall.

In the future, BBMRI could be commonly used in clinical routine. Based on
the presented tool, further evaluation on rupture prediction and wall enhance-
ment should be carried out. Especially the segmentation into five wall enhance-
ment classes with varying intensity opens up new possibilities. In the future, the
segmentation could be further enhanced, for example with an automatic deep
learning aneurysm segmentation. It could be extended for other applications, for
example arteriovenous malformations.

Further research on geometric deep learning for aneurysm meshes is needed. In
the future, deep learning could be included in the clinical routine to predict
aneurysm rupture. This requires a suitable database and visualization of the re-
sults for doctors and patients. Besides the shape of the geometric deep learning
prediction presented in this work, other factors like patient attributes (for exam-
ple age and risk factors like smoking or hypertension) should also be included.
Additionally, hemodynamic parameters could be included in clinical routine in the
future. For research, further automation of the mesh processing with geometric
deep learning could simplify hemodynamic aneurysm research. For use in a clini-
cal setting, more advanced deep learning predictions of hemodynamic parameters
are necessary. This includes deep learning prediction for non-scalar parameters,
parameters inside the aneurysm and prediction with respect to patient-specific
blood flow conditions.
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Abbreviations

AGD average geodesic distance
ASL arterial spin labeling
aSMA alpha-smooth muscle actin
AUC (area under the curve
(A)WE (aneurysm) wall enhancement
BBMRI black blood MRI
BRAT Barrow ruptured aneurysm trial
CAD computer-aided design
CFD computational fluid dynamics
CH convex hull
CNN convolutional neural network
CSF cerebrospinal fluid
CT computed tomography
CTA computed tomography angiography
DANTE delay alternating with nutation for tailored excitation
DL deep learning
DNA deoxyribonucleic acid
DSA digital subtraction angiography
ECG electrocardiography
FFPH fast point feature histogram
FSE fast spin echo
GNN graph neural network
GC Gaussian curvature
H&E Hematoxylin and Eosin
IA intracranial aneurysm
(IA)DSA (intra-aortic) digital subtraction angiography
iMSDE improved motion-sensitized driven equilibrium
IoU intersection over union
IR inversion recovery
ISUIA international study of unruptured aneurysms
IV H intraventricular hemorrhage
IV US intravascular ultrasound
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KPConv kernel point convolution
MC mean Gaussian curvature
MCA middle cerebral artery
MeshCNN mesh convolutional neural network
MH myointimal hyperplasia
MRI magnetic resonance imaging
MRA magnetic resonance angiography
mRS modified Rankin Scale
MSDE motion-sensitized driven equilibrium
MT Masson’s Trichrome
OCT optical coherence tomography
Oro Oil red O
OT organizing thrombus

PC phase contrast
PCA principal component analysis
PHASES population, hypertension, age, size of aneurysm,

earlier subarachnoid hemorrhage, site of aneurysm
RIA ruptured intracranial aneurysm
RT red thrombus
SAH subarachnoid hemorrhage
SDF shape diameter function
SHOT signature of histogram orientations
SI signal intensity
SV M support vector machine
SPACE sampling perfection with application-optimized contrasts

using different flip angle evolution
SPAMM spatial modulation of magnetization method
SSFP steady-state free precession
SWI susceptibility-weighted imaging
TOF time-of-flight
TSE turbo spin-echo
UIA unruptured intracranial aneurysm
UIATS unruptured intracranial aneurysm treatment score
V ISTA volume isotropic spin-echo acquisition
vmtk vascular modeling toolkit
V OI volume of interest
V SI volumetric shape image
V WMRI vessel wall MRI
WEI wall enhancement index
WSS wall shear stress
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