
Untersuchungen zu

Kantengrammatiken und Valenzgrammatiken

Dissertation

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Mathematisch-Naturwissenschaftlich-Technischen Fakultät
(mathematisch-naturwissenschaftlicher Bereich)
der Martin-Luther-Universität Halle-Wittenberg

von Herrn Ralf Stiebe
geb. am: 8. Februar 1968 in: Rostock

Gutachterin bzw. Gutachter:

1. Prof. Dr. Annegret Habel, Oldenburg

2. Prof. Dr. Jürgen Dassow, Magdeburg

3. Prof. Dr. Ludwig Staiger, Halle

Halle (Saale), 13. Juli 2000

Inhaltsverzeichnis

Einleitung 3

1 Grundlagen 6

1.1 Grundbegriffe und Notationen . 6

1.2 Graphen . 8

1.3 Sprachen und Grammatiken . 9

1.4 Formale Potenzreihen . 12

2 Valenzgrammatiken 15

2.1 Definitionen und bekannte Resultate . 15

2.2 Beispiele . 20

2.3 Ableitungsbäume für Valenzgrammatiken 21

2.4 Normalformen für Valenzgrammatiken . 24

2.5 Valenzgrammatiken über kommutativen Monoiden 35

2.6 Iterationslemmata für Valenzgrammatiken 36

2.7 Schlanke Valenzsprachen . 40

3 Kantengrammatiken 43

3.1 Definitionen und Beispiele . 43

3.2 Kantengrammatiken und formale Sprachen 47

3.3 Erzeugungskraft von Kantengrammatiken 49

3.4 Kantengrammatiken mit kürzbarer Graphenfolge 51

3.5 Abschlußeigenschaften . 59

3.6 Entscheidungsprobleme . 74

Abschließende Bemerkungen 93

Literaturverzeichnis 95

1

Danksagung

Die vorliegende Arbeit enthält Ergebnisse, die während meines Promotionsstudiums an der
Otto-von-Guericke-Universität Magdeburg und meiner Tätigkeit an der Martin-Luther-
Universität Halle-Wittenberg entstanden.

Mein erster Dank geht an Herrn Prof. Dr. Dassow, der mich während meines Studiums in
die Theorie der formalen Sprachen einführte, die Untersuchung von Kantengrammatiken als
Promotionsthema vorschlug und mir auch nach meinem Wechsel nach Halle für zahlreiche
Diskussionen zur Verfügung stand.

Dem schließt sich nahtlos der Dank an Herrn Prof. Dr. Staiger an, der mit dem Beginn
meiner Zeit in Halle die Betreuung übernahm, mir großen Freiraum für meine Forschung
ließ, die Ergebnisse kritisch mit mir diskutierte und auch mit dem nötigen Nachdruck auf
die Fertigstellung der Arbeit drängte.

Besonders herzlich möchte ich mich bei Prof. Dr. Salomaa aus Turku bedanken, bei dem
ich einen dreimonatigen, sehr anregenden Forschungsaufenthalt verbringen konnte.

Herrn Dr. Fernau bin ich für zahlreiche fachliche Diskussionen, insbesondere zu Valenz-
grammatiken, dankbar.

Den Kolleginnen und Kollegen am Fachbereich Mathematik und Informatik der Martin-
Luther-Universität Halle, ganz besonders Frau Dr. Winter, danke ich für die gute und
stimulierende Arbeitsatmosphäre.

Schließlich bedanke ich mich bei meinen Eltern, die mir eine sorgenfreie Kindheit ermöglich-
ten und meine Begabungen förderten, bei meiner Lebensgefährtin Katharina für ihre Ge-
duld und für das Korrekturlesen einer früheren Fassung und bei meinem Sohn Viktor, der
immer wieder für die notwendige Erholung von der Arbeit sorgte.

2

Einleitung

Graphen und Familien von Graphen spielen in vielen Gebieten der Informatik eine heraus-
ragende Rolle. Schon seit den siebziger Jahren versuchte man deshalb, Familien von Gra-
phen mit Hilfe von Grammatiken zu beschreiben. Dabei verfolgt man das Ziel, die in der
Theorie der formalen Sprachen bewährten Methoden bei der Untersuchung von solcherart
erzeugten Graphenfamilien zu verwenden. Ein Überblick zu verschiedenen Aspekten von
Graphgrammatiken und Graphtransformationen ist u.a. im Handbook of Graph Grammars
[12] sowie in mehreren Kapiteln des 3. Bandes des Handbook of Formal Languages [33] zu
finden.

Die in der vorliegenden Arbeit betrachteten Kantengrammatiken (edge grammars) wurden
von F. Berman im Zusammenhang mit Fragen aus der Theorie der parallelen Program-
mierung eingeführt. In diesem Bereich besitzen Graphen in zweifacher Hinsicht eine Be-
deutung. Einerseits läßt sich eine parallele Rechnerarchitektur als Graph darstellen, wobei
die Knoten jeweils einen Prozessor darstellen und eine Kante zwischen zwei Knoten einer
Verbindung zwischen den Prozessoren entspricht. Rechnerarchitekturen mit struktureller
Ähnlichkeit werden zu Familien (z.B. Hyperwürfel, Gitter) zusammengefaßt. Andererseits
wird ein paralleler Algorithmus durch eine Familie von sogenannten Kommunikationsgra-
phen repräsentiert. Ein Knoten eines Kommunikationsgraphen stellt einen Prozeß dar,
während eine Kante die Kommunikation zwischen zwei Prozessen symbolisiert.

Ein wichtiges Problem bei der Anwendung eines parallelen Algorithmus ist die Einbettung
des zur Probleminstanz gehörigen Kommunikationsgraphen in die konkrete Rechnerarchi-
tektur. Dabei sollten kommunizierende Prozesse an nicht weit voneinander entfernte Pro-
zessoren übergeben werden. Eine übliche Idee besteht darin, den Kommunikationsgraphen
auf einen kleinen Graphen der gleichen Familie so zu kontrahieren, daß die Kommunikati-
onsstruktur erhalten bleibt. Der kleinere Graph wird dann mittels einer Heuristik in den
Graphen H eingebettet.

Viele in der Theorie der parallelen Algorithmen relevante Graphenfamilien lassen sich auf
natürliche Weise durch einfache Wortrelationen beschreiben. Beispielsweise besitzt der Hy-
perwürfel der Dimension n als Knoten alle Wörter der Länge n über {0, 1}, und Kanten
bestehen genau zwischen Wörtern mit Hamming-Abstand 1. Auch das Problem der Kon-
traktion ist einfach zu lösen, sofern die Wortrelation präfixabgeschlossen ist. In diesem
Falle kann die Kontraktion erfolgen, indem ein Knoten auf sein Präfix der entsprechenden
Länge abgebildet wird.

3

Einleitung 4

Aus den eben genannten Gründen liegt es nahe, Wortgrammatiken so zu modifizieren, daß
sie Paare von Wörtern erzeugen. Ein Paar von Wörtern der Länge n wird als Kante im
n-ten Graphen der Familie interpretiert. Bei Kantengrammatiken wird die Modifikation
erreicht, indem Paare von Wörtern (nicht notwendig gleicher Länge) als Terminalsym-
bole verwendet werden. Verschiedene Aspekte der Erzeugung von Graphenfamilien durch
Kantengrammatiken, insbesondere Fragen der Erzeugungskraft, der Beziehung zu klassi-
schen formalen Sprachen und der Entscheidbarkeit, wurden von Berman [1], Berman

und Shannon [2, 3], Berman und Snyder [4] sowie von Dassow [8] untersucht.

Diese Untersuchungen werden in der vorliegenden Arbeit fortgesetzt. Haupts̈achlich wird
die Familie der synchronen regulären Kantengrammatiken, das sind Kantengrammatiken
mit rechtslinearen Regeln und Wortpaaren gleicher Länge, betrachtet. Diese Teilfamilie ist
zum einen besonders interessant, da die in der Theorie der parallelen Algorithmen wichti-
gen Graphenfamilien durch Kantengrammatiken dieses Typs erzeugt werden. Andererseits
besteht ein enger Zusammenhang zur Theorie endlicher Automaten, so daß zahlreiche Re-
sultate über die Familie der regulären Sprachen nutzbar sind.

Bei der Betrachtung der von (nicht synchronen) Kantengrammatiken erzeugten Sprachen
zeigte sich, daß diese durch die von Păun [28] eingeführten Valenzgrammatiken beschrieben
werden können. Dies sind Grammatiken, deren Regeln durch Elemente eines Steuermonoids
(hier (Z ,+, 0)) bewertet sind. Die Bewertungen werden auf Ableitungen ausgedehnt, und es
werden nur solche Ableitungen zugelassen, deren Bewertung das neutrale Element ergibt.
Valenzgrammatiken sind ein Beispiel für die gesteuerte Ersetzung (regulated rewriting) und
über die Beziehungen zu Kantengrammatiken hinaus von Interesse. Deshalb ist ihnen ein
eigener Abschnitt gewidmet.

Die Arbeit ist folgendermaßen gegliedert. In Kapitel 1 werden die notwendigen Grundla-
gen aus der Graphentheorie und der Theorie der formalen Sprachen bereitgestellt. Danach
folgen im Kapitel 2 die Untersuchungen zu Valenzgrammatiken. Das Hauptresultat ist die
Konstruktion von Normalformen für Valenzgrammatiken mit (Z k,+,~0) als Steuermono-
id. Damit wird auch die seit längerem offene Frage nach der Existenz von Normalformen
für ungeordnete Vektorgrammatiken positiv beantwortet. Es wird weiter gezeigt, daß Va-
lenzgrammatiken über beliebigen kommutativen Monoiden keine größere Erzeugungskraft
als Valenzgrammatiken über (Q , ·, 1) besitzen. Außerdem werden schlanke Valenzsprachen
(das sind Sprachen mit beschränkter Strukturfunktion) untersucht. Für diese Teilfamilie
werden einige positive Abschluß- und Entscheidbarkeitsresultate bewiesen. Diese Ergebnis-
se werden hier u.a. benutzt, um die Entscheidbarkeit des Elementproblems für kontextfreie
Kantengrammatiken zu zeigen.

Kapitel 3 ist den Kantengrammatiken gewidmet. Abschnitt 3.1 enthält die Definitionen
sowie einige motivierende Beispiele. Die Verbindungen zwischen Kantengrammatiken und
klassischen formalen Sprachen, insbesondere Valenzsprachen, werden in Abschnitt 3.2 be-
trachtet. Anschließend wird in Abschnitt 3.3 die Erzeugungskraft von synchronen regulären
Kantengrammatiken untersucht. Unter Verwendung von bekannten Resultaten über re-
guläre Sprachen erhält man einige wichtige Strukturaussagen. In Abschnitt 3.4 wird die

Einleitung 5

Teilfamilie der synchronen regulären und kürzbaren Kantengrammatiken gesondert be-
trachtet. Unter anderem wird gezeigt, daß diese Art von Kantengrammatiken äquivalent
zu einer parallelen Variante von Knotenersetzungsgrammatiken ist. In den Abschnitten 3.5
und 3.6 folgen Untersuchungen zu Abschluß- und Entscheidbarkeitseigenschaften von Kan-
tengrammatiken. Einerseits werden Abschluß- und Entscheidbarkeitsprobleme diskutiert,
die sich als direkte Verallgemeinerung analoger Fragestellungen aus der Theorie der forma-
len Sprachen ergeben, wie z.B. das Leerheitsproblem und das Endlichkeitsproblem. Zum
anderen werden graphentheoretisch motivierte Probleme betrachtet, wie das Abschluß-
verhalten unter Graphenoperationen oder die Frage nach der Existenz von Graphen mit
bestimmten graphentheoretischen Eigenschaften.

Kapitel 1

Grundlagen

Nach der Einführung einiger mathematischer Notationen werden in diesem Abschnitt die
grundlegenden Begriffe aus der Graphentheorie und der Theorie der formalen Sprachen
erklärt. Eine ausführliche Einführung in diese Gebiete wird beispielsweise in [40] bzw.
[18, 34] gegeben.

1.1 Grundbegriffe und Notationen

Die leere Menge wird mit ∅, die Potenzmenge einer Menge M wird mit P(M), die Mächtig-
keit einer Menge M wird mit card M bezeichnet.

Wir notieren die Menge der natürlichen Zahlen einschließlich 0 mit N , die Menge der
ganzen Zahlen mit Z , die Menge der rationalen Zahlen mit Q und die Menge der positiven
rationalen Zahlen mit Q +.

Das kartesische Produkt A×B zweier Mengen A,B ist als A×B = {(a, b) : a ∈ A, b ∈ B}
definiert. Das n-fache kartesische Produkt einer Menge A wird als An notiert. Für eine
Menge A, n ∈ N und ein k-Tupel (i1, . . . , ik) mit 1 ≤ i1, . . . , ik ≤ n ist die Projektion von
An auf die Komponenten (i1, . . . , ik) definiert als die Abbildung prA,n;i1,...,ik

: An → Ak mit
prA,n;i1,...,ik

(w1, . . . , wn) = (wi1 , . . . , wik) für (w1, . . . , wn) ∈ An. Wenn w explizit als Element
von An definiert wurde, schreiben wir vereinfachend pri1,...,ik(w) anstelle von prA,n;i1,...,ik

(w).

Es sei R ⊆ A × B eine Relation. Für A′ ⊆ A definieren wir das Bild von A′ unter R als
R(A′) = {b ∈ B : ∃a(a ∈ A′ ∧ (a, b) ∈ R)}; für a ∈ A schreiben wir R(a) anstelle von
R({a}). Die zu R inverse Relation R−1 ⊆ B×A ist als R−1 = {(b, a) ∈ B×A : (a, b) ∈ R}
definiert. R heißt partielle Funktion, falls card R(a) ≤ 1 für alle a ∈ A und Funktion, falls
card R(a) = 1 für alle a ∈ A.

Eine Relation R ⊆M×M wird binäre Relation auf M genannt. Anstelle von (m1,m2) ∈ R
schreiben wir häufig m1Rm2. Die Relation IdM := {(m,m) : m ∈ M} wird als identische

6

Kapitel 1: Grundlagen 7

Relation auf M bezeichnet. Für eine binäre Relation R ⊆M definieren wir

R0 = IdM , R
i+1 = {(m,n) : ∃m′((m,m′) ∈ R ∧ (m′, n) ∈ Ri)}, R≤i =

i⋃
j=0

Rj,

R+ =
∞⋃
i=1

Ri, R∗ =
∞⋃
i=0

Ri.

Die Relationen R+ bzw. R∗ heißen der transitive Abschluß bzw. der transitive und reflexive
Abschluß von R.

Eine binäre Relation R ⊆M ×M heißt transitiv, wenn aus xRy und yRz stets xRz folgt,
reflexiv,, wenn xRx für alle x ∈ M gilt, symmetrisch, wenn aus xRy stets yRx folgt,
antisymmetrisch, wenn aus xRy und yRx stets x = y folgt. Eine binäre Relation auf M
heißt Äquivalenzrelation, wenn sie transitiv, reflexiv und symmetrisch ist; sie zerlegt M
in Äquivalenzklassen. Eine binäre Relation ≤ auf M heißt Halbordnung, wenn sie reflexiv,
transitiv und antisymmetrisch ist; sie heißt Totalordnung oder einfach Ordnung, wenn x ≤ y
oder y ≤ x für alle x, y ∈M gilt.

Es folgen einige Definitionen für ganzzahlige Vektoren. Der i-te Einheitsvektor in Z k,
k ≥ 1, 1 ≤ i ≤ k, wird mit ~ei bezeichnet. Die 1-Norm eines Vektors ~r =

∑k
i=1 ri~ei aus Z k

wird als ‖~r‖1 :=
∑k

i=1 |ri|, seine Maximum-Norm wird als ‖~r‖1 := max{|ri| : 1 ≤ i ≤ k}
definiert. Die Ordnungsrelation auf Z wird in natürlicher Weise zu einer Halbordnung auf
Z k verallgemeinert: (a1, . . . , ak) ≤ (b1, . . . , bk) :⇐⇒ ai ≤ bi, 1 ≤ i ≤ k.

Die Operationen der ganzzahligen Division bzw. des Restes bei ganzzahliger Division wer-
den mit div bzw. rest bezeichnet. Für a, b ∈ Z , b > 0 ist a div b := ba/bc und a rest b :=
a − (a div b)b. Die gleichen Operationen werden für a ∈ Z k, b ∈ N \ {0} definiert, indem
man sie komponentenweise ausführt. Auf Z k definieren wir die Kongruenz modulo m ∈ N
als: a ≡ b(modm) :⇐⇒ a restm = b restm.

Eine Menge S ⊆ N k heißt linear, wenn es endlich viele Vektoren ~v0, ~v1, . . . , ~vm ∈ N k mit

S =

{
~v0 +

m∑
i=1

αi~vi : αi ∈ N , 1 ≤ i ≤ m

}

gibt. Eine Teilmenge von N k heißt semilinear, wenn sie die Vereinigung endlich vieler
linearer Mengen ist.

Eine (algebraische) Struktur ist ein Konstrukt (M,R1, . . . , Rm), bestehend aus einer Men-
ge M und Relationen R1 ⊆Mk1 , . . . ,Mkm , k1, . . . , km ∈ N . (Funktionen sowie Konstanten
werden als Relationen angesehen.) Spezielle im folgenden betrachtete Strukturen sind Mo-
noide, Graphen und Halbringe. Es seien M = (M,R1, . . . , Rm) und N = (N,R′1, . . . , R

′
m)

Strukturen mit R1 ⊆ Mk1 , . . . ,Mkm , R′1 ⊆ Nk1 , . . . , Nkm , k1, . . . , km ∈ N . Ein Homomor-
phismus von M nach N ist eine Abbildung h : M → N mit (a1, . . . , aki) ∈ Ri ⇐⇒
(h(a1), . . . , h(aki)) ∈ R′i für alle 1 ≤ i ≤ m. Ist h außerdem eine bijektive Abbildung,

Kapitel 1: Grundlagen 8

so wird h ein Isomorphismus genannt. Zwei Strukturen heißen isomorph, wenn zwischen
ihnen ein Isomorphismus existiert.

Ein Monoid ist ein Tripel M = (M, ◦, 1), wobei M eine nichtleere Menge, ◦ eine Abbildung
von M ×M auf M und 1 ein Element aus M sind und (a ◦ b) ◦ c = a ◦ (b ◦ c) für alle
a, b, c ∈M sowie 1 ◦ a = a ◦ 1 = a für alle a ∈M erfüllt sind. Die n-te Potenz von a ∈M
ist rekursiv definiert als a0 = 1, an = an−1 ◦ a für n ≥ 1.

Für A,B ⊆ M definieren wir das Produkt A ◦ B := {a ◦ b : a ∈ A, b ∈ B}. Das n-fache
Produkt An von A ist definiert als A0 = {1}, An = An−1 ◦A für n ≥ 1. Das von A erzeugte
Untermonoid A∗ bzw. die von A erzeugte Unterhalbgruppe sind

A∗ :=
∞⋃
n=0

An, A+ :=
∞⋃
n=1

An.

M heißt endlich erzeugt, wenn es eine endliche Teilmenge A ⊆M mit A∗ = M gibt.

Ein Monoid (M, ◦, 1) heißt Gruppe, wenn es zu jedem m ∈ M ein inverses Element m−1

mit m ◦m−1 = m−1 ◦m = 1 gibt.

Ein Monoid (M, ◦, 1) heißt kommutativ, wenn a ◦ b = b ◦ a für alle a, b ∈M gilt.

1.2 Graphen

Ein (gerichteter) Graph ist ein Paar G = (V,E), wobei V eine Menge und E ⊆ V ×V eine
binäre Relation auf V sind. Man nennt die Elemente von V bzw. E Knoten bzw. Kanten.
Eine Äquivalenzklasse von isomorphen Graphen wird als abstrakter Graph bezeichnet. Der
zu G gehörige abstrakte Graph wird mit [G] notiert; für eine Menge von Graphen G ist
[G] := {[G] : G ∈ G}.
Es folgen einige Begriffe aus der Graphentheorie. Es sei ein Graph G = (V,E) gegeben.

Ein Graph G′ = (V ′, E′) heißt Teilgraph von G, wenn V ′ ⊆ V und E′ ⊆ E∩V ′×V ′ gelten.
Für V ′ ⊆ V nennen wir den Graphen GV ′ = (V ′, E′) mit E′ = E ∩ (V ′× V ′) den durch V ′

induzierten Teilgraphen von G.

Eine Kante (v, v) heißt Schlinge. Ein Graph ohne Schlingen wird schlicht genannt. Im
folgenden beschränken wir uns auf schlichte Graphen. Für v ∈ V definieren wir den Ein-
gangsgrad din(v) bzw. den Ausgangsgrad dout(v) als din(v) = card E−1(v) bzw. dout(v) =
card E(v).

Eine Kantenfolge von v0 nach vk der Länge k in G ist eine Folge von Knoten (v0, v1, . . . , vk)
mit vi ∈ V für 0 ≤ i ≤ k und (vi−1, vi) ∈ E für 1 ≤ i ≤ k. Eine Kantenfolge (v0, v1, . . . , vk)
heißt Weg, falls vi 6= vj für 0 ≤ i < j ≤ k gilt; sie heißt Zyklus, falls v0 = vk gilt. Ein Graph
ohne Zyklus wird azyklisch genannt.

Der Abstand von v ∈ V zu w ∈ V ist die Länge des kürzesten Weges von v nach w
bzw. ∞, falls kein Weg existiert. Zwei Knoten v, w eines Graphen G heißen (stark) zu-
sammenhängend, wenn es einen Weg von v nach w und einen Weg von w nach v gibt.

Kapitel 1: Grundlagen 9

Sie heißen schwach zusammenhängend, wenn es in Gu := (V,Eu) mit Eu = E ∪ E−1

einen Weg von v nach w gibt. Offenbar sind der starke wie auch der schwache Zusammen-
hang Äquivalenzrelationen auf V . Die von den Äquivalenzklassen bezüglich des starken
bzw. schwachen Zusammenhangs induzierten Teilgraphen bezeichnen wir als starke bzw.
schwache Zusammenhangskomponenten von G. Gibt es genau eine starke bzw. schwache
Zusammenhangskomponente, so heißt G stark bzw. schwach zusammenhängend.

Ein azyklischer Graph G = (V,E) heißt Wald, wenn δin(v) ≤ 1 für alle v ∈ V gilt. Ein
schwach zusammenhängender Wald heißt Baum. Ein Baum besitzt genau einen Knoten mit
dem Eingangsgrad 0, der als Wurzel bezeichnet wird. In einem Baum werden die Knoten
mit dem Ausgangsgrad 0 als Blätter bezeichnet, alle anderen Knoten heißen innere Knoten.
Ist (v, w) eine Kante in einem Baum, so nennt man v den Vater von w und w den Sohn
von v. Sind v und w Knoten des Baumes G = (V,E) mit (v, w) ∈ E∗, so bezeichnet man
die von {u : (v, u) ∈ E∗} bzw. {u : (v, u) ∈ E∗ ∧ (w, u) /∈ E+} induzierten Untergraphen
(die beide Bäume mit der Wurzel v sind) als den Unterbaum von v bzw. als den Unterbaum
zwischen v und w.

Ein ungerichteter schlichter Graph ist ein Paar G = (V,E), wobei V eine Knotenmenge und
E eine Menge von ungerichteten Kanten, das sind zweielementige Teilmengen von V , sind.
Es ist für die folgendenden Ausführungen bequem, ungerichtete Graphen als gerichtete
Graphen mit symmetrischer Kantenrelation zu definieren. Die ungerichtete Kante {v, w}
wird durch die gerichteten Kanten (v, w) und (w, v) dargestellt.

Für jeden Knoten v eines ungerichteten (schlichten) Graphen ist der Eingangsgrad gleich
dem Ausgangsgrad und wird einfach als Grad d(v) bezeichnet. Den maximalen Knotengrad
∆(G) bzw. minimalen Knotengrad δ(G) eines ungerichteten Graphen G definieren wir als
∆(G) = maxv∈V {d(v)} bzw. δ(G) = minv∈V {d(v)}.
Ist G ein beliebiger gerichteter Graph, so heißt der bereits erwähnte Graph Gu der zu
G gehörige ungerichtete Graph. Ein ungerichteter Graph wird ungerichteter Wald bzw.
ungerichteter Baum genannt, wenn er der zu einem gerichteten Wald bzw. Baum gehörige
ungerichtete Graph ist.

1.3 Sprachen und Grammatiken

Ein Alphabet ist eine endliche Menge X; die Elemente eines Alphabets werden Buchstaben
oder Symbole genannt. Ein Wort über X ist eine endliche Folge von Buchstaben. Wie allge-
mein üblich, benutzen wir für ein Wort (a1, a2, . . . , an) die kürzere Schreibweise a1a2 · · ·an.
Die Länge eines Wortes w ist die Anzahl der Folgeglieder und wird mit |w| bezeichnet.
Das Wort der Länge 0 wird das leere Wort genannt und mit λ bezeichnet. Die Menge aller
Wörter über X wird mit X∗ bezeichnet. Sind v = a1 · · ·am und w = b1 · · · bn Wörter, so ist
ihr Produkt (Konkatenation) v · w (oder kurz vw) als a1 · · ·amb1 · · · bn definiert. Offenbar
bildet (X∗, ·, λ) ein Monoid, das freie Monoid über X. Eine (formale) Sprache über X ist
eine Teilmenge von X∗. Wegen der Monoideigenschaft von (X∗, ·, λ) sind die Definitionen

Kapitel 1: Grundlagen 10

der Sprachen L1 · L2, L
k (k ≥ 0), L∗ und L+ entsprechend Abschnitt 1.1 klar.

Ein Wort u heißt Präfix des Wortes w, in Zeichen u v w, wenn es ein Wort v mit w = uv
gibt. Für ein Wort w der Länge n wird mit prefk(w) das Präfix der Länge k ≤ n bezeichnet.

Für ein Alphabet Y und ein beliebiges Alphabet X bezeichnen wir den Homomorphismus
πY : X∗ → Y ∗ mit πY (y) = y, falls y ∈ Y , πY (x) = λ, falls x ∈ X \ Y , als die Projektion
auf Y . Vereinfachend schreiben wir πa statt π{a} für a ∈ Y sowie |w|Y , |w|a anstelle von
|πY (w)|, |πa(w)|.
Es sei L ⊆ X∗ eine Sprache. Die charakteristische Funktion von L ist die Abbildung
χL : X∗ → {0, 1} mit χL(w) = 1, falls w ∈ L, χL(w) = 0, falls w /∈ L. Die Längenmenge
(length set) von L ist Λ(L) = {|w| : w ∈ L}. Die Strukturfunktion von L ist die Abbildung
sL : N → N mit sL(n) = card {w ∈ L : |w| = n}. Ist sL beschränkt bzw. durch k
beschränkt bzw. fast überall durch k beschränkt, so nennt man L schlank bzw. im strengen
Sinne k-schlank bzw. k-schlank.

Ist X ein Alphabet mit n Symbolen, so ist eine Parikh-Abbildung ein Monoidhomomorphis-
mus von (X∗, ·, λ) nach (N n,+,~0), der ein Symbol aus X eineindeutig auf einen Einheits-
vektor abbildet. Da Parikh-Abbildungen bis auf Isomorphie gleich sind, wird eine dieser
Abbildungen als die Parikh-Abbildung von X∗ bestimmt und mit Ψ bezeichnet. Für eine
Sprache L ⊆ X∗ wird Ψ(L) als die Parikh-Menge von L bezeichnet.

Formale Sprachen lassen sich durch Grammatiken und Automaten beschreiben. Eine kon-
textfreie Grammatik ist ein Quadrupel G = (N, T, P, S), bestehend aus dem Alphabet der
Nichtterminale N , dem zu N disjunkten Alphabet der Terminale T , der Regelmenge P ,
einer endlichen Teilmenge von N × (N ∪ T)∗, und dem Startsymbol S ∈ N . Eine Regel
(A, β) ∈ P wird allgemein als A→ β notiert. Über (N ∪ T)∗ definiert man für eine Regel
p = (A, β) aus P bzw. für G die binären Ableitungsrelationen ⇒p bzw. ⇒G als

v ⇒p w :⇐⇒ ∃v1∃v2(v = v1Av2 ∧ w = v1βv2)

v ⇒G w :⇐⇒ ∃p(p ∈ P ∧ v ⇒p w).

Die von G erzeugte Sprache ergibt sich als L(G) = {w ∈ T ∗ | S ⇒∗G w}. Eine kontextfreie
Grammatik G = (N, T, P, S) heißt

• linear, wenn P nur Regeln der Form A → vBw, A → v mit A,B ∈ N , v, w ∈ T ∗

enthält,

• regulär, wenn P nur Regeln der Form A→ vB, A→ v mit A,B ∈ N , v ∈ T ∗ enthält.

Eine Sprache L heißt kontextfrei, linear bzw. regulär, wenn es eine kontextfreie, eine lineare
bzw. eine reguläre Grammatik G mit L(G) = L gibt. Die Familien der kontextfreien bzw.
linearen bzw. regulären Sprachen werden mit L(CF) bzw. L(LIN) bzw. L(REG) bezeichnet.

Von den Automatenmodellen erwähnen wir nur die endlichen Automaten, die äquivalent
zu den regulären Grammatiken sind, sowie die endlichen Transducer (endliche Automaten
mit Ausgabe).

Kapitel 1: Grundlagen 11

Definition 1.3.1 Ein (nichtdeterministischer) endlicher Automat ist ein Quintupel A =
(Z,X, z0, δ, F), bestehend aus der endlichen Zustandsmenge Z, dem Eingabealphabet X,
dem Startzustand z0 ∈ Z, der Menge der Endzustände F ⊆ Z und der endlichen Über-
gangsrelation δ ⊆ Z ×X × Z.

Die Relation δ wird auf Z ×X∗ × Z wie folgt fortgesetzt:
(z, λ, z′) ∈ δ :⇐⇒ z = z′ für z, z′ ∈ Z,
(z, wa, z′) ∈ δ :⇐⇒ ∃y(y ∈ Z ∧ (z, w, y) ∈ δ ∧ (y, a, z′) ∈ δ) für z, z′ ∈ Z,w ∈ X∗, a ∈ X.

Die von A akzeptierte Sprache L(A) ist definiert als

L(A) = {w ∈ X∗ : (z0, w, q) ∈ δ für ein q ∈ F}.

Ist δ eine Funktion bzw. eine partielle Funktion von Z ×X nach Z, so heißt A determini-
stischer bzw. partieller deterministischer Automat.

Ein Lauf von A auf dem Wort w = a1 · · ·an, a1, . . . , an ∈ X, ist eine Folge von Zuständen
z0, z1, . . . , zn mit (zi−1, ai, zi) ∈ δ für 1 ≤ i ≤ n. Ist zusätzlich zn ∈ F , so heißt der Lauf
akzeptierend. Für ein Wort w ∈ X∗ ist der Grad der Mehrdeutigkeit bezüglich A, dA(w),
als die Anzahl der akzeptierenden Läufe von A auf w definiert. Der Grad der Mehrdeutigkeit
von A ist dA = sup{dA(w) : w ∈ X∗}.

Definition 1.3.2 Ein endlicher Transducer ist ein Sextupel A = (Z,X, Y, z0, δ, F), wobei
Z, X, z0 und F wie bei einem endlichen Automaten definiert sind, Y ein Ausgabealphabet
ist und die Überführungsrelation δ eine endliche Relation δ ⊆ Z ×X∗ × Y ∗ × Z ist.

Die Relation δ wird zu einer Relation δ∗ ⊆ Z ×X∗ × Y ∗ × Z wie folgt fortgesetzt:

• δ0 := {(z, λ, λ, z) : z ∈ Z},

• (z1, w1, w2, z2) ∈ δn+1 :⇐⇒
∃z∃u1∃v1∃u2∃v2(w1 = u1v1, w2 = u2v2, (z1, u1, u2, z) ∈ δn, (z, v1, v2, z2) ∈ δ),

• δ∗ :=
⋃∞
n=0 δ

n.

Die von A akzeptierte Relation τA ist definiert als

τA = {(w1, w2) ∈ X∗ × Y ∗ : (z0, w1, w2, q) ∈ δ∗ für ein q ∈ F}.

Eine Relation R ⊂ X∗ × Y ∗ heißt reguläre Transduktion, falls es einen endlichen Trans-
ducer A mit τA = R gibt.

Eine Sprachfamilie L heißt abgeschlossen unter der Operation F , die k Sprachen auf eine
Sprache abbildet, falls aus L1, . . . , Lk ∈ L stets F (L1, . . . , Lk) ∈ L folgt. Einige wichtige
Abschlußeigenschaften der Familien der kontextfreien, linearen bzw. regulären Sprachen
werden im folgenden zusammengefaßt, siehe auch [18]:

Kapitel 1: Grundlagen 12

Satz 1.3.1 Die Familien L(X), X ∈ {REG,LIN,CF}, sind abgeschlossen unter Vereini-
gung und regulären Transduktionen. Die Familien L(REG) und L(CF) sind außerdem un-
ter Konkatenation und Hüllenbildung abgeschlossen. Weiterhin ist L(REG) abgeschlossen
unter Komplementierung.

Da Homomorphismen, inverse Homomorphismen, der Durchschnitt mit einer regulären
Sprache und die Substitution durch eine reguläre Sprache spezielle reguläre Transduktio-
nen sind, besteht hinsichtlich dieser Operationen ein positives Abschlußverhalten für die
genannten Sprachfamilien.

Wichtige Entscheidungsprobleme für Grammatiken sind das

• Elementproblem: gegeben eine Grammatik G und ein Wort w; ist w ∈ L(G)?

• Leerheitsproblem: gegeben eine Grammatik G; ist L(G) leer?

• Endlichkeitsproblem: gegeben eine Grammatik G; ist L(G) endlich?

• Universalitätsproblem: gegeben eine Grammatik G = (N, T, P, S); ist L(G) = T ∗?

• Schlankheitsproblem: gegeben eine Grammatik G; ist L(G) schlank?

• Äquivalenzproblem: gegeben zwei Grammatiken G und H; ist L(G) = L(H)?

• Disjunktheitsproblem: gegeben zwei Grammatiken G und H; sind L(G) und L(H)
disjunkt?

Satz 1.3.2 Das Element-, das Leerheits-, das Endlichkeits- und das Schlankheitsproblem
sind entscheidbar für kontextfreie Grammatiken. Das Äquivalenz- und das Disjunktheits-
problem sind entscheidbar für reguläre Grammatiken und unentscheidbar für lineare Gram-
matiken.

Eine parallel arbeitende Variante von Grammatiken stellen die Lindenmayer-Systeme dar.
Wir werden im folgenden nur deren einfachste Version, die D0L-Systeme, betrachten.

Ein D0L-System ist ein Tripel G = (Σ, h, ω), bestehend aus einem Alphabet Σ, einem
Homomorphismus h : Σ∗ → Σ∗ und dem Axiom ω ∈ Σ∗. Die von G erzeugte Folge ist
S(G) = (wi)i≥0 mit w0 = ω, wi = h(wi−1) = hi(ω) für i ≥ 1. Die von G erzeugte Sprache
ist L(G) = {w : w ∈ S(G)}, die Funktion gG : N → N mit gG(i) = |wi| nennt man die
Wachstumsfunktion von G. Eine Funktion g : N → N heißt D0L-Wachstumsfunktion, falls
es ein D0L-System G mit g = gG gibt.

1.4 Formale Potenzreihen

Eine wichtige Verallgemeinerung von Sprachen stellen die formalen Potenzreihen dar. Im
folgenden werden die Definitionen und Fakten zu formalen Potenzreihen und ihre Beziehung

Kapitel 1: Grundlagen 13

zu endlichen Automaten in dem hier benötigten Umfang angegeben. Für eine ausführliche
Erörterung dieses Themas siehe z.B. [5, 35].

Definition 1.4.1 Ein kommutativer Halbring ist ein Quintupel (A,+, ·, 0, 1). Dabei sind
(A,+, 0) und (A, ·, 1) kommutative Monoide, und außerdem gilt

• ∀a∀b∀c((a + b) · c = (a · c) + (b · c)) (Distributivgesetz) sowie

• ∀a(0 · a = 0).

Beispiele für kommutative Halbringe sind der Boolesche Halbring B = ({0, 1},+, ·, 0, 1)
mit 1 + 1 = 1, der Halbring der natürlichen Zahlen N = (N ,+, ·, 0, 1), der Ring der ganzen
Zahlen Z = (Z ,+, ·, 0, 1) und N k, der Restklassenring modulo k.

Definition 1.4.2 Es seien A = (A,+, ·, 0, 1) ein Halbring und X ein Alphabet. Eine Ab-
bildung r : X∗ → A wird als (formale) Potenzreihe bezeichnet. Der Wert von r für w ∈ X∗
wird als (r, w) und r selbst als formale Summe r =

∑
w∈X∗(r, w)w notiert. Eine Potenzreihe

r heißt quasiregulär, wenn (r, λ) = 0 gilt.

Die Menge aller w ∈ X∗ mit (r, w) 6= 0 wird als Trägermenge von r, support(r), be-
zeichnet. Ist support(r) endlich, so wird r ein Polynom genannt. Die Menge der formalen
Potenzreihen wird mit A〈〈X∗〉〉, die Menge aller Polynome wird mit A〈X∗〉 bezeichnet.

Als nächstes definieren wir einige Operationen für Potenzreihen. Es seien A,B Halbringe,
a ∈ A, X, Y Alphabete, h : A→ B ein Halbringhomomorphismus, H : X∗ → Y ∗ ein Mo-
noidhomomorphismus, r, r′ Potenzreihen aus A〈〈X∗〉〉 und s eine Potenzreihe aus A〈〈Y ∗〉〉.
Dann sind die Potenzreihen r + r′, ar, ra, rr′, r � r′, H−1s, r+ ∈ A〈〈X∗〉〉, hr ∈ B〈〈X∗〉〉
und Hr ∈ A〈〈Y ∗〉〉 wie folgt definiert:

(r + r′, w) = (r, w) + (r′, w), die Summe,

(ar, w) = a(r, w), externes Produkt von links,

(ra, w) = (r, w)a, externes Produkt von rechts,

(rr′, w) =
∑

w1w2=w

(r, w1)(r
′, w2), das Produkt,

(r � r′, w) = (r, w) · (r′, w), das Hadamard-Produkt,

(hr, w) = h((r, w)),

(Hr,w) =
∑

v∈X∗,H(v)=w

(r, v), falls H nichtlöschend, d.h. (H(w) = λ→ w = λ),

(H−1s, w) = (s,H(w))

(r+, w) =
∞∑
n=1

(rn, w), falls r quasiregulär.

Eine Teilfamilie E von A〈〈X∗〉〉 heißt rational abgeschlossen, wenn für r, r′ ∈ E, a ∈ A
auch r + r′, rr′, ar, ra und für quasireguläre r auch r+ in E enthalten sind.

Kapitel 1: Grundlagen 14

Definition 1.4.3 Die Menge der A-rationalen Potenzreihen Arat〈〈X∗〉〉 ist die kleinste
rational abgeschlossene Teilmenge von A〈〈X∗〉〉, die alle Polynome enthält.

Einige wichtige Abschluß- und Entscheidbarkeitseigenschaften für rationale Potenzreihen
sowie die Zusammenhänge zwischen endlichen Automaten und rationalen Potenzreihen
werden im folgenden zusammengefaßt, siehe auch [5, 35].

Satz 1.4.1 Es seien A,B Halbringe, a ∈ A, X, Y Alphabete, h : A→ B ein Halbringhomo-
morphismus, H : X∗ → Y ∗ ein Monoidhomomorphismus, r, r′ Potenzreihen aus Arat〈〈X∗〉〉
und s eine Potenzreihe aus Brat〈〈Y ∗〉〉.
Dann sind die Potenzreihen r � r′, H−1s in Arat〈〈X∗〉〉, hr in Brat〈〈X∗〉〉 und, falls H
nichtlöschend ist, Hr in Arat〈〈Y ∗〉〉.

Satz 1.4.2 Ist L ⊆ X∗ eine reguläre Sprache, so ist die Potenzreihe CL mit (CL, w) =
χL(w) in N rat〈〈X∗〉〉 und in B rat〈〈X∗〉〉; die Potenzreihe SL mit (SL, x

n) = sL(n) ist in
N rat〈〈{x}∗〉〉.
Ist A ein endlicher Automat mit Eingabealphabet X, so ist die formale Potenzreihe DA
mit (DA, w) = dA(w) in N rat〈〈X∗〉〉.

Satz 1.4.3 Ist S eine Potenzreihe aus Z rat〈〈{x}∗〉〉, so ist die Menge {n : (S, xn) = 0}
semilinear.

Satz 1.4.4 Für Potenzreihen aus N rat〈〈{x}∗〉〉 sowie N rat
k 〈〈{x}∗〉〉, k ∈ N , ist es entscheid-

bar, ob alle Koeffizienten gleich 0 sind bzw. ob ein Koeffizient gleich 0 ist.

Für Potenzreihen aus Z rat〈〈{x}∗〉〉 ist es entscheidbar, ob alle Koeffizienten gleich 0 sind.

Satz 1.4.5 Für eine Potenzreihe S aus N rat〈〈X∗〉〉 ist es entscheidbar, ob der Wertebereich
{(S,w) : w ∈ X∗} endlich ist.

Kapitel 2

Valenzgrammatiken

In diesem Kapitel werden Valenzgrammatiken und ähnliche Konzepte untersucht. Eine Va-
lenzgrammatik ist eine kontextfreie Grammatik, wobei jeder Regel eine Bewertung (Valenz)
aus einem Monoid M zugeordnet wird. Diese Bewertung wird auf Ableitungen erweitert.
Eine Ableitung ist nur dann zulässig, wenn ihre Bewertung gleich dem neutralen Ele-
ment von M ist. Valenzgrammatiken sind eine spezielle Variante von Grammatiken mit
gesteuerter Ersetzung (regulated rewriting). Die Idee von gesteuerten Ersetzungen ist, die
Erzeugungskraft kontextfreier Grammatiken zu erhöhen und gleichzeitig positive Abschluß-
eigenschaften und Entscheidbarkeitsresultate der kontextfreien Sprachen zu bewahren, in-
dem die Anwendung der kontextfreien Regeln gesteuert wird. Eine umfassende Übersicht
zu diesem Thema findet man in [9].

Nach der formalen Definition von Valenzgrammatiken werden bereits bekannte Resultate
sowie einige Beispiele angegeben, welche die Bedeutung dieses Konzeptes hervorheben. An-
schließend wird gezeigt, daß es für Valenzgrammatiken über den Gruppen Zk Normalformen
analog zu den Chomsky- und Greibach-Normalformen für kontextfreie Grammatiken gibt.
Außerdem wird bewiesen, daß Valenzgrammatiken über beliebigen kommutativen Monoi-
den keine stärkere Erzeugungskraft als Valenzgrammatiken über der Gruppe Q+ besitzen.
Schließlich werden schlanke Valenzsprachen untersucht. Wir zeigen, daß das Problem der
k-Schlankheit für Q+-Valenzgrammatiken und gegebenes k entscheidbar ist. Außerdem
besitzen schlanke Valenzsprachen nützliche Abschlußeigenschaften. Eine interessante An-
wendung der Ergebnisse bezüglich schlanker Valenzsprachen ist der Beweis der Entscheid-
barkeit des Elementproblems für kontextfreie Kantengrammatiken, siehe Satz 3.6.5.

2.1 Definitionen und bekannte Resultate

Wir geben zunächst die Definition der Valenzgrammatik an; das Konzept der Valenzen
wird danach auf endliche Automaten und Transducer übertragen.

15

Kapitel 2: Valenzgrammatiken 16

Definition 2.1.1 Es sei M = (M, ◦, 1) ein Monoid. Eine M-Valenzgrammatik ist ein
Quadrupel G = (N, T, P, S), bestehend aus dem endlichen Alphabet der Nichtterminale
N , dem endlichen Alphabet der Terminale T mit N ∩ T = ∅, aus der endlichen Menge
von Valenzregeln P ⊂ N × (N ∪ T)∗ ×M und dem Startsymbol S ∈ N . Eine Valenzregel
p = (A,α,m) wird üblicherweise als (A → α,m) notiert, wobei A → α die Kernregel von
p und m die Valenz von p genannt werden.

Die binären Ableitungsrelationen ⇒p bzw. ⇒G über (N ∪ T)∗ ×M bezüglich einer Regel
p = (A→ α,m) bzw. bezüglich G definieren wir als

(β1,m1)⇒p (β2,m2) :⇐⇒ ∃γ1∃γ2(β1 = γ1Aγ2 ∧ β2 = γ1αγ2 ∧m2 = m1 ◦m),

(β1,m1)⇒G (β2,m2) :⇐⇒ (β1,m1)⇒p (β2,m2) für ein p ∈ P.

Die von G erzeugte Sprache ist L(G) = {w ∈ T ∗ : (S, 1)⇒∗G (w, 1)}.
Sind die Kernregeln von G kontextfrei, linear bzw. regulär, so nennen wir G eine kontext-
freie, lineare bzw. reguläre Valenzgrammatik. Die Familie der von M-Valenzgrammatiken
vom Typ X ∈ {CF,LIN,REG} erzeugten Sprachen wird mit L(Val, X,M) bezeichnet.

Definition 2.1.2 Es sei M = (M, ◦, 1) ein Monoid. Ein (nichtdeterministischer) endlicher
M-Valenzautomat ist ein Quintupel A = (Z,X, z0, δ, F), wobei Z eine endliche Menge von
Zuständen,X ein endliches Alphabet, z0 ∈ Z ein Anfangszustand, δ ⊆ Z×(X∪{λ})×Z×M
eine endliche Übergangsrelation und F ⊆ Z eine Menge von Endzuständen sind.

Eine Konfiguration von A ist ein Tripel aus Z ×X∗ ×M . Auf der Menge der Konfigura-
tionen definieren wir die binäre Relation ⇒A als:

(z1, w1,m)⇒A (z2, w2, n) :⇐⇒
∃a∃m′((z1, a, z2,m

′) ∈ δ ∧ w1 = aw2 ∧m ◦m′ = n)

Die von A akzeptierte Sprache ist L(A) = {w ∈ X∗ : ∃q(q ∈ F ∧ (z0, w, 1)⇒∗A (q, λ, 1))}.

Definition 2.1.3 Ein endlicher M-Valenztransducer über dem Monoid M = (M, ◦, 1)
ist ein Sextupel A = (Z,X, Y, z0, δ, F), wobei Z, X, z0 und F wie bei einem endlichen
Valenzautomaten definiert sind, Y ein endliches Ausgabealphabet ist und δ ⊆ Z × X∗ ×
Y ∗ × Z ×M eine endliche Übergangsrelation ist.

Eine Konfiguration von A ist ein Quadrupel aus Z × X∗ × Y ∗ ×M . Auf der Menge der
Konfigurationen definieren wir die binäre Relation ⇒A als:

(z1, v1, w1,m)⇒A (z2, v2, w2, n) :⇐⇒
∃α∃β∃m′((z1, α, β, z2,m

′) ∈ δ ∧ v1 = αv2 ∧ w2 = w1β ∧m ◦m′ = n)

Die von A definierte Transduktion ist

τA = {(v, w) ∈ X∗ × Y ∗ : ∃q(q ∈ F ∧ (z0, v, λ, 1)⇒∗A (q, λ, w, 1))}.

Eine Relation R ⊆ X∗×Y ∗ heißt rationale M-Valenztransduktion, falls es einen endlichen
M-Valenztransducer A mit R = τA gibt.

Kapitel 2: Valenzgrammatiken 17

Bemerkung. Valenzgrammatiken wurden 1980 von Păun [28] zunächst über den Grup-
pen Z = (Z ,+, 0) und Q+ = (Q , ·, 1) eingeführt. Unabhängig davon wurden etwa zur
gleichen Zeit endliche Automaten mit Multiplikation (Q+-Valenzautomaten) durch Ibar-

ra, Sahni, Kim [19], blinde Zählerautomaten (Zk-Valenzautomaten mit k ∈ N) durch
Greibach [16] sowie endliche Automaten über Gruppen durch Redko und Lisovik [30]
untersucht.

Da der Ableitungsprozeß in Valenzgrammatiken dem in gewöhnlichen kontextfreien Gram-
matiken sehr ähnlich ist, lassen sich einige Eigenschaften aus der klassischen Theorie for-
maler Sprachen direkt übertragen:

Satz 2.1.1 Es sei M ein Monoid.

1. Die Familien L(Val, X,M), X ∈ {CF,LIN,REG}, sind abgeschlossen unter Vereini-
gung und regulären Transduktionen [15].

2. Die Familie der von endlichen M-Valenzautomaten akzeptierten Sprachen und die
Familie L(Val,REG,M) sind identisch.

Beweis. (zu 2.) Der Beweis der Äquivalenz von nichtdeterministischen endlichen Automa-
ten mit spontanen Transitionen und regulären Grammatiken (siehe z.B. [18, Satz 9.1,9.2])
läßt sich wörtlich (unter Berücksichtigung der Valenzen) übertragen. 2

Für das spezielle Steuermonoid Q+ = (Q +, ·, 1) gelten zusätzliche Abschlußeigenschaften:

Satz 2.1.2 1. Die Familien L(Val, X,Q+), X ∈ {CF,LIN,REG}, sind abgeschlossen
unter Q+-Valenztransduktionen [39].

(Genauer: Ist L aus L(Val, X,Zm) und ist τ eine Zn-Valenztransduktion (m,n ≥ 0),
so gilt τ(L) ∈ L(Val, X,Zm+n).)

2. Die Familien L(Val,CF,Q+), X ∈ {CF,REG}, sind zusätzlich abgeschlossen unter
Konkatenation [9].

Bezüglich der Erzeugungskraft von Valenzgrammatiken mit verschiedenen Steuermonoiden
sind folgende Resultate bekannt.

Satz 2.1.3 1. Für X ∈ {CF,LIN,REG} gilt:
L(Val, X,Zi) ⊂ L(Val, X,Zi+1), i ≥ 0, [38].⋃∞
i=1L(Val, X,Zi) = L(Val, X,Q+) = L(UV, X), [9, Theorem 2.1.4].

Dabei ist L(UV, X) die Familie der Sprachen, die durch ungeordnete Vektorgram-
matiken (siehe [9, Definition 2.1.4]) erzeugbar sind.

2.
⋃

M endlichL(Val, X,M) = L(MAT, X) [15].
Dabei ist L(MAT, X) die Familie der Sprachen, die durch Matrixgrammatiken (siehe
[9, Definition 1.1.1]) erzeugbar sind.

Kapitel 2: Valenzgrammatiken 18

3. L(Val,REG, F2) = L(CF) [30],
L(Val,REG, F2 × F2) = L(RE) [27],
L(MAT,CF) ⊆ L(Val,CF, F2) ⊆ L(RE) [26].
Dabei ist F2 die von zwei Elementen frei erzeugte Gruppe.

Die Sprachfamilie L(Val,REG,Z) ist echt in L(CF) enthalten und unvergleichbar mit
L(LIN). Von Interesse ist der Durchschnitt von L(Val,REG,Z) und L(LIN). Dieser enthält
die Familie der von blinden one-turn Zählerautomaten akzeptierten Sprachen. Ein blinder
one-turn Zählerautomat ist ein blinder 1-Zählerautomat, der nach Anwendung einer Tran-
sition der Form (z1, x, z2,−m) (m > 0) keine Transition der Form (z′1, x

′, z′2, n) (n > 0)
ausführen darf, formal:

Definition 2.1.4 Es sei A = (Z,X, z0, δ, F) ein blinder 1-Zählerautomat. Die Mengen Z+

und Z− seien definiert als:

Z+ = {z1 ∈ Z : ∃a∃z2∃m((z1, a, z2,m) ∈ δ ∧m > 0)}
Z− = {z2 ∈ Z : ∃a∃z2∃m((z1, a, z2,−m) ∈ δ ∧m > 0)}

A heißt blinder one-turn Zählerautomat, wenn aus (z1, w1,m)⇒∗A (z2, w2, n) und z1 ∈ Z−
stets z2 /∈ Z+ folgt.

Satz 2.1.4 Die Familie der von blinden one-turn Zählerautomaten akzeptierten Sprachen
ist in L(Val,REG,Z) ∩ L(LIN) enthalten.

Beweis. Ein blinder 1-Zählerautomat kann durch einen Kellerautomaten simuliert wer-
den. Analog kann man blinde one-turn Zählerautomaten durch one-turn Kellerautomaten
simulieren, die wiederum zu linearen Grammatiken äquivalent sind. 2

Als nächstes soll für zwei wichtige Operationen gezeigt werden, daß sie Spezialfälle von
Valenztransduktionen sind. Es handelt sich um den Durchschnitt mit regulären Valenz-
sprachen und die Permutation.

Satz 2.1.5 Für jedes Monoid M und jede Sprache L ∈ L(Val,REG,M) ist IdL eine M-
Valenztransduktion.

Beweis. Es sei A ein M-Valenzautomat mit L(A) = L. Einen M-Valenztransducer für IdL
erhält man, indem man jede Transition (z, a, z′,m) in A durch die Transition (z, a, a, z′,m)
ersetzt, also die Eingabe ausgibt. 2

Satz 2.1.6 Es sei X = {a1, . . . , ar} ein Alphabet und Ψ : X∗ → N r eine Parikh-Abbildung.
Perm := {(v, w) : Ψ(v) = Ψ(w)} ist eine Zr-Valenztransduktion.

Kapitel 2: Valenzgrammatiken 19

Beweis. Ein entsprechender Zr-Valenztransducer ist A = ({q}, X,X, q, δ, {q}) mit
δ = {(q, ai, aj, q, ~ei − ~ej) : 1 ≤ i, j ≤ r}. 2

Eine wichtige Eigenschaft von Q+-Valenzsprachen ist die Semilinearität ihrer Parikh-
Mengen, siehe [9, Lemma 2.1.9]. Gewissermaßen als Umkehrung zeigen wir, daß das Urbild
einer semilinearen Menge eine reguläre Q+-Valenzsprache ist. Dies ist auch eine interes-
sante Erweiterung des bekannten Satzes, daß jede semilineare Menge das Parikh-Bild einer
regulären Sprache ist.

Satz 2.1.7 Es seien X = {a1, . . . , ar} ein Alphabet, Ψ : X∗ → N r eine Parikh-Abbildung
und S ⊆ N r eine semilineare Menge. Die Sprache Ψ−1(S) = {w ∈ X∗ : Ψ(w) ∈ S} ist in
L(Val,REG,Zr).

Beweis. Für jede reguläre Sprache L ⊆ X∗ ist Perm(L) in L(Val,REG,Zr), da die
Permutation über X eine Zr-Valenztransduktion ist. Nach dem Satz von Parikh gibt es
eine reguläre Sprache LS ⊆ X∗ mit Ψ(LS) = S. Wegen Perm(LS) = Ψ−1(Ψ(LS)) = Ψ−1(S)
folgt die Behauptung. 2

Eine der Steuerung durch Valenzen ähnliche Idee ist, die Bewertung nicht den Regeln, son-
dern den Terminalsymbolen zuzuordnen. Ein von einer Grammatik erzeugtes Wort wird
genau dann in die Sprache aufgenommen, wenn es mit dem neutralen Element des zugehöri-
gen Monoides bewertet wird. Wir untersuchen diese Art von Grammatiken mit bewertetem
Alphabet, da sich die Kantensprache einer Kantengrammatik als eine Sprache über einem
bewerteten Alphabet auffassen läßt, siehe Abschnitt 3.2.

Definition 2.1.5 Es seien T ein Alphabet, M = (M, ◦, 1) ein Monoid und ϕ : T ∗ → M
ein Monoidhomomorphismus, der als Bewertung (valuation) bezeichnet wird. Für eine
Grammatik G = (N, T, P, S) und eine Bewertung ϕ definieren wir die erzeugte Sprache
als
L(G,ϕ) = {w ∈ L(G) : ϕ(w) = 1}.
Die Familie der Sprachen, die durch Grammatiken vom Typ X ∈ {CF,LIN,REG} mit
einer Bewertung über dem Monoid M erzeugbar sind, wird mit L(Val′, X,M) bezeichnet.

Ein Beispiel für eine Sprache aus L(Val′,REG,Z2) ist {anbncn : n ≥ 0} mit der Bewertung
ϕ(a) = (1, 1), ϕ(b) = (−1, 0), ϕ(c) = (0,−1). Dagegen läßt sich die Sprache L = {akbmcn :
k ≥ m ≥ n ≥ 0} nicht durch eine kontextfreie Grammatik mit bewertetem Alphabet
(über einem beliebigen Monoid) erzeugen, da sowohl a (wegen a ∈ L) als auch b (wegen
ab ∈ L) als auch c (wegen abc ∈ L) mit dem neutralen Element bewertet sein müßten.
Folgender Zusammenhang besteht zwischen Grammatiken mit bewertetem Alphabet und
Valenzgrammatiken:

Satz 2.1.8 Ist M = (M, ◦, 1) kommutativ, so gilt L(X) ⊆ L(Val′, X,M) ⊆ L(Val, X,M)
für X ∈ {CF,LIN}.
Für beliebige Monoide M = (M, ◦, 1) gilt L(X) ⊆ L(Val′,REG,M) ⊆ L(Val,REG,M).

Kapitel 2: Valenzgrammatiken 20

Beweis. Es seien G = (N, T, P, S) eine kontextfreie Grammatik und ϕ : T ∗ → M eine
Bewertung. Die Abbildung ϕ wird auf (N ∪ T)∗ fortgesetzt, indem ϕ(A) für alle A ∈ N
auf 1 gesetzt wird. Wir wählen H als die M-Valenzgrammatik H = (N, T, P ′, S) mit
P ′ = {(A→ α, ϕ(α)) : A→ α ∈ P}. Durch Induktion über die Zahl der Ableitungsschritte
zeigt man leicht, daß für kommutatives M ein Paar (α, r) genau dann in H ableitbar ist,
wenn α in G ableitbar ist und r = ϕ(α) gilt. Im Falle regulärer Grammatiken kann auf die
Kommutativität verzichtet werden. 2

2.2 Beispiele

Beispiel 2.2.1 Die Sprache L = {a, b}∗ \ {(akb)k+1 : k ≥ 0} wird von einem blinden one-
turn Zählerautomaten erkannt. Ein Wort w = an1ban2b · · ·ankb · · ·ank+1b ist genau dann in
L, wenn eine der Bedingungen (a)-(d) zutrifft: (a) nj > nj+1 für ein j < k, (b) nj < nj+1 für
ein j < k, (c) n1 > k, (d) n1 < k. Ein Wort besitzt Eigenschaft (a) genau dann, wenn es ein
Teilwort der Form am+1bamb besitzt. Folglich wird die Menge aller Wörter mit Eigenschaft
(a) durch den one-turn Zählerautomaten A = ({z0, z1, z2, z3}, {a, b}, z0, δ, {z3}),

δ = {(z0, a, z0, 0), (z0, b, z0, 0), (z0, a, z1, 1), (z1, a, z1, 1), (z1, b, z2, 0),

(z2, a, z2,−1), (z2, b, z2,−1), (z3, a, z3, 0), (z3, b, z3, 0)}

akzeptiert. Analog konstruiert man one-turn Zählerautomaten B bzw. C bzw. D, die alle
Wörter mit den Eigenschaften (b) bzw. (c) bzw. (d) akzeptieren.

Beispiel 2.2.2 Es sei L = {a1a2, b1b2}∗ und M das syntaktische Monoid von L. Die M-
Valenzgrammatik G = ({S,A,B}, {a, b}, P, S) mit

P = {(S → AB, [λ]L), (A→ aA, [a1]L), (A→ bA, [b1]L), (A→ λ, [λ]L),

(B → aB, [a2]L), (B → bB, [b2]L), (B → λ, [λ]L)}

erzeugt die Sprache {ww : w ∈ {a, b}∗}.

Beispiel 2.2.3 Interessante Zusammenhänge gibt es zwischen Valenztransducern und dem
Problem der ungefähren Übereinstimmung (approximate matching) zweier Wörter. Für
zwei Wörter gleicher Länge v = a1 . . . an und w = b1 . . . bn ist der Hamming-Abstand
dH(v, w) definiert als dH(v, w) = card {k : ak 6= bk}.
Der Levenshtejn-Abstand dL ist zwischen Wörtern beliebiger Länge über einem Alphabet
X wie folgt definiert: Es seien # /∈ X ein Blanksymbol und h : (X ∪ {#})∗ → X∗ der
Homomorphismus mit h(a) = a, a ∈ X, h(#) = λ. (h−1(v) ist also für v ∈ X∗ die Menge
aller Wörter, die aus v durch Einfügen von Blanksymbolen hervorgehen.) Für v, w ∈ X∗
ist

dL(v, w) = min{dH(v′, w′) : v′ ∈ h−1(v), w′ ∈ h−1(w), |v′| = |w′|}.

Kapitel 2: Valenzgrammatiken 21

Der Levenshtejn-Abstand von v und w kann als die minimale Anzahl der Operationen
,,Löschen”, ,,Einfügen”, ,,Ersetzen eines Zeichens” angesehen werden, die man benötigt,
um von v nach w zu gelangen. Deshalb wird er auch als edit distance bezeichnet.

Es sei k ∈ N eine Konstante. Die Relation R1/k = {(v, w) : dL(v, w) ≤ |v|/k} ist eine ra-
tionale Z-Valenztransduktion. Ein zugehöriger Valenztransducer ist A = (Z,X,X, z0, δ, Z)
mit Z = {z0, . . . , zk} und

δ = {(zi, a, a, zi+1, 0) : a ∈ X, 0 ≤ i ≤ k − 1} ∪
{(zi, a, b, zi+1, 1) : a ∈ X, b ∈ X ∪ {λ}, a 6= b, 0 ≤ i ≤ k − 1} ∪
{(zi, λ, b, zi, 1) : b ∈ X, 0 ≤ i ≤ k − 1} ∪
{(zk, λ, λ, z0, r) : r ∈ {−1, 0}}.

Mittels der Zustände wird die Länge der Eingabe modulo k gezählt; für jede Nichtüber-
einstimmung von Eingabe und Ausgabe wird der Zähler inkrementiert; nach einem Block
von k Eingabesymbolen darf der Zähler in einem λ-Übergang dekrementiert werden.

Die Konstruktion läßt sich auch auf die in der Molekularbiologie gebräuchlichen Ähnlich-
keitsfunktionen mit affinen Gap-Kosten ausdehnen.

2.3 Ableitungsbäume für Valenzgrammatiken

Ein wichtiges Hilfsmittel aus der Theorie der kontextfreien Sprachen sind Ableitungsbäume,
siehe z.B. [18, Abschnitt 4.3]. Dieser Begriff läßt sich auf Valenzgrammatiken verallgemei-
nern.

Definition 2.3.1 Es seien M = (M, ◦, 1) ein Monoid und G = (N, T, P, S) eine kontext-
freie M-Valenzgrammatik. Ein Ableitungsbaum in G ist ein gerichteter Baum D = (V,E),
der den folgenden Bedingungen genügt:

1. Jeder Knoten v von D besitzt eine Markierung Label(v) ∈ N ∪ T ∪ {λ}; jeder innere
Knoten v besitzt außerdem eine Bewertung Value(v) ∈M .

2. Die Söhne eines inneren Knotens sind von links nach rechts geordnet. Besitzt ein
innerer Knoten die Markierung A und die Bewertung m und sind seine Söhne von
links nach rechts mit X1, . . . , Xk markiert, so gibt es in G die Valenzregel
(A→ X1 · · ·Xk,m).

3. Wenn ein Knoten die Markierung λ hat, so ist er ein Blatt und der einzige Sohn
seines Vaters.

Die Ordnung der Söhne von links nach rechts und die Halbordnung E∗ können auf eine
Ordnung ≤DFS aller Knoten von V wie folgt erweitert werden. Es seien v, w ∈ V .

Kapitel 2: Valenzgrammatiken 22

• Aus (v, w) ∈ E∗ folgt v ≤DFS w.

• Sind v und w Söhne des gleichen Vaters und ist v links von w, so ist v ≤DFS w.

• Anderenfalls sei u der letzte gemeinsame Vorgänger von v und w und v′ sowie w′ die
Söhne von u auf den Pfaden nach v sowie w. Ist v′ links von w′, so gilt v ≤DFS w.

Diese Ordnung entspricht der Reihenfolge bei der Tiefensuche (depth first search), wobei
die Suche von einem Knoten von links nach rechts erfolgt. Deshalb bezeichnen wir diese
Ordnung als DFS-Ordnung.

Die Markierungen der Blätter ergeben von links nach rechts (d.h. in der DFS-Ordnung)
ein Wort aus (N ∪ T)∗, die Front des Ableitungsbaumes Front(D).

Wir nennen eine Ordnung ≤ auf den inneren Knoten von D zulässig, wenn sie eine Ver-
feinerung von E∗ darstellt (d.h., für alle inneren Knoten v, w gilt: (v, w) ∈ E∗ → v ≤ w).
Eine zulässige Ordnung ist z.B. die DFS-Ordnung. Die Bewertung des Ableitungsbaumes
bezüglich einer zulässigen Ordnung ≤ der inneren Knoten ergibt sich als

Value(D,≤) = Value(v1) ◦ Value(v2) ◦ . . . ◦ Value(vj),

v1, v2, . . . , vj sind die inneren Knoten, geordnet bzgl. ≤

Satz 2.3.1 Sei G = (N, T, P, S) eine kontextfreie M-Valenzgrammatik mit M = (M, ◦, 1).
Für A ∈ N,α ∈ (N ∪ T)∗,m ∈ M gilt (A, 1) ⇒∗G (α,m) genau dann, wenn es einen
Ableitungsbaum D = (V,E) in G mit der Wurzelmarkierung A, Front(D) = α und eine
zulässige Ordnung ≤ mit Value(D,≤) = m gibt.

Beweis. Der Beweis wird durch vollständige Induktion über die Zahl der Ableitungs-
schritte bzw. die Zahl der inneren Knoten eines Ableitungsbaumes geführt. Wegen der im
allgemeinen nichtkommutierenden Valenzen können Unterableitungen nicht unabhängig
voneinander betrachtet werden. Deshalb ist die Strategie des Beweises von [18, Satz 4.1]
(im Induktionsschritt werden der erste Ableitungsschritt bzw. die Wurzel des Ableitungs-
baumes sowie die Unterableitungen bzw. die Unterbäume betrachtet) nicht auf Valenz-
grammatiken übertragbar; wir betrachten den letzten Ableitungsschritt bzw. ein Blatt des
Ableitungsbaumes.

Für Ableitungen mit null Schritten und für Ableitungsbäume mit null inneren Knoten gilt
die Äquivalenz offensichtlich.

Sei nun für alle 0 ≤ i < n gezeigt, daß es genau dann eine Ableitung (A, 1) ⇒i
G (α,m)

gibt, wenn ein Ableitungsbaum D = (V,E) mit Wurzelmarkierung A, i inneren Knoten
und einer zulässigen Ordnung ≤ existiert, so daß Front(D) = α, Value(D,≤) = m gilt.

Wir betrachten eine Ableitung (A, 1) ⇒n
G (α,m). Nach der Definition der Ableitungsre-

lation gibt es B ∈ N,α1, α2, β ∈ (N ∪ T)∗,m1,m2 ∈ M mit α = α1βα2, m = m1 ◦ m2,
(A, 1) ⇒n−1

G (α1Bα2,m1), (B → β,m2) ∈ P . Nach Induktionsvoraussetzung gibt es einen
Ableitungsbaum D = (V,E) mit (n− 1) inneren Knoten mit einer zulässigen Ordnung ≤,

Kapitel 2: Valenzgrammatiken 23

so daß Front(D) = α1Bα2, Value(D,≤) = m1 erfüllt ist. Es sei b das in der DFS-Ordnung
(|α1| + 1)-te Blatt von D. Es hat die Markierung B. Fügt man zu D noch Blätter als
Söhne von b hinzu, deren Markierungen von links nach rechts β ergeben, und bekommt b
die Bewertung m2, so ist wegen (B → β,m2) ∈ P der entstandene Baum D′ = (V ′, E′) ein
Ableitungsbaum mit Wurzelmarkierung A, n inneren Knoten und Front(D′) = α. Die auf
den inneren Knoten von D′ definierte Ordnungsrelation ≤′ mit (v ≤ w) ⇐⇒ (v ≤′ w) für
alle inneren Knoten v, w in D und v ≤′ b für alle inneren Knoten v in D′ ist zulässig. Es
ist Value(D′,≤′) = m1 ◦m2.

Umgekehrt sei D = (V,E) ein Ableitungsbaum mit n inneren Knoten und einer zulässigen
Ordnung ≤. Ist v der bezüglich ≤ maximale innere Knoten, so sind alle Söhne von v
Blätter. Entfernt man aus D die Söhne von v und streicht die Bewertung von v, so ist der
entstandene Baum D′ ein Ableitungsbaum mit n−1 inneren Knoten (v ist jetzt ein Blatt).
Die Einschränkung ≤′ von ≤ auf die inneren Knoten von D′ ist eine zulässige Ordnung
für D′. Ist B die Markierung von v und β die Markierung der Söhne von v von links nach
rechts, so gibt es α1, α2 ∈ (N ∪ T)∗ mit Front(D) = α1βα2,Front(D′) = α1Bα2. Es gilt
außerdem m = m1 ◦m2 für m = Value(D,≤), m1 = Value(D′,≤′), m2 = Value(v) (in D).
Nach Induktionsvoraussetzung gibt es eine Ableitung (A, 1) ⇒n−1

G (α1Bα2,m1). Nach der
Definition eines Ableitungsbaumes gibt es eine Valenzregel (B → β,m2). Damit existiert
auch eine Ableitung (A, 1)⇒n

G (α1βα2,m). 2

Falls M kommutativ ist, hat die Ordnungsrelation keinen Einfluß auf die Bewertung des
Ableitungsbaumes:

Satz 2.3.2 Es seien M = (M, ◦, 1) ein kommutatives Monoid und G = (N, T, P, S) eine
kontextfreie M-Valenzgrammatik. Für A ∈ N,α ∈ (N ∪ T)∗,m ∈M gilt (A, 1)⇒∗G (α,m)
genau dann, wenn es einen Ableitungsbaum D = (V,E) in G mit der Wurzelmarkierung
A, Front(D) = α und Value(D,≤DFS) = m gibt.

Daraus folgt, daß man Induktionsbeweise über die Zahl der Ableitungsschritte für Va-
lenzgrammatiken über kommutativen Monoiden ähnlich wie für kontextfreie Grammatiken
führen kann:

Behauptung 2.3.3 Es seien M = (M, ◦, 1) ein kommutatives Monoid und G = (N, T, P, S)
eine kontextfreie M-Valenzgrammatik. Für n ≥ 2, A ∈ N , α ∈ (N ∪ T)∗, r ∈ M gilt
(A, 1)⇒n

G (α, r) genau dann, wenn es eine Regel (A→ I1 . . . Im, r0) mit I1, . . . , Im ∈ N ∪T
sowie α1, . . . , αm ∈ (N ∪ T)∗, n1, . . . , nm ∈ N und r1, . . . , rm ∈ M derart gibt, daß
α = α1 · · ·αm, n = n1 + . . . + nm + 1, r = r0 ◦ r1 ◦ . . . ◦ rm und (Ij , 1) ⇒nj

G (αj , rj)
für j = 1, . . . ,m gilt.

Beweis. Es sei D ein der Ableitung (A, 1) ⇒n
G (α, r) entsprechender Ableitungsbaum.

Die Wurzel von D sei w, die Söhne von w seien von links nach rechts v1, . . . , vk. Es seien
D1, . . . , Dk die Unterbäume mit den Wurzeln v1, . . . , vk. Die Front von D ergibt sich als
Front(D1) · · ·Front(Dk), die Bewertung von D bzgl. der DFS-Ordnung ist

Value(D,≤DFS) = Value(w) ◦ Value(D1,≤DFS) ◦ · · · ◦ Value(Dk,≤DFS).

Kapitel 2: Valenzgrammatiken 24

Die Behauptung folgt nun sofort aus dem vorigen Satz. 2

2.4 Normalformen für Valenzgrammatiken

In diesem Abschnitt wird gezeigt, daß es – analog zu den Chomsky- und Greibach - Nor-
malformen für kontextfreie Grammatiken – Normalformen für Zk-Valenzgrammatiken gibt.
Das Hauptresultat dieses Abschnittes ist der folgende

Satz 2.4.1 Zu jeder Zk-Valenzgrammatik G gibt es äquivalente Zk-Valenzgrammatiken
Gi = (Ni, T, Pi, Si), i = 1, 2, 3, wobei die Valenzregeln der einzelnen Grammatiken fol-
gende Formen haben:

• G1: (A→ BC,~r) bzw. (A→ a,~0) mit A,B,C ∈ N1, a ∈ T, ||~r||1 ≤ 1;

• G2: (A→ BC,~0) bzw. (A→ a,~r) mit A,B,C ∈ N2, a ∈ T, ||~r||1 ≤ 1;

• G3: (A→ aα,~r) mit A ∈ N3, α ∈ N∗3a ∈ T, ||~r||1 ≤ 1.

Dabei und im folgenden verwenden wir die Konvention, daß A,B,C Nichtterminalsymbole,
a ein Terminalsymbol und α ein Nichtterminalwort sind.

Eine Konsequenz aus Satz 2.4.1 ist, daß Normalformen auch für ungeordnete Vektorgram-
matiken existieren und die Sprachfamilie L(Val,CF,Q+) = L(UV,CF) in der Komple-
xitätsklasse LOGCFL enthalten ist. In [36] zeigte Satta das Komplexitätsresultat; die
Frage nach Normalformen blieb jedoch offen.

Da der Beweis von Satz 2.4.1 recht aufwendig ist, wird er in eine Reihe von Behauptungen
zerlegt. Die meisten Beweise beruhen auf dem in Behauptung 2.3.3 gezeigten Induktions-
prinzip. Behauptung 2.4.2 ist ein Analogon zum bekannten Satz von Parikh, daß zu jeder
kontextfreien Sprache eine Parikh-äquivalente reguläre Sprache existiert. In den Behaup-
tungen 2.4.3–2.4.5 werden die Regeln der Form A→ λ beseitigt; anschließend wird in den
Behauptungen 2.4.6–2.4.10 gezeigt, daß auch Kettenregeln der Form A → B eliminiert
werden können; schließlich werden in den Behauptungen 2.4.11–2.4.15 die Valenzvektoren
normiert und die gewünschten Normalformen hergestellt.

Das Alphabet Σk sei für k ≥ 1 im folgenden als Σk = {X1, . . . , Xk}∪{Y1, . . . , Yk} definiert.
Zwischen Z k und Σk definieren wir die Abbildungen:

word : Z k → Σ∗k mit word

(
k∑
i=1

ri~ei

)
= C

|r1|
1 · · ·C |rk|k , Ci =

{
Xi, falls ri ≥ 0
Yi, falls ri < 0

vector : Σ∗k → Z k mit vector(α) =
k∑
i=1

(|α|Xi − |α|Yi)~ei

Die Abbildung vector wird im folgenden häufig auf Σ∗ mit Σk ⊆ Σ erweitert vermöge
vector(α) = vector(πΣk(α)) für α ∈ Σ∗.

Kapitel 2: Valenzgrammatiken 25

Behauptung 2.4.2 Zu jeder kontextfreien Zk-Valenzgrammatik G = (N, T, P, S) mit Kern-
regeln der Form A→ α, A ∈ N,α ∈ N∗, existiert eine reguläre Zk-Valenzgrammatik H, so
daß (λ,~r) genau dann in G ableitbar ist, wenn (λ,~r) in H ableitbar ist. Dabei kann man
H so wählen, daß (λ,~r) in genau ||~r||1 + 1 Schritten ableitbar ist.

Beweis. Es sei G′ die kontextfreie Grammatik G′ = (N,Σk, P
′, S) mit der Regelmenge

P ′ = {A → αword(~r) : α ∈ N∗, (A → α,~r) ∈ P}. Es gilt (A,~0) ⇒∗G (λ,~r) genau dann,
wenn es ein β ∈ Σ∗k mit A⇒∗G′ β und vector(β) = ~r gibt.

Als nächstes zeigen wir, daß die Relation

τ ⊆ Σ∗k × Σ∗k mit τ = {(v, w) : vector(v) = vector(w)}

eine rationale Zk-Valenztransduktion ist. Ein zugehöriger Zk-Valenztransducer ist
A = ({z},Σk,Σk, z, δ, {z}) mit

δ = {(z, a, b, z, vector(a)− vector(b)) : a, b ∈ Σk ∪ {λ}} .

Damit ist L′ := τ(L(G′)) = {β ∈ Σ∗k : (S,~0) ⇒∗G (λ, vector(β))}. Die Sprache L′′ =
{word(~r) : (S,~0)⇒∗G (λ,~r)} ergibt sich als L′′ = L′ ∩ ({X1}∗ ∪ {Y1}∗) · · · ({Xk}∗ ∪ {Yk}∗).
Wegen der Abschlußeigenschaften der Familie der Valenzsprachen ist L′′ ∈ L(Val,CF,Zk).
Da die Parikh-Menge einer Sprache aus L(Val,CF,Zk) semilinear ist, siehe [9, Lemma
2.1.9], existiert eine reguläre Grammatik H ′ mit Regeln der Form A → aB,A → λ mit
Ψ(L(H ′)) = Ψ(L′′).

Nach den Konstruktionen gilt

vector(L(H ′)) = vector(L′′) = vector(L′) = vector(L(G′)) = {~r : (S,~0)⇒∗G (λ,~r)}.

Dabei folgt die erste Gleichheit aus der Inklusion (Ψ(α) = Ψ(β)→ vector(α) = vector(β)).

Schließlich konstruieren wir aus H ′ die gesuchte reguläre Valenzgrammatik H, indem jede
Regel A → aB in die Valenzregel (A → B, vector(a)) umgeformt wird und die Regeln
A → λ durch die Valenzregeln (A → λ,~0) ersetzt werden. In H ist (λ,~r) genau dann
ableitbar, wenn es ein Wort β ∈ L(H ′) mit vector(β) = ~r gibt, d.h. genau dann, wenn
(λ,~r) in G ableitbar ist.

Ferner läßt sich feststellen, daß ||vector(β)||1 = |β| für β ∈ L(H ′) gilt. Mithin läßt sich
jedes in H ableitbare Paar (λ,~r) in genau ||~r||1 + 1 Schritten ableiten. 2

Behauptung 2.4.3 Zu jeder Zk-Valenzgrammatik existiert eine äquivalente Zk - Valenz-
grammatik mit Kernregeln der Form A→ BC, A→ B, A→ a, A→ λ.

Beweis. Es sei G = (N, T, P, S) eine Zk-Valenzgrammatik. Zunächst führt man für jedes
Terminalsymbol a ein neues Nichtterminal a′ ein. Auf jeder rechten Regelseite wird a durch
a′ ersetzt; es werden die Valenzregeln (a′ → a,~0) für alle a ∈ T hinzugefügt.

Kapitel 2: Valenzgrammatiken 26

Anschließend werden für jede Valenzregel p = (A → B1 . . . Bm, ~r) mit m ≥ 3 die neuen

Nichtterminale A
(p)
1 , . . . , A

(p)
m−2 und die Valenzregeln

(A→ B1A
(p)
1 , ~r), . . . , (A

(p)
i → Bi+1A

(p)
i+1,~0), 1 ≤ i ≤ m− 3, (A

(p)
m−2 → Bm−1Bm,~0)

eingeführt. 2

Behauptung 2.4.4 Zu jeder kontextfreien Zk-Valenzgrammatik existiert eine äquivalente
Zk-Valenzgrammatik G′ = (N ∪N ′, T, P ′, S) mit N ′ ∩N = ∅, wobei die Kernregeln von P ′

eine der folgenden Formen besitzen:

A→ BC,A→ B′C,A→ BC ′, A′ → B′C ′, A→ B,A′ → B′, A→ a,A′ → λ

mit A,B,C ∈ N,A′, B′, C ′ ∈ N ′, a ∈ T.

Beweis. Es sei G = (N, T, P, S) eine Zk-Valenzgrammatik mit Regeln wie in Behaup-
tung 2.4.3. Wir konstruieren jetzt die Valenzgrammatik G′ = (N ∪N ′, T, P ′, S). Dabei ist
N ′ eine disjunkte Kopie von N (die Kopie von A ∈ N wird mit A′ bezeichnet), und die
Regelmenge ergibt sich als

P ′ = {(A→ BC,~r), (A→ B′C,~r), (A→ BC ′, ~r), (A′ → B′C ′, ~r) : (A→ BC,~r) ∈ P} ∪
{(A→ B,~r), (A′ → B′, ~r) : (A→ B,~r) ∈ P} ∪
{(A→ a,~r) : (A→ a,~r) ∈ P} ∪ {(A′ → λ,~r) : (A→ λ,~r) ∈ P}

Durch vollständige Induktion über die Zahl der Ableitungsschritte entsprechend Behaup-
tung 2.3.3 zeigt man leicht:

1. Das einzige aus A′ ∈ N ′ ableitbare Terminalwort ist λ; es gilt (A′,~0)⇒∗G′ (λ,~r) genau
dann, wenn (A,~0)⇒∗G (λ,~r) gilt.

2. Für A ∈ N,w ∈ T ∗, ~r ∈ Z k gilt (A,~0) ⇒∗G′ (w,~r) genau dann, wenn w 6= λ und
(A,~0)⇒∗G (w,~r). 2

Behauptung 2.4.5 Zu jeder kontextfreien Zk-Valenzgrammatik gibt es eine äquivalente
Zk-Valenzgrammatik mit Kernregeln der Form A→ BC, A→ B, A→ a.

Beweis. Es sei G = (N ∪ N ′, T, P ′, S) eine wie in Behauptung 2.4.4 konstruierte Va-
lenzgrammatik. Wir zerlegen P ′ als P ′ = P1 ∪ P2 ∪ P3, wobei die Kernregeln von P1

bzw. P2 bzw. P3 die Form A → BC,A → B,A → a bzw. A → B′C,A → BC ′ bzw.
A′ → B′C ′, A′ → B′, A′ → λ mit A,B,C ∈ N,A′, B′, C ′ ∈ N ′, a ∈ T besitzen.

Für alle A′ ∈ N ′ kann man gemäß Behauptung 2.4.2 eine reguläre Valenzgrammatik HA′ =
(NA′, T, PA′, SA′) konstruieren, so daß das Paar (λ,~r) genau dann in HA′ ableitbar ist, wenn

Kapitel 2: Valenzgrammatiken 27

es in G eine Ableitung (A′,~0) ⇒∗G (λ,~r) gibt. Man kann o.B.d.A. verlangen, daß NA′ und
NB′ für A′ 6= B′ disjunkt sind.

Es sei H ′ = (NH′ , T, PH′, S) die Valenzgrammatik mit NH′ = N ∪
⋃
A′∈N ′ NA′ und

PH′ = P1 ∪
⋃

B′∈N ′
PB′ ∪

{(A→ SB′C,~r) : (A→ B′C,~r) ∈ P2} ∪
{(A→ SC′B,~r) : (A→ BC ′, ~r) ∈ P2}

Durch vollständige Induktion über die Anzahl der Ableitungsschritte zeigt man leicht

(A,~0)⇒∗G (w,~r) ⇐⇒ (A,~0)⇒∗H′ (w,~r) für A ∈ N,w ∈ T+, ~r ∈ Z k

und folglich L(H ′) = L(G).

Schließlich konstruieren wir die Valenzgrammatik H = (NH , T, PH , S) mit NH = N ∪⋃
A′∈N ′(NA′ ×N) und den folgenden Valenzregeln:

PH = P1 ∪ {(A→ (SB′ , C), ~r) : (A→ SB′C,~r) ∈ PH′} ∪⋃
C∈N

⋃
B′∈N ′

{((X,C)→ (Y,C), ~r) : (X → Y,~r) ∈ PB′} ∪⋃
C∈N

⋃
B′∈N ′

{((X,C)→ C,~r) : (X → λ,~r) ∈ PB′}

Wie man leicht durch Induktion über die Zahl der Ableitungsschritte sieht, existiert für
Y ∈ NB′ , B

′ ∈ N ′, C ∈ N , w ∈ T+, ~r ∈ Z k eine Ableitung ((Y,C),~0) ⇒∗H (w,~r) genau
dann, wenn es Ableitungen (Y,~0) ⇒∗GB′ (C,~r1) und (C,~r1) ⇒∗H′ (w,~r) gibt. Daraus folgt

ebenfalls per Induktion, daß eine Ableitung (A,~0) ⇒∗H (w,~r) genau dann existiert, wenn
es auch in H ′ eine solche Ableitung gibt. Folglich ist H äquivalent zu H ′ und damit zu G.

2

Definition 2.4.1 Es sei G = (N, T, P, S) eine Zk-Valenzgrammatik mit Kernregeln der
Form A→ BC,A→ B,A→ a. Ein Loop ist eine Ableitung (A,~0)⇒∗G (A,~r) mit A ∈ N .

Für A ∈ N bzw. für M ⊆ N definieren wir

Loop(A) = {~r : (A,~0)⇒∗G (A,~r)}
Loop(M) = {~r : ~r =

∑
A∈M

~rA, ~rA ∈ Loop(A) für A ∈M}

In einem Ableitungsbaum in G heißt ein Weg von s nach t Loop-Pfad, falls s und t die
gleiche Markierung haben und der Baum zwischen s und t ein Weg ist. Eine Ableitung
heißt loop-frei, falls der zugehörige Ableitungsbaum keinen Loop-Pfad enthält.

Kapitel 2: Valenzgrammatiken 28

Man beachte, daß Loop(M) ein Untermonoid von Zk ist, d.h., es gilt ~0 ∈ Loop(M), und
es besteht Abschluß unter Vektoraddition.

Behauptung 2.4.6 Es sei G = (N, T, P, S) eine Zk-Valenzgrammatik mit Kernregeln der
Form A → BC,A → B,A → a. Dann gilt (S,~0) ⇒∗G (w,~r) genau dann, wenn es eine
Menge M ⊆ N sowie ~r1, ~r2 gibt mit:

• Es existiert in G eine loop-freie Ableitung D von (w,~r1) mit M ⊆ N(D), wobei N(D)
die Menge der in D auftretenden Nichtterminale ist.

• ~r2 ∈ Loop(M).

• ~r = ~r1 + ~r2.

Beweis. Es sei D eine loop-freie Ableitung von (w,~r1) mitM ⊆ N(D), und ~r2 =
∑

A∈M ~rA
mit ~rA ∈ Loop(A) sei ein Vektor aus Loop(M). Im zuD gehörigen Ableitungsbaum existiert
für alle A ∈ M ein Knoten mit der Markierung A. Ersetzt man für alle A ∈ M einen
Knoten mit der Markierung A durch einen Loop-Pfad mit der Bewertung ~rA, so entsteht
ein Ableitungsbaum mit Front w und Bewertung ~r1 + ~r2.

Sei andererseits eine Ableitung von (w,~r) gegeben und sei T0 ein zugehöriger Ableitungs-
baum. Wir konstruieren eine (endliche) Folge von Ableitungsbäumen T0, T1, . . . , Tm. Enthält
der Baum Ti, i ≥ 0, keinen Loop-Pfad, so ist m = i. Anderenfalls sei si der bezüglich der
DFS-Ordnung minimale Knoten in Ti, der Startknoten eines Loop-Pfades in Ti ist. Es sei
ti der Endknoten des längsten in si startenden Loop-Pfades. Den Baum Ti+1 erhält man
durch Entfernen des Loop-Pfades von si nach ti, d.h., der Unterbaum mit der Wurzel si
wird entfernt und der Unterbaum mit der Wurzel ti wird an der Stelle von si eingefügt.

Da si und ti die gleiche Markierung Ai besitzen, ist mit Ti auch Ti+1 ein Ableitungsbaum.
Weil aus Ti lediglich ein Loop-Pfad entfernt wurde, ist die Front von Ti gleich der Front
von Ti+1; die Bewertung ~vi+1 von Ti+1 ergibt sich als Differenz aus der Bewertung ~vi von
Ti und der Bewertung ~li des Pfades von si nach ti.

Per Induktion ergibt sich Front(T0) = Front(Tm) und ~r = ~r1 + ~r2 mit ~r1 = ~vm und

~r2 =
∑m−1

i=0
~li. Es gilt ~r2 ∈ Loop(M) mit M = {Ai : 0 ≤ i ≤ m− 1}.

Schließlich ist durch die Wahl von si und ti gewährleistet, daß ti in der DFS-Ordnung
kleiner als si+1 ist und damit in den Bäumen Ti+1, . . . , Tm enthalten ist. Folglich ist jedes
Ai mit 0 ≤ i ≤ m − 1 als Markierung eines Knoten von Tm enthalten, und damit folgt
M ⊆ N(Tm). 2

Behauptung 2.4.7 Es sei G = (N, T, P, S) eine Zk-Valenzgrammatik mit Kernregeln der
Form A → BC,A → B,A → a. Für alle M ⊆ N gibt es eine Zk-Valenzgrammatik HM

mit Kernregeln der Form A → BC, A → a, so daß (w,~r) genau dann in HM abgeleitet
werden kann, wenn es in G eine loop-freie Ableitung D mit M ⊆ N(D) für (w,~r) gibt.

Kapitel 2: Valenzgrammatiken 29

Beweis. Zunächst konstruieren wir eine Menge Q, deren Elemente aus einer Valenzregel
und einer Teilmenge von N bestehen. Für jede loop-freie Ableitung

D = (A,~0)⇒∗G (A′, ~r′)⇒G (α,~r) mit A,A′ ∈ N, α ∈ T ∪NN

nehmen wir ((A→ α,~r), N(D)) in Q auf.

Offensichtlich ist Q endlich. Es sei jetzt N ′ = N × P(N) und P ′ die wie folgt erhaltene
Menge von Valenzregeln: Für ((A→ BC,~r),M0) ∈ Q und für alle M ⊆ N enthält P ′ alle
Valenzregeln ((A,M)→ (B,M1)(C,M2), ~r) mit M ⊆M0 ∪M1 ∪M2. Für jedes Paar
((A → a,~r),M0) ∈ Q enthält P ′ alle Valenzregeln ((A,M) → a,~r) mit M ⊆ M0. Die
gesuchte Valenzgrammatik HM ergibt sich für M ⊆ N als HM = (N ′, T, P ′, (S,M)).

Durch vollständige Induktion entsprechend Behauptung 2.3.3 zeigt man, daß für w ∈ T ∗
mit |w| ≥ 2 genau dann eine loop-freie Ableitung D : (A,~0) ⇒∗G (w,~r) mit M ⊆ N(D)
existiert, wenn es loop-freie Ableitungen

D0 : (A,~0)⇒∗G (BC,~r0), D1 : (B,~0)⇒∗G (w1, ~r1), D2 : (C,~0)⇒∗G (w2, ~r2)

mit w = w1w2, ~r = ~r0 + ~r1 + ~r2, M ⊆ N(D0) ∪N(D1) ∪N(D2) gibt.

Mit Hilfe dieses Induktionsprinzip zeigt man, daß genau dann eine loop-freie Ableitung D :
(A,~0)⇒∗G (w,~r) mit M ⊆ N(D) existiert, wenn es in HM eine Ableitung ((A,M),~0)⇒∗HM
(w,~r) gibt. 2

Behauptung 2.4.8 Es sei G = (N, T, P, S) eine Zk-Valenzgrammatik mit Kernregeln der
Form A→ BC,A→ B,A→ a. Für alle M ⊆ N gibt es eine reguläre Zk-Valenzgrammatik
KM = (NM , T, PM , SM) mit (SM ,~0) ⇒∗KM (λ,~r) ⇐⇒ ~r ∈ Loop(M). Ferner ist (λ,~r) in
||~r||1 + 1 Schritten in KM ableitbar, falls ~r ∈ Loop(M).

Beweis. Es sei P1 die Menge aller Valenzregeln aus P mit einer Kernregel der Form
A → B. Für ein Nichtterminal A sei GA = (N, T, PA, A) mit PA = P1 ∪ {(A → λ,~0)}.
Offensichtlich gilt (A,~0) ⇒∗G (A,~r) genau dann, wenn (A,~0) ⇒∗GA (λ,~r). Durch Um-
benennung erhalten wir die regulären Zk-Valenzgrammatiken G′A = (N ′A, T, P

′
A, S

′
A) mit

(A,~0)⇒∗GA (λ,~r) genau dann, wenn (S ′A,~0)⇒∗G′A (λ,~r) und N ′A ∩N ′B = ∅ für A 6= B.

Für M = {A1, . . . , Am} ⊆ N erhalten wir GM = (NM , T, PM , SM) mit NM =
⋃
A∈M N ′A,

PM =
⋃
A∈M P ′A ∪ {(SM → S ′A1

· · ·S ′Am,~0)}. Offensichtlich ist (λ,~r) genau dann in GM

ableitbar, wenn es für i = 1, . . . ,m Vektoren ~ri gibt, so daß (λ,~ri) in G′Ai erzeugbar ist und
~r =

∑m
i=1 ~ri gilt, also wenn ~r ∈ Loop(M) erfüllt ist.

Die gesuchte reguläre Zk-Valenzgrammatik KM konstruieren wir gemäß Behauptung 2.4.2
aus GM . 2

Behauptung 2.4.9 Es seien G1 = (N1, T, P1, S1) eine kontextfreie Zk-Valenzgrammatik
mit Kernregeln der Form A → BC, A → a und G2 = (N2, T, P2, S2) eine reguläre Zk-
Valenzgrammatik mit Kernregeln der Form A→ B,A→ λ.

Kapitel 2: Valenzgrammatiken 30

Für c ∈ N gibt es eine kontextfreie Zk-Valenzgrammatik G = (N, T, P, S) mit Kernregeln
der Form A → BC, A → a, so daß (S,~0) ⇒∗G (w,~r) für w ∈ T+ und ~r ∈ Z k genau dann
gilt, wenn es ~r1, ~r2 ∈ Z k mit folgenden Eigenschaften gibt:

1. ~r = ~r1 + ~r2,

2. (w,~r1) ist in G1 ableitbar.

3. (λ,~r2) ist in höchstens c|w| Schritten in G2 ableitbar.

Beweis. G wird durch eine Tripelkonstruktion gefunden. Die Menge der Nichtterminale N
ergibt sich als N = (N2∪{λ})× (N1∪T)× (N2∪{λ}), das Startsymbol ist S = (S2, S1, λ).
Wir konstruieren die folgenden Regelmengen Q1, Q2, Q3:

• Für jede Regel (A1 → B1C1, ~r1) ∈ P1 mit A1, B1, C1 ∈ N1 enthält Q1 alle Regeln
((A2, A1, C2)→ (A2, B1, B2)(B2, C1, C2), ~r1) mit A2, B2, C2 ∈ N2 ∪ {λ}.

• Für jede Regel (A1 → a,~r1) ∈ P1 mit A1 ∈ N1, a ∈ T enthält Q2 alle Regeln
((A2, A1, C2)→ (A2, a, C2), ~r1) mit A2, C2 ∈ N2 ∪ {λ}.

• Für jede Ableitung (A2 ⇒≤cG2
B2, ~r2) in G2 mit A2, B2 ∈ N2 ∪ {λ} enthält Q3 alle

Regeln ((A2, a, B2)→ a,~r2) mit a ∈ T.

Es sei zunächst G′ = (N, T, P ′, S) mit P ′ = Q1 ∪ Q2 ∪ Q3. Da durch die Regeln von Q1

und Q2 nur Nichtterminale und durch Regeln von Q3 nur Terminale erzeugt werden, kann
eine Ableitung in G′ o.B.d.A. so erfolgen, daß zuerst mittels der Regeln aus Q1 und Q2

ein Paar (α,~r1) mit α ∈ ((N2 ∪ {λ})× T × (N2 ∪ {λ}))∗ und anschließend aus (α,~r1) mit
Hilfe der Regeln aus Q3 ein Paar (w,~r1 + ~r2) mit w ∈ T ∗ erzeugt wird. Durch vollständige
Induktion über die Zahl der Ableitungsschritte entsprechend Behauptung 2.3.3 zeigt man
leicht:

• Aus ((A,A1, B),~0) mit A,B ∈ N2 ∪ {λ}, A1 ∈ N1 ist in G′ das Paar

((C1, a1, D1)(C2, a2, D2) · · · (Ck, ak, Dk), ~r) mit Ci, Di ∈ N2 ∪ {λ}, ai ∈ T, 1 ≤ i ≤ k

genau dann ableitbar, wenn (a1a2 · · ·ak, ~r) in G1 aus A1 ableitbar ist und
C1 = A,Dk = B, Cj+1 = Dj für 1 ≤ j ≤ k − 1 gilt.

• Aus ((D0, a1, D1)(D1, a2, D2) · · · (Dk−1, ak, Dk),~0) mit D0, Di ∈ N2 ∪ {λ}, ai ∈ T ,
1 ≤ i ≤ k ist das Paar (w,~r) mit w ∈ T ∗ genau dann ableitbar, wenn w = a1a2 · · ·ak
gilt und (Dk, ~r) in G2 aus (D0,~0) in höchstens c · k Schritten ableitbar ist.

Damit erfüllt G′ die in der Behauptung genannten Forderungen an G bezüglich des Ab-
leitungsverhaltens. Die Valenzgrammatik G mit der geforderten Form der Kernregeln ist
G = (N, T, P, S) mit P = Q0 ∪Q1. Dabei erhält man die Regelmenge Q0, indem für jedes
Paar von Regeln ((A2, A1, B2) → (A2, a, B2)~r1) ∈ Q2, ((A2, a, B2)→ a,~r2) ∈ Q3 die Regel
((A2, A1, B2)→ a,~r1 + ~r2) eingeführt wird. 2

Kapitel 2: Valenzgrammatiken 31

Behauptung 2.4.10 Zu jeder kontextfreien Zk-Valenzgrammatik gibt es eine äquivalente
Zk-Valenzgrammatik mit Kernregeln der Form A→ BC,A→ a.

Beweis. Es sei G = (N, T, P, S) eine Zk-Valenzgrammatik mit Kernregeln der Form
A → BC,A → B,A → a. Für M ⊆ N seien HM und KM die gemäß den Behauptungen
2.4.7, 2.4.8 konstruierten Valenzgrammatiken.

Es sei cM das Maximum über die Normen der in HM auftretenden Valenzvektoren. Nach
Behauptung 2.4.9 können wir eine Grammatik GM konstruieren, in der (w,~0) mit w ∈ T+

genau dann ableitbar ist, wenn es ein ~r ∈ Z k gibt, so daß (w,~r) in HM ableitbar ist und
(λ,−~r) in KM in höchstens 2cM |w| Schritten ableitbar ist.

Wegen der Form der Kernregeln von HM ist jedes in HM ableitbare Paar (w,~r) in genau
2|w|−1 Schritten ableitbar. Die Norm von ~r läßt sich deshalb durch ||~r||1 ≤ cM(2|w|−1) ≤
2cM |w| − 1 abschätzen. Sind (w,~r) in HM und (λ,−~r) in KM ableitbar, so ist (λ,−~r) in
höchstens 2cM |w| Schritten in KM ableitbar.

Aufgrund der Konstruktionen von HM , KM und GM ist damit gezeigt, daß w ∈ L(GM)
genau dann gilt, wenn es eine loop-freie Ableitung D von (w,~r) mit M ⊆ N(D) und
−~r ∈ Loop(M) gibt. Nach Behauptung 2.4.6 ist L(G) =

⋃
M⊆N L(GM).

Schließlich konstruiert man aus den Grammatiken GM , M ⊆ N , eine Valenzgrammatik H
mit Kernregeln der Form A→ BC,A→ a und L(H) =

⋃
M⊆N L(GM) = L(G). 2

Behauptung 2.4.11 Zu jeder kontextfreien Zk-Valenzgrammatik gibt es eine äquivalente
Zk-Valenzgrammatik mit Valenzregeln der Form (A→ BC,~r), (A→ a,~0).

Beweis. Es sei G = (N, T, P, S) eine kontextfreie Zk-Valenzgrammatik mit Kernregeln der
Form A→ BC in P1, A→ a in P2 und P = P1 ∪P2. Für jedes a ∈ T führen wir ein neues
Nichtterminalsymbol a′ ein und konstruieren G′ = (N ′, T, P ′, S) mit N ′ = N ∪{a′ : a ∈ T}
und

P ′ = P1 ∪ {(a′ → a,~0)} ∪
{(A→ a′C,~r1 + ~r2) : (A→ BC,~r1), (B → a,~r2) ∈ P} ∪
{(A→ Ba′, ~r1 + ~r2) : (A→ BC,~r1), (C → a,~r2) ∈ P} ∪
{(A→ a′b′, ~r1 + ~r2 + ~r3) : (A→ BC,~r1), (B → a,~r2), (C → b, ~r3) ∈ P}

Durch vollständige Induktion über die Zahl der Ableitungsschritte zeigt man, daß (w,~r)
mit w ∈ T+, |w| ≥ 2 genau dann in G ableitbar ist, wenn es in G′ abgeleitet werden
kann. Durch Hinzufügen der in G enthaltenen Regeln (S → a,~0) erhält man eine zu G
äquivalente Valenzgrammatik. 2

Behauptung 2.4.12 Zu jeder kontextfreien Zk-Valenzgrammatik gibt es eine äquivalente
Zk-Valenzgrammatik mit Valenzregeln der Form (A→ BC,~r), ~r = r~ej mit j ∈ {1, . . . , k},
r ∈ Z bzw. (A→ a,~0).

Kapitel 2: Valenzgrammatiken 32

Beweis. Es sei G = (N, T, P, S) eine Valenzgrammatik mit Regeln wie in Behaup-
tung 2.4.11. Wir konstruieren zunächst G1 = (N, T, P1, S) mit

P1 = {(A→ a,~0) : (A→ a,~0) ∈ P} ∪
{(A→ α,~r) : α ∈ N∗, k + 1 ≤ |α| ≤ k(k + 1), (A,~0)⇒∗G (α,~r)} ∪
{(S → α,~0) : α ∈ N∗, 2 ≤ |α| ≤ k, (S,~0)⇒∗G (α,~0)}

Da einer Regel in P1 eine Ableitung in G entspricht, ist L(G1) ⊆ L(G). Wir zeigen jetzt
L(G) ⊆ L(G1). Es reicht zu zeigen, daß aus (S,~0) ⇒∗G (α,~0) mit α ∈ N∗ stets (S,~0) ⇒∗G1

(α,~0) folgt. Für |α| ≤ k gilt diese Beziehung nach Definition von G1. Für |α| ≥ k + 1
beweisen wir durch Induktion über die Länge von α:

(A,~0)⇒∗G1
(α,~r) ⇐⇒ (A,~0)⇒∗G (α,~r) für α ∈ N∗, |α| ≥ k + 1, ~r ∈ Z k (∗)

Für k + 1 ≤ |α| ≤ k(k + 1) gilt (*) nach Konstruktion von G1. Sei nun für alle m mit
k(k + 1) ≤ m < n die Gültigkeit von (*) gezeigt.

Ist (α,~r) mit |α| = n in G aus (A,~0) ableitbar, so existieren ein ~r0 ∈ Z k, Bi ∈ N , βi ∈ N+,
~ri ∈ Z k, 1 ≤ i ≤ k + 1, mit

(A,~0)⇒∗G (B1 · · ·Bk+1, ~r0), (Bi,~0)⇒∗G (βi, ~ri), 1 ≤ i ≤ k + 1, α = β1 · · ·βk+1, ~r =
k+1∑
i=0

~ri.

Wir setzen jetzt

(γi, ~si) =

{
(βi, ~ri), falls |βi| ≤ k

(Bi,~0), sonst
sowie γ = γ1 · · ·γk+1, ~s = ~r0 +

k+1∑
i=1

~si.

Es gilt (A,~0) ⇒∗G (γ,~s) und, wegen k + 1 ≤ |γ| ≤ k(k + 1), (A,~0) ⇒G1 (γ,~s). Außerdem
ist (βi, ~ri) in G1 aus (γi, ~si) ableitbar. Für |βi| ≤ k ist dies trivial; für |βi| ≥ k+1 folgt dies
aus der Induktionsannahme (denn es gilt |βi| < n). Damit ist L(G) ⊆ L(G1) und folglich
L(G) = L(G1) gezeigt.

Als nächstes konstruieren wir die gesuchte Zk-Valenzgrammatik G2 mit Valenzregeln der
Form (A → BC,~r), ~r = r~ej, r ∈ Z , 1 ≤ j ≤ k, und (A → a,~0). Dazu werden für jede

Valenzregel (A1 → B1 · · ·Bm,
∑k

i=1 ri~ei) in P1 die neuen Nichtterminale A2, . . . , Am−1 sowie
die Valenzregeln (Ai → BiAi+1, ~qi), 1 ≤ i ≤ m − 2, (Am−1 → Bm−1Bm, ~qm−1) eingeführt,
wobei ~qi = ri~ei für 1 ≤ i ≤ k und ~qi = 0 für k + 1 ≤ i ≤ m gilt. Analog wird jede Regel
(S → B1 · · ·Bm,~0), 2 ≤ m ≤ k, durch Valenzregeln der Form (A→ BC,~0) ersetzt. 2

Behauptung 2.4.13 Zu jeder kontextfreien Zk-Valenzgrammatik gibt es eine äquivalente
Zk-Valenzgrammatik mit Valenzregeln der Form (A→ BC,~r), ||~r||1 ≤ 1, und (A→ a,~0).

Kapitel 2: Valenzgrammatiken 33

Beweis. Es sei G = (N, T, P, S) eine Valenzgrammatik über Zk mit Valenzregeln der in
Behauptung 2.4.12 genannten Form. Es sei c das Maximum über die Normen der Valenz-
vektoren von G, und X = {0, . . . , c−1}k sei die Menge aller k-dimensionalen Vektoren mit
Komponenten aus {0, . . . , c− 1}.
Wir konstruieren H = (N ′, T, P ′, S ′) mit N ′ = X × N ×X, S ′ = (~0, S,~0). P ′ enthält für
jede Regel (A→ BC,~r) ∈ P und für alle ~x, ~y, ~z ∈ X die Regel(

(~x,A, ~z)→ (~x′, B, ~y)(~y, C, ~z), ~r′
)

mit ~x′ = (~x+ ~r) rest c, ~r′ = (~x+ ~r) div c.

Wegen ~r = r~ei und −c ≤ r ≤ c hat ~r′ die Form ~r′ = r′~ei,−1 ≤ r′ ≤ 1. Für jede Regel
(A → a,~0) ∈ P und alle ~x ∈ X enthält P ′ die Regel ((~x,A, ~x) → a,~0). Wie man leicht
nachrechnet, ist ~r = c~r′ + (~x′ − ~x).
H besitzt offenbar die in der Behauptung angegebene Form. Um die Äquivalenz von G und
H zu beweisen, zeigen wir die folgenden Aussagen:

1. Gibt es für A ∈ N,w ∈ T+,m ∈ N , ~r ∈ Z k eine Ableitung (A,~0) ⇒m
G (w,~r) in G, so

existiert für alle ~x, ~z ∈ X mit (~z − ~x) ≡ ~r(mod c) eine Ableitung ((~x,A, ~z),~0) ⇒m
H

(w, ~r′) mit c~r′ + (~z − ~x) = ~r.

2. Gibt es für A ∈ N,w ∈ T+,m ∈ N , ~r′ ∈ Z k, ~x, ~z ∈ X eine Ableitung (~x,A, ~z),~0)⇒m
H

(w, ~r′) in H, so existiert in G eine Ableitung (A,~0)⇒m
G (w,~r) mit c~r′ + (~z − ~x) = ~r.

Aus 1. und 2. folgt speziell (A,~0) ⇒∗G (w,~0) ⇐⇒ ((~0, A,~0),~0) ⇒∗H (w,~0) und damit
L(G) = L(H). Wir zeigen die Gültigkeit von 1. und 2. durch vollständige Induktion über
die Zahl der Ableitungsschritte m.

Für m = 1 gelten die Aussagen wegen der Definition von H.

Seien nun die Aussagen 1. und 2. für Ableitungen der Länge i < m gezeigt und gelte
(A,~0)⇒m

G (w,~r). Dann gibt es Ableitungen

(A,~0)⇒G (BC,~r0), (B,~0)⇒i
G (w1, ~r1), (C,~0)⇒j

G (w2, ~r2)

mit w = w1w2, ~r = ~r0 + ~r1 + ~r2,m = i+ j + 1.

Es seien ~x, ~z Vektoren aus X mit (~z − ~x) rest c = ~r rest c. In H gibt es die Ableitung

((~x,A, ~z),~0)⇒H ((~x′, B, ~y)(~y, C, ~z), ~r′0) mit ~x′ = (~x+ ~r0) rest c, ~r′0 = (~x+ ~r0) div c

für beliebige ~y ∈ X, insbesondere für ~y = (~x′ + ~r1) rest c. Wegen der Wahl von ~x, ~x′, ~y, ~z
gilt

(~z − ~x) ≡ ~r (mod c)
≡ ~r0 + ~r1 + ~r2 (mod c)

(~z − ~x) ≡ (~z − ~y) + (~y − ~x′) + (~x′ − ~x) (mod c)
≡ (~z − ~y) + ~r1 + ~r0 (mod c)

Kapitel 2: Valenzgrammatiken 34

Folglich ist (~z − ~y) ≡ ~r2 (mod c). Nach Induktionsannahme gibt es in H die Ableitungen

((~x′, B, ~y),~0)⇒i
H (w1, ~r′1) mit c~r′1 + (~y − ~x′) = ~r1,

((~y, C, ~z),~0)⇒j
H (w2, ~r′2) mit c~r′2 + (~z − ~y) = ~r2.

Damit gibt es in H die Ableitung ((~x,A, ~z),~0) ⇒m
H (w, ~r′) mit ~r′ = ~r′0 + ~r′1 + ~r′2. Wegen

~r0 = c~r′0 + (~x′ − ~x) ergibt sich

~r = ~r0 + ~r1 + ~r2 = c~r′0 + (~x′ − ~x) + c~r′1 + (~y − ~x′) + c~r′2 + (~z − ~y) = c~r′ + (~z − ~x),

womit Aussage (1) bewiesen ist.

Sei nun ((~x,A, ~z),~0)⇒m
H (w,~r) eine Ableitung in H. Dann existieren Ableitungen

((~x,A, ~z),~0)⇒H ((~x′, B, ~y)(~y, C, ~z), ~r0), ((~x′, B, ~y),~0)⇒i
H (w1, ~r1), ((~y, C, ~z),~0)⇒j

H (w2, ~r2)

mit ~x′ = (~x + ~r0) rest c. Nach Definition von H gibt es in G eine Regel (A → BC, c~r0 +
(~x′−~x)); nach Induktionsvoraussetzung gibt es in G die Ableitungen (B,~0)⇒i

G (w1, c~r1 +
(~y− ~x′)) und (C,~0)⇒j

G (w2, c~r2 +(~z−~y)). Daraus folgt (A,~0)⇒m
G (w, c~r+(~z−~x)), womit

Aussage (2) gezeigt ist. 2

Behauptung 2.4.14 Zu jeder kontextfreien Zk-Valenzgrammatik gibt es eine äquivalen-
te Zk-Valenzgrammatik mit Valenzregeln der Form (A → BC,~0) und (A → a,~r) mit
||~r||1 ≤ 1.

Beweis. Es sei G = (N, T, P, S) eine Valenzgrammatik mit Regeln wie in Behaup-
tung 2.4.13. Es sei Ek := {~r ∈ Z k : ||~r||1 ≤ 1}. Wir konstruieren die gesuchte Valenz-
grammatik als G′ = (N ′, T, P ′, S ′) mit N ′ = N × Ek, S ′ = (S,~0) und

P ′ = {((A,~s)→ (B,~s)(C,~r),~0) : (A→ BC,~r) ∈ P,~s ∈ Ek} ∪
{((A,~s)→ a,~s) : (A→ a,~0) ∈ P,~s ∈ Ek}

Durch vollständige Induktion weist man leicht nach, daß ((A,~s),~0) ⇒∗G′ (w,~r + ~s) für
w ∈ T+ genau dann gilt, wenn es die Ableitung (A,~0)⇒∗G (w,~r) in G gibt. 2

Behauptung 2.4.15 Zu jeder kontextfreien Zk-Valenzgrammatik gibt es eine äquivalente
Zk-Valenzgrammatik mit Valenzregeln der Form (A→ aα,~r), ||~r||1 ≤ 1.

Beweis. Es sei G eine Valenzgrammatik mit Regeln wie in Behauptung 2.4.14. Die Kon-
struktion der Greibach-Normalform für kontextfreie Grammatiken (siehe [18, S.101-104])
kann wörtlich (unter Berücksichtigung der Valenzen) übertragen werden. 2

Auch für reguläre und lineare Zk-Valenzgrammatiken existieren Normalformen, die mit
den gleichen Methoden konstruiert werden.

Kapitel 2: Valenzgrammatiken 35

Satz 2.4.16 Es sei k ∈ N .

• Zu jeder regulären Zk-Valenzgrammatik gibt es eine äquivalente Zk-Valenzgrammatik
mit Valenzregeln der Form (A→ aB,~r), (A→ a,~r) mit ‖~r‖1 ≤ 1.

• Zu jeder linearen Zk-Valenzgrammatik gibt es eine äquivalente Zk-Valenzgrammatik
mit Valenzregeln der Form (A→ aB,~r), (A→ Ba,~r), (A→ a,~r) mit ‖~r‖1 ≤ 1.

2.5 Valenzgrammatiken über kommutativen Monoi-

den

In diesem Abschnitt wird gezeigt, daß Valenzgrammatiken über beliebigen kommutati-
ven Monoiden keine größere Erzeugungskraft als Q+-Valenzgrammatiken besitzen. Wir
betrachten hier nur kontextfreie Valenzgrammatiken. Analoge Resultate gelten auch im
linearen bzw. regulären Fall. Zunächst beweisen wir einige einfache Hilfsaussagen.

Behauptung 2.5.1 Für ein Monoid M sei F(M) die Familie der endlich erzeugten Un-
termonoide von M. Es gilt L(Val,CF,M) =

⋃
F∈F(M) L(Val,CF,F).

Beweis. Die Inklusion L(Val,CF,M) ⊇
⋃

F∈F(M) L(Val,CF,F) ist trivial; die Beziehung

L(Val,CF,M) ⊆
⋃

F∈F(M) L(Val,CF,F) folgt, da jede M-Valenzgrammatik G auch eine
Valenzgrammatik über dem Untermonoid ist, das von der Menge der in G auftretenden
(endlich vielen) Valenzen erzeugt wird. 2

Behauptung 2.5.2 Für ein Monoid M = (M, ◦, 1) sei E(M) die Menge aller Elemente
aus M , die zu 1 ergänzt werden können, d.h.,

E(M) := {x ∈M : ∃x1∃x2(x1 ◦ x ◦ x2 = 1)}.

Es gilt L(Val,CF,M) = L(Val,CF, E(M)∗).

Beweis. Es sei G = (N, T, P, S) eine M-Valenzgrammatik. Ist p1 · · · pk ∈ P eine Ab-
leitungsfolge für das Paar (w, 1), so kann jede der Valenzen von p1, . . . , pk zu 1 ergänzt
werden. Folglich ist G äquivalent zur Valenzgrammatik G′, die genau die Valenzregeln aus
G enthält, deren Valenz in E(M) ist. G′ ist eine Valenzgrammatik über E(M). 2

Behauptung 2.5.3 Sind M und N isomorph, so gilt L(Val,CF,M) = L(Val,CF,N).

Beweis. In einer M-Valenzgrammatik G ersetze man in jeder Valenzregel die Valenz durch
ihr isomorphes Bild in N. 2

Kapitel 2: Valenzgrammatiken 36

Behauptung 2.5.4 L(Val,CF,M×Zk) = L(Val,CF,Zk), für jedes endliche kommutative
Monoid M und k ≥ 0.

Beweis. Es seien M = (M, ◦, 1) ein endliches kommutatives Monoid und G = (N, T, P, S)
eine (M×Zk)-Valenzgrammatik. Wir können o.B.d.A. annehmen, daß P nur Kernregeln der
Form A→ BC,A→ B,A→ a,A→ λ enthält. (Dies wird durch die gleiche Konstruktion
wie in Behauptung 2.4.3 garantiert.)

Aus G konstruieren wir die Zk-Valenzgrammatik H = (N ′, T, P ′, S ′) mit N ′ = N ×M ,
S ′ = (S, 1) und

P ′ = {((A,m0)→ (B,m1)(C,m2), ~r) : ∃m(m0 = m ◦m1 ◦m2 ∧ (A→ BC, (m,~r)) ∈ P)} ∪
{((A,m0)→ (B,m1), ~r) : ∃m(m0 = m ◦m1 ∧ (A→ B, (m,~r)) ∈ P)} ∪
{((A,m)→ a,~r) : (A→ a, (m,~r)) ∈ P} ∪ {((A,m)→ λ,~r) : (A→ λ, (m,~r)) ∈ P}

Durch vollständige Induktion über die Anzahl der Ableitungsschritte im Sinne von Be-
hauptung 2.3.3 zeigt man, daß ((A,m),~0) ⇒∗H (w,~r) für w ∈ T ∗ genau dann gilt, wenn
(A, (1,~0))⇒∗G (w, (m,~r)) erfüllt ist. 2

Satz 2.5.5 Es sei M ein kommutatives Monoid. Dann gilt L(Val,CF,M) = L(Val,CF,Zk)
für ein k ≥ 0 oder L(Val,CF,M) = L(Val,CF,Q+).

Beweis. Für ein kommutatives Monoid F = (F, ◦, 1) ist E(F) = {x ∈ F : ∃y(x ◦ y = 1)}.
Wegen der Kommutativität ist E(F) unter ◦ abgeschlossen; da außerdem für jedes Element
aus E(F) ein inverses Element existiert, ist (E(F), ◦, 1) eine Gruppe. Besitzt F das endliche
Erzeugendensystem A, so wird E(F) durch A ∩ E(F) erzeugt. Wir können uns damit auf
endlich erzeugte Abelsche (kommutative) Gruppen beschränken.

Nach dem Hauptsatz über endlich erzeugte Abelsche Gruppen (siehe z.B. [32]) ist eine
endlich erzeugte Abelsche Gruppe das direkte Produkt von endlich vielen zyklischen Abel-
schen Gruppen, d.h. isomorph zu M × Zk für eine endliche Abelsche Gruppe M und ein
k ≥ 0. Nach den Behauptungen 2.5.2, 2.5.3, 2.5.4 gilt somit für jedes endlich erzeugte
kommutative Monoid F: L(Val,CF,F) = L(Val,CF,Zk) für ein k ≥ 0.

Für ein beliebiges kommutatives Monoid M gibt es 2 Möglichkeiten: Gibt es ein kleinstes
k ≥ 0 mit L(Val,CF,F) ⊆ L(Val,CF,Zk) für alle F ∈ F(M), so ist L(Val,CF,M) =
L(Val,CF,Zk). Anderenfalls ist L(Val,CF,M) = L(Val,CF,Q+). 2

2.6 Iterationslemmata für Valenzgrammatiken

In diesem Abschnitt sollen, vergleichbar zu den Pumping-Lemmata für reguläre und kon-
textfreie Sprachen, Iterationslemmata für Valenzsprachen über dem Monoid Zk bewiesen

Kapitel 2: Valenzgrammatiken 37

werden. Die Idee der minimalen Zyklen findet sich bereits bei Vicolov [38], wo nachge-
wiesen wurde, daß die Hierarchie L(Val,CF,Zk) ⊆ L(Val,CF,Zk+1) echt ist. Zusätzlich
sind die folgenden Hilfssätze von Nutzen:

Lemma 2.6.1 Ist S ⊆ N t (t ≥ 1) unendlich, so gibt es in S zwei Elemente ~a,~b mit ~a <~b.

Beweis. Für t = 1 ist das Lemma offenbar korrekt. Sei die Korrektheit für t ≥ 1 gezeigt
und sei S ⊆ N t+1 eine unendliche Menge. Wir betrachten ein Element ~a = (a1, . . . , at+1)

aus S. Falls es in S kein ~b mit a < b gibt, so existiert ein i ∈ {1, . . . , t + 1} derart, daß
es unendlich viele Elemente in S gibt, deren i-te Komponente kleiner als ai ist. Das heißt,
es gibt in S unendlich viele Elemente, deren i-te Komponente gleich einem gewissen x ∈
{0, . . . , ai−1} ist. In dieser Menge gibt es nach Induktionsvoraussetzung zwei vergleichbare
Elemente. 2

Lemma 2.6.2 Es seien ~v1, . . . , ~vt ∈ Z k. Besitzt die Gleichung

a1~v1 + . . .+ at~vt = ~0 (∗)

eine Lösung in N t \ {~0}, so existiert in N t \ {~0} auch eine Lösung mit höchstens k+ 1 von
Null verschiedenen Komponenten.

Beweis. Es sei ~a = (a1, . . . , at) ∈ N t \ {~0} eine Lösung von (*). O.B.d.A. gelte ai > 0
für 1 ≤ i ≤ s und ai = 0 für s + 1 ≤ i ≤ t für ein s ∈ {1, . . . , t}. Gilt s ≤ k + 1, so
ist ~a eine Lösung der gesuchten Form. Anderenfalls konstruieren wir folgendermaßen eine
Lösung mit weniger von Null verschiedenen Komponenten.

In Z t \ {~0} hat (*) eine Lösung ~b = (b1, . . . , bt) mit bj = 0 für j ∈ {k + 2, . . . , t}. Sind

alle Komponenten von ~b nichtnegativ, so haben wir eine Lösung der gewünschten Form
gefunden. Anderenfalls gelte o.B.d.A. b1/a1 = min{bi/ai : 1 ≤ i ≤ k + 1}. Dann ist

~c = (c1, . . . , ct) = a1
~b − b1~a ebenfalls eine Lösung von (*). Es gilt ci = a1bi − b1ai ≥ 0 für

2 ≤ i ≤ s, ci = 0 für i = 1 und s < i ≤ t. Damit hat ~c höchstens s−1 von Null verschiedene
Komponenten. Wegen cs = −b1as > 0 ist diese Lösung nicht der Nullvektor. 2

Satz 2.6.3 Es sei L ⊆ T ∗ eine Sprache aus L(Val,CF,Zk). Dann existieren eine Konstan-
te n und eine endliche Menge I ⊆ (T ∗)2k+2 von iterativen (2k + 2)-Tupeln mit folgenden
Eigenschaften.

(1) |α1α2 · · ·α2k+2| > 0 für alle (α1, α2, . . . , α2k+2) ∈ I.

(2) Für alle w ∈ L mit |w| > n gibt es eine Zerlegung w = z1z2 · · · z2k+2z2k+3 und ein
iteratives Tupel (α1, α2, . . . , α2k+2) ∈ I mit

z1α
i
1z2α

i
2 · · · z2k+2α

i
2k+2z2k+3 ∈ L für alle i ∈ N .

Kapitel 2: Valenzgrammatiken 38

Beweis. Es sei G = (N, T, P, S) eine Zk-Valenzgrammatik in Normalform mit L = L(G).
Eine Ableitung der Form (A,~0) ⇒∗ (vAw,~r) mit A ∈ N, vw ∈ T+, ~r ∈ Z k heißt Zyklus.
Ein Zyklus ist ein elementarer Zyklus, wenn keine seiner Unterableitungen einen Zyklus
bildet. Da G in Normalform ist, insbesondere also keine löschenden Regeln und keine
Kettenregeln enthält, kann man jede Ableitung ∆ : (S,~0) ⇒∗ (w,~0) durch das sukzessive
Streichen von Unterableitungen, die elementare Zyklen darstellen, zu einer zyklenfreien
Ableitung ∆′ : (S,~0)⇒∗ (w′, ~r) umformen.

Mit Ninf bezeichnen wir die Menge aller Teilmengen M ⊆ N , für die es unendlich viele
Ableitungen ∆ : (S,~0) ⇒∗ (w,~0) mit w ∈ T ∗ und N(∆) = M gibt. Im folgenden sei M
in Ninf . Weiterhin sei Z(M) = {ζ1, . . . , ζt} mit ζi : (Ai,~0) ⇒∗ (viAiwi, ~ri) die Menge der
minimalen Zyklen der Form (A,~0⇒∗ (vAw,~r) mit A ∈M . Wird in dem oben beschriebe-
nen Reduktionsprozeß der minimale Zyklus ζi, 1 ≤ i ≤ t, genau ai-mal gestrichen, so gilt
a1~r1 + . . .+at~rt = −~r, wobei ~r die Bewertung der entstandenen zyklenfreien Ableitung ist.

Da es nur endlich viele zyklenfreie Ableitungen gibt, existiert eine zyklenfreie Ableitung
∆′, auf die unendlich viele Ableitungen reduziert werden. Damit hat die Gleichung

a1~r1 + . . .+ at~rt = −Value(∆′)

unendlich viele Lösungen in N t\{~0}. Unter diesen gibt es nach Lemma 2.6.1 zwei Lösungen
~b,~c ∈ N t mit ~b < ~c. Die Gleichung a1~r1 + . . .+ at~rt = ~0 hat somit eine Lösung in N t \ {~0},
nämlich ~c − ~b. Nach Lemma 2.6.2 gibt es für die letztgenannte Gleichung eine Lösung
(a1, . . . , at) ∈ N t \ {~0} mit höchstens k + 1 positiven Komponenten. O.B.d.A. seien diese
unter den ersten k + 1 Komponenten zu finden, d.h. es gelte a1~r1 + . . . ak+1~rk+1 = ~0 mit
(a1, . . . , ak+1) ∈ N k+1 \ {~0}.
In eine Ableitung ∆ : (S,~0)⇒∗ (w,~0) mit N(∆) = M kann man für i ≥ 1 sukzessive (i·a1)-
mal den Zyklus ζ1, (i · a2)-mal den Zyklus ζ2, . . ., (i · ak+1)-mal den Zyklus ζk+1 einfügen.
Die so entstandene Ableitung liefert wieder ein Terminalwort und ist mit ~0 bewertet. Die
iterativen Wörter sind α2j−1 = v

aj
j , α2j = w

aj
j , 1 ≤ j ≤ k+1; ihre Reihenfolge ist abhängig

von der Position der zugehörigen Nichtterminale Ai im Ableitungsbaum. Die Menge der
iterativen Tupel bezüglich M ergibt sich damit als

I(M) =
{
(απ(1), . . . , απ(2k+2)) : π ist Permutation von {1, . . . , 2k + 2}

}
.

(Genauer betrachtet, kommen nur bestimmte Permutationen in Frage.) Weiterhin erhält
man

I =
⋃

M∈Ninf

I(M) und

n = max{|w| : w ∈ T ∗ ∧ ∃∆(∆ : (S,~0)⇒∗ (w,~0) ∧N(∆) /∈ Ninf)}2

Analog zeigt man im Falle regulärer Valenzgrammatiken:

Satz 2.6.4 Es sei L ⊆ T ∗ eine Sprache aus L(Val,REG,Zk). Dann existieren eine Kon-
stante n und eine endliche Menge I ⊆ (T ∗)k+1 von iterativen (k+1)-Tupeln mit folgenden
Eigenschaften.

Kapitel 2: Valenzgrammatiken 39

(1) |α1α2 · · ·αk+1| > 0 für alle (α1, α2, . . . , αk+1) ∈ I.

(2) Für alle w ∈ L mit |w| > n gibt es eine Zerlegung w = z1z2 · · · zk+1zk+2 und ein
iteratives Tupel (α1, α2, . . . , αk+1) ∈ I mit

z1α
i
1z2α

i
2 · · · zk+1α

i
k+1zk+2 ∈ L für alle i ∈ N .

Gibt es einen Zyklus (A,~0)⇒∗ (vAw,~0), so stellt (v, w) für jede Ableitung, die das Symbol
A enthält, ein iteratives Paar dar. Besitzt also einer der im Beweis von Satz 2.6.3 betrach-
teten minimalen Zyklen die Bewertung ~0, so kann man sogar ein iteratives Paar finden. Bei
Grammatiken mit bewerteten Alphabeten entspricht ein Zyklus (A,~0) ⇒∗ (vAw,~0) einer
Bewertung von vw mit ~0. Damit ergeben sich folgende Resultate:

Satz 2.6.5 Es sei L ⊆ T ∗ eine Sprache aus L(Val′,CF,Zk) mit Bewertung ϕ : T ∗ → Z k.
Dann existieren eine Konstante n, eine endliche Menge I ′ ⊆ (T ∗)2 von iterativen Paa-
ren und eine endliche Menge I ⊆ (T ∗)2k+2 von iterativen (2k + 2)-Tupeln mit folgenden
Eigenschaften.

(1) Für alle (α1, α2, . . . , α2k+2) ∈ I existiert ein i mit ϕ(αi) 6= ~0.

(2) |α1α2| > 0 für alle (α1, α2) ∈ I ′.

(3) Für alle w ∈ L mit |w| > n gibt es

– eine Zerlegung w = z1z2 · · · z2k+2z2k+3 und ein iteratives Tupel (α1, α2, . . . , α2k+2)
aus I mit z1α

i
1z2α

i
2 · · · z2k+2α

i
2k+2z2k+3 ∈ L für alle i ∈ N oder

– eine Zerlegung w = z1z2z3 und ein iteratives Paar (α1, α2) ∈ I ′ mit
z1α

i
1z2α

i
2z3 ∈ L für alle i ∈ N .

Satz 2.6.6 Es sei L ⊆ T ∗ eine Sprache aus L(Val′,REG,Zk) mit Bewertung ϕ : T ∗ → Z k.
Dann existieren eine Konstante n, eine endliche Menge von iterativen Wörtern I ′ ⊆ T ∗ und
eine endliche Menge I ⊆ (T ∗)k+1 von iterativen (k+1)-Tupeln mit folgenden Eigenschaften.

(1) Für alle (α1, α2, . . . , αk+1) ∈ I existiert ein i mit ϕ(αi) 6= ~0.

(2) |α| > 0 für alle α ∈ I ′.

(3) Für alle w ∈ L mit |w| > n gibt es

– eine Zerlegung w = z1z2 · · · zk+1zk+2 und ein iteratives Tupel (α1, α2, . . . , αk+1)
aus I mit z1α

i
1z2α

i
2 · · · zk+1α

i
k+1zk+2 ∈ L für alle i ∈ N oder

– eine Zerlegung w = z1z2 und ein iteratives Wort α aus I ′ mit z1α
iz2 ∈ L für

alle i ∈ N .

Kapitel 2: Valenzgrammatiken 40

2.7 Schlanke Valenzsprachen

Schlanke Sprachen, d.h. Sprachen mit beschränkter Strukturfunktion, wurden in den letz-
ten Jahren in zahlreichen Arbeiten untersucht. Ilie [21], [22] sowie Raz [29] zeigten, daß
schlanke kontextfreie Sprachen sich als endliche Vereinigung von paired loops darstellen las-
sen (ein paired loop ist eine Sprache der Form {uvmwxmy : m ≥ 0} mit u, v, w, x, y ∈ X∗).
Raz zeigte außerdem die Entscheidbarkeit der Frage, ob eine kontextfreie Grammatik eine
schlanke Sprache erzeugt.

In diesem Abschnitt werden die Untersuchungen bezüglich Schlankheit auf Valenzsprachen
über Q+ ausgedehnt. Es wird die Entscheidbarkeit der Frage, ob eine Q+-Valenzgrammatik
eine k-schlanke Sprache erzeugt, gezeigt. Außerdem ergeben sich einige Abschlußeigenschaf-
ten der Familie der schlanken Q+-Valenzsprachen. Wesentliches Hilfsmittel in den Beweisen
ist die Abgeschlossenheit der Familie der Q+-Valenzsprachen unter Q+-Transduktionen. Es
sei darauf hingewiesen, daß mit der gleichen Methode analoge Resultate für die umfassende-
re Familie der Matrixsprachen sowie für einige Variationen des Schlankheitsbegriffes erzielt
werden können [37].

Im folgenden seien X ein Alphabet, # /∈ X ein Trennsymbol, L ⊆ X∗ eine Sprache. Wir
definieren für k ≥ 1 die folgenden von L abgeleiteten Sprachen:

L[≥k] = {w1#w2# · · ·wk# : wi ∈ L, |w1| = |wi| für 1 ≤ i ≤ k, wi 6= wj für 1 ≤ i < j ≤ k}
L[≥k] = {w ∈ L : sL(|w|) ≥ k}
L[k] = {w ∈ L : sL(|w|) = k}

S[L,≥k] = {w ∈ X∗ : sL(|w|) ≥ k}
S[L,k] = {w ∈ X∗ : sL(|w|) = k}

Als erstes werden wir beweisen, daß mit L auch L[≥k] und L[≥k] Q+-Valenzsprachen sind.
Daraus folgt, daß S[L,≥k] und S[L,k] reguläre Sprachen sind und L[k] eine Q+-Valenzsprache
ist. Da die Abgeschlossenheit effektiv ist, folgt sofort die Entscheidbarkeit des Problems
der (k−1)-Schlankheit, denn L ist genau dann (k−1)-schlank bzw. streng (k−1)-schlank,
wenn S[L,≥k] endlich bzw. leer ist.

Behauptung 2.7.1 Aus L ∈ L(Val,CF,Q+) folgt L[≥k] ∈ L(Val,CF,Q+) für k ≥ 1.

Beweis. Offensichtlich gilt L[≥k] = (L#)k ∩Ak ∩ Bk mit

Ak = {w1#w2# . . . wk# : wi ∈ X∗(1 ≤ i ≤ k), wi 6= wj(1 ≤ i < j ≤ k)}
Bk = {w1#w2# . . . wk# : wi ∈ X∗ ∧ |w1| = |wi|(1 ≤ i ≤ k)}

Wegen der Abgeschlossenheit von L(Val,CF,Q+) unter Konkatenation ist (L#)k eine Q+-
Valenzsprache. Für den Beweis der Behauptung genügt es zu zeigen, daß Ak und Bk von

Kapitel 2: Valenzgrammatiken 41

endlichen Q+-Valenzautomaten akzeptiert werden. Wegen

Ak =
⋂

1≤i<j≤k
Ak;i,j mit

Ak;i,j = {w1#w2# . . . wk# : wm ∈ X∗(1 ≤ m ≤ k), wi 6= wj}
= {u1v1u2v2u3 : u1 ∈ (X∗#)i−1, u2 ∈ (X∗#)j−i, u3 ∈ (X∗#)k−j,

v1, v2 ∈ X∗#, v1v2 ∈ A2},

Bk =
⋂

2≤i≤k
Bk;i mit

Bk;i = {w1#w2# . . . wk# : wm ∈ X∗(1 ≤ m ≤ k), |w1| = |wi|}
= {v1u1v2u2 : u1 ∈ (X∗#)i−1, u2 ∈ (X∗#)k−i, v1, v2 ∈ X∗#, v1v2 ∈ B2}

reduziert sich dieses Problem darauf, für die Sprachen A2 und B2 Valenzautomaten über
Z zu finden, was im folgenden geschieht:

1. Zwei Wörter w1, w2 ∈ X∗ sind genau dann verschieden, wenn es ein i mit
1 ≤ i ≤ min{|w1|, |w2|} + 1 gibt, so daß die i-te Position von w1# und die i-te
Position von w2# verschieden sind. Ein nichtdeterministischer Z-Valenzautomat, der
A2 akzeptiert, arbeitet folgendermaßen.

Zunächst wird der blinde Zähler für jedes gelesene Symbol um 1 erhöht. Irgendwann
bis zum Lesen des ersten # wird nichtdeterministisch geraten, daß die Position er-
reicht ist, an der sich der erste und der zweite Teil des Wortes unterscheiden. Das
Symbol an dieser Stelle wird im Zustand des Automaten gespeichert, der Zähler wird
bis zum Ende des ersten Teiles nicht verändert.

Beim Lesen des zweiten Teiles wird der Zählerinhalt zunächst für jedes Symbol um
1 verringert. Ist das aktuelle Symbol verschieden vom gespeicherten, so kann nicht-
deterministisch das Verringern des Zählerinhaltes beendet werden. Der Zähler hat
genau dann den Inhalt 0, wenn im zweiten Teil die gleiche Position wie im ersten Teil
gewählt wurde.

2. B2 = L(B) mit B = ({z0, z1, z2}, X ∪ {#}, z0, δ, z2), wobei

δ = {(z0, x, z0, 1), (z0,#, z1, 1), (z1, x, z1,−1), (z1,#, z2,−1) : x ∈ X}

Ein Wort über X ∪ {#} wird genau dann akzeptiert, wenn es die Form w1#w2#,
w1, w2 ∈ X∗, besitzt und w1 und w2 gleiche Länge besitzen. 2

Behauptung 2.7.2 Aus L ∈ L(Val,CF,Q+) folgt L[k], L[≥k] ∈ L(Val,CF,Q+) sowie
S[L,k], S[L,≥k] ∈ L(REG).

Kapitel 2: Valenzgrammatiken 42

Beweis. Es gilt L[≥k] = {w ∈ X∗ : ∃α(α ∈ (X ∪ {#})∗ ∧ w#α ∈ L[≥k])} und damit
L[≥k] ∈ L(Val,CF,Q+). Die Längenmenge Λ(L[≥k]) ist demzufolge semilinear. Die Sprachen
S[L,≥k] = {w ∈ X∗ : |w| ∈ Λ(L[≥k])} und S[L,k] = S[L,≥k] \ S[L,≥k+1] sind regulär; daraus
folgt: L[k] = L ∩ S[L,k] ist in L(Val,CF,Q+) enthalten. 2

Satz 2.7.3 Für eine Q+-Valenzgrammatik G und eine gegebene Zahl k ∈ N ist es ent-
scheidbar, ob L(G) (echt) k-schlank ist.

Beweis. Sei L = L(G). L ist genau dann k-schlank bzw. echt k-schlank ist, wenn L[≥k+1]

endlich bzw. leer ist. Die Beweise der letzten beiden Behauptungen sind konstruktiv. Damit
läßt sich eine Q+-Valenzgrammatik konstruieren, die L[≥k+1] erzeugt. Da Endlichkeit bzw.
Leerheit für Q+-Valenzgrammatiken entscheidbar sind, folgt der Satz. 2

Satz 2.7.4 1. Aus L,M ∈ L(Val,CF,Q+) und der Schlankheit von M folgt L \M ∈
L(Val,CF,Q+).

2. Aus L,M ∈ L(Val,CF,Q+) und der Schlankheit von L und M folgt L ∩ M ∈
L(Val,CF,Q+).

Beweis.

1. Die Strukturfunktion von M sei durch k beschränkt. Für 1 ≤ m ≤ k betrachten wir

L
(m)
M = {w0#w1# · · ·wm# : w0 ∈ L,w1, . . . , wm ∈M[m],

wi 6= wj, |w0| = |wj| für 0 ≤ i < j ≤ m}.

Wegen L,M[m] ∈ L(Val,CF,Q+) kann man analog zum Beweis von Behauptung 2.7.1

zeigen, daß L(m)
M in L(Val,CF,Q+) ist. Sei nun LM,m = {w ∈ L \M : sM(|w|) = m}

für 0 ≤ m ≤ k. Es gilt LM,0 = L ∩ SM,0 und LM,m = {w ∈ X∗ : ∃α(w#α ∈ L(m)
M)},

1 ≤ m ≤ k. Damit sind die Sprachen LM,m, 0 ≤ m ≤ k, in L(Val,CF,Q+). Mit

L \M =
⋃k
m=0 LM,m folgt die erste Aussage.

2. Folgt nach Aussage (1) und wegen L ∩M = L \ (L \M). 2

Satz 2.7.5 Es seien G1 und G2 kontextfreie Q+-Valenzgrammatiken, die jeweils schlanke
Sprachen erzeugen. Es ist entscheidbar, ob L(G1) ⊆ L(G2) bzw. ob L(G1)∩L(G2) = ∅ gilt.

Beweis. Die in Satz 2.7.4 aufgeführten Abschlußeigenschaften sind effektiv. Das heißt,
man kann Valenzgrammatiken konstruieren, die L(G1)\L(G2) bzw. L(G1)∩L(G2) erzeugen.
Damit sind das Inklusionsproblem sowie das Disjunktheitsproblem auf das Leerheitspro-
blem für Valenzgrammatiken reduziert. 2

Kapitel 3

Kantengrammatiken

3.1 Definitionen und Beispiele

Zunächst werden Wortrelationen als Verallgemeinerungen von Sprachen eingeführt. Für
eine zweistellige Wortrelation wird auf natürliche Weise eine Folge von Graphen definiert.
Schließlich werden Kantengrammatiken als Mittel zur Erzeugung von Wortrelationen und
damit von Graphenfolgen eingeführt.

In diesem Kapitel werden häufig kartesische Produkte von Alphabeten und Sprachen auf-
treten. Um Verwechslungen zu vermeiden, werden für eine Sprache L das n-fache Monoid-
produkt mit L[n] und das n-fache kartesische Produkt mit Ln notiert. Insbesondere ist X [n]

die Menge aller Wörter der Länge n über dem Alphabet X. Dagegen wird für ein Wort w
die Schreibweise wn für die n-fache Konkatenation von w beibehalten.

Eine Wortrelation R ⊆ (X∗)n heißt synchron, wenn |vi| = |v1|, 1 ≤ i ≤ n, für alle
(v1, . . . , vn) gilt. Mit Syn(R) wird die größte in R enthaltene synchrone Relation bezeich-
net. Offenbar sind die Monoide Syn((X∗)n) und (Xn)∗ isomorph. Wir werden deshalb im
folgenden synchrone n-stellige Relationen über X∗ und Sprachen über Xn miteinander
identifizieren.

Definition 3.1.1 Es seien X ein Alphabet und E ⊆ X∗ × X∗ eine synchrone Relation.
Die Knotensprache von E ist

V (E) = {v ∈ X∗ : ∃w ((v, w) ∈ E ∨ (w, v) ∈ E)} .

Der zu E gehörige n-te Graph Gn(E), n ≥ 0, ist definiert als

Gn(E) = (Vn(E), En) mit Vn(E) = V (E) ∩X [n], En = (E \ IdV) ∩ (X [n] ×X [n]).

Bemerkung. Aus der Kantenrelation E werden alle Paare der Form (v, v) entfernt; damit
ist gewährleistet, daß nur schlichte Graphen erzeugt werden, und es ist möglich, isolierte
Knoten zu erzeugen.

43

Kapitel 3: Kantengrammatiken 44

Beispiel 3.1.1 Wir betrachten folgende Wortrelationen:

E1 = {(2m+1w, 2maw) : m ≥ 0, a ∈ {0, 1}, w ∈ {0, 1}∗}
E2 = {(0m10n+k, 0m+k1, 0n) : m,n ≥ 0, k ≥ 1}
E3 = {(0m+k1n, 0m1n+k) : m,n ≥ 0, k ≥ 1}
E4 = {(w0, w1) : w ∈ {0, 1}∗} ∪ {(wa, aw) : a ∈ {0, 1}, w ∈ {0, 1}∗}

Der Graph Gn(E1) ist für n ≥ 1 der vollständige binäre Baum der Tiefe n, wobei die
Knotenmenge {2iw : w ∈ {0, 1}[n−i], 0 ≤ i ≤ n} ist. Der Knoten 2n ist die Wurzel, die
Knoten aus {0, 1}[n] sind die Blätter, und die Söhne von 2iw, 1 ≤ i ≤ n, w ∈ {0, 1}[n−i],
sind die Knoten 2i−10w und 2i−11w.

Gn(E2 ∪ E−1
2) und Gn−1(E3 ∪ E−1

3), n ≥ 2, sind jeweils die vollständigen Graphen mit n
Knoten, wobei die Knotenmengen {0i10j : i+ j = n− 1} bzw. {0i1j : i+ j = n− 1} sind.

Gn(E4∪E−1
4) ist der n-te Shuffle-Exchange-Graph, bestehend aus der Knotenmenge {0, 1}[n],

den (ungerichteten) Shuffle-Kanten der Form {aw,wa} und den Exchange-Kanten der
Form {w0, w1}.

Definition 3.1.2 Eine Kantengrammatik ist ein Quintupel Γ = (N,X, T, P, S), wobei X
ein Alphabet, T eine endliche Teilmenge von X∗×X∗ und Γ̂ = (N, T, P, S) eine Grammatik
sind. Γ heißt kontextfreie, lineare bzw. reguläre Kantengrammatik, wenn Γ̂ eine kontextfreie,
lineare bzw. reguläre Grammatik ist. Gilt |v| = |w| für alle Paare (v, w) ∈ T , so nennt man
Γ synchron.

Die von Γ erzeugte Sprache über T ist L(Γ) := {w ∈ T ∗ : w ∈ L(Γ̂)∧ |pr1(w)| = |pr2(w)|}.
Die Kantensprache von Γ, E(Γ), ist die durch L definierte synchrone binäre Relation über
X, formal E(Γ) := {(v, w) ∈ X∗ × X∗ : ∃u(u ∈ L(Γ) ∧ pr1(u) = v ∧ pr2(u) = w)}, die
Knotensprache von Γ ist V (Γ) = V (E(Γ)).

Der n-te von Γ erzeugte Graph ist Gn(Γ) = (Vn(Γ), En(Γ)) = Gn(E(Γ)). Der Eingangs-
bzw. der Ausgangsgrad des Knoten v ∈ Vn(Γ) in Gn(Γ) wird mit din(v|Γ) bzw. dout(v|Γ)
bezeichnet.

Wir unterscheiden zwischen

• der von Γ erzeugten Graphenfolge G(Γ) = {Gn(Γ)}∞n=0 und

• der von Γ erzeugten (abstrakten) Graphensprache

[G](Γ) = {[Gn(Γ)] : Vn(Γ) 6= ∅, n ≥ 0}.

Der von Gn(Γ) induzierte ungerichtete Graph wird mit Gu
n(Γ) bezeichnet; die Folge bzw.

die Graphensprache der induzierten ungerichteten Graphen sind Gu(Γ) bzw. [Gu](Γ).

Definition 3.1.3 Für X ∈ {CF,LIN,REG} bezeichnen wir mit E(X) bzw. V(X) die Fa-
milien der von Kantengrammatiken vom Typ X erzeugten Kantensprachen bzw. Knoten-
sprachen; mit E(SYN−X) bzw. V(SYN−X) werden die entsprechenden von synchronen
Kantengrammatiken des Typs X erzeugten Sprachfamilien bezeichnet.

Kapitel 3: Kantengrammatiken 45

Beispiel 3.1.2 Die Wortrelationen Ei, 1 ≤ i ≤ 4, aus Beispiel 3.1.1 (und damit die
entsprechenden Graphenfamilien) werden jeweils durch die Kantengrammatiken Γi erzeugt:

Γ1 : S → (2, 2)S | (2, 1)B | (2, 0)B, B → (1, 1)B | (0, 0)B | λ

Γ2 : S → (0, 0)S | (0, 1)A | (1, 0)B, A→ (0, 0)A | (1, 0)C,
B → (0, 0)B | (0, 1)C, C → (0, 0)C | λ

Γ3 : S → (0, 0)S | (0, 1)A | (1, 0)B, A→ (0, 1)A | (1, 1)C,
B → (1, 0)B | (1, 1)C, C → (1, 1)C | λ,

Γ4 : S → (λ, 0)A | (λ, 1)B | E, A→ (0, 0)A | (1, 1)A | (0, λ),
B → (0, 0)B | (1, 1)B | (1, λ), E → (0, 0)E | (1, 1)E | (0, 1) | (1, 0)

Die folgenden Lemmata geben Normalformen für Kantengrammatiken an, die in den wei-
teren Untersuchungen nützlich sind.

Lemma 3.1.1 1. Zu jeder kontextfreien, linearen bzw. regulären Kantengrammatik
Γ = (N,X, T, P, S) existiert eine äquivalente kontextfreie, lineare bzw. reguläre Kan-
tengrammatik mit dem Terminalalphabet T̂ = (X × {λ}) ∪ ({λ} ×X).

2. Zu jeder synchronen kontextfreien, linearen bzw. regulären Kantengrammatik
Γ = (N,X, T, P, S) existiert eine äquivalente synchrone kontextfreie, lineare bzw.
reguläre Kantengrammatik mit dem Terminalalphabet X2.

Beweis.

1. Man ersetze in jeder rechten Regelseite ein Symbol (a1 · · ·am, b1 · · · bn) ∈ T mit
a1, . . . , am, b1, . . . , bn ∈ X durch das Wort (a1, λ) · · · (am, λ)(λ, b1) · · · (λ, bn) ∈ T̂ ∗.

2. Man ersetze in jeder rechten Regelseite ein Symbol (a1 · · ·am, b1 · · · bm) ∈ T mit
a1, . . . , am, b1, . . . , bm ∈ X durch das Wort (a1, b1) · · · (am, bm) ∈ (X2)∗. 2

Mit der erwähnten Identifizierung von Sprachen und synchronen Relationen ist die von
einer synchronen regulären (kontextfreien) Kantengrammatik mit dem Knotenalphabet X
erzeugte Relation eine reguläre (kontextfreie) Sprache über X2 und umgekehrt. Die von
synchronen regulären Kantengrammatiken erzeugten Relationen werden im folgenden als
synchrone reguläre Relationen bezeichnet. Wegen der vielen positiven Eigenschaften der
regulären Sprachen steht diese Teilklasse im Mittelpunkt der Untersuchungen.

Lemma 3.1.2 Zu jeder synchronen kontextfreien, linearen bzw. regulären Kantengramma-
tik Γ existiert eine synchrone kontextfreie, lineare bzw. reguläre Kantengrammatik Γ′ mit
G(Γ) = G(Γ′) und E(Γ′) = E(Γ) ∪ IdV (Γ).

Kapitel 3: Kantengrammatiken 46

Beweis. Wie bereits gesagt, ist eine Sprache E ⊆ (X2)∗ genau dann kontextfrei, line-
ar bzw. regulär, wenn eine synchrone Kantengrammatik Γ des entsprechenden Typs mit
E(Γ) = E existiert. Es gilt V (Γ) = pr1(E(Γ)) ∪ pr2(E(Γ)) und IdV (Γ) = h(VΓ), wobei h
der Homomorphismus h : X∗ → (X2)∗ mit h(a) = (a, a) für a ∈ X ist. Ist nun Γ syn-
chron und kontextfrei, linear bzw. regulär, so ist E′ = E(Γ) ∪ IdV (Γ) ebenfalls kontextfrei,
linear bzw. regulär; es existiert folglich eine synchrone kontextfreie, lineare bzw. reguläre
Kantengrammatik Γ′ mit E(Γ′) = E′. 2

Wie schon in der Einleitung erwähnt, ist die geeignete Kontraktion großer Graphen auf klei-
nere Graphen der gleichen Familie eine wichtige Aufgabe in der Parallelprogrammierung.
Für viele durch Kantengrammatiken erzeugte Graphenfolgen gibt es eine sehr einfache
Kontraktion, die dadurch erfolgt, daß man von jedem Wort aus der Knotenmenge die letz-
ten k Buchstaben abschneidet. Graphenfolgen mit dieser Eigenschaft wurden von Berman

und anderen als kürzbar (truncatable) bezeichnet [1, 2, 4].

Definition 3.1.4 Es seien G = (V,E) und G′ = (V ′, E′) schlichte Graphen. Eine Kon-
traktion von G auf G′ ist eine Abbildung

h : V → V ′ mit ∀v∀w ((v, w) ∈ E → (h(v) = h(w) ∨ (h(v), h(w)) ∈ E′)) .

Der Kontraktionsfaktor %(h) ist definiert als %(h) = max{card h−1(v′) : v′ ∈ V ′}.

Definition 3.1.5 Es sei G = {Gn}n≥0 eine Folge von Graphen. Eine Folge H von Kon-
traktionen {hn}n≥n0 von Gn+k auf Gn heißt k-Kontraktion von G. Der Kontraktionsfaktor
%(H) ist definiert als %(H) = sup{%(hn) : n ≥ n0}.

Beispiel 3.1.3 Es sei G = {Gn}n≥0 eine Folge nichtleerer Graphen. Eine Folge H =
{hn}n≥0 von Abbildungen hn : V (Gn+1) → V (Gn) mit hn(v) = hn(w) für alle v, w ∈
V (Gn+1) ist eine (triviale) 1-Kontraktion von G. Es gilt %(hn) = card V (Gn+1).

Wie man leicht sieht, stellt die iterierte Anwendung von Kontraktionen wieder eine Kon-
traktion dar, so daß in einer Graphenfolge {Gn}n≥0 mit der k-Kontraktion {hn}n≥n0 ein
Graph Gn durch Anwendung der Kontraktionen hn+k, hn, hn−k, . . . auf einen Graphen Gr

mit r ≤ n0 kontrahiert werden kann.

Definition 3.1.6 Es sei Γ = (N,X, T, P, S) eine Kantengrammatik. Die Graphenfolge
G(Γ) heißt

• k-kürzbar für k ≥ 1, falls es ein n0 ≥ k gibt, so daß die Abbildungsfolge

trunck = {hn : Vn+k(Γ)→ Vn(Γ)}n≥n0 mit hn(v) = prefn(v) für v ∈ Vn+k(Γ)

eine k-Kontraktion von G(Γ) ist,

Kapitel 3: Kantengrammatiken 47

• im strengen Sinne k-kürzbar für k ≥ 1, wenn zusätzlich n0 = 0 gilt,

• kürzbar, wenn ein k ≥ 1 existiert, so daß G(Γ) k-kürzbar ist.

Beispiel 3.1.4 Die Graphenfolgen G(Γ1) und G(Γ3) aus Beispiel 3.1.2 sind 1-kürzbar,
während G(Γ2) und G(Γ4) nicht kürzbar sind.

Ist die Folge trunck eine k-Kontraktion einer Graphenfolge über dem Knotenalphabet X,
so gilt für den Kontraktionsfaktor %(trunck) ≤ (card X)k. Damit ist gesichert, daß das
Kürzen nicht nur eine einfache, sondern auch eine relativ effiziente Art der Kontraktion
ist. In der Arbeit [4] untersuchten Berman und Snyder Probleme der Kürzbarkeit und der
Kontraktionsfaktoren für zahlreiche aus der Theorie der Parallelprogrammierung bekannte
Graphenfolgen.

3.2 Kantengrammatiken und formale Sprachen

Die Untersuchung der von Kantengrammatiken erzeugten Knoten- bzw. Kantensprachen
ist von besonderem Interesse, da sich aus Aussagen über diese Sprachen Eigenschaften der
erzeugten Graphen ableiten lassen. So ist z.B. die Knotenzahl des Graphen Gn(Γ) gleich
der Strukturfunktion von V (Γ) an der Stelle n.

In diesem Abschnitt setzen wir die Untersuchungen zu den Knotensprachen kontextfreier
Kantengrammatiken von Berman und Shannon in [2] fort. Die Kantensprachen wer-
den durch Grammatiken mit Bewertung, die Knotensprachen durch Valenzgrammatiken
charakterisiert. Am Ende folgen einige Resultate über endliche Automaten und formale
Potenzreihen, die später von Nutzen sein werden.

Zusätzlich zu den bereits genannten Knoten- und Kantensprachen betrachten wir die Start-
knotensprache V 1(Γ) bzw. die Zielknotensprache V 2(Γ) einer Kantengrammatik Γ. Diese
sind definiert als V 1(Γ) := {v : ∃w((v, w) ∈ E(Γ)} bzw. V 2(Γ) := {w : ∃v((v, w) ∈ E(Γ)}.
Die Familien der Startknotensprachen, die durch Kantengrammatiken vom Typ Y erzeug-
bar sind, werden als V1(Y) notiert.

Satz 3.2.1 Es seien X ein Alphabet, T ⊆ X∗ × X∗ eine endliche Menge, ϕ : T ∗ → Z
die Bewertung mit ϕ((v, w)) = |v| − |w| für (v, w) ∈ T . Eine Sprache L ⊆ T ∗ wird genau
dann von einer kontextfreien (linearen, regulären) Grammatik G = (N, T, P, S) mit der
oben definierten Bewertung ϕ erzeugt, wenn sie von der kontextfreien (linearen, regulären)
Kantengrammatik Γ = (N,X, T, P, S) erzeugt wird.

Beweis. Für α ∈ T ∗ gilt ϕ(α) = |pr1(α)|−|pr2(α)| und damit α ∈ L(G,ϕ) ⇐⇒ α ∈ L(Γ).
2

Kapitel 3: Kantengrammatiken 48

Satz 3.2.2 Für Y ∈ {CF,LIN,REG} gilt:

1. V1(SYN− Y) = V(SYN− Y) = L(Y),

2. V(Y) (V1(Y) = L(Val, Y,Z).

Beweis. Die erste Aussage wurde bereits in Lemma 3.1.2 gezeigt. Wir zeigen die zweite
Aussage für den kontextfreien Fall.

Ist Γ = (N,X, T, P, S) eine kontextfreie Kantengrammatik, so erzeugt die kontextfreie
Z-Valenzgrammatik G = (N,X, P ′, S) mit

P ′ = {(A→ pr1(α), |pr1(α)| − |pr2(α)|) : A→ α ∈ P}

die Sprache V 1(Γ). Analog konstruiert man eine kontextfreie Grammatik H mit L(H) =
V 2(Γ). Wegen der Abgeschlossenheit von L(Val,CF,Z) unter Vereinigung folgt V (Γ) ∈
L(Val,CF,Z).

Sei schließlich G = (N, T, P, S) eine kontextfreie Z-Valenzgrammatik mit Valenzregeln der
Form (A → BC, 0), (A → a, r), r ∈ {−1, 0, 1} (nach Satz 2.4.1 kann man dies o.B.d.A.
voraussetzen). Man konstruiert die kontextfreie Kantengrammatik Γ = (N,X,X2, P ′, S)
mit

P ′ = {A→ BC : (A→ BC, 0) ∈ P} ∪ {A→ (a,#) : (A→ a, 0) ∈ P} ∪
{A→ (a,##) : (A→ a,−1) ∈ P} ∪ {A→ (a, λ) : (A→ a, 1) ∈ P} .

Offensichtlich gilt L(G) = V 1(Γ). Die Echtheit der ersten Inklusion ergibt sich aus der
folgenden Behauptung. 2

Behauptung 3.2.3 1. L1 = {anbn : n ≥ 1} ∈ L(Val,REG,Z) \ V(REG)

2. L2 = {anbncndn : n ≥ 1} ∈ L(Val,LIN,Z) \ V(CF)

Beweis. Daß die oben genannten Sprachen in den entsprechenden Familien von Valenz-
sprachen liegen, ist klar. Wir zeigen mit Hilfe des Iterationslemmas für kontextfreie Gram-
matiken mit bewertetem Alphabet (Lemma 2.6.5), daß L2 nicht die Knotensprache einer
kontextfreien Kantengrammatik sein kann.

Anderenfalls wäre die zugehörige Kantensprache E2 = {(v, v) : v ∈ L2} wegen sL2(n) ≤ 1
für alle n ≥ 0. Sei nun Γ eine kontextfreie Kantengrammatik mit E(Γ) = E2. O.B.d.A. sei
T = ({a, b, c, d} × {λ}) ∪ ({λ} × {a, b, c, d}) das Terminalalphabet von Γ. Seien n die zu
L(Γ) gehörige Konstante aus dem Iterationslemma und I bzw. I ′ die iterativen Quadrupel
bzw. Paare. Dann ist z mit pr1(z) = pr2(z) = (anbncndn, anbncndn) in L(Γ) enthalten.

Seien nun (α, β, γ, δ) ein iteratives Quadrupel aus I und z = uvwxy eine Zerlegung mit z′ =
uα2vβ2wγ2xδ2y ∈ E2. Um pr1(z

′) ∈ a∗b∗c∗d∗ zu gewährleisten, müssen die Projektionen

Kapitel 3: Kantengrammatiken 49

auf die erste Komponente von α, β, γ und δ in a∗∪b∗∪c∗∪d∗ enthalten sein. Damit pr1(z
′)

in L2 ist, muß sogar pr1(α) = ar, pr1(β) = br, pr1(γ) = cr, pr1(δ) = dr für ein r ∈ N gelten.
Analog muß pr2(α) = as, pr2(β) = bs, pr2(γ) = cs, pr2(δ) = ds für ein s ∈ N erfüllt sein.
Um |pr1(z

′)| = |pr2(z
′)| zu erfüllen, muß r = s gelten. Daraus folgt, daß α, β, γ, δ jeweils

die Bewertung 0 besitzen. Dies steht im Widerspruch zur Aussage des Iterationslemma,
daß wenigstens eines dieser Wörter eine von 0 verschiedene Bewertung hat.

Für ein iteratives Paar (α, β) aus I ′ und jede Zerlegung z = uvw kann man gleichfalls
zeigen, daß das zu uα2vβ2w gehörige Wortpaar nicht in E2 ist. 2

Im Falle synchroner und regulärer Kantengrammatiken lassen sich außerdem Verbindungen
zwischen dem Knotengrad und dem Grad der Mehrdeutigkeit eines endlichen Automaten
herstellen.

Lemma 3.2.4 Es sei Γ = (N,X,X2, P, S) eine synchrone und reguläre Kantengrammatik.
Es existiert ein endlicher Automat A mit L(A) = V (Γ) und dA(w) = dout(w|Γ)+1 für alle
w ∈ V 1(Γ).

Beweis. Es seiA1 = (Z,X2, z0, δ, F) ein deterministischer endlicher Automat mit L(A1) =
E′ = E(Γ) ∪ {(v, v) : v ∈ V 1(Γ)}. Dann ergibt sich A als A = (Z ′, X, z0, δ

′, F ′) mit

Z ′ = Z ×X ∪ {z0},
δ′ = {(z0, a, (z, b)) : a, b ∈ X, z ∈ Z, δ(z0, (a, b)) = z} ∪

{(z1, c), a, (z2, b)) : a, b, c ∈ X, z1, z2 ∈ Z, δ(z1, (a, b)) = z2},
F ′ = F ×X ∪ S mit S = ∅, falls z0 /∈ F, S = {z0}, falls z0 ∈ F.

Wie man leicht durch vollständige Induktion über die Wortlänge sieht, gibt es für das
Wort a1 · · ·an, n ∈ N , ai ∈ X für 1 ≤ i ≤ n, genau dann einen Lauf des Automaten
A mit der Zustandsfolge z0, (z1, b1), . . . , (zn, bn), wenn es für das Wort (a1, b1) · · · (an, bn)
einen Lauf des Automaten A1 mit der Zustandsfolge z0, z1, . . . , zn gibt. Damit ist für ein
Wort v ∈ X∗ der Grad der Mehrdeutigkeit von v bezüglich A gleich der Zahl der Wörter
w mit (v, w) ∈ E′. Wegen (v, v) ∈ E′ ist dies gerade dout(v|Γ) + 1. 2

3.3 Erzeugungskraft von Kantengrammatiken

Wesentliche Aussagen über strukturelle Eigenschaften der von synchronen regulären Kan-
tengrammatiken erzeugten Graphenfamilien lassen sich leicht aus Resultaten über die
Strukturfunktion regulärer Sprachen gewinnen.

Lemma 3.3.1 Es sei L eine reguläre Sprache.

1. Es gibt Konstanten c0, k0, so daß card s−1
L (k) ≤ c0 für alle k ≥ k0 gilt.

Kapitel 3: Kantengrammatiken 50

2. Es gibt Konstanten n0, p, α mit sL(n+ p) ≤ αsL(n) für alle n ≥ n0.

Beweis. Nach [35, Lemma III.7.4] existieren eine Zahl p und eine Zahl n0 mit

sL(n0 + i+ np) = gi(n), (i = 0, . . . , p− 1), n ≥ 0,

wobei g0, . . . , gp−1 D0L-Wachstumsfunktionen sind.

Wir betrachten jetzt eine D0L-Wachstumsfunktion g. Ist g beschränkt, so gibt es eine
Konstantem0(g) mit card g−1(m) = 0 für allem ≥ m0(g). Ist g unbeschränkt, so ist die von
einem D0L-System G mit gG = g erzeugte Sprache M unendlich. In diesem Falle sind alle
Glieder der Folge S(G) verschieden, und card g−1(m) = card {w ∈M : |w| = m} = sM(m)
für alle m ≥ 0. Zusammenfassend gilt für beliebige D0L-Wachstumsfunktionen g: Es gibt
ein m0(g), so daß card g−1(m) = sM(m) für alle m ≥ m0(g) erfüllt ist. Da D0L-Sprachen
schlank sind [7], gibt es eine Konstante c0(g) mit card g−1(m) ≤ c0(g) für alle m ≥ m0(g).

Setzt man jetzt k0 = max{m0(gi) : i = 0, . . . , p−1} und c0 = max{c0(gi) : i = 0, . . . , p−1},
so erhält man die erste Behauptung.

Die zweite Behauptung folgt unmittelbar aus der Tatsache, daß für jede D0L - Wachstums-
funktion g ein α mit g(n+ 1) ≤ αg(n) existiert, siehe [35, Theorem III.7.6]. 2

Satz 3.3.2 Es sei Γ eine synchrone reguläre Kantengrammatik.

1. Es gibt eine Zahl k, so daß G(Γ) für alle n ∈ N höchstens k paarweise nichtisomorphe
Graphen mit n Knoten enthält.

2. Es gibt eine Zahl α > 1 und ein n0 ∈ N , so daß es für jeden Graphen G ∈ G(Γ)
mit n > n0 Knoten einen Graphen H ∈ G(Γ) mit mindestens n/α und weniger als n
Knoten gibt.

Beweis.

1. Nach Lemma 3.3.1 gibt es Konstanten c0, n0 mit s−1
V (Γ)(n) ≤ c0 für alle n ≥ n0. Da

sV (Γ)(m) gleich der Zahl der Knoten von Gm(Γ) ist, gibt es in G(Γ) für n ≥ n0

höchstens c0 Graphen mit n Knoten. Die Anzahl c1 der paarweise nichtisomorphen
mit höchstens n0 Knoten ist endlich. Mit k = max{c0, c1} ist die erste Behauptung
gezeigt.

2. Dies folgt unmittelbar aus der zweiten Aussage von Lemma 3.3.1. 2

Damit ist gezeigt, daß synchrone reguläre Kantengrammatiken zum einen nur
”
schlanke“

Graphensprachen erzeugen können, die Zahl der nichtisomorphen Graphen mit gleicher
Knotenzahl also beschränkt ist, und andererseits das Wachstum der Knotenzahl inner-
halb der Graphenfolge höchstens exponentiell ist. Analoge Resultate gelten auch für die
Kantenzahlen. Als eine erste Anwendung zeigen wir:

Kapitel 3: Kantengrammatiken 51

Satz 3.3.3 Es gibt eine Graphensprache [G], die durch reguläre bzw. synchrone lineare,
jedoch nicht durch synchrone reguläre Kantengrammatiken erzeugt werden kann.

Beweis. Es sei L = {a, b}∗ \ {(akb)k+1 : k ≥ 0}. L ist sowohl in L(Val,REG,Z) als auch
in L(LIN) enthalten, siehe Beispiel 2.2.1. Es gibt eine reguläre bzw. eine synchrone lineare
Kantengrammatik Γ mit

E(Γ) = {(v, w) : v, w ∈ {a, b}∗, |v| = |w|} ∪ {(c|w|, w) : w ∈ L} ∪ {(w, c|w|) : w ∈ L}.

Der Graph Gn(Γ), n ≥ 1, enthält 2n + 1 Knoten. Er ist genau dann vollständig, wenn
n keine Quadratzahl ist. Gäbe es nun eine synchrone reguläre Kantengrammatik Θ mit
[G](Θ) = [G](Γ), so würde nach Satz 3.5.12 auch eine synchrone reguläre Kantengrammatik
Θ′ derart existieren, daß [G](Θ′) die nicht vollständigen Graphen aus [G](Θ) enthält. Die
Menge der Knotenzahlen der Graphen aus [G](Θ′) wäre {2k2

+ 1 : k ≥ 1}, im Widerspruch
zur zweiten Aussage von Satz 3.3.2. 2

3.4 Kantengrammatiken mit kürzbarer Graphenfolge

Kantengrammatiken mit kürzbarer Graphenfolge besitzen eine besondere Bedeutung, da
die Kontraktion von großen auf kleine Graphen der Folge in diesem Fall besonders einfach
realisiert werden kann. In diesem Abschnitt zeigen wir zunächst, daß man eine beliebige von
einer synchronen regulären Kantengrammatik erzeugte Graphenfolge G in eine kürzbare
Graphenfolge H gleichen Typs

”
einbetten“ kann (d.h., die n-ten Graphen von G sind Un-

tergraphen der n-ten Graphen von H), ohne die Größe der Graphen sowie den Knotengrad
übermäßig zu erhöhen. Anschließend wird gezeigt, daß synchrone reguläre Kantengramma-
tiken mit im strengen Sinne 1-kürzbaren Graphenfolgen äquivalent zu einer speziellen Art
von parallelen Knotenersetzungsgrammatiken sind.

Als erstes zeigen wir einige einfache Fakten über kürzbare Kantengrammatiken. Dabei
wird die Eigenschaft der Kürzbarkeit von Graphenfolgen auf eine analoge Eigenschaft für
Sprachen zurückgeführt.

Definition 3.4.1 Es sei X ein Alphabet. Eine Sprache L ⊆ X∗ heißt

• k-kürzbar für k ≥ 1, falls es ein n0 ∈ N gibt, so daß für alle w ∈ L mit |w| ≥ n0 + k
auch pref|w|−k(w) in L enthalten ist.

• im strengen Sinne k-kürzbar für k ≥ 1, wenn in der obigen Aussage zusätzlich n0 = 0
gilt,

• kürzbar, wenn ein k ≥ 1 existiert, so daß L k-kürzbar ist.

Aus den Definitionen der Kürzbarkeit von Graphenfolgen bzw. Sprachen folgt unmittelbar:

Kapitel 3: Kantengrammatiken 52

Lemma 3.4.1 Es sei Γ = (N,X,X2, P, S) eine Kantengrammatik mit IdV (Γ) ⊆ E(Γ). Für
k ≥ 1 ist G(Γ) genau dann (als Graphenfolge) k-kürzbar bzw. im strengen Sinne k-kürzbar,
wenn L(Γ) (als Sprache) k-kürzbar bzw. im strengen Sinne k-kürzbar ist.

Bemerkung: Nach Lemma 3.1.1 und Lemma 3.1.2 kann man für synchrone Kantengram-
matiken immer eine äquivalente synchrone Kantengrammatik gleichen Typs finden, welche
die Voraussetzung des Lemmas erfüllt.

Lemma 3.4.2 Gegeben sei eine reguläre Sprache L ⊆ X∗. Die folgenden Aussagen sind
äquivalent.

1. L ist präfixabgeschlossen (d.h., aus vw ∈ L folgt v ∈ L für alle v, w ∈ X∗).

2. L ist im strengen Sinne 1-kürzbar.

3. L wird durch einen partiellen deterministischen endlichen Automaten akzeptiert, der
nur Endzustände besitzt.

4. L wird durch einen nichtdeterministischen endlichen Automaten akzeptiert, der nur
Endzustände besitzt.

Beweis. Die Implikationen (1)→ (2), (3)→ (4) und (4)→ (1) sind trivial.

Um (2)→ (3) zu beweisen, betrachten wir für eine im strengen Sinne 1-kürzbare Sprache
L einen deterministischen endlichen Automaten A = (Z,X, z0, δ, F) mit L(A) = L. Für
alle z ∈ Z \ F und alle a ∈ X gilt δ(z, a) ∈ Z \ F . Der partielle deterministische endliche
Automat A′ = (F,X, z0, δ

′, F) mit δ′ = δ ∩ F ×X × F akzeptiert ebenfalls L und besteht
nur aus Endzuständen.

Satz 3.4.3 Es sei Γ eine synchrone reguläre Kantengrammatik. Dann existiert eine syn-
chrone reguläre Kantengrammatik Θ, so daß Gn(Γ) für alle n ∈ N ein Teilgraph von Gn(Θ)
ist und G(Θ) im strengen Sinne 1-kürzbar ist. Wächst außerdem die Zahl der Knoten, die
Zahl der Kanten bzw. der maximale Knotengrad von Gn(Γ) polynomiell, so wachsen die
entsprechenden Parameter von Gn(Γ) mit dem gleichen Grad polynomiell.

Beweis. Es sei Γ = (N,X,X2, P, S) eine synchrone reguläre Kantengrammatik mit
IdV (Γ) ⊆ E(Γ). Da die Familie der regulären Sprachen abgeschlossen unter Präfixbildung
ist, gibt es eine synchrone reguläre Kantengrammatik Θ mit L(Θ) = pref(L(Γ)). Es gilt
L(Γ) ⊆ L(Θ), und folglich ist Gn(Γ) ein Teilgraph von Gn(Θ) für alle n ∈ N . Weiterhin ist
L(Θ) präfixabgeschlossen, und damit ist G(Θ) im strengen Sinne 1-kürzbar.

Da L(Γ) eine reguläre Sprache ist, gibt es eine Konstante k derart, daß zu jedem z ∈
pref(L(Γ)) ein z′ ∈ L(Γ) mit z v z′ und |z′| ≤ |z|+k existiert. Damit gibt es zu jedem Paar

Kapitel 3: Kantengrammatiken 53

(v, w) ∈ E(Θ) ein Paar (v′, w′) ∈ E(Γ) mit v v v′, w v w′ und |v′| = |w′| ≤ |v|+k = |w|+k.
Die Zahl der Kanten von Gn(Θ) kann somit wie folgt abgeschätzt werden:

card En(Γ) ≤ card En(Θ) ≤
n+k∑
i=n

Ei(Γ) ≤ (k + 1) max{Ei(Γ) : n ≤ i ≤ n+ k} .

Eine analoge Abschätzung ergibt sich für die Zahl der Knoten. Für den Ausgangsgrad von
v gilt:

dout(v|Γ) ≤ dout(v|Θ) ≤
∑

v′:vvv′∧|v′|≤|v|+k

dout(v
′|Γ)

≤ (card X)k+1 max{dout(v′|Γ) : v v v′ ∧ |v′| ≤ |v|+ k} .

2

Im Rest dieses Abschnittes beschäftigen wir uns mit der Beziehung zwischen Kantengram-
matiken und Knotenersetzungsgrammatiken. Als erstes führen wir den Begriff des knoten-
und kantenmarkierten Graphen ein.

Es seien X (die Menge der Knotenmarken) und Y (die Menge der Kantenmarken) zwei
endliche Mengen. Ein gerichteter knoten- und kantenmarkierter Graph über (X, Y) ist ein
Tripel G = (V,E, ϕ). Dabei ist V eine endliche Menge von Knoten, E ⊆ V × Y × V eine
Menge gerichteter und markierter Kanten und ϕ : V → X die Knotenmarkierung. Der
Graph G′ = (V,E′) mit E′ = {(v, w) : ∃α((v, α, w) ∈ E)} wird als der G zugrundeliegende
Graph bezeichnet. Ist Y einelementig, so nennt man einen knoten- und kantenmarkierten
Graphen über (X, Y) einfach einen knotenmarkierten Graphen über X und gibt nur das
Tripel (V,E′, ϕ) an.

Wortgrammatiken werden zu Graphgrammatiken erweitert, indem Regeln zu Grapherset-
zungsregeln verallgemeinert werden. Eine Graphersetzungsregel (M → D,E) besteht aus
dem markierten Muttergraphen M , dem markierten Tochtergraphen D und der Einbet-
tungsvorschrift E. In einem Ableitungsschritt wird ein zu M isomorpher Untergraph M ′

(einschließlich seiner Kanten zum Rest des Graphen) durch einen zu D isomorphen Gra-
phen D′ ersetzt. Anschließend wird D′ mit den Nachbarknoten von M ′ entsprechend der
Einbettungsvorschrift durch Kanten verbunden.

Von besonderem Interesse sind
”
kontextfreie“ Graphgrammatiken, bei denen die Mutter-

graphen markierte Knoten bzw. markierte Kanten sind. Die entsprechenden Knoten- bzw.
Kantenersetzungsgrammatiken sowie die allgemeineren Hyperkantenersetzungsgrammati-
ken wurden in den letzten Jahren ausführlich untersucht. Überblicke zu den Ergebnissen
findet man für Knotenersetzungsgrammatiken in [13, 14] und für Hyperkantenersetzungs-
grammatiken in [10, 17].

Für 1-kürzbare Kantengrammatiken bietet sich der Vergleich mit deterministischen par-
allelen Knotenersetzungsgrammatiken an. Enthält der Graph Gn einen Knoten v ∈ X [n]

und enthält Gn+1 die Knoten va1, . . . , vak, a1, . . . , ak ∈ X, so kann dies als Ersetzung des
Knoten v durch den von va1, . . . , vak induzierten Teilgraphen interpretiert werden.

Kapitel 3: Kantengrammatiken 54

Diese Feststellung wird im folgenden formal bewiesen, indem die Äquivalenz von im stren-
gen Sinne 1-kürzbaren synchronen regulären Kantengrammatiken und einer parallelen de-
terministischen Variante von Knotenersetzungsgrammatiken gezeigt wird.

Zunächst definieren wir die passende parallele Variante von Knotenersetzungsgrammatiken.
Es handelt sich um eine spezielle NLC-Grammatik. NLC-Grammatiken (node label control-
led graph grammars) sind Knotenersetzungsgrammatiken, bei denen die Einbettungsvor-
schrift eine zweistellige Relation über dem Knotenalphabet ist. Jeder Knoten des eingesetz-
ten Graphen wird mit einem Nachbar des ersetzten Knotens genau dann verbunden, wenn
ihre Knotenmarkierungen in der Einbettungsrelation enthalten sind. NLC-Grammatiken
gehören zu den ältesten und am meisten erforschten Varianten von Graphgrammatiken.

In einem Ableitungsschritt einer parallelen NLC-Grammatik werden alle Knoten des Gra-
phen gleichzeitig durch paarweise disjunkte Graphen ersetzt. Anschließend werden die aus
benachbarten Knoten hervorgegangenen Teilgraphen entsprechend der Einbettungsrelati-
on miteinander verbunden. Verschiedene Versionen paralleler NLC-Grammatiken werden
in [24, 25] sowie in [31] untersucht. Die hier verwendete Variante arbeitet mit gerichteten,
knoten- und kantenmarkierten Graphen und ist deterministisch (zu jeder Knotenmarkie-
rung gibt es genau eine Ableitungsregel).

Die Definition erfolgt derart, daß die Knoten eines in n parallelen Schritten erzeugten
Graphen Wörter der Länge n sind. Dadurch lassen sich leichter Beziehungen zu Kanten-
grammatiken herstellen; es bedeutet jedoch keine Einschränkung gegenüber den in [24, 25]
betrachteten parallelen NLC-Grammatiken.

Definition 3.4.2 Eine parallele deterministische NLC-Grammatik (PDNLC-Grammatik)
ist ein Tupel Γ = (Σ,∆, P, C, S), bestehend aus den Alphabeten der Knotenmarkierungen
bzw. der Kantenmarkierungen Σ bzw. ∆, der Regelmenge P , die eine Abbildung von Σ in
die Menge der (Σ,∆)-markierten gerichteten Graphen ist, dem Startsymbol S ∈ Σ und der
Einbettungsrelation C ⊆ ∆× Σ×∆× Σ.

Für A ∈ Σ wird der markierte Graph P (A) auch mit GA, seine Knotenmenge mit VA, seine
Kantenmenge mit EA und die Knotenmarkierung mit ϕA bezeichnet. Das Knotenalphabet
XΓ von Γ ist definiert als XΓ =

⋃
A∈Σ VA.

Für n ≥ 0 wird der n-te von Γ erzeugte markierte Graph Gn(Γ) = (Vn, En, ϕn) wie folgt
induktiv definiert:

1. V0 = {λ}, E0 = ∅, ϕ0(λ) = S.

2. Gilt Vn ⊆ X
[n]
Γ , so ergibt sich Gn+1(Γ) folgendermaßen:

• Jeder Knoten v ∈ Vn wird durch den markierten Graphen Hv ersetzt; Hv ist
isomorph zu Gϕn(v), wobei ein Knoten a ∈ Vϕn(v) auf den Knoten va in Hv

abgebildet wird.

• Eine Kante (v′, β, w′), wobei v′ bzw. w′ Knoten in Hv bzw. Hw mit v 6= w sind,
existiert genau dann, wenn es in Gn(Γ) eine Kante (v, α, w) mit
(α, ϕn+1(v

′), β, ϕn+1(w
′)) ∈ C gibt.

Kapitel 3: Kantengrammatiken 55

Der zu Gn(Γ) gehörige unmarkierte Graph wird mit G′n(Γ) bezeichnet.

Beispiel 3.4.1 Es sei Γ = ({S,A}, {α}, P, C, S) mit C = {(α,A, α,A)} und

P (S) = s s
s
�
�
�/

S
S
Sw

(2|A)

(1|S) (0|S)

P (A) = s(2|A)

(Die Schreibweise (v|C) bedeutet, daß der Knoten v die Markierung C besitzt.) Die Gra-
phen G0(Γ), G1(Γ), G2(Γ) sehen folgendermaßen aus:

G0(Γ)

s(λ|S)

G1(Γ)

s(2|A)

(1|S) (0|S)

s s�
�
�	

@
@
@R

G2(Γ)

s(22|A)

(12|A) (02|A)s s
�������

HHHHHHj

s s s s�
�
�	

@
@
@R

�
�
�	

@
@
@R

(11|S) (10|S) (01|S) (00|S)

Wie man leicht sieht, ist der zugehörige unmarkierte Graph für Gn(Γ) identisch mit Gn(Γ1)
aus Beispiel 3.1.2.

Satz 3.4.4 Zu jeder PDNLC-Grammatik Γ gibt es eine im strengen Sinne 1-kürzbare Kan-
tengrammatik Θ, so daß für alle n ≥ 0 die (unmarkierten) Graphen G′n(Γ) und Gn(Θ)
identisch sind.

Beweis. Es sei die PDNLC-Grammatik Γ = (Σ,∆, P, C, S) gegeben. Von Γ ausgehend
konstruieren wir den nichtdeterministischen endlichen AutomatenA = (Z,XΓ×XΓ, S, δ, Z)
mit

Z = Σ ∪ (Σ×∆× Σ)

δ = {(A, (x, x), B) : A ∈ Σ, x ∈ VA, ϕA(x) = B} ∪
{(A, (x, y), (ϕA(x), α, ϕA(y))) : A ∈ Σ, (x, α, y) ∈ EA} ∪
{((A,α,B), (x, y), (ϕA(x), β, ϕB(y))) :

A,B ∈ Σ, α ∈ ∆, x ∈ VA, y ∈ VB, (α, ϕA(x), β, ϕB(y)) ∈ C}

Offenbar gibt es für alle A ∈ Σ und alle a ∈ X höchstens ein B mit (A, (a, a), B) ∈ δ
(und dieses B ist aus Σ). Folglich gibt es auch für alle w ∈ X∗ und alle A ∈ Σ höchstens
ein B mit (A, (w,w), B) ∈ δ. Im folgenden schreiben wir deshalb δ(A, (w,w)) = B statt
(A, (w,w), B) ∈ δ.
Durch vollständige Induktion über n zeigen wir jetzt:

Kapitel 3: Kantengrammatiken 56

1. Gn(Γ) enthält genau dann den Knoten w ∈ X [n]
Γ mit der Markierung A ∈ Σ, wenn

δ(S, (w,w)) = A gilt.

2. Gn(Γ) enthält genau dann die Kante (v, α, w), v, w ∈ X [n]
Γ , α ∈ ∆, wenn v, w ∈ Vn(Γ)

und (ϕn(v), α, ϕn(w)) ∈ δ (S, (v, w)).

Für n = 0 gelten die Behauptungen offenbar. Seien nun für n ∈ N beide Behauptungen
bewiesen.

1. Für w ∈ X [n]
Γ , a ∈ XΓ und B ∈ Σ gilt:

wa ∈ Vn+1(Γ) ∧ ϕn+1(wa) = B

⇐⇒ w ∈ Vn(Γ) ∧ ∃A (ϕn(w) = A ∧ a ∈ VA ∧ ϕA(a) = B)

nach Definition der PDNLC-Grammatik

⇐⇒ ∃A (δ (S, (w,w)) = A ∧ δ (A, (a, a)) = B)

nach Induktionsvoraussetzung und Definition von A
⇐⇒ δ (S, (wa,wa)) = B

nach Definition der Transitionsrelation.

2. Für w ∈ X [n]
Γ , a, b ∈ XΓ, a 6= b, und β ∈ ∆ gilt:

(wa, β, wb) ∈ En+1(Γ)

⇐⇒ w ∈ Vn(Γ) ∧ ∃C (ϕn(w) = C ∧ a ∈ VC ∧ b ∈ VC ∧ (a, β, b) ∈ EC)

nach Definition der PDNLC-Grammatik

⇐⇒ ∃C∃A∃B
(
δ (S, (w,w)) = C ∧ δ (C, (a, a)) = A ∧ δ (C, (b, b)) = B

∧(A, β,B) ∈ δ (C, (a, b))
)

nach Induktionsvoraussetzung und Definition von A
⇐⇒ ∃A∃B

(
δ (S, (wa,wa)) = A ∧ δ (S, (wb, wb)) = B

∧(A, β,B) ∈ δ (S, (wa,wb))
)

nach Definition der Transitionsrelation

⇐⇒ wa,wb ∈ Vn+1(Γ) ∧ (ϕn+1(wa), β, ϕn+1(wb)) ∈ δ (S, (wa,wb))

wegen (1).

3. Für v, w ∈ X [n]
Γ , v 6= w, a, b ∈ XΓ, und β ∈ ∆ gilt:

(va, β, wb) ∈ En+1(Γ)

⇐⇒ ∃α
(
(v, α, w) ∈ En(Γ) ∧ a ∈ Vϕn(v) ∧ b ∈ Vϕn(w)

Kapitel 3: Kantengrammatiken 57

∧
(
α, ϕϕn(v)(a), β, ϕϕn(w)(b)

)
∈ C
)

nach Definition der PDNLC-Grammatik

⇐⇒ ∃α
(

(ϕn(v), α, ϕn(w)) ∈ δ (S, (v, w)) ∧

(ϕϕn(v)(a), β, ϕϕn(w)(b)) ∈ δ((ϕn(v), α, ϕn(w)), (a, b))
)

nach Induktionsvoraussetzung und Definition von A
⇐⇒ (ϕn+1(va), β, ϕn+1(wb)) ∈ δ(S, (va, wb))

wegen Definition der Transitionsrelation und δ(S, (v, w)) ∈ Σ×∆× Σ.

Nun kann man die im strengen Sinne 1-kürzbare Kantengrammatik Θ mit E(Θ) = L(A)

konstruieren. Offenbar gilt (v, v) ∈ E(Θ) für v ∈ X [n]
Γ genau dann, wenn v ∈ Vn(Γ) und

gilt und (v, w) ∈ E(Θ) mit |v| = |w| = n, v 6= w genau dann, wenn (v, α, w) ∈ En(Γ) für
ein α ∈ ∆ erfüllt ist. Damit sind Gn(Θ) und der zu Gn(Γ) gehörige unmarkierte Graph
gleich. 2

Satz 3.4.5 Zu jeder streng 1-kürzbaren Kantengrammatik Θ gibt es eine PDNLC-Grammatik
Γ, so daß für alle n ≥ 0 die (unmarkierten) Graphen G′n(Γ) und Gn(Θ) isomorph sind.

Beweis. Es sei X das Knotenalphabet von Θ, und A = (Z,X × X, z0, δ, Z) sei ein
partieller deterministischer endlicher Automat, der E(Θ) ∪ {(v, v) : v ∈ V (Θ)} akzeptiert.
Wir konstruieren jetzt die PDNLC-Grammatik Γ = (Σ,∆, P, C, (λ, z0)) mit XΓ = X,
Σ = X × Z ∪ {(λ, z0)}, ∆ = Z, sowie P und C wie folgt:

V(a,z) = {b ∈ X : δ (z, (b, b)) 6= ∅} , für (a, z) ∈ (X × Z) ∪ {(λ, z0)}
ϕ(a,z)(b) = (b, δ (z, (b, b))) für b ∈ V(a,z), (a, z) ∈ X × Z ∪ {(λ, z0)}
E(a,z) = {(b, z′, c) ∈ X × Z ×X : δ (z, (b, c)) = z′, b 6= c} für (a, z) ∈ X × Z ∪ {(λ, z0)}
C = {(z, (a, z1), z

′, (b, z2)) : z, z′, z1, z2 ∈ Z, a, b ∈ X, δ (z, (a, b)) = z′}

Der Graph G0(Γ) besteht aus dem Knoten λ mit der Markierung S. Durch vollständige
Induktion zeigen wir jetzt für n ≥ 1:

1. Gn(Γ) enthält genau dann den Knoten wa mit w ∈ X [n−1], a ∈ X mit der Markierung
A ∈ X × Z , wenn δ (z0, (wa,wa)) = z und A = (a, z) gilt.

2. Gn(Γ) enthält genau dann die markierte Kante (v, z, w) ∈ Vn(Γ)× Z × Vn(Γ), wenn
δ(z0, (v, w)) = z gilt.

Für n = 1 sind die Behauptungen wegen der Definition von G(λ,z0) erfüllt. Seien nun die
Induktionsbehauptungen für n ∈ N gezeigt. Daraus folgt

Kapitel 3: Kantengrammatiken 58

1. Für wab, w ∈ X [n−1], a, b ∈ X, z ∈ Z gilt:

wab ∈ Vn+1(Γ) ∧ ϕn+1(wab) = (b, z)

⇐⇒ wa ∈ Vn(Γ) ∧ b ∈ Vϕn(wa) ∧ ϕϕn(wa)(b) = (b, z)

nach Definition der PDNLC-Grammatik

⇐⇒ ∃y
(
y ∈ Z ∧ wa ∈ Vn(Γ) ∧ ϕn(wa) = (a, y) ∧ b ∈ V(a,y) ∧ ϕ(a,y)(b) = (b, z)

)
nach Induktionsvoraussetzung

⇐⇒ ∃y (y ∈ Z ∧ δ (z0, (wa,wa)) = y ∧ δ (y, (b, b)) = z)

nach Induktionsvoraussetzung und Definition von Γ

⇐⇒ δ(z0, (wab, wab)) = z

nach Definition der Transitionsrelation.

2. Für wab, wac mit w ∈ X [n−1], a, b, c ∈ X, b 6= c, z ∈ Z gilt:

(wab, z, wac) ∈ En+1(Γ)

⇐⇒ wa ∈ Vn(Γ) ∧ (b, z, c) ∈ Eϕn(wa)

nach Definition der PDNLC-Grammatik

⇐⇒ ∃y (y ∈ Z ∧ δ (z0, (wa,wa)) = y ∧ δ (y, (b, c)) = z)

wegen (1) und nach Definition von Γ

⇐⇒ δ(z0, (wab, wac)) = z

nach Definition der Transitionsrelation .

3. Für vb, wc mit v, w ∈ Xn, b, c ∈ X, v 6= w, z ∈ Z gilt:

(vb, z, wc) ∈ En+1(Γ)

⇐⇒ vb, wc ∈ Vn+1(Γ) ∧
∃y
(
y ∈ Z ∧ (v, y, w) ∈ En(Γ) ∧ (y, ϕn+1(vb), z, ϕn+1(wc)) ∈ C

)
nach Definition der PDNLC-Grammatik

⇐⇒ ∃y∃y1∃y2

(
y, y1, y2 ∈ Z ∧ δ(z0, (v, w)) = y ∧ δ(z0, (vb, vb)) = y1 ∧

δ(z0, (wc, wc)) = y2 ∧ δ(y, (b, c)) = z
)

nach (1), Induktionsvoraussetzung und Definition von Γ

⇐⇒ δ(z0, (vb, wc)) = z

wegen 1. und nach Definition der Transitionsrelation.

Damit ist durch vollständige Induktion gezeigt, daß der Graph Gn(Γ) genau dann einen
Knoten v ∈ X [n] enthält, wenn es ein z ∈ Z mit δ(z0, (v, v)) = z gibt, d.h. wenn v ein
Knoten von Gn(Θ) ist, und daß Gn(Γ) genau dann eine (markierte) Kante (v, z, w) mit

Kapitel 3: Kantengrammatiken 59

v, w ∈ X [n], v 6= w, z ∈ Z, enthält, wenn δ(z0, (v, w)) = z gilt, d.h. wenn (v, w) eine Kante
von Gn(Θ) ist. Damit sind der zu Gn(Γ) gehörende unmarkierte Graph und Gn(Θ) gleich.

2

3.5 Abschlußeigenschaften

Analog zur Theorie der formalen Sprachen untersucht man für Familien von Graphenspra-
chen das Abschlußverhalten unter mengentheoretischen Operationen, wie z.B. Vereinigung
oder Durchschnitt, wobei sich diese Operationen auf die Äquivalenzklassen isomorpher
Graphen beziehen. Darüber hinaus ist es für Graphensprachen interessant, den Abschluß
unter graphentheoretischen Operationen (z.B. Bildung des Komplementärgraphen) bzw.
graphentheoretischen Eigenschaften (z.B. Zusammenhang) zu untersuchen.

Abschluß unter Mengenoperationen

Satz 3.5.1 Es seien Γ1 und Γ2 synchrone reguläre Kantengrammatiken. Man kann eine
synchrone reguläre Kantengrammatik Θ derart konstruieren, daß [G](Θ) = [G](Γ1)∪ [G](Γ2)
gilt.

Beweis. Es seien Γ1 und Γ2 mit dem gemeinsamen Knotenalphabet X gegeben. Man
kann eine synchrone reguläre Kantengrammatik Θ mit E(Θ) = h(E(Γ1)) ∪ (a, a)h(E(Γ2))
konstruieren, wobei h : (X ×X)∗ → (X × X)∗ der Homomorphismus mit h(x) = xx für
x ∈ (X ×X) und a ein Symbol aus X sind.

Für alle n ≥ 0 ist G2n(Θ) isomorph zu Gn(Γ1), wobei ein Knoten v = a1a2 . . . an−1an ∈
Vn(Γ1) auf den Knoten v′ = a1a1a2a2 . . . an−1an−1anan ∈ Vn(Γ1) abgebildet wird. Analog
ist der Graph G2n+1(Θ) für beliebiges n ≥ 0 zum Graphen Gn(Γ2) isomorph. Damit gilt
[G](Θ) = [G](Γ1) ∪ [G](Γ2).

Als nächstes werden wir zeigen, daß die Familie der von synchronen regulären Kantengram-
matiken erzeugten abstrakten Graphensprachen nicht unter Durchschnitt abgeschlossen ist.

Zunächst zeigen wir einige Hilfsresultate, die auch bei Unentscheidbarkeitsbeweisen von
Nutzen sein werden. Es seien X ein Alphabet und # /∈ X ein Symbol. Für ein Wort
w ∈ X∗#X∗ mit w = w1#w2 sei word(w) das Wort w1w2 ∈ X∗ und num(w) die Position,
an der das Symbol # auftritt, also |w1|+ 1. Für eine Relation R ⊆ X∗ ×X∗ sei

R q# := {(v, w) : v, w ∈ X∗#X∗ ∧ (word(v),word(w)) ∈ R ∧ num(v) + 1 = num(w)}.

Lemma 3.5.2 Ist R ⊆ X∗×X∗ eine synchrone reguläre Relation, so ist auch Rq# eine
synchrone reguläre Relation.

Beweis. Es sei A = (Z,X ×X, z0, δ, F) ein endlicher Automat mit L(A) = R. Dann wird
die Relation Rq# von dem endlichen (Wort-)AutomatenA′ = (Z∪Z ′, X ′×X ′, z0, δ∪δ′, F ′)

Kapitel 3: Kantengrammatiken 60

mit Z ′ = Z × {1}, X ′ = X ∪ {#}, F ′ = F × {1} und

δ′ = {((z1, 1), (a, b), (z2, 1)) : (z1, (a, b), z2) ∈ δ}∪{(z1, (#, b)(a,#), (z2, 1)) : (z1, a, b, z2) ∈ δ}

akzeptiert.

Lemma 3.5.3 Es seien X ein Alphabet, # /∈ X ein Symbol, R ⊆ X∗×X∗ eine synchrone
Relation und E = R q#. Es gelten folgende Aussagen:

1. Für n ≥ 2 existiert in Gn(E) ein gerichteter Weg der Länge j ≥ 1 von v ∈ Vn(E)
nach w ∈ Vn(E) genau dann, wenn num(w)− num(v) = j und (v, w) ∈ Rj gelten.

2. Ist R eine partielle Funktion, so ist Gn(E) für alle n ≥ 2 ein umgekehrt gerichteter
Wald.

3. Ist R eine bijektive Funktion, so besteht Gn(E) für alle n ≥ 2 aus (card X)n−1

Komponenten, die jeweils gerichtete Wege der Länge n−1 sind. Dabei gilt num(s) = 1
für jeden Startknoten s und num(t) = |t| für jeden Endknoten t.

Beweis.

1. Ein gerichteter Weg der Länge 1 existiert von v ∈ Vn(E) nach w ∈ Vn(E) genau dann,
wenn (v, w) ∈ E gilt, d.h., wenn num(w)− num(v) = 1 und (word(v),word(w)) ∈ R
erfüllt sind.

Sei nun für j ≥ 1 gezeigt, daß ein gerichteter Weg der Länge j von v nach w genau
dann existiert, wenn num(w)−num(v) = j und (word(v),word(w)) ∈ Rj gelten. Ein
gerichteter Weg der Länge j + 1 von v nach w existiert genau dann, wenn es einen
gerichteten Weg der Länge j von v nach w′ und einen gerichteten Weg der Länge
1 von w′ nach w für einen Knoten w′ ∈ Vn(E) gibt. Nach Induktionsannahme und
Induktionsanfang ist das genau dann der Fall, wenn es ein w′ gibt, so daß

num(w′)− num(v) = j, num(w)− num(w′) = 1,

(word(v),word(w′)) ∈ Rj , (word(w′),word(w)) ∈ R.

Dies ist äquivalent zu num(w)− num(v) = j + 1 und (word(v),word(w)) ∈ Rj+1.

2. Nach (1) ist Gn(E) für n ≥ 2 azyklisch. Ist R eine partielle Funktion, so hat außerdem
jeder Knoten v ∈ Vn(E) mit num(v) < n den Ausgangsgrad 1 und jeder Knoten v ∈
Vn(E) mit num(v) = n den Ausgangsgrad 0, womit Gn(E) ein umgekehrt gerichteter
Wald ist.

3. Ist R eine bijektive Funktion, so hat zusätzlich zu (2) jeder Knoten v ∈ Vn(E) mit
num(v) > 1 den Eingangsgrad 1 und jeder Knoten v ∈ Vn(E) mit num(v) = 1 den
Eingangsgrad 0. Wegen (1) sind die Komponenten von Gn(E) gerichtete Wege der
Länge n − 1 mit num(s) = 1 für jeden Startknoten s und num(t) = n für jeden
Endknoten t. Da Gn(E) genau (card X)n−1 Knoten s mit num(s) = 1 besitzt, ist die
Anzahl der Komponenten (card X)n−1.

Kapitel 3: Kantengrammatiken 61

Beispiel 3.5.1 Es sei X = {a, b, c, d} und RA ⊆ X∗ ×X∗ die synchrone Relation mit

RA = RB ∪RC ∪ RD ∪RE ∪ RF mit

RB = {(akcambn, ak+1cam−1bn) : k, n ≥ 0,m ≥ 1},
RC = {(amcbn, am+1dbn−1) : m ≥ 0, n ≥ 1},
RD = {(akdambn, ak−1dam+1bn) : m,n ≥ 0, k ≥ 1},
RE = {(dambn, cambn) : n ≥ 0,m ≥ 1},
RF = {(amc, cbm) : m ≥ 1}.

Da RB, RC ,RD, RE, RF jeweils synchrone reguläre Relationen sind, ist auch RA synchron
und regulär. Wie man leicht sieht, ist RA außerdem eine bijektive Abbildung von

S = {akcambn : k +m+ n ≥ 1} ∪ {akdambn : k +m ≥ 1, n ≥ 0}

auf sich. Damit ist die synchrone reguläre Relation R2 = RA ∪ {(v, v) : v ∈ X∗ \ S} eine
Bijektion von X∗ auf X∗. Dabei gilt für ein Wort w = caibk mit i ≥ 0, k ≥ 1:

Rj
2(w) = ajcai−jbk für 0 ≤ j ≤ i,

Ri+1
2 (w) = ai+1dbk−1,

Ri+1+j
2 (w) = ai+1−jdajbk−1 für 0 ≤ j ≤ i+ 1,

R2i+3
2 (w) = cai+1bk−1.

Daraus folgt insbesondere: (cbk, cambk−m) ∈ Rk+1
2 ⇐⇒ k =

∑m−1
j=0 (2j+3) = (m+1)2−1.

Ist Θ eine Kantengrammatik mit E(Θ) = R2 q#, so besteht der Graph Gn(Θ) aus 4n−1

disjunkten Wegen der Länge n. Unter anderem enthält Gn(Θ) für n = 3, 4, 5 die folgenden
Wege:

n = 3 : #cb→ a#d→ da#,

n = 4 : #cbb→ a#db→ da#b→ cab#,

n = 5 : #cbbb→ a#dbb→ da#bb→ cab#b→ acbb#.

Satz 3.5.4 Sind Γ1 und Γ2 synchrone reguläre Kantengrammatiken, so ist [G](Γ1)∩[G](Γ2)
im allgemeinen nicht durch eine synchrone reguläre Kantengrammatik erzeugbar.

Beweis. Es sei X = {a, b, c, d}, R1 = IdX∗ und R2 wie in Beispiel 3.5.1. R1 und R2 sind
synchrone reguläre Relationen und außerdem bijektive Funktionen auf X∗. Nach Lemma
3.5.2 gibt es für i = 1, 2 synchrone reguläre Kantengrammatiken Θi mit E(Θi) = Ri q#.
Die Graphen Gn(Θ1) und Gn(Θ2) bestehen nach Lemma 3.5.3 jeweils aus 4n−1 disjunkten
gerichteten Wegen der Länge n, sind also isomorph. Im folgenden werden Θ1 und Θ2 so
zu synchronen regulären Kantengrammatiken Γ1, Γ2 umgeformt, daß Gn(Γ1) und Gn(Γ2)
genau dann isomorph sind, wenn n eine Quadratzahl ist. Mit Hilfe von Satz 3.3.3 folgt, daß
[G](Γ1) ∩ [G](Γ2) nicht von einer synchronen regulären Kantengrammatik erzeugt werden
kann.

Kapitel 3: Kantengrammatiken 62

Wir betrachten für n ≥ 3 in Gn(Θ1) und Gn(Θ2) jeweils den Weg mit dem Startknoten
Cn = #cbn−2. In Gn(Θ1) endet der Weg von Cn im Knoten cbn−2#. In Gn(Θ2) endet dieser
Weg genau dann in dem Knoten caibn−i−3#, wenn Rn−1

2 (cbn−2) = caibn−i−3 gilt. Nach den
Betrachtungen aus Beispiel 3.5.1 gilt dies genau dann, wenn n = (i+ 1)2.

Da die Sprache L = {caibj# : i+ j ≥ 1} regulär ist, ist die Relation

RG = {(v, an) : v ∈ L, |v| = n} ∪ {(v, bn) : v ∈ X∗# \ L, |v| = n}

synchron und regulär. Es gibt somit synchrone reguläre Kantengrammatiken Γ′1 und Γ′2
mit E(Γ′i) = E(Θi) ∪RG, i = 1, 2. Die Graphen Gn(Γ

′
i), i = 1, 2, n ≥ 3, bestehen aus zwei

umgekehrt gerichteten Bäumen, deren Wurzeln die Knoten an bzw. bn sind. Die Kompo-
nente mit dem Knoten an besteht in beiden Graphen aus (n − 1) gerichteten Wegen der
Länge n, die nur an als gemeinsamen Knoten haben; die Komponente mit dem Knoten bn

besteht aus 4n−1− (n− 1) Pfaden der Länge n, deren einziger gemeinsamer Knoten bn ist.
Der Knoten Cn liegt in Gn(Γ

′
1) für alle n ≥ 3 in der Komponente von an, während Cn in

Gn(Γ
′
2) in der Komponente von an genau dann liegt, wenn n eine Quadratzahl ist.

Da auch die Sprache L′ = {#cbn−2 : n ≥ 3} regulär ist, lassen sich synchrone reguläre
Kantengrammatiken Γ1 und Γ2 mit E(Γi) = E(Γ′i) ∪ {(bn, w) : w ∈ L′|w| = n ≥ 3}
konstruieren. Die Graphen Gn(Γi) entstehen aus den Graphen Gn(Γ

′
i), indem eine Kante

von bn nach Cn eingefügt wird. Gn(Γ1) und Gn(Γ2) sind genau dann isomorph, wenn
an und Cn in Gn(Γ2) in der gleichen Komponente liegen, d.h., wenn n = k2 gilt. Da
Gn(Γ1) und Gm(Γ2) für m 6= n wegen unterschiedlicher Knotenzahl nicht isomorph sind,
gilt [G](Γ1) ∩ [G](Γ2) = {[Gk2(Γ1)] : k ≥ 2}. Die Anzahl der Knoten des Graphen Gk2(Γ1)
ist k24k

2−1 + 2, k ≥ 2. Nach Satz 3.3.3 kann die Graphenmenge [G](Γ1) ∩ [G](Γ2) nicht von
einer synchronen regulären Kantengrammatik erzeugt werden.

Abschluß unter Graphenoperationen

Eine k-stellige Graphenoperation ist eine Abbildung von einem k-Tupel von Graphen auf
einen Graphen, wobei die Bilder isomorpher Graphen wieder isomorph sind. Man kann
diese Operationen zu Abbildungen von Graphenfolgen in Graphenfolgen erweitern, indem
man sie auf die einzelnen Graphen anwendet. Sind k Kantengrammatiken Γ1, . . . ,Γk sowie
eine k-stellige Graphenoperation f gegeben, so stellt sich die Frage, ob die Graphenfol-
ge {Gi}ni=1 mit Gi = f(Gi(Γ1), . . . , Gi(Γk)) auch durch eine Kantengrammatik erzeugt
werden kann. Im folgenden betrachten wir die Abschlußeigenschaften der Familie der von
synchronen regulären Kantengrammatiken erzeugten Graphensprachen unter verschiede-
nen Graphenoperationen.

Definition 3.5.1 G = (V,E), G1 = (V1, E1) und G2 = (V2, E2) seien schlichte Graphen.

• Der Komplementärgraph G von G ist definiert als G = (V,E) mit
E = (V × V) \ (E ∪ IdV).

Kapitel 3: Kantengrammatiken 63

• Für eine natürliche Zahl p ist der p-te Potenzgraph Gp von G definiert als
Gp = (V,E≤p \ IdV)

• Der Hüllengraph G∗ von G ist definiert als G∗ = (V,E∗ \ IdV).

• Der Kantengraph oder Line-Graph L von G ist definiert als L(G) = (E,L(E)), wobei
die Kantenmenge von L(G) definiert ist als

L(E) = {(k, l) | k, l ∈ E, k = (v, w), l = (w, x)}.

Die Knotenmenge des kartesischen Produkts G1 × G2, des lexikographischen Produkts
G1[G2], der Konjunktion G1 ∧ G2 sowie der Disjunktion G1 ∨ G2 ist jeweils V1 × V2. Die
jeweiligen Kantenmengen sind wie folgt definiert:

• ((v1, v2), (w1, w2)) ∈ E(G1 ×G2) :⇐⇒ (v1 = w1 ∧ (v2, w2) ∈ E2) ∨
(v2 = w2 ∧ (v1, w1) ∈ E1)

• ((v1, v2), (w1, w2)) ∈ E(G1[G2]) :⇐⇒ (v1 = w1 ∧ (v2, w2) ∈ E2) ∨ (v1, w1) ∈ E1

• ((v1, v2), (w1, w2)) ∈ E(G1 ∧G2) :⇐⇒ ((v1, w1) ∈ E1 ∧ (v2, w2) ∈ E2)

• ((v1, v2), (w1, w2)) ∈ E(G1 ∨G2) :⇐⇒ ((v1, w1) ∈ E1 ∨ (v2, w2) ∈ E2)

Satz 3.5.5 Es sei Γ eine synchrone reguläre Kantengrammatik. Man kann eine synchrone
reguläre Kantengrammatik Θ konstruieren, so daß Gn(Θ) für alle n ≥ 0 der von Gn(Γ)
induzierte ungerichtete Graph ist.

Beweis. Ist E = E(Γ) ⊆ X∗ × X∗ synchron und regulär, so ist auch E−1 synchron
und regulär. Folglich kann man eine synchrone und reguläre Kantengrammatik Θ mit
E(Θ) = E ∪ E−1 konstruieren. Gn(Θ) ist dann der von Gn(Γ) induzierte ungerichtete
Graph. 2

Satz 3.5.6 Es sei Γ eine synchrone reguläre Kantengrammatik. Man kann eine synchrone
reguläre Kantengrammatik Θ konstruieren, so daß Gn(Θ) für alle n ≥ 0 der Komple-
mentärgraph von Gn(Γ) ist.

Beweis. Das Knotenalphabet von Γ sei X. Da die Sprachen V (Γ) ⊆ X∗ und L(Γ) ⊆
(X ×X)∗ regulär sind, ist E′ = IdV (Γ) ∪ Syn(V (Γ)× V (Γ)) \E(Γ) eine synchrone reguläre
Relation. Es gibt eine synchrone reguläre Kantengrammatik Θ mit E(Θ) = E′. Wegen
IdV (Γ) ⊆ E′ ⊆ Syn(V (Γ) × V (Γ)) ist V (Θ) = V (Γ). Weiterhin gilt für alle (v, w) ∈
Syn(V (Γ)× V (Γ)) mit v 6= w: (v, w) ∈ E(Γ) ⇐⇒ (v, w) /∈ E(Θ). Folglich ist Gn(Θ) der
Komplementärgraph von Gn(Γ) für alle n ≥ 0. 2

Kapitel 3: Kantengrammatiken 64

Satz 3.5.7 Es sei Γ eine synchrone reguläre Kantengrammatik und p ∈ N . Man kann eine
synchrone reguläre Kantengrammatik Θ konstruieren, so daß Gn(Θ) = (Gn(Γ))p für alle
n ≥ 1 gilt.

Beweis. Sind R, S ⊆ Syn(X∗ × X∗) synchrone und reguläre Relationen, so ist auch
R ◦ S = {(u, w) : ∃v((u, v) ∈ R ∧ (v, w) ∈ S)} synchron und regulär. Daraus folgt durch
vollständige Induktion über p, daß für jede synchrone reguläre Relation E ⊆ X∗ × X∗

und jedes p ∈ N auch die Relation Ep synchron und regulär ist. Wegen des Abschlusses
synchroner regulärer Relationen unter Vereinigung ist auch E≤p synchron und regulär. 2

Satz 3.5.8 Es sei Γ eine synchrone reguläre Kantengrammatik. Man kann im allgemeinen
keine synchrone reguläre Kantengrammatik Θ mit [G](Θ) = [G∗](Γ) = {[G∗] : G ∈ G(Γ)}
konstruieren.

Beweis. Ein Graph G ist genau dann stark zusammenhängend, wenn G∗ vollständig ist.
In Satz 3.5.12 wird ferner gezeigt, daß mit [G] auch die Menge der vollständigen Graphen
[Gvollst] durch eine synchrone reguläre Kantengrammatik erzeugt werden kann. Kann man
also [G∗vollst](Γ) nicht durch eine synchrone reguläre Kantengrammatik, so ist dies auch
nicht für [G∗](Γ) möglich.

Ausgehend von der Kantengrammatik Γ2 aus Beispiel 3.5.1 wird später (Satz 3.5.13) eine
synchrone reguläre Kantengrammatik Γ derart konstruiert, daß der Graph Gn(Γ) genau
dann stark zusammenhängend ist, wenn n eine Quadratzahl ist. Dabei ist die Knotenzahl
des Graphen Gn(Γ) gleich n4n−1 + 2 ist. Analog zum Beweis von Satz 3.5.4 folgt, daß die
Graphensprache [G∗vollst](Γ) nicht durch eine synchrone reguläre Kantengrammatik erzeugt
werden kann. 2

Satz 3.5.9 Es sei Γ = (N,X,X2, P, S) eine synchrone reguläre Kantengrammatik. Man
kann eine Kantengrammatik Θ konstruieren, so daß Gn(Θ) isomorph zu L(Gn(Γ)) für
n ≥ 1 ist.

Beweis. Es seien E1, E2, E3 ⊆ Syn(X∗ ×X∗ ×X∗ ×X∗) die synchronen Relationen mit

E1 = {x ∈ Syn(X∗ ×X∗ ×X∗ ×X∗) : pr1,2(x), pr3,4(x) ∈ E(Γ) \ IdV (Γ)},
E2 = {x ∈ Syn(X∗ ×X∗ ×X∗ ×X∗) : pr2,3(x) ∈ IdV (Γ)},
E3 = {x ∈ Syn(X∗ ×X∗ ×X∗ ×X∗) : pr1,3(x), pr2,4(x) ∈ IdV (Γ)}.

E1, E2, E3 sind synchron regulär. Damit ist auch E` = (E1∩E2)∪(E1∩E3) synchron regulär.
Im folgenden fassen wir E` als synchrone binäre Relation E` ⊆ Syn((X×X)∗× (X×X)∗)
auf. Es gibt eine synchrone reguläre Kantengrammatik Θ mit dem Knotenalphabet X×X
und E(Θ) = E`. Nach Definition von E` ist ein Paar (e1, e2) mit e1, e2 ∈ (X ×X)[n] genau
dann in E(Θ), wenn e1 und e2 Kanten des Graphen Gn sind und entweder der Zielknoten
von e1 und der Startknoten von e2 gleich sind oder e1 und e2 gleich sind. Damit ist gezeigt,
daß der Graph Gn(Θ) gleich dem Kantengraphen von Gn(Γ) ist.

Kapitel 3: Kantengrammatiken 65

Satz 3.5.10 Sind Γ und Θ synchrone reguläre Kantengrammatiken mit dem gemeinsamen
Knotenalphabet X, so gibt es synchrone reguläre Kantengrammatiken, die {Gi(Γ)×Gi(Θ) :
i ≥ 0}, {Gi(Γ)[Gi(Θ)] : i ≥ 0}, {Gi(Γ) ∧ Gi(Θ) : i ≥ 0} bzw. {Gi(Γ) ∨ Gi(Θ) : i ≥ 0}
erzeugen.

Beweis. Es seien E0, E1, E2, E3, E4 ⊆ Syn(X∗×X∗×X∗×X∗) die synchronen Relationen
mit

E0 = {x ∈ Syn(X∗ ×X∗ ×X∗ ×X∗) : pr1(x), pr3(x) ∈ V (Γ), pr2(x), pr4(x) ∈ V (Θ)},
E1 = {x ∈ Syn(X∗ ×X∗ ×X∗ ×X∗) : pr1,3(x) ∈ E(Γ) \ IdV (Γ)},
E2 = {x ∈ Syn(X∗ ×X∗ ×X∗ ×X∗) : pr2,4(x) ∈ E(Θ) \ IdV (Θ)},
E3 = {x ∈ Syn(X∗ ×X∗ ×X∗ ×X∗) : pr1,3(x) ∈ IdV (Γ)},
E4 = {x ∈ Syn(X∗ ×X∗ ×X∗ ×X∗) : pr2,4(x) ∈ IdV (Θ)}.

Diese Relationen sind synchron und regulär, wie auch die mit ihrer Hilfe definierten Rela-
tionen

E× = E0 ∩ ((E3 ∩ E2) ∪ (E1 ∩E4) ∪ (E3 ∩ E4)) ,

E[] = E0 ∩ ((E3 ∩ E2) ∪ E1 ∪ (E3 ∩ E4)) ,

E∧ = E0 ∩ (E1 ∩ E2 ∪ (E3 ∩E4)) ,

E∨ = E0 ∩ (E1 ∪ E2 ∪ (E3 ∩E4)) .

Die zuletzt definierten Relationen werden im folgenden als synchrone binäre Relationen
über dem Alphabet X ×X aufgefaßt. Es gibt synchrone reguläre Kantengrammatiken mit
dem Knotenalphabet X ×X, die E×, E[], E∧ bzw. E∨ erzeugen.

Ein Paar (e1, e2) mit e1 = (v1, v2), e2 = (w1, w2) ist genau dann in E× enthalten, wenn
|v1| = |v2| = |w1| = |w2| = n, v1, w1 ∈ Vn(Γ), v2, w2 ∈ Vn(Θ) erfüllt ist und außerdem
[v1 = w1 und (v2, w2) ∈ En(Θ)] oder [v2 = w2 und (v1, w1) ∈ En(Γ)] oder [e1 = e2]
gilt. Damit ist gezeigt, daß der Graph Gn(E

×) als Knotenmenge genau die Knoten aus
Gn(Γ) × Gn(Θ) besitzt und genau die Kanten von Gn(Γ) × Gn(Θ) enthält. Analog zeigt
man, daß die Relationen E[], E∧, E∨ die lexikographischen Produkte, die Konjunktionen
bzw. die Disjunktionen beschreiben. 2

Abschluß unter graphentheoretischen Eigenschaften

Häufig ist man daran interessiert, aus einer gegebenen Graphenmenge die Graphen mit
einer bestimmten Eigenschaft herauszufiltern. Formal ist eine graphentheoretische Eigen-
schaft eine unter Isomorphismus abgeschlossene Menge von Graphen.

Für eine graphentheoretische Eigenschaft P und eine Kantengrammatik Γ sei GP (Γ) die
Graphenfolge GP (Γ) := {GP,i(Γ)}i≥0 mit GP,i(Γ) = Gi(Γ), falls Gi(Γ) ∈ P , und GP,i(Γ) =
(∅, ∅), sonst. Außerdem sei [GP](Γ) = {[G] : G ∈ GP (Γ) ∧G 6= (∅, ∅)}. Wir untersuchen für

Kapitel 3: Kantengrammatiken 66

verschiedene graphentheoretische Eigenschaften P die Frage, ob für jede synchrone reguläre
Kantengrammatik Γ auch [GP](Γ) durch eine synchrone reguläre Kantengrammatik erzeugt
werden kann.

Zunächst zeigen wir, daß dies möglich ist, sofern P mittels der Prädikatenlogik erster
Stufe definiert werden kann. Danach wird die Nichtabgeschlossenheit unter einigen anderen
graphentheoretischen Eigenschaften, wie z.B. Zusammenhang, nachgewiesen. Schließlich
zeigen wir einige positive Resultate mit Hilfe von formalen Potenzreihen.

Der Vollständigkeit halber geben wir zunächst die hier benötigten Definitionen der Syntax
und der Semantik der Prädikatenlogik 1. Stufe an. Für eine umfassende Einführung in die
mathematische Logik verweisen wir auf [11].

Definition 3.5.2 Es sei Aedge = {(,),≡, ∀, ∃,∧,∨,→ } ∪ {xi : i ∈ N } ∪ {edge}. Die
Symbole xi, i ∈ N , heißen Variablen, das Symbol edge ist ein zweistelliges Relationssymbol.
Die Menge der prädikatenlogischen Formeln 1. Stufe über Aedge, im folgenden kurz Formeln
genannt, ist wie folgt induktiv definiert:

1. xi ≡ xj und edge(xi, xj) mit i, j ∈ N sind Formeln.

2. Sind ϕ und ψ Formeln, so sind auch ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ) und (ϕ→ ψ) Formeln.

3. Ist ϕ eine Formel und i ∈ N , so sind auch ∃xiϕ und ∀xiϕ Formeln.

Definition 3.5.3 Die Menge der in einer Formel ϕ vorkommenden Variablen wird mit
var(ϕ) bezeichnet. Die Menge der in einer Formel ϕ frei vorkommenden Variablen free(ϕ)
ist wie folgt induktiv definiert:

1. free(xi ≡ xj) = free(edge(xi, xj)) = {xi, xj}

2. free(¬ϕ) = free(ϕ)

3. free((ϕ ∧ ψ)) = free((ϕ ∨ ψ)) = free((ϕ→ ψ)) = free(ϕ) ∪ free(ψ)

4. free(∃xiϕ) = free(∀xiϕ) = free(ϕ) \ {xi}

Ist free(ϕ) = ∅, so wird ϕ ein Satz genannt.

Definition 3.5.4 Für einen Graphen G = (V,E) und eine Formel ϕ ist eine Belegung
von ϕ in G definiert als eine Abbildung von der Menge der Variablen nach V . Für eine
Belegung β und v ∈ V ist β v

xi
die Belegung

β
v

xi
(xj) =

{
v, falls i = j,

β(xj), sonst.

Kapitel 3: Kantengrammatiken 67

Definition 3.5.5 Für einen Graphen G = (V,E), eine Formel ϕ und eine Belegung β von
ϕ in G definieren wir die Beziehung (G, β) |= ϕ induktiv wie folgt:

(G, β) |= xi ≡ xj :⇐⇒ β(xi) = β(xj)
(G, β) |= edge(xi, xj) :⇐⇒ (β(xi), β(xj)) ∈ E
(G, β) |= ¬ϕ :⇐⇒ (G, β) |= ϕ gilt nicht
(G, β) |= (ϕ ∧ ψ) :⇐⇒ (G, β) |= ϕ und (G, β) |= ψ
(G, β) |= (ϕ ∨ ψ) :⇐⇒ (G, β) |= ϕ oder (G, β) |= ψ
(G, β) |= (ϕ→ ψ) :⇐⇒ aus (G, β) |= ϕ folgt (G, β) |= ψ
(G, β) |= ∃xiϕ :⇐⇒ (G, β v

xi
) |= ϕ für ein v ∈ V

(G, β) |= ∀xiϕ :⇐⇒ (G, β v
xi

) |= ϕ für alle v ∈ V

Gilt (G, β) |= ϕ so heißt (G, β) ein Modell für ϕ.

Es seien G = (V,E) ein Graph, ϕ eine Formel mit free(ϕ) ⊆ {x1, . . . , xn} und β eine
Belegung von ϕ in G mit β(xi) = vi. Nach dem Koinzidenzlemma, siehe [11, III.4.6], gilt
(G, β) |= ϕ genau dann, wenn (G, β ′) |= ϕ für alle β ′ mit β ′(xi) = vi, 1 ≤ i ≤ n. Aus diesem
Grunde schreiben wir statt (G, β) |= ϕ künftig häufig G |= ϕ[v1, . . . , vn]. Ist insbesondere
ϕ ein Satz, so schreiben wir G |= ϕ, falls (G, β) |= ϕ für eine Belegung β gilt.

Nach dem Isomorphielemma [11, III.5.2] gilt für isomorphe Graphen G, G′: G |= ϕ ⇐⇒
G′ |= ϕ. Folglich wird durch einen Satz ϕ eine graphentheoretische Eigenschaft definiert.

Beispiel 3.5.2 Es folgen die Definitionen einiger graphentheoretischer Eigenschaften mit
Hilfe von Sätzen 1. Stufe.

1. Ein Graph G ist genau dann schlicht, wenn G |= ϕs mit ϕs = ¬∃x1edge(x1, x1).

2. Der Graph G ist genau dann diskret (d.h., er enthält keine Kanten), wenn G |= ϕ
mit

ϕ = ¬∃x1∃x2edge(x1, x2).

3. Der Graph G ist genau dann schlicht und vollständig, wenn G |= ϕ mit

ϕ = (ϕs ∧ ∀x1∀x2 (x1 ≡ x2 ∨ edge(x1, x2))) .

4. Der Graph G ist genau dann ungerichtet, wenn G |= ϕu mit

ϕu = ∀x1∀x2 (edge(x1, x2)→ edge(x2, x1)) .

Für eine Formel ϕ mit free(ϕ) ⊆ {x1, . . . , xn} und einen Graphen G = (V,E) bezeichnen
wir mit B(G,ϕ, n) die Menge aller n-Tupel (v1, . . . , vn) ∈ V n mit G |= ϕ[v1, . . . , vn]. Für
eine Kantengrammatik Γ mit dem Knotenalphabet X sei L(Γ, ϕ, n) ⊆ Syn((X∗)n) die
synchrone Relation mit L(Γ, ϕ, n) = {B(Gk(Γ), ϕ, n) : k ≥ 0}.

Kapitel 3: Kantengrammatiken 68

Satz 3.5.11 Es seien Γ eine synchrone und reguläre Kantengrammatik und ϕ eine Formel
mit var(ϕ) ⊆ {x1, . . . , xn}. Dann ist L(Γ, ϕ, n) = {B(Gk(Γ), ϕ, n) : k ≥ 0} synchron
regulär.

Beweis. Der Satz wird durch Induktion über den Formelaufbau bewiesen. Dabei ist es
im Induktionsschritt ausreichend, sich auf Formeln zu beschränken, die nur den Disjunk-
tionsoperator ∨, den Negationsoperator ¬ sowie den Existenzquantor ∃ enthalten. Als
Induktionsanfang zeigen wir:

• ϕ = xi ≡ xj , 1 ≤ i, j ≤ n:
Ein n-Tupel (v1, . . . , vn) ∈ Vk(Γ)n ist genau dann in B(Gk(Γ), ϕ, n), wenn vi = vj
gilt, d.h.,

L(Γ, ϕ, n) = Syn(V (Γ)n) ∩ {x ∈ Syn((X∗)n) : pri,j(x) ∈ IdX∗}.

Aus der Regularität von V (Γ) und IdX∗ folgt, daß L(Γ, ϕ, n) synchron regulär ist.

• ϕ = edge(xi, xj), 1 ≤ i, j ≤ n:
Ein n-Tupel (v1, . . . , vn) ∈ Vk(Γ)n ist genau dann in B(Gk(Γ), ϕ, n), wenn (vi, vj) ∈
Ek(Γ) gilt, d.h.,

L(Γ, ϕ, n) = Syn(V (Γ)n) ∩ {x ∈ Syn((X∗)n) : pri,j(x) ∈ E(Γ) \ IdX∗}.

Da V (Γ), E(Γ) und IdX∗ synchron regulär sind , ist L(Γ, ϕ, n) synchron regulär.

Sei nun für die Formeln ψ1, ψ2 mit var(ψ1), var(ψ2) ⊆ {x1, . . . , xn} bereits gezeigt, daß
L(Γ, ψ1, n) und L(Γ, ψ2, n) synchron regulär sind.

• ϕ = ¬ψ1:
Ein n-Tupel (v1, . . . , vn) ∈ Vk(Γ)n ist genau dann in B(Gk(Γ), ϕ, n), wenn es nicht in
B(Gk(Γ), ψ1, n) enthalten ist, d.h.

L(Γ, ϕ, n) = Syn(V (Γ)n) \ L(Γ, ψ1, n).

Da Syn(V (Γ)n) und L(Γ, ψ1, n) synchron regulär sind und die Familie der synchron
regulären Relationen unter Differenz abgeschlossen ist, ist L(Γ, ϕ, n) synchron re-
gulär.

• ϕ = (ψ1 ∨ ψ2):
Ein n-Tupel (v1, . . . , vn) ∈ Vk(Γ)n ist genau dann in B(Gk(Γ), ϕ, n), wenn es in
B(Gk(Γ), ψ1, n) oder B(Gk(Γ), ψ2, n) enthalten ist, d.h.

L(Γ, ϕ, n) = L(Γ, ψ1, n) ∪ L(Γ, ψ2, n).

Da L(Γ, ψ1, n) und L(Γ, ψ2, n) synchron regulär sind und die Familie der synchron
regulären Relationen unter Vereinigung abgeschlossen ist, ist L(Γ, ϕ, n) synchron re-
gulär.

Kapitel 3: Kantengrammatiken 69

• ϕ = ∃xiψ1, 1 ≤ i ≤ n:
Ein n-Tupel (v1, . . . , vn) ∈ Vk(Γ)n ist genau dann in B(Gk(Γ), ϕ, n), wenn es ein
w ∈ Vk(Γ) gibt, so daß (v1, . . . , vi−1, w, vi+1, . . . , vn) in B(Gk(Γ), ψ1, n) enthalten ist,
d.h.

L(Γ, ϕ, n) = Syn(V (Γ)n) ∩
{x ∈ Syn((X∗)n) : pr1,i−1,i+1,...,n(x) ∈ pr1,i−1,i+1,...,n(L(Γ, ψ1, n))}.

Da L(Γ, ψ1, n) und Syn(V (Γ)n) synchron regulär sind und die Familie der synchron
regulären Relationen unter endlicher Substitution und Durchschnitt abgeschlossen
ist, ist L(Γ, ϕ, n) synchron regulär. 2

Satz 3.5.12 Zu jedem Satz 1. Stufe ϕ und zu jeder synchronen regulären Kantengrammatik
Γ gibt es eine synchrone reguläre Kantengrammatik Γϕ mit G(Γϕ) = {G ∈ G(Γ) : G |= ϕ}.

Beweis. Es sei X das Knotenalphabet von Γ und ϕ ein Satz 1. Stufe mit var(ϕ) ⊆
{x1, . . . , xn}. Es sei L(Γ, ϕ, n) die in Satz 3.5.11 konstruierte Sprache. Da ϕ keine freien
Variablen enthält, ist ein n-Tupel (w1, . . . , wn) ∈ V (Γ)[n] genau dann in L(Γ, ϕ, n), wenn
wi ∈ Vk(Γ), 1 ≤ i ≤ n, und Gk(Γ) |= ϕ. Die Relation

Eϕ = E(Γ) ∩ {(v, w) ∈ Syn(X∗ ×X∗) : v, w ∈ pr1(L(Γ, ϕ, n))}

ist synchron und regulär. Ist Γϕ eine synchrone reguläre Kantengrammatik mit E(Γϕ) =
Eϕ, so ist der Graph Gk(Γϕ) gleich Gk(Γ), falls Gk(Γ) |= ϕ, und anderenfalls leer. 2

Durch Sätze 1. Stufe lassen sich nur
”
lokale“ Eigenschaften definieren (siehe [6]). Deshalb

sind viele wichtige graphentheoretische Eigenschaften nicht mit den Mitteln der Prädika-
tenlogik 1. Stufe definierbar. Für einige dieser Eigenschaften beweisen wir im folgenden,
daß bezüglich ihnen keine Abgeschlossenheit der Familie der durch synchrone regul̈are Kan-
tengrammatiken erzeugten Graphensprachen besteht. Zunächst seien der Vollständigkeit
halber die Definitionen dieser graphentheoretischen Eigenschaften angegeben:

Definition 3.5.6 Es sei G = (V,E) ein gerichteter schlichter Graph.

• Eine Knotenfärbung mit k Farben von G ist eine Abbildung c : V → {1, . . . , k}. Eine
Knotenfärbung c heißt zulässig, wenn c(v) 6= c(w) für alle v, w ∈ V mit (v, w) ∈
E gilt. G heißt k-knotenfärbbar, falls eine zulässige Knotenfärbung mit k Farben
existiert.

• G heißt planar, wenn es eine Einbettung in den zweidimensionalen euklidischen Raum
gibt, so daß keine zwei Kanten einen inneren Schnittpunkt haben. (Für eine exakte
Definition siehe [40, Definitionen 11.1,11.2].)

Kapitel 3: Kantengrammatiken 70

• Ein Kantenzug v0, v1, . . . , vk in G heißt gerichteter Eulerweg, wenn für alle (v, w) ∈ E
genau ein i ∈ {1, . . . , k} mit (vi−1, vi) ∈ (v, w) existiert. Ist zusätzlich vk = v0, so ist
v0, . . . , vk−1, v0 ein Eulerzyklus. G heißt Eulerscher Graph, wenn G einen Eulerzyklus
enthält. Ein ungerichteter Graph heißt ungerichtet Eulersch, wenn er durch einen ge-
richteten Eulerschen Graphen mit antisymmetrischer Kantenrelation induziert wird.

• Ein Weg v1, . . . , vk in G heißt Hamiltonweg, wenn für alle v ∈ V genau ein i ∈
{1, . . . , k} mit vi = v existiert. Ist v1, . . . , vk ein Hamiltonweg und (vk, v1) ∈ E, so
heißt v1, . . . , vk, v1 Hamiltonkreis. G heißt Hamiltonsch, wenn G einen Hamiltonkreis
enthält.

Satz 3.5.13 Es sei Γ eine synchrone reguläre Kantengrammatik. Die folgenden Graphen-
mengen lassen sich im allgemeinen nicht durch synchrone reguläre Kantengrammatiken
erzeugen:

1. die Menge aller zusammenhängenden Graphen aus [G](Γ),

2. die Menge aller azyklischen Graphen aus [G](Γ),

3. die Menge aller k-knotenfärbbaren Graphen mit k ≥ 2 aus [G](Γ),

4. die Menge aller planaren Graphen aus [G](Γ),

5. die Menge aller Eulerschen Graphen aus [G](Γ),

6. die Menge aller Hamiltonschen Graphen aus [G](Γ).

Beweis. Es sei Γ eine synchrone reguläre Kantengrammatik mit Knotenalphabet X, so
daß Gn(Γ) für n ≥ n0 folgende Eigenschaften besitzt:

• Gn(Γ) besteht aus zwei Komponenten, die jeweils umgekehrt gerichtete Bäume sind.

• In Gn(Γ) gibt es drei paarweise verschiedene Knoten an, bn, cn derart, daß an und bn
die Wurzeln der umgekehrt gerichteten Bäume sind, cn ein Blatt ist und die Sprachen
A = {an : n ≥ n0}, B = {bn : n ≥ n0} und C = {cn : n ≥ n0} jeweils regulär sind.

(Diese Bedingungen werden beispielsweise von der Kantengrammatik Γ′2 aus dem Beweis
von Satz 3.5.4 mit n0 = 2, an = an, bn = bn, cn = #cbn−2 erfüllt.) Ausgehend von Γ
konstruieren wir im folgenden synchrone reguläre Kantengrammatiken Γi, i = 1, . . . , 5, so
daß Gn(Γi) genau dann eine der oben genannten Eigenschaften besitzt, wenn an und cn in
einer Komponente liegen.

1. Die Relation E1 = E(Γ)∪{(bn, cn) : n ≥ 1} ist synchron und regulär. Folglich gibt es
eine synchrone reguläre Kantengrammatik Γ1 mit E(Γ1) = E1 sowie eine synchrone
reguläre Kantengrammatik Γ′1 mit E(Γ′1) = E1 ∪ E−1

1 . Gn(Γ1) bzw. Gn(Γ
′
1) ist ge-

nau dann schwach bzw. stark zusammenhängend, wenn bn und cn in verschiedenen
Komponenten von Gn(Γ) liegen.

Kapitel 3: Kantengrammatiken 71

2. Gn(Γ1) ist genau dann azyklisch, wenn bn und cn in verschiedenen Komponenten von
Gn(Γ) liegen.

3. Es sei X ′ = X ∪ {1, . . . , k}. Die Relation

E′2 = {(vi, vj) : v ∈ V (Γ), 1 ≤ i, j ≤ k} ∪ {(vi, w1) : (v, w) ∈ E(Γ), 2 ≤ i ≤ k}

ist synchron regulär. Es gibt daher eine synchrone reguläre Kantengrammatik Γ′2
mit E(Γ′2) = E′2. Der Graph Gn+1(Γ

′
2) entsteht, indem man in Gn(Γ) einen Knoten

v durch den vollständigen Graphen mit den Knoten v1, . . . , vk ersetzt und für eine
Kante (v, w) die Kanten (v2, w1), . . . , (vk, w1) einfügt. Gn+1(Γ

′
2) besteht aus zwei

Komponenten. Sind v und w in Gn(Γ) in derselben Komponente, so befinden sich
vi und wj für 1 ≤ i, j ≤ k in derselben Komponente von Gn+1(Γ

′
2). Offenbar ist

Gn+1(Γ
′
2) mit k Farben knotenfärbbar. Eine zulässige k-Färbung erhält man, indem

man in der Komponente mit dem Knoten an1 allen Knoten der Form vi mit 1 ≤ i ≤ k
die Farbe i gibt und in der Komponente mit dem Knoten bn1 allen Knoten der Form
vi mit 1 ≤ i ≤ k die Farbe (i+ 1) rest k gibt.

Ferner gilt für jede zulässige k-Färbung cn+1 des Graphen Gn+1(Γ
′
2) und alle v, w ∈

Vn(Γ): Sind v, w in derselben Komponente von Gn(Γ), so ist cn+1(v1) = cn+1(w1).
Dies ist sehr leicht durch vollständige Induktion über den Abstand von v und w zu
zeigen.

Schließlich konstruieren wir eine synchrone reguläre Kantengrammatik Γ2 mit

E(Γ2) = E(Γ′2) ∪ {(bn1, cn1) : n ≥ 1}.

Sind in Gn(Γ) die Knoten bn und cn in unterschiedlichen Komponenten, so bleibt
die oben angegebene Knotenmarkierung für Gn+1(Γ

′
2) eine gültige Markierung für

Gn+1(Γ2). Sind in Gn(Γ) die Knoten bn und cn in der gleichen Komponente, so wird
jede gültige Knotenmarkierung cn+1 von Gn+1(Γ

′
2) wegen cn+1(bn1) = cn+1(cn1) zu

einer ungültigen Markierung für Gn+1(Γ2). Folglich ist Gn+1(Γ2) genau dann mit k
Farben knotenfärbbar, wenn cn und an in der gleichen Komponente von Gn(Γ) sind.

4. Wir wählen als Alphabet X ∪ {1, 2, 3}, 1, 2, 3 /∈ X. Es gibt eine synchrone reguläre
Kantengrammatik Γ3 mit

E(Γ3) = E(Γ) ∪ {(bn, xn) : n ≥ 1, x ∈ {1, 2, 3}} ∪
{(xn, yn) : n ≥ 1, x, y ∈ {1, 2, 3}} ∪ {(xn, cn) : n ≥ 1, x ∈ {1, 2, 3}}.

Der von den Knoten bn, cn, 1
n, 2n, 3n induzierte ungerichtete Teilgraph ist bis auf die

Kante zwischen bn und cn vollständig. Liegen cn und bn in Gn(Γ) in der gleichen
Komponente, so ist dieser Graph mit dem Weg von cn nach bn eine Unterteilung des
vollständigen Graphen mit 5 Knoten, und damit ist Gn(Γ) nicht planar.

Sind dagegen cn und bn in verschiedenen Komponenten, so ist Gn(Γ3) planar. Man
bettet die Komponenten von cn bzw. bn innerhalb bzw. außerhalb des Dreiecks ein,
welches durch 1n, 2n, 3n definiert ist.

Kapitel 3: Kantengrammatiken 72

5. Zunächst sei daran erinnert, daß ein Graph genau dann Eulersch ist, wenn er stark
zusammenhängend ist und für jeden seiner Knoten der Eingangsgrad und Ausgangs-
grad gleich sind.

Wir wählen als Alphabet X ∪ {1, 2}, 1, 2 /∈ X und setzen

E4 = {(v1, v2) : v ∈ V 1(Γ1)}∪{(v2, w1) : (v, w) ∈ E(Γ1)}∪{(w1, v1) : (v, w) ∈ E(Γ1)}.

Es gibt eine synchrone reguläre Kantengrammatik Γ4 mit E(Γ4) = E4. Der Graph
Gn+1(Γ4) entsteht, indem in Gn(Γ1) ein Knoten v durch die Knoten v1, v2 ersetzt
wird, falls eine Kante von v ausgeht, und sonst durch v1 ersetzt wird, und eine Kante
(v, w) durch den Zyklus (v1, v2, w1, v1) ersetzt wird. Für jeden Knoten v1 ist der Ein-
gangsgrad offensichtlich gleich dem Ausgangsgrad. Da von jedem Knoten v ∈ V 1(Γ1)
genau eine Kante ausgeht, hat jeder Knoten v2 Eingangsgrad und Ausgangsgrad 1.
Weiterhin folgt durch vollständige Induktion, daß vi, wj, i, j ∈ {1, 2}, genau dann in
der gleichen starken Zusammenhangskomponente von Gn+1(Γ4) liegen, wenn v und
w in der gleichen schwachen Zusammenhangskomponente von Gn(Γ1) liegen. Damit
ist Gn+1(Γ4) genau dann Eulersch, wenn Gn(Γ1) schwach zusammenhängend ist.

6. Zunächst stellen wir fest, daß für einen Eulerschen Graphen G mit antisymmetri-
scher Kantenrelation der Kantengraph L(G) Hamiltonsch ist, denn einem Eulerkreis
v1, v2, v3, . . . , vk−1, vk, v1 in G entspricht der Hamiltonkreis
(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1), (v1, v2) in L(G).

Nun konstruieren wir nach Satz 3.5.9 die synchrone reguläre Kantengrammatik Γ5,
so daß Gn+1(Γ5) für n ≥ 1 der Kantengraph von Gn+1(Γ4) ist. Ist Gn+1(Γ4) nicht
zusammenhängend, so ist auch Gn+1(Γ5) nicht zusammenhängend und folglich nicht
Hamiltonsch. Ist Gn+1(Γ4) zusammenhängend, so ist Gn+1(Γ4) Eulersch, und wegen
der Antisymmetrie von En+1(Γ4) ist Gn+1(Γ5) Hamiltonsch. Somit ist Gn+1(Γ5) genau
dann Hamiltonsch, wenn Gn+1(Γ4) zusammenhängend ist, also genau dann, wenn an
und cn in Gn(Γ) in der gleichen Komponente liegen.

Nach den Konstruktionen ist
card Vn(Γ1) = card Vn(Γ), card Vn+1(Γ2) = k card Vn(Γ), card Vn(Γ3) = card Vn(Γ) + 3,
card Vn+1(Γ4) = card Vn(Γ1)+card En(Γ1) = card Vn(Γ)+card En(Γ)+1 = 2 card Vn(Γ)− 1,
card Vn(Γ5) = card En(Γ4) = 3 card (En(Γ1)) = 3 card (Vn(Γ))− 3.

Wählt man für Γ die Kantengrammatik Γ′2 aus dem Beweis von Satz 3.5.4 an = an, bn = bn,
cn = #cbn−2, so ist card Vn(Γ) = n4n−1 + 2, und cn und an sind genau dann in der glei-
chen Komponente, wenn n eine Quadratzahl ist. Mit den Argumenten aus dem Beweis von
Satz 3.5.4 läßt sich zeigen, daß die Menge aller zusammenhängenden Graphen aus G(Γ1),
die Menge aller azyklischen Graphen aus G(Γ1), die Menge aller k-knotenfärbbaren Gra-
phen aus G(Γ2), die Menge aller planaren Graphen aus G(Γ3), die Menge aller Eulerschen
Graphen aus G(Γ4) und die Menge aller Hamiltonschen Graphen aus G(Γ5) nicht durch
synchrone reguläre Kantengrammatiken erzeugbar sind.

2

Kapitel 3: Kantengrammatiken 73

Als letztes zeigen wir zwei positive Abschlußresultate mit Hilfe rationaler Potenzreihen.
Ein ungerichteter Graph heißt regulär vom Grad k, wenn alle Knoten den Grad k besitzen
und regulär, wenn er regulär von beliebigem Grad k ist.

Satz 3.5.14 Es sei Γ eine synchrone reguläre Kantengrammatik. Es existiert eine syn-
chrone reguläre Kantengrammatik Θ, so daß G(Θ) die Menge aller regulären Graphen aus
Gu(Γ) ist.

Beweis. Es sei X das Knotenalphabet von Γ und x ∈ X. Ferner setzen wir V = V (Γ).
Zunächst läßt sich ein nichtdeterministischer endlicher Automat A derart konstruieren,
daß L(A) = V gilt und dA(v) = d(v|Γ) + 1 für alle v ∈ V erfüllt ist.

Weiter sei auf X eine Ordnungsrelation ≤ gegeben, die auf X∗ zur quasilexikographischen
Ordnung ≤qlex erweitert wird. Es sei

M = {w ∈ V : ∀v((v ∈ V ∧ |v| = |w|)→ w ≤qlex v)}.

Wie man leicht sieht, ist mit V auch M regulär. Für n ∈ N definieren wir mn als das
(einzige) Wort aus M mit der Länge n bzw. als xn, falls ein solches Wort nicht existiert.

Da V und M regulär sind, sind die Potenzreihen

DA =
∑
w∈X∗

dA(w)w =
∑
w∈V

dA(w)w, CV =
∑
w∈V

w und CM =
∑
w∈M

w

N -rational. Es sei ferner h0 : X∗ → {x}∗ der Homomorphismus mit h0(a) = x für alle
a ∈ X. Wir konstruieren jetzt die Potenzreihen r1, . . . , r5:

r1 = DA � CM =
∑
w∈M

dA(w)w =
∞∑
n=0

dA(mn)mn

r2 = h0r1 =
∞∑
n=0

dA(mn)x
n

r3 = (h−1
0 r2)� CV =

∑
w∈V

dA(m|w|)w

r4 = (r3 −DA)� (r3 −DA) =
∑
w∈V

(dA(m|w|)− dA(w))2w

r5 = h0r4 =
∞∑
n=0

 ∑
w∈V ∩X[n]

(r4, w)

xn

Wegen der Abschlußeigenschaften rationaler Potenzreihen sind die Reihen r1, r2, r3 N -
rational und r4, r5 Z -rational. Offenbar ist (r5, x

n) = 0 genau dann, wenn dA(w) = dA(mn)
für alle w ∈ V ∩X [n] gilt, d.h. genau dann, wenn Gn(Γ) regulär oder leer ist.

Kapitel 3: Kantengrammatiken 74

Für eine Z -rationale Potenzreihe r =
∑∞

n=0 anx
n ist die Sprache {xn : an = 0} regulär

[5, Theorem IV.4.1]. Folglich gibt es eine synchrone reguläre Kantengrammatik Θ mit
Gn(Θ) = Gn(Γ), falls (r5, x

n) = 0, und Gn(Θ) = (∅, ∅), sonst. 2

Satz 3.5.15 Es sei Γ eine synchrone reguläre Kantengrammatik. Es existieren synchrone
reguläre Kantengrammatiken Θ1, Θ2, so daß G(Θ1) bzw. G(Θ2) die Mengen aller Graphen
aus G(Γ) bzw. Gu(Γ) mit ausschließlich Eulerschen bzw. ungerichtet Eulerschen Kompo-
nenten sind.

Beweis. Es sei X das Knotenalphabet von Γ und x ∈ X. Sei Γu eine synchrone reguläre
Kantengrammatik mit G(Γu) = Gu(Γ). Ferner setzen wir V = V (Γ) = V (Γu).

Aus Γ bzw. Γu kann man nichtdeterministische endliche Automaten A1, A2 bzw. A derart
konstruieren, daß L(Ai) = V (Γi) für i = 1, 2 bzw. L(A) = V (Γu) gilt und dA1(v) =
dout(v|Γ) + 1 für alle v ∈ V 1(Γ), dA2(v) = din(v|Γ) + 1 für alle v ∈ V 2(Γ) sowie dA(v) =
d(v|Γu) + 1 für alle v ∈ V (Γ) erfüllt ist.

Es seien D1, D2, D, C die rationalen Potenzreihen mit

Di =
∑
w∈X∗

dAi(w)w, i = 1, 2, D =
∑
w∈X∗

dA(w)w, C =
∑

w∈V (Γ)

w.

Es sei h : X∗ → {x}∗ der Homomorphismus mit h(a) = x für alle a ∈ X, und H sei der
natürliche Halbringhomomorphismus von N nach N 2 mit H(n) = n rest 2 für alle n ∈ N .

Die Potenzreihe R = h ((D1 −D2)� (D1 −D2)) =
∑∞

n=1

(∑
w∈X[n](D1 −D2, w)2

)
xn ist

in Z rat〈〈x〉〉. Es gilt (R, xn) = 0 genau dann, wenn dA1(v) = dA2(v) für alle v ∈ X [n], d.h.,
wenn alle Komponenten von Gn(Γ) gerichtet Eulersch sind.

Die Potenzreihe E = H(D + C) =
∑

w∈X∗ ((C +D,w) rest 2)w ist N 2-rational. Es gilt
(E,w) = 1 genau dann, wenn d(w|Γu) ungerade ist. Das heißt, alle Komponenten von
Gn(Γ) sind genau dann ungerichtet Eulersch, wenn (E,w) = 0 für alle w ∈ X [n].

Die Sprachen L1 = {xn : (R, xn) = 0} sowie L2 = {xn : (E,w) = 0 für alle w ∈ X [n]} sind
regulär. Es gibt demzufolge synchrone reguläre Kantengrammatiken Θ1, Θ2 mit

Gn(Θ1) =

{
Gn(Γ), falls xn ∈ L1

(∅, ∅), sonst
bzw. Gn(Θ2) =

{
Gn(Γu), falls xn ∈ L2

(∅, ∅), sonst
. 2

3.6 Entscheidungsprobleme

Für eine gegebene Kantengrammatik stellen sich zum einen die aus der klassischen Theorie
der formalen Sprachen bekannten Entscheidungsprobleme, wie z.B. das Leerheitsproblem,
das Elementproblem oder das Äquivalenzproblem. Außerdem ergeben sich Entscheidungs-
probleme bezüglich graphentheoretischer Eigenschaften. Im folgenden werden die Probleme
und die Resultate kurz genannt. Danach werden zuerst die positiven und anschließend die
negativen Ergebnisse bewiesen.

Kapitel 3: Kantengrammatiken 75

Klassische Entscheidungsprobleme. Da Graphensprachen Verallgemeinerungen von
Sprachen darstellen, lassen sich die Entscheidungsprobleme aus der Theorie formaler Spra-
chen auf Graphensprachen übertragen. Im einzelnen betrachten wir folgende Probleme für
gegebene Kantengrammatiken Γ,Γ1,Γ2 und Graphen G..

• Leerheitsproblem: Ist G(Γ) leer?

• Endlichkeitsproblem: Ist [G](Γ) endlich?

• Elementproblem: Ist [G] in [G](Γ) enthalten?

• Teilgraphproblem: Enthält ein Graph aus [G](Γ) einen zu G isomorphen Teilgraphen?

• universelles Teilgraphproblem: Enthält jeder Graph aus [G](Γ) einen zu G isomorphen
Teilgraphen?

• Äquivalenzproblem: Gilt [G](Γ1) = [G](Γ2)?

• Disjunktheitsproblem: Ist der Durchschnitt von [G](Γ1) und [G](Γ2) leer?

• Kürzbarkeitsproblem: Ist die Graphenfolge G(Γ) kürzbar?

In [3] wurden die meisten dieser Fragen bereits untersucht. Dabei wurde für alle genannten
Probleme die Unentscheidbarkeit für den Fall gezeigt, daß die gegebenen Kantengramma-
tiken monoton sind. Außerdem wurden die Entscheidbarkeit des Leerheitsproblems sowie
die Unentscheidbarkeit des Teilgraphproblems für den (nichtsynchronen) regulären Fall
bewiesen.

Wir zeigen im folgenden die Entscheidbarkeit des Leerheitsproblems und des Elementpro-
blems für kontextfreie Kantengrammatiken sowie die Entscheidbarkeit des Endlichkeitspro-
blems für synchrone kontextfreie und für reguläre Kantengrammatiken. Das Teilgraphpro-
blem, das universelle Teilgraphproblem und das Kürzbarkeitsproblem sind für synchrone
reguläre Kantengrammatiken entscheidbar. Schließlich sind das Äquivalenzproblem sowie
das Disjunktheitsproblem für synchrone reguläre Kantengrammatiken unentscheidbar.

Graphentheoretische Entscheidungsprobleme. Für eine Kantengrammatik Γ und
eine graphentheoretische Eigenschaft P stellen sich die Entscheidungsprobleme, ob die Fa-
milie [GP](Γ) aller von Γ erzeugten Graphen mit der Eigenschaft P endlich, leer bzw.
gleich [G](Γ) ist. Entscheidungsprobleme dieser Art wurden von Berman und Shannon

[3] bzw. von Dassow [8] betrachtet. In [3] wurde die Unentscheidbarkeit der entsprechen-
den Fragestellungen für einige Eigenschaften und monotone Kantengrammatiken gezeigt;
in [8] wurden Unentscheidbarkeitsresultate für lineare Kantengrammatiken und einige Ei-
genschaften gezeigt.

Wir konzentrieren uns im folgenden auf synchrone reguläre Kantengrammatiken. Positi-
ve Resultate lassen sich als Folge der Resultate aus Abschnitt 3.5 für solche Eigenschaften

Kapitel 3: Kantengrammatiken 76

erzielen, die durch prädikatenlogische Sätze 1. Stufe beschreibbar sind. Negative Entscheid-
barkeitsresultate erhält man dagegen für die in Satz 3.5.13 genannten Eigenschaften, also
insbesondere die Eigenschaften, zusammenhängend, azyklisch oder ein Baum zu sein. Eine
weitere Art von Entscheidungsproblemen ist die Frage, ob ein graphentheoretischer Para-
meter (z.B. der maximale Knotengrad) für alle Graphen einer Graphenfamilie beschränkt
bzw. durch eine gegebene Konstante beschränkt ist. Wir zeigen unter anderem, daß das
Problem der Beschränktheit des maximalen Knotengrades (bounded degree problem) für
synchrone reguläre Kantengrammatiken entscheidbar ist; bei vorgegebener Schranke ist
dieses Problem auch für beliebige reguläre Kantengrammatiken entscheidbar; für synchro-
ne lineare Kantengrammatiken sind beide Varianten unentscheidbar.

Positive Entscheidbarkeitsresultate

Die Entscheidbarkeit der Probleme der Leerheit, der Endlichkeit sowie der Kürzbarkeit läßt
sich direkt aus analogen Entscheidbarkeitsresultaten für gewöhnliche Sprachen ableiten.

Satz 3.6.1 Das Leerheitsproblem ist für kontextfreie Kantengrammatiken entscheidbar;
das Endlichkeitsproblem ist für synchrone kontextfreie sowie für reguläre Kantengramma-
tiken entscheidbar.

Beweis. Es sei Γ eine Kantengrammatik. Dann ist [G](Γ) genau dann leer bzw. endlich,
wenn V (Γ) leer bzw. schlank ist. Das Problem der Leerheit ist für Z-Valenzgrammatiken,
das Problem der Schlankheit ist für kontextfreie Grammatiken entscheidbar. 2

Offen ist die Entscheidbarkeit des Problems der Schlankheit für Z-Valenzgrammatiken und
damit das Endlichkeitsproblem für kontextfreie Kantengrammatiken. Entscheidbar ist für
Valenzgrammatiken das Problem der k-Schlankheit bei gegebenem k (Satz 2.7.3) und damit
für kontextfreie Kantengrammatiken die Frage, ob für gegebenes k die Knotenzahl jedes
erzeugten Graphen durch k beschränkt ist.

Lemma 3.6.2 Es sei A = (Z,X, z0, δ, F) ein deterministischer endlicher Automat. Es ist
entscheidbar, ob die Sprache L(A)

1. k-kürzbar (im strengen Sinne k-kürzbar) für gegebenes k ∈ N ist,

2. kürzbar ist.

Beweis. Für q ∈ F sei A′q der endliche Automat A′q = (Z, {a}, q, δ′, F ′) mit

δ′ = {(z2, a, z1) : δ(z1, x) = z2 für ein x ∈ X},
F ′ = {z ∈ Z \ F : δ(z0, w) = z für unendlich viele w ∈ X∗}.

Die Menge F ′ ist effektiv berechenbar. Offensichtlich gilt z ∈ δ′(q, ak) genau dann, wenn
δ(z, w) = q für ein w ∈ X [k] erfüllt ist. Man kann effektiv einen deterministischen endlichen

Kapitel 3: Kantengrammatiken 77

Automaten A′ mit L(A′) =
⋃
q∈F L(A′q) konstruieren. Ist ak ∈ L(A′) für k ≥ 1, so gibt es

einen Zustand z ∈ F ′, einen Zustand q ∈ F und ein Wort w ∈ X [k] mit δ(z, w) = q. Nach
Definition von F ′ gibt es dann unendliche viele Wörter v mit v /∈ L(A) und vw ∈ L(A),
d.h., L(A) ist nicht k-kürzbar.

Ist umgekehrt L(A) nicht k-kürzbar, so gibt es unendlich viele Wörter v /∈ L(A), für die
ein u ∈ X [k] mit vu ∈ L(A) existiert. Wegen der Endlichkeit von Z und X [k] gibt es einen
Zustand z ∈ Z \ F , einen Zustand q ∈ F und ein Wort w ∈ X [k], so daß δ(z0, v) = z und
δ(z, w) = q für unendlich viele v gilt, d.h. ak ∈ L(A′q).
Damit ist L(A) genau dann k-kürzbar, wenn ak nicht in L(A′) ist; L(A) ist genau dann
kürzbar, wenn {a}+\L(A′) nicht leer ist. Die Frage der k-Kürzbarkeit bzw. der Kürzbarkeit
von L(A) ist damit auf das Elementproblem für A′ und ak bzw. das Leerheitsproblem für
L(A′) zurückgeführt.

Analog läßt sich das Problem der strengen k-Kürzbarkeit von L(A) auf das Elementpro-
blem für ak und A′′ zurückführen, wobei A′′ aus A′ entsteht, wenn man als Menge der
Endzustände F ′′ = {z ∈ Z \ F : δ(z0, w) = z für ein w ∈ X∗} statt F ′ verwendet. 2

Satz 3.6.3 Für eine gegebene synchrone reguläre Kantengrammatik Γ und eine natürliche
Zahl k ist es entscheidbar, ob G(Γ) kürzbar bzw. (streng) k-kürzbar ist.

Beweis. Es sei Γ = (N,X,X2, P, S). Man kann eine synchrone reguläre Kantengrammatik
Θ derart konstruieren, daß die Graphenfolge G(Γ) genau dann (streng) k-kürzbar ist, wenn
die reguläre Sprache E(Θ) ⊆ (X2)∗ (streng) k-kürzbar ist. Mit Lemma 3.6.2 ist der Satz
bewiesen.

Satz 3.6.4 Es sei ϕ ein prädikatenlogischer Satz 1. Stufe. Für eine synchrone reguläre
Kantengrammatik Γ ist es entscheidbar,

1. ob G |= ϕ für ein G ∈ G(Γ) gilt,

2. ob G |= ϕ für alle G ∈ G(Γ) gilt,

3. ob G |= ϕ für höchstens endlich viele paarweise nichtisomorphe G ∈ G(Γ) gilt,

4. ob G |= ϕ für alle bis auf endlich viele paarweise nichtisomorphe G ∈ G(Γ) gilt.

Beweis. Die Grammatik Γϕ im Beweis von Satz 3.5.12 kann effektiv konstruiert werden.
Es gilt G |= ϕ für ein G ∈ G(Γ) bzw. für alle G ∈ G(Γ) genau dann, wenn E(Γϕ) bzw.
E(Γ¬ϕ) nicht leer ist. Es gilt G |= ϕ für höchstens endlich viele nichtisomorphe G ∈ G(Γ)
bzw. für alle bis auf endlich viele nichtisomorphe G ∈ G(Γ) genau dann, wenn E(Γϕ)
bzw. E(Γ¬ϕ) schlank ist. Damit sind die Probleme auf das Leerheitsproblem bzw. das
Schlankheitsproblem für reguläre Sprachen zurückgeführt. 2

Als Folgerung ergeben sich die Entscheidbarkeit des Elementproblems, des Teilgraphpro-
blems und des universellen Teilgraphproblems:

Kapitel 3: Kantengrammatiken 78

Satz 3.6.5 Es seien Γ eine synchrone reguläre Kantengrammatik und H ein Graph. Es
ist entscheidbar,

• ob ein Graph aus [G](Γ) einen zu H isomorphen Teilgraphen enthält,

• ob jeder Graph aus [G](Γ) einen zu H isomorphen Teilgraphen enthält,

• ob höchstens endlich viele Graphen aus [G](Γ) einen zu H isomorphen Teilgraphen
enthalten,

• ob alle bis auf endlich viele Graphen aus [G](Γ) einen zu H isomorphen Teilgraphen
enthalten,

• ob ein Graph aus [G](Γ) zu H isomorph ist.

Positive Resultate gelten auch für die analogen Probleme bezüglich induzierter Teilgraphen.

Beweis. Es sei H = (V,E) ein Graph mit V = {v1, . . . , vn}. Ein Graph G enthält einen
zu H isomorphen Teilgraphen genau dann, wenn G |= ϕ mit

ϕ = ∃x1 . . .∃xn

 ∧
1≤i<j≤k

¬xi ≡ xj ∧
∧

(i,j)∈E

edge(xi, xj)

 .

G enthält einen zu H isomorphen induzierten Teilgraph genau dann, wenn G |= ψ mit

ψ = ∃x1 . . .∃xn

 ∧
1≤i<j≤k

¬xi ≡ xj ∧
∧

(vi,vj)∈E

edge(xi, xj) ∧
∧

(vi,vj)/∈E

¬edge(xi, xj)

 .

G ist genau dann isomorph zu H, wenn G |= χ mit

χ = ψ ∧ ∀x1 . . .∀xn+1

∨
1≤i<j≤n+1

xi ≡ xj .

Die Behauptungen des Satzes folgen nun unmittelbar aus Satz 3.6.4. 2

Auch die Beschränktheit einiger graphentheoretischer Parameter durch eine gegebene Kon-
stante kann mit den Mitteln der Logik erster Stufe beschrieben werden. Der Vollständigkeit
halber geben wir die Definitionen dieser Parameter hier an.

Es sei G = (V,E) ein ungerichteter Graph. Der Durchmesser von G ist das Supremum
der Knotenabstände in G. Die Taillenweite von G ist die Länge des kleinsten Kreises.
Falls G keinen Kreis enthält, so wird sie auf ∞ gesetzt. Eine Clique ist ein vollständiger
Untergraph; die Cliquenzahl von G ist die maximale Knotenzahl einer Clique in G.

Kapitel 3: Kantengrammatiken 79

Satz 3.6.6 Für eine synchrone reguläre Kantengrammatik Γ und eine gegebene Zahl k ist
es entscheidbar, ob für alle G ∈ Gu(Γ) der maximale Knotengrad, der minimale Knoten-
grad, der Durchmesser, der maximale Komponentendurchmesser, die Taillenweite und die
Cliquenzahl von G durch k beschränkt sind.

Beweis. Es sei G ein Graph. Die Taillenweite von G ist genau dann durch k beschränkt,
wenn G einen Kreis der Länge imit 3 ≤ i ≤ k enthält; die Cliquenzahl ist genau dann durch
k beschränkt, wenn der vollständige Graph mit (k+1) Knoten nicht als Teilgraph enthalten
ist. Der Durchmesser von G bzw. der maximale Durchmesser der Komponenten von G
ist durch k beschränkt, wenn der k-te Potenzgraph Gk vollständig ist bzw. vollständige
Graphen als Komponenten besitzt. Der minimale Knotengrad vonG ist durch k beschränkt,
falls G |= ψ mit

ψ = ∃x0∀x1 . . .∀xk+1

(
k+1∧
i=1

edge(x0, xi)→
∨

1≤i<j≤k+1

xi ≡ xj

)
.

2

Einige positive Entscheidbarkeitsresultate lassen sich mit Hilfe von formalen Potenzreihen
zeigen.

Satz 3.6.7 Es sei Γ eine synchrone reguläre Kantengrammatik. Es ist entscheidbar, ob es
eine Zahl K gibt, so daß für alle Graphen in Gu(Γ) der maximale Knotengrad durch K
beschränkt ist.

Beweis. Wie bereits gezeigt, kann man aus Γ einen nichtdeterministischen endlichen Au-
tomaten A konstruieren, so daß L(A) = V (Γ) und dA(v) = d(v|Γ) gilt. Die Frage, ob der
maximale Knotengrad beschränkt ist, kann damit auf das Problem der Endlichkeit des
Grades der Mehrdeutigkeit für endliche Automaten und damit auf das Problem der End-
lichkeit des Wertebereichs einer N -rationalen Potenzreihe zurückgeführt werden (Satz 1.4.2
und Satz 1.4.5). 2

Satz 3.6.8 Für eine gegebene synchrone reguläre Kantengrammatik Γ sind folgende Fragen
entscheidbar:

1. Gibt es in Gu(Γ) einen ungerichteten Graphen, dessen Komponenten ungerichtet Eu-
lersch sind?

2. Bestehen alle ungerichteten Graphen in Gu(Γ) aus ungerichtet Eulerschen Kompo-
nenten?

3. Bestehen alle Graphen in G(Γ) aus Eulerschen Komponenten?

4. Sind alle ungerichteten Graphen in Gu(Γ) regulär?

Kapitel 3: Kantengrammatiken 80

Beweis. Im Beweis von Satz 3.5.15 wurde eine formale Potenzreihe aus N rat
2 〈〈x〉〉 kon-

struiert, deren Koeffizient für xn genau dann 0 ist, wenn die Komponenten von Gu
n(Γ)

ungerichtet Eulersch sind. In den Beweisen der Sätze 3.5.15, 3.5.14 wurden Potenzreihen
aus Z rat〈〈x〉〉 konstruiert, so daß der Koeffizient von xn genau dann 0 ist, wenn der Graph
Gn(Γ) bzw. der ungerichtete Graph Gu

n(Γ) aus Eulerschen Komponenten besteht bzw. re-
gulär ist. Mit Satz 1.4.4 folgen die Behauptungen.

Schließlich wollen wir das Elementproblem und das Teilgraphproblem für allgemeinere
Kantengrammatiken betrachten. Bislang war lediglich bekannt, daß das Teilgraphproblem
für reguläre Kantengrammatiken unentscheidbar ist [3]. Wir werden die Entscheidbarkeit
des Elementproblems für kontextfreie Kantengrammatiken sowie die Entscheidbarkeit des
Teilgraphproblems für gerichtete Bäume und reguläre Kantengrammatiken zeigen. Da-
bei werden die Resultate und Methoden aus Abschnitt 2.7 über schlanke Valenzsprachen
benötigt.

Für den Rest dieses Unterabschnittes betrachten wir Kantengrammatiken mit dem Kno-
tenalphabet X und dem Terminalalphabet T = (X×{λ})∪({λ}×X). Es seien # /∈ X ein
Symbol, Y = X ∪ {#} und g : T ∗ → (Y 2)∗ der Homomorphismus mit g((a, λ)) = (a,#),
g((λ, a)) = (#, a) für a ∈ X. Mit #n bezeichnen wir das Symbol (#, . . . ,#) ∈ Y n. Die
Homomorphismen hn,i : (Y n)∗ → X∗ seien durch hn,i(a) = πX(pri(a)) für a ∈ Y n definiert.

Ist Γ eine kontextfreie bzw. reguläre Kantengrammatik, so ist g(L(Γ)) eine Sprache aus
L(Val,CF,Z) bzw. L(Val,REG,Z). Ein Paar (v, w) ist genau dann in E(Γ), wenn es in
g(L(Γ)) ein Wort α mit pr1(α) = v, pr2(α) = w gibt.

Satz 3.6.9 Das Elementproblem ist entscheidbar für kontextfreie Kantengrammatiken.

Beweis. Es sei Γ = (N,X, T, P, S) eine kontextfreie Kantengrammatik. Wir betrachten
zunächst die Sprache L = g(L(Γ)) ∩ D mit D = {α ∈ (Y 2)∗ : h2,1(α) 6= h2,2(α)}. Analog
zum Vorgehen für die Sprache A2 aus Behauptung 2.7.1 zeigt man D ∈ L(Val,REG,Z).
Wegen L(Γ) ∈ L(Val,CF,Z) ist L in L(Val,CF,Q+).

Zwei Wörter α, β ∈ (Y 2)∗ heißen äquivalent, in Zeichen α ≡ β, wenn h2,i(α) = h2,i(β)
für 1 ≤ i ≤ 2 erfüllt ist. Die Äquivalenzklasse von α ∈ (Y 2)∗ bezüglich ≡ wird mit [α]
bezeichnet. Die Strukturfunktion modulo ≡ für L definieren wir als

s{L}(k) := card {[w] : w ∈ L ∧ |w| = k} .

Offensichtlich ist ein Paar (v, w) ∈ X∗×X∗, genau dann in E(Γ)\ IdX∗, wenn es ein α ∈ L
mit pr1(α) = v, pr2(α) = w gibt. Dabei gilt |α| = 2|v| = 2|w|. Da äquivalente Wörter aus
(Y 2)∗ zum gleichen Wortpaar aus X∗ ×X∗ gehören, ist die Zahl der Kanten des Graphen
Gk(Γ) gleich s{L}(2k).

Sei nun G = (V,E) ein Graph mit V = {v1, . . . , vn} und E = {e1, . . . , em}. $ /∈ X sei
ein weiteres Symbol Wir konstruieren im folgenden eine Sprache L(G,Γ), die alle Wörter
w1$w2$ · · ·wn$y1$ · · ·ym$: wi ∈ X∗, yj ∈ (Y 2)∗, 1 ≤ i ≤ n, 1 ≤ j ≤ m, mit den folgenden
Eigenschaften enthält:

Kapitel 3: Kantengrammatiken 81

(0) wi ∈ V (Γ), yj ∈ L für alle 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(1) |yj| = 2|wi| für alle 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(2) sV (Γ)(wi) = n, s{L}(yj) = m für alle 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(3) wi 6= wj für 1 ≤ i < j ≤ n.

(4) h2,1(yj) = wr, h2,2(yj) = ws, falls ej = (vr, vs), r, s ∈ {1, . . . , n}, für alle 1 ≤ j ≤ m.

Nach Definition enthält L(G,Γ) genau dann ein Wort der Form w1$ · · ·wn$y1$ · · ·ym$,
wenn der Graph Gk(Γ), k = |w1|, isomorph zu G ist wobei vi ∈ V , 1 ≤ i ≤ n, durch den
Isomorphismus auf wi ∈ Vk(Γ) abgebildet wird.

Es bleibt noch zu zeigen, daß L(G,Γ) (effektiv) eine Sprache aus L(Val,CF,Q+) ist. Wegen
V (Γ), L ∈ L(Val,CF,Q+) und der Abgeschlossenheit dieser Sprachfamilie unter Konkate-
nation ist auch die Menge aller Wörter, die Bedingung (0) erfüllen, in L(Val,CF,Q+).
Analog zum Vorgehen in Abschnitt 2.7 zeigt man, daß die Mengen der Wörter, die Bedin-
gung (1),(2) bzw. (3) erfüllen, in L(Val,REG,Q+) sind. Da durch Bedingung (2) garantiert
ist, daß Vk(Γ) mit k = |w1| genau n Wörter enthält, kann man die Bedingung (4) durch

(4’) h2,1(yj) 6= wp, h2,2(yj) 6= wq, mit ej = (vr, vs), p, q, r, s ∈ {1, . . . , n}, p 6= r, q 6= s
(für alle 1 ≤ j ≤ m)

ersetzen. Erneut kann man zeigen, daß die Menge aller (4’) erfüllenden Wörter eine Sprache
aus L(Val,REG,Q+) ist. Damit ergibt sich L(G,Γ) als Durchschnitt einer Sprache aus
L(Val,CF,Q+) mit Sprachen aus L(Val,REG,Q+). 2

Es folgen einige weitere technische Definitionen und Resultate, um das Teilgraphproblem
für reguläre Kantengrammatiken und Bäume zu entscheiden. Auf (Y n)∗ definieren wir die
binäre Relation ≤n wie folgt:

v ≤n w :⇐⇒ ∃v1 · · · ∃vr∃`1 · · · ∃`r∃`r+1

(
v = v1 · · · vr ∧ w = #`1

n v1 · · ·#`r
n vr#

`r+1
n

)
.

Offensichtlich ist ≤n eine Halbordnung, und aus v ≤n w folgt pri1,...,ik(v) ≤k pri1,...,ik(w)
sowie hn,i(v) = hn,i(w) .

Als Wortrelation ist ≤n eine reguläre Transduktion. Für eine Sprache L ⊆ (Y n)∗ notieren
wir das Bild von L unter ≤n als L≤. Wegen der Reflexivität und Transitivität von ≤n gilt
L≤ = (L≤)≤.

Behauptung 3.6.10 Für w ∈ (Y n)∗ und y ∈ Y ∗ mit pr1(w) ≤1 y existiert ein v ∈ (Y n)∗

mit w ≤1 v und pr1(v) = y.

Beweis. Es seien

Kapitel 3: Kantengrammatiken 82

• w = w1a1w2a2 · · ·wrarwr+1 mit pr1(wj) = #|wj | für 1 ≤ j ≤ r + 1, pr1(aj) = xj ,
xj ∈ X, für 1 ≤ j ≤ r,

• y = #m1x1 · · ·#mrxr#
mr+1 mit mj ≥ |wj| für 1 ≤ j ≤ r + 1 und

• `j = mj − |wj| für 1 ≤ j ≤ r + 1.

Das gesuchte Wort v ergibt sich als v = #`1
n w1a1 · · ·#`r

n wrar#
`r+1
n wr+1 . 2

Behauptung 3.6.11 Für w ∈ (Y n)∗, y1, y2 ∈ Y ∗ mit hn,1(w) = h1,1(y1) und hn,i(w) =
h1,1(y2), 2 ≤ i ≤ n, existiert ein v ∈ (Y n)∗ mit w ≤n v, y1 ≤1 pr1(v) und y2 ≤1 pri(v).

Beweis. Es seien

• w = w1a1w2a2 · · ·wrarwr+1 mit pr1(wj) = #|wj | für 1 ≤ j ≤ r + 1, pr1(aj) = xj ,
xj ∈ X, für 1 ≤ j ≤ r und

• y = #m1x1 · · ·#mrxr#
mr+1.

Für u = #m1
n w1a1 · · ·#mr

n wrar#
mr+1
n wr+1 gilt w ≤2 u und y1 ≤ pr1(u). Analog konstruiert

man ein Wort v ∈ (Y 2)∗ mit u ≤2 v und y2 ≤1 pri(v). Aus den oben angegebenen Eigen-
schaften von ≤n (Transitivität, Übertragbarkeit auf Projektionen) folgt w ≤2 u ≤2 v und
y1 ≤1 pr1(u) ≤1 pr1(v). 2

Satz 3.6.12 Für eine reguläre Kantengrammatik Γ und einen gerichteten Baum B ist es
entscheidbar,

• ob in einem Graphen aus G(Γ) ein zu B isomorpher Teilgraph enthalten ist,

• ob in jedem Graphen aus G(Γ) ein zu B isomorpher Teilgraph enthalten ist.

Beweis. Zunächst geben wir eine äquivalente induktive Definition der gerichteten Bäume
an, die im wesentlichen dem Vorgehen bei der Tiefensuche entspricht.

(a) Ein Graph mit einem Knoten v und ohne Kanten ist ein gerichteter Baum und hat
die Wurzel v.

(b) Sind B1 = (V1, E1) und B2 = (V2, E2) gerichtete Bäume mit den Wurzeln r1 bzw. r2

und disjunkten Knotenmengen, so ist der Graph B mit V = V1 ∪ V2, E = E1 ∪E2 ∪
{(r1, r2)} ein gerichteter Baum mit der Wurzel r1.

(c) Alle gerichteten Bäume lassen sich gemäß (a) und (b) darstellen.

Kapitel 3: Kantengrammatiken 83

Γ = (N,X, T, P, S) sei eine reguläre Kantengrammatik, L′ sei die Sprache L′ = g(L(Γ))≤.

Für einen Baum B mit den Knoten v1, . . . , vn in DFS-Reihenfolge und eine Kantengram-
matik Γ konstruieren wir im folgenden eine Sprache L(B,Γ) ⊆ (Y n)∗ mit w ∈ L(B,Γ)
genau dann, wenn der Graph Gk(Γ), k = |hn,1(w)|, einen zu B isomorphen Untergraphen
mit den Knoten hn,1(w), . . . , hn,n(w) enthält, wobei vi durch den Isomorphismus auf hn,i(w)
abgebildet wird.

Induktiv definieren wir L(B,Γ) so:

• Besteht B aus einem Knoten, so ist L(B,Γ) = V (Γ)≤.

• Sind B1 = (V1, E1) und B2 = (V2, E2) Bäume mit den disjunkten Knotenmengen V1

und V2, card V1 = n1, card V2 = n2, n1 +n2 = n, mit den Wurzeln r1 bzw. r2 und ist
B = (V,E) der Baum mit V = V1 ∪ V2, E = E1 ∪ E2 ∪ {(r1, r2)} so ist

L(B,Γ) = {α ∈ (Y n)∗ : pr1,...,n1
(α) ∈ L(B1,Γ)} ∩

{α ∈ (Y n)∗ : prn1+1,...,n1+n2
(α) ∈ L(B2,Γ)} ∩

{α ∈ (Y n)∗ : pr1,n1+1(α) ∈ L′} ∩
{α ∈ (Y n)∗ : hn,i(α) 6= hn,j(α), 1 ≤ i < j ≤ n}.

Durch vollständige Induktion über die Knotenzahl n zeigen wir jetzt:

(1) L(B,Γ) ∈ L(Val,REG,Q+) und L(B,Γ) = L(B,Γ)≤ für alle gerichteten Bäume B.

(2) Enthält L(B,Γ) ein Wort w ∈ (Y n)∗, so enthält Gk(Γ), k = |hn,1(w)|, einen zu B
isomorphen Untergraphen mit den Knoten hn,1(w), . . . , hn,n(w) (in DFS-Reihenfolge).

(3) Enthält Gk(Γ) einen zu B isomorphen Untergraphen mit den Knoten y1, . . . , yn (in
DFS-Reihenfolge), so gibt es ein w ∈ L(B,Γ) mit hn,1(w) = y1, . . . , hn,n(w) = yn.

Für n = 1 sind alle drei Aussagen korrekt. Sei die Richtigkeit von (1),(2),(3) für alle
1 ≤ i < n bewiesen.

(1) L′ und {α ∈ (Y n)∗ : hn,i(α) 6= hn,j(α), 1 ≤ i < j ≤ n} sind in L(Val,REG,Q+).
Nach Induktionsvoraussetzung gilt L(B1,Γ), L(B2,Γ) ∈ L(Val,REG,Q+). Wegen
der Abgeschlossenheit von L(Val,REG,Q+) unter inversen Homomorphismen und
unter Durchschnitt ist auch L(B,Γ) in L(Val,REG,Q+). L(B,Γ) = L(B,Γ)≤ folgt
ebenfalls leicht per Induktion.

(2) Es sei w ∈ L(B,Γ) mit hn,i(w) = yi, 1 ≤ i ≤ n. Nach Induktionsvoraussetzung
und Definition von L(B,Γ) enthält Gk(Γ) mit k = |y1| die Kante (y1, yn1+1), woraus
|yn1+1| = k und per Induktion |yi| = k, für alle 1 ≤ i ≤ n, folgt. Außerdem sind die yi,
1 ≤ i ≤ n, paarweise verschieden, und Gk(Γ) besitzt einen zu B1 isomorphen Teilgra-
phen mit den Knoten y1, . . . , yn1 (in DFS-Reihenfolge) sowie einen zu B2 isomorphen

Kapitel 3: Kantengrammatiken 84

Teilgraphen mit den Knoten yn1+1, . . . , yn (in DFS-Reihenfolge). Nach Definition von
B gibt es nun in Gk(Γ) einen zu B isomorphen Teilgraphen mit den Knoten y1, . . . , yn
(in DFS-Reihenfolge).

(3) Gk(Γ) enthalte einen zu B isomorphen Teilgraphen mit den Knoten y1, . . . , yn (in
DFS-Reihenfolge). Nach Induktionsvoraussetzung enthält L(B1,Γ) ein Wort w1 ∈
(Y n1)∗ mit hn1,i(w1) = yi, 1 ≤ i ≤ n1, und L(B2,Γ) ein Wort w2 ∈ (Y n2)∗ mit
hn2,i(w2) = yn1+i, 1 ≤ i ≤ n2.

Weiterhin gibt es wegen (y1, yn1+1) ∈ E(Γ) in L′ ein Wort v mit h2,1(v) = y1 und
h2,2(v) = yn1+1. Nach Behauptung 3.6.11 existiert ein Wort v′ ∈ L′ mit pr1(w1) ≤1

pr1(v
′), pr1(w2) ≤1 pr2(v

′) und v ≤2 v
′. Nach Behauptung 3.6.10 gibt es Wörter w′1 ∈

L(B1,Γ), w′2 ∈ L(B2,Γ) mit w1 ≤n1 w
′
1 und pr1(w

′
1) = pr1(v

′) sowie w2 ≤n2 w
′
2 und

pr1(w
′
2) = pr2(v

′). Das Wort w ∈ (Y n)∗ mit pr1,...,n1
(w) = w′1 und prn1+1,...,n(w) = w′2

gehört damit zu L(B,Γ) und erfüllt die Bedingung hn,i(w) = yi für 1 ≤ i ≤ n.

Ist B ein gerichteter Baum mit n Knoten so ergibt sich die Menge

M(B) = {k : Gk(Γ) enthält einen zu B isomorphen Teilgraphen}

als die Längenmenge von hn,1(L(B,Γ)). Es gibt in [G](Γ) einen Graphen mit einem zu B
isomorphen Teilgraphen genau dann, wenn M(B) nicht leer ist; alle Graphen in [G](Γ)
besitzen einem zu B isomorphen Teilgraphen genau dann, wenn M(B) und die Längen-
menge Λ(V (Γ)) gleich sind. Wegen hn,1(L(B,Γ)), V (Γ) ∈ L(Val,REG,Q+) sind M(B) und
Λ(V (Γ)) effektiv semilinear. Die Leerheit von M(B) bzw. die Gleichheit von M(B) und
Λ(V (Γ)) sind damit entscheidbar. 2

Unentscheidbarkeitsresultate

Zunächst zeigen wir die Unentscheidbarkeit einiger Probleme für synchrone reguläre Kan-
tengrammatiken. Dies betrifft das Äquivalenzproblem, das Disjunktheitsproblem sowie die
Entscheidungsfragen bezüglich der Leerheit und Endlichkeit von [GP](Γ), wobei P eine der
in Satz 3.5.13 genannten Eigenschaften bzw. deren Negation ist. Der Beweis der Unent-
scheidbarkeit erfolgt jeweils durch Reduktion einer Variante des speziellen Halteproblems
für Turing-Maschinen. Zu einer gegebenen deterministischen Turing-MaschineM konstru-
ieren wir eine synchrone reguläre Kantengrammatik Γ. Jeder Graph Gn(Γ), n ≥ 3, besteht
aus zwei umgekehrt gerichteten Bäumen mit den Wurzeln An und Bn. Ein spezieller Blatt-
knoten Cn ist in der Komponente von An, fallsM das leere Wort in höchstens n Schritten
akzeptiert, und in der Komponente von Bn anderenfalls. Aus der Unentscheidbarkeit des
Halteproblems für das leere Wort folgt die Unentscheidbarkeit der Frage, ob Cn für alle
n ≥ 3 in der gleichen Komponente wie Bn liegt.

Definition 3.6.1 Eine deterministische Turingmaschine mit einseitigem Eingabeband ist
ein Tupel M = (Z,X, z0,$, $, δ,F). Dabei sind Z eine endliche, nichtleere Menge von

Kapitel 3: Kantengrammatiken 85

Zuständen, X ein Alphabet, X ∩ Z = ∅, z0 ∈ Z der Anfangszustand, $ /∈ X ∪ Z das linke
Begrenzungssymbol, $ /∈ X ∪ Z das Blanksymbol, F ⊆ Z die Menge der Endzustände und
δ : Z × (X ∪ {$, $}) → Z × (X ∪ {$, $}) × {R,N ,L} die Überführungsfunktion, wobei
folgende Einschränkungen gelten:
δ(z,$) ∈ Z × {$} × {R,N },
δ(z, a) ∈ Z × (X ∪ {$})× {R,N,L} für z ∈ Z, a ∈ X ∪ {$}.

Das heißt, das Begrenzungssymbol tritt genau am linken Rand auf und wird nicht nach
links überquert.

Eine Konfiguration vonM ist ein Wort aus $(X ∪{$})∗Z (X ∪{$})∗. Eine Konfiguration
heißt Endkonfiguration, falls sie in $(X ∪ {$})∗F (X ∪ {$})∗ ist. Die Menge aller Konfi-
gurationen bezeichnen wir mit C(M), die Menge aller Endkonfigurationen mit FC(M).

Die Überführungsfunktion δ̂ : C(M) → C(M) ist für z ∈ Z, a, b ∈ (X ∪ {$, $}), v ,w ∈
(X ∪ {$, $})∗ definiert als:

δ̂(vaz) = va′$z, falls δ(z, a) = (z′, a′, R)

δ̂(vazbw) = va′bzw, falls δ(z, a) = (z′, a′, R)

δ̂(vazw) =

{
vz′a′w, falls δ(z, a) = (z′, a′, L)
va′z′w, falls δ(z, a) = (z′, a′, N)

Die von M akzeptierte Sprache L(M) ist definiert als:

L(M) = {w ∈ X∗ : ∃n(n ∈ N ∧ δ̂n($z0w) ∈ FC (M))}.

Zwei Konfigurationen c1, c2 ∈ C(M) heißen äquivalent, falls c1$
∗ = c2$

∗ gilt. Sind c1 und
c2 äquivalent, so sind auch δ̂(c1) und δ̂(c2) äquivalent.

Die Interpretation der Turingmaschine erfolgt wie üblich: Entsprechend der Übergangsta-
belle wird das aktuelle Symbol (links vom Zustand) umgewandelt und der Lese-Schreib-
Kopf verschoben.

Wie man leicht sieht, gilt |c| ≤ |δ̂(c)| ≤ |c| + 1 für jede Konfiguration c. Im folgenden
wird o.B.d.A. zusätzlich δ(z0,$) = (z1 ,$,N), δ(z1,$) = (z2 ,$,N) verlangt. Dadurch ist
garantiert, daß |δ̂n($z0)| ≤ n für alle n ≥ 2 gilt.

Wegen der Äquivalenz von deterministischen Turingmaschinen mit einseitigem Band und
allgemeinen Turingmaschinen und nach dem Satz von Rice [18, Satz 8.6] gilt:

Satz 3.6.13 Für eine deterministische Turingmaschine mit einseitigem Band M ist es
unentscheidbar, ob λ ∈ L(M) gilt.

Sei nunM = (Z,X, z0,$, $, δ,F) eine gegebene deterministische Turingmaschine mit ein-
seitigem Band. Wir konstruieren die von M abhängige binäre Relation

UM = {(c, δ(c)) : c ∈ C(M) ∧ |δ(c)| = |c|} ∪ {(c, c) : c ∈ C(M) ∧ |δ(c)| = |c|+ 1} .

Kapitel 3: Kantengrammatiken 86

Offensichtlich ist UM eine Abbildung von C(M) auf sich. Es gilt Un
M(c) = δ̂m(c) mit

m = max
{
` : 0 ≤ ` ≤ n ∧ |δ̂`(c)| = |c|

}
. Insbesondere gilt für die Konfigurationen cn =

$z0 $n−2 , n ≥ 2: Un
M(cn) = δ̂n(cn), und damit ist Un

M(cn) äquivalent zu δ̂n($z0). Außer-
dem ist UM eine synchrone reguläre Relation, da sich c und UM(c) nur an maximal drei
aufeinanderfolgenden Stellen unterscheiden.

Die Relation

E(M) = (UM q#) ∪ {(c#,#|c|+1) : c ∈ FC(M)} ∪ {(c#, $|c|+1) : c ∈ C(M) \ FC(M)}

ist synchron und regulär; es existiert eine Kantengrammatik ΓM mit E(ΓM) = E(M).
Für n ≥ 3 besteht der Graph Gn(ΓM) aus zwei umgekehrt gerichteten Bäumen mit den
Wurzeln #n und $n. Der Knoten Cn = #$z0 $n−3 ist ein Blatt und genau dann in der
Komponente von An = #n, wenn δ̂n−1($z0) ∈ FC (M) gilt.

Wegen der Unentscheidbarkeit der Frage, ob λ vonM akzeptiert wird, ist es unentscheid-
bar, ob es ein n gibt, so daß Cn und An in einer Komponente liegen. Setzt man außerdem
voraus, daß δ(q, a) = (q, a,N) für q ∈ F , a ∈ X ∪ {$, $} gilt, so folgt die Unentscheidbar-
keit der Frage, ob Cn und An für alle bis auf endlich viele n in einer Komponente liegen.
Die Anwendung der Konstruktionen aus Satz 3.5.13 liefert jetzt:

Satz 3.6.14 Es sei Γ eine synchrone reguläre Kantengrammatik und P eine der in Satz 3.5.13
erwähnten graphentheoretischen Eigenschaften. Die folgenden Fragen sind unentscheidbar:

• Hat ein Graph aus [G](Γ) die Eigenschaft P?

• Haben alle Graphen aus [G](Γ) die Eigenschaft P?

• Haben unendlich viele Graphen aus [G](Γ) die Eigenschaft P?

• Haben alle bis auf endlich viele Graphen aus [G](Γ) die Eigenschaft P?

Als weitere Folgerung erhält man

Satz 3.6.15 Für eine synchrone reguläre Kantengrammatik Γ und eine Konstante k ist
es unentscheidbar, ob für alle G ∈ Gu(Γ) die Komponentenzahl beschränkt bzw. durch k
beschränkt ist.

Beweis. Es sei Γ = (N,X,X2, P, S) eine synchrone reguläre Kantengrammatik. Ferner
sei für jedes n ≥ 1 ein Knoten An aus Vn(Γ) derart definiert, daß A = {An : n ≥ 1} eine
reguläre Sprache ist, und 1 /∈ X sei ein Symbol. Die Relationen E1 und E2 mit

E1 = {(v11w1, v21w2) : (v1w1, v2w2) ∈ E(Γ), |v1| = |v2|},
E2 = IdA q 1 = {(v11aw1, v1a1w1), a ∈ X, v1aw1 ∈ A}

Kapitel 3: Kantengrammatiken 87

sind synchron und regulär. Es gibt eine Kantengrammatik Θ mit E(Θ) = E1 ∪ E2. Der
Graph Gn+1(Θ) besteht nach der Konstruktion von E1 aus (n+ 1) disjunkten Kopien von
Gn(Γ), wobei dem Knoten v aus Gn(Γ) in der i-ten Kopie (1 ≤ i ≤ n + 1) der Knoten
v11v2 mit v1v2 = v, |v1| = i − 1 zugewiesen ist. Nach der Definition von E2 gibt es in
Gn+1(Γ) für 1 ≤ i ≤ n eine Kante von der i-ten Kopie von An zur (i + 1)-ten Kopie.
Ist Gn(Γ) schwach zusammenhängend, so ist auch Gn+1(Θ) schwach zusammenhängend.
Anderenfalls besteht Gu

n+1(Θ) aus mindestens (n+2) Komponenten. Die Komponentenzahl
der Graphen von Gu(Θ) ist genau dann beschränkt, wenn alle bis auf endlich viele Graphen
von Gu(Γ) zusammenhängend sind. Aus der Unentscheidbarkeit des letzteren Problems
folgt die Behauptung. 2

Um die Unentscheidbarkeit des Äquivalenzproblems und des Disjunktheitsproblems zu
zeigen, wird die obige Konstruktion verfeinert. Über die Graphen von UM q# weiß man
zunächst nur, daß ihre Komponenten umgekehrt gerichtete Bäume sind. Die folgenden
Umformungen sorgen dafür, daß die Komponenten der Graphen gerichtete Wege sind.
Dies wird erreicht, indem man einem Wort über dem Knotenalphabet nicht nur eine Kon-
figuration, sondern zusätzlich eine Folge von lokalen Konfigurationen zuordnet. Die lokale
Konfiguration loc(c) von c = vazw ∈ C(M), a ∈ X ∪ {$, $}, z ∈ Z , ist definiert als

loc(c) =

{
(z, a, 0), falls w 6= λ,
(z, a, 1), falls w = λ.

Es sei I die Menge der lokalen Konfigurationen und Ct(M) = {c ∈ C(M) : loc(c) = t}
für t ∈ I. Aus c 6= c′ und loc(c) = loc(c′) folgt UM(c) 6= UM(c′). Damit gibt es für jede
Konfiguration c und jedes t ∈ I höchstens eine Konfiguration ct ∈ Ct(M) mit δ(ct) = c.

Im folgenden sei Y = X ∪ Z ∪ {$, $,#} ∪ I . Ausgehend von Ct(M), C(M) und UM
definieren wir Ĉt(M), Ĉ(M) ⊆ (Y 2)∗ und ÛM ⊆ (Y 4)∗:

Ĉt(M) = {w ∈ (Y 2)∗ : pr1(w) = v1#v2, v1v2 ∈ Ct(M), pr2(w) ∈ st$∗, s ∈ I∗, |s| = |v1|},
Ĉ(M) =

⋃
t∈I
Ĉt(M),

ÛM = {w ∈ (Y 4)∗ : pr1,2(w), pr3,4(w) ∈ Ĉ(M), pr1,3(w) ∈ UM q#,

pr2,4(w) ∈ {(t, t) : t ∈ I}∗($× I)($, $)∗}.

Für w ∈ Ĉ(M) mit pr1(w) = v1#v2, pr2(w) = s$|w|−|s|, s ∈ I+ setzen wir:

• conf(w) := v1v2 (zu w gehörige Konfiguration),

• seq(w) := s (Folge von lokalen Konfigurationen),

• num(w) := |v1|+ 1 (Position von # in pr1(w)).

Man beachte, daß das letzte Glied der Folge seq(w) die lokale Konfiguration von conf(w) ist.
Als binäre Relation über (Y 2)∗ betrachtet, ist ÛM eine injektive Abbildung von Ĉ1(M) :=

Kapitel 3: Kantengrammatiken 88

{pr1,2(w) : w ∈ ÛM} nach Ĉ2(M) := {pr3,4(w) : w ∈ ÛM}. Aus (v, w) ∈ ÛM folgt nämlich
conf(w) = UM(conf(v)) und seq(w) = seq(v)loc(conf(w)), womit w durch v eindeutig
bestimmt ist. Außerdem gilt num(w) = num(v) + 1. Umgekehrt ist seq(v) durch seq(w)
gegeben, und da das letzte Zeichen von seq(v) die lokale Konfiguration von conf(v) festlegt,
ist conf(v) durch conf(w) bestimmt.

Offensichtlich sind die Komponenten der Graphen Gn(ÛM) Wege mit einer Länge von
höchstens (n − 1). Die folgenden Schritte erweitern ÛM derart, daß der n-te Graph aus
Wegen der Länge (n− 1) besteht.

In Anlehnung an Ĉ definieren wir

Ĉ ′t(M) = {w ∈ (Y 2)∗ : pr1(w) = v1#v2, v1v2 ∈ Ct(M), pr2(w) ∈ st$∗, s ∈ I∗, |s| > |v1|},
Ĉ ′(M) =

⋃
t∈I
Ĉ ′t(M).

Als Sprachen sind Ĉ(M), ÛM, Ĉ1(M), Ĉ1(M) und Ĉ ′(M) regulär. Die Abbildungen conf,
seq und num setzen wir auf Ĉ ′ fort. Es seien τ0, τ1 ⊆ (Y 2)∗ × (Y 2)∗ die Relationen

τ0 = {(v, w) : v ∈ Ĉ(M), w ∈ Ĉ ′(M), conf(v) = conf(w), seq(v) = seq(w)},
τ1 = {(v, w) : v ∈ Ĉ ′(M), w ∈ Ĉ ′(M) ∪ Ĉ(M),

conf(v) = conf(w), seq(v) = seq(w), num(v) + 1 = num(w)}.
Beide Relationen sind synchron und regulär, τ1 ist außerdem eine injektive Funktion. Wei-
terhin seien Ĉ0(M) = Ĉ \ Ĉ2(M), Û ′M = {(v, w) : v ∈ τ0(Ĉ0(M), w = τ1(v)} und
ÊM = ÛM ∪ Û ′M. Ĉ0(M) ist eine reguläre Sprache, Û ′M und ÊM sind synchrone reguläre
Relationen.

Durch die Kanten aus Û ′M wird für jeden Knoten w aus Ĉ, der kein Endknoten einer
Kante aus ÛM ist, ein Weg der Länge num(w)− 1 mit dem Endknoten w eingefügt. Der
n-te Graph von G(ÊM) besteht somit aus paarweise disjunkten Wegen der Länge (n− 1).
Die Endknoten der Wege sind die Knoten w ∈ Ĉ(M) mit num(w) = |w|. Startknoten sind
die Knoten v ∈ Ĉ(M) ∪ τ0(Ĉ0(M)) mit num(v) = 1. Der Weg mit dem Startknoten ĉn,
conf(ĉn) = $z0 $n−3 , seq(ĉn) = (z0,$, 0), num(ĉn) = 1, endet genau dann in einem Knoten
w mit conf(w) ∈ FC(M), wenn das leere Wort durch M in genau (n − 1) Schritten
akzeptiert wird.

Ist andererseits E′M = {(v, w) ∈ τ1 : |seq(v)| = |v|}, so besteht der n-te Graph von
G(E′M) ebenfalls aus paarweise disjunkten Wegen der Länge (n − 1) mit den Endknoten
w ∈ Ĉ(M), num(w) = |w|. Startknoten sind die Knoten v ∈ Ĉ ′(M) mit num(v) = 1 und
|seq(v)| = |v|. Der Weg mit dem Startknoten c′n, conf(c′n) = $z0$n−3 , seq(c′n) = (z0,$, 0)n ,
num(c′n) = 1, endet nie in einem Knoten w mit conf(w) ∈ FC(M), während der Weg mit
dem Startknoten c′′n, conf(c′′n) = qn−3 , seq(c′′n) = (q,$, 0)n , num(c′′n) = 1, immer in
einem Knoten w mit conf(w) ∈ FC(M) endet.

Schließlich konstruieren wir die synchronen regulären Relationen Ê1M, E1′M, Ê2M, E2′M ⊆
(Y 2)∗ × (Y 2)∗ mit

Ê1M = ÊM∪ {(v, ĉ|v|) : v ∈ Ĉ(M), num(v) = |v|, conf(v) ∈ FC(M)},

Kapitel 3: Kantengrammatiken 89

E1′M = E′M ∪ {(v, c′|v|) : v ∈ Ĉ(M), num(v) = |v|, conf(v) ∈ FC(M)},
Ê2M = ÊM∪ {(v, ĉ|v|) : v ∈ Ĉ(M), num(v) = |v|, conf(v) ∈ FC(M)},
E2′M = E′M ∪ {(v, c′′|v|) : v ∈ Ĉ(M), num(v) = |v|, conf(v) ∈ FC(M)}.

Die Graphen Gn(Ê1M) und Gn(E1′M) sind genau dann isomorph, wennM das leere Wort
nicht in (n− 1) Schritten akzeptiert, Gn(Ê2M) und Gn(E2′M) sind genau dann isomorph,
wenn M das leere Wort in (n − 1) Schritten akzeptiert. Damit ist das Problem, ob M
das leere Wort akzeptiert, auf das Äquivalenzproblem für Ê1M und E1′M sowie auf das
Disjunktheitsproblem für Ê2M und E2′M reduziert. Da alle Schritte bei der Definition von
Ê1M, E1′M, Ê2M und E2′M konstruktiv waren, folgt:

Satz 3.6.16 Das Äquivalenzproblem und das Disjunktheitsproblem sind unentscheidbar für
synchrone reguläre Kantengrammatiken.

Zum Schluß des Kapitels zeigen wir für einige Probleme, die bezüglich synchronen regulären
Kantengrammatiken entscheidbar sind, die Unentscheidbarkeit für umfassendere Familien
von Kantengrammatiken. Dazu werden einige Unentscheidbarkeitsresultate für one-turn
Zählerautomaten benötigt.

Lemma 3.6.17 Gegeben sei ein one-turn Zählerautomat A mit Eingabealphabet X. Die
folgenden Fragen sind unentscheidbar:

1. Gilt L(A) = X∗ ?

2. Gilt L(A) ∩X [n] = X [n] für ein n ≥ 0?

3. Ist L(A) kürzbar? Ist L(A) k-kürzbar für ein gegebenes k?

Beweis.

1. Siehe z.B. den Beweis von Ibarra in [20].

2. Wir modifizieren den Beweis für (1) aus [20]. Es sei M = (Z,X, z0,$, $, δ,F) eine
deterministische Turingmaschine mit einseitigem Eingabeband. Der Lauf vonM auf
dem leeren Eingabeband wird durch das unendliche Wort

ξ = c0δ(c0)δ
2(c0) · · · mit c0 = $z0

beschrieben. Es sei L die Menge aller Wörter, die kein Präfix von ξ sind oder ein
Symbol aus F enthalten. Falls M das leere Wort akzeptiert, so kommt in ξ ein
Zeichen aus F vor, und das Komplement von L ist endlich. Anderenfalls ist für alle
n ∈ N das Präfix der Länge n von ξ nicht in L enthalten.
Damit gilt: L ∩X [n] = X [n] für ein n ∈ N ⇐⇒ λ ∈ L(M).

Es bleibt zu zeigen, daß L von einem blinden one-turn Zählerautomaten akzeptiert
wird. Dazu stellen wir L wie folgt dar:

Kapitel 3: Kantengrammatiken 90

(1) L enthält alle Wörter, die nicht mit $ beginnen.

(2) L enthält genau dann ein Wort w = $w1 $w2 · · ·$wn , wi ∈ (X ∪ Z ∪ {$})∗,
wenn

(a) w1 6= z0 oder

(b) $wi /∈ C (M) für ein 1 ≤ i ≤ n− 1 oder

(c) $wi ∈ FC (M) für ein 1 ≤ i ≤ n oder

(d) ($wi ,$wi+1) /∈ δ für ein 1 ≤ i ≤ n− 2 oder

(e) wn ist kein Präfix von δ(wn−1).

Die Bedingungen (1) und (2a,2b,2c) kann man leicht durch einen endlichen Automa-
ten überprüfen. Um die Verletzung der Nachfolgebedingung, also die Erfüllung von
(2d,2e), zu überprüfen, benötigt man einen Automaten mit one-turn Zähler, siehe
[20].

3. Es sei A ein one-turn Zählerautomat mit Eingabealphabet Y mit der akzeptierten
Sprache L = L(A), a /∈ Y sei ein Symbol und X = Y ∪ {a} sei ein Alphabet. Die
Sprache L′ = a∗L ∪ a∗Y ∗a+ wird durch einen (effektiv konstruierbaren) one-turn
Zählerautomaten akzeptiert. Gilt L = Y ∗, so ist L′ = a∗Y ∗a∗ und damit im strengen
Sinne 1-kürzbar. Gilt hingegen w /∈ L für ein w ∈ Y ∗, so sind alle Wörter amwan

mit m ≥ 0 und n ≥ 1 in L′, während amw für alle m ≥ 0 nicht in L′ enthalten
ist, d.h., L′ ist nicht kürzbar. Damit ist das Universalitätsproblem für A auf das
Kürzbarkeitsproblem für L′ zurückgeführt. 2

Satz 3.6.18 Es ist unentscheidbar, ob eine reguläre bzw. eine synchrone lineare Kanten-
grammatik eine kürzbare Graphenfolge erzeugt.

Beweis. Zu einem one-turn Zählerautomat A kann man eine reguläre bzw. synchrone
lineare Kantengrammatik Γ mit E(Γ) = {(w, c|w|) : w ∈ L(A)} konstruieren. Die Behaup-
tung folgt damit unmittelbar aus der letzten Aussage des vorigen Lemmas. 2

Satz 3.6.19 Es ist unentscheidbar, ob für eine gegebene reguläre bzw. synchron lineare
Kantengrammatik Γ

• ein Graph aus G(Γ) vollständig ist,

• alle Graphen aus G(Γ) vollständig sind.

Beweis. Es seien X ein Alphabet a /∈ X ein Symbol und A ein one-turn Zählerauto-
mat mit dem Eingabealphabet X. Man kann eine synchrone lineare bzw. eine reguläre
Kantengrammatik Γ mit dem Knotenalphabet X ∪ {a} konstruieren, so daß

E(Γ) = {(a|w|, w), (w, a|w|) : w ∈ L(A)} ∪ (X∗ ×X∗) ∪ (a∗ × a∗) \ {(λ, λ)}

Kapitel 3: Kantengrammatiken 91

gilt. Der Graph Gn(Γ) hat die Knotenmenge X [n] ∪ {an}. Er ist genau dann vollständig,
wenn L(A)∩X [n] = X [n] erfüllt ist. Damit existiert ein vollständiger Graph in G(Γ) genau
dann, wenn L(A) ∩ X [n] = X [n] für ein n gilt; alle Graphen aus G(Γ) sind genau dann
vollständig, wenn L(A) = X+ gilt. 2

Zum Schluß soll gezeigt werden, daß die Frage nach der Beschränktheit der Knotengra-
de für synchrone lineare Kantengrammatiken unentscheidbar ist. Dies steht im Kontrast
zu den Sätzen 3.6.7 und 3.6.12. Es besteht erneut ein enger Zusammenhang zwischen
Knotengrad und dem Grad der Mehrdeutigkeit für lineare Grammatiken. Für eine kon-
textfreie Grammatik G = (N, T, P, S) und ein Wort w ∈ T ∗ ist der Grad der Mehrdeu-
tigkeit dG(w) von w bezüglich G definiert als die Anzahl der zu w gehörenden Ablei-
tungsbäume, was im Falle linearer Grammatiken mit der Anzahl der verschiedenen Ablei-
tungen von w in G identisch ist. Der Grad der Mehrdeutigkeit dG von G ist definiert als
dG = sup{dG(w) : w ∈ T ∗}. Außerdem sei dG(A,w) für a ∈ N der Grad der Mehrdeutig-
keit von w bezüglich GA = (N, T, P,A). Wir beschränken uns auf lineare Grammatiken
G = (N, T, P, S) in der folgenden Normalform:

• N = N1 ∪N2, N1 ∩N2 = ∅, S ∈ N1

• Alle Regeln von G haben eine der Formen A1 → aB, A2 → Ba, B → a, jeweils mit
A1 ∈ N1, A2 ∈ N2, a ∈ T,B ∈ N .

Lemma 3.6.20 Es sei G eine lineare Grammatik in Normalform. Man kann eine synchro-
ne lineare Kantengrammatik Γ konstruieren, so daß V 1(Γ) = L(G) und dout(v|Γ) = dG(v)
für v ∈ L(G) gilt.

Beweis. G = (N, T, P, S) habe m paarweise verschiedene Regeln p1, . . . , pm. Sei H =
(N, T × Y,Q, S) die lineare Grammatik mit Y = {1, . . . ,m} und Q = {A → α(j) : pj =
A→ α, 1 ≤ j ≤ m}, wobei α(j) aus α ∈ (N ∪ T)∗ entsteht, indem man a ∈ T durch (a, j)
und A ∈ N durch A ersetzt. Wir zeigen durch vollständige Induktion über die Länge von
w, daß

dG(A,w) = card {α ∈ (T × Y)∗ : A⇒∗H α, pr1(α) = w}
für alle w ∈ X∗ und A ∈ N gilt. Für a ∈ T ergibt sich:

dG(A, a) =

{
1, falls A→ a ∈ P
0, sonst

= card {α ∈ (T × Y) : A⇒H α, pr1(α) = a}.

Für w = av, a ∈ T, v ∈ T+ und A ∈ N gelten folgende Rekursionen:

dG(A,w) =
∑

A→aB∈P
dG(B, v)

= card
∑

A→aB∈P
card {α ∈ (T × Y)∗ : B ⇒∗H α, pr1(α) = v}

= card {α ∈ (T × Y)∗ : A⇒∗H α, pr1(α) = w}.

Kapitel 3: Kantengrammatiken 92

Analog zeigt man das entsprechende Resultat für A ∈ N2. Interpretiert man jetzt H als
synchrone lineare Kantengrammatik, so folgt sofort die Behauptung. 2

Lemma 3.6.21 Es sei G eine lineare Grammatik in Normalform. Es ist unentscheidbar,
ob dG <∞ sowie ob dG ≤ k für ein gegebenes k ∈ N gilt.

Beweis. Zu jeder linearen Grammatik H = (N, T, P, S) mit Regeln der Form A→ uBv,
A → w mit A,B ∈ N , uv, w ∈ T+ kann man eine äquivalente lineare Grammatik
G in Normalform konstruieren, so daß dG(w) = dH(w) für alle w ∈ T ∗ gilt. (Für ei-
ne Regel A → a1 . . . amBb1 . . . bn, m,n ≥ 2 führt man z.B. die neuen Nichtterminale
A1, . . . , Am−1, B1, . . . , Bn sowie die Regeln A → a1A1, A1 → a2A2, . . . , Am−1 → amBn,
Bn → Bn−1bn, . . . , B1 → Bb1 ein.) In [18, Satz 8.9] wird durch Reduktion des Postschen
Korrespondenzproblems gezeigt, daß das Problem der Mehrdeutigkeit einer linearen Gram-
matik H unentscheidbar ist. Dieser Beweis läßt sich leicht erweitern, um zu zeigen, daß die
Frage nach der Beschränktheit von dH unentscheidbar ist, selbst wenn bekannt ist, daß dH
entweder 1 oder ∞ ist. 2

Aus den letzten beiden Lemmata folgt:

Satz 3.6.22 Es sei Γ eine synchrone lineare Kantengrammatik. Es ist unentscheidbar,
ob der Ausgangsgrad der Knoten in G(Γ) beschränkt ist bzw. durch eine gegebene Zahl k
beschränkt ist.

Abschließende Bemerkungen

Die Erzeugung von Graphenfamilien mittels Kantengrammatiken wurde ausführlich un-
tersucht. Die Attraktivität dieses Modells der Erzeugung von Graphen liegt in der engen
Verbindung zur klassischen Theorie der formalen Sprachen und in der Möglichkeit, wichtige
Graphenfamilien einfach zu beschreiben.

Besonders viele positive Resultate konnten unter Verwendung der Theorie der endlichen
Automaten für die Teilfamilie der synchronen regulären Kantengrammatiken nachgewiesen
werden. Aussagen zur Struktur der erzeugten Graphen wie auch die Entscheidbarkeit der
Beschränktheit des maximalen Knotengrades ergaben sich direkt aus bekannten Resultaten
über rationale Potenzreihen. Einige mengentheoretische und graphentheoretische Operatio-
nen, wie die Vereinigung, die Bildung des Komplementärgraphen oder des Line-Graphen,
konnten auf natürliche Weise in Operationen mit Sprachen umgewandelt werden.

Positive Abschluß- und Entscheidbarkeitsresultate wurden für jene graphentheoretischen
Eigenschaften, die mit den Mitteln der Logik erster Stufe definierbar sind, gezeigt. Für an-
dere Eigenschaften, wie z.B. Zusammenhang, wurden negative Ergebnisse bewiesen. Dies
ist ein Nachteil gegenüber

”
konfluenten“ Knotenersetzungsgrammatiken sowie Hyperkan-

tenersetzungsgrammatiken, wo positive Resultate für jene Eigenschaften bekannt sind, die
mit Hilfe der monadischen Logik zweiter Stufe definiert werden können [13, 10]. Offen bleibt
die Frage, ob die negativen Ergebnisse auf Kantengrammatiken mit kürzbarer Graphen-
folge (d.h. auf deterministische parallele NLC-Grammatiken) übertragen werden können.
Die Ideen der Unentscheidbarkeitsbeweise für sequentielle NLC-Grammatiken sind hier
anscheinend nicht zu verwenden.

Als wichtigste neue Ergebnisse für allgemeine kontextfreie Kantengrammatiken zeigten wir
die Charakterisierung der erzeugten Knoten- und Kantensprachen durch Valenzgramma-
tiken und die Entscheidbarkeit des Elementproblems. Das zweite Resultat bildet einen
interessanten Kontrast zur Unentscheidbarkeit des Teilgraphproblems. Es ergibt sich aus
den positiven Abschluß- und Entscheidbarkeitseigenschaften für schlanke Valenzsprachen,
die ebenfalls in dieser Arbeit gefunden wurden. Einige Varianten und Erweiterungen des
Problems der Schlankheit für Grammatiken mit gesteuerter Ersetzung werden in [37] be-
trachtet. Als wichtiges offenes Problem verbleibt die Charakterisierung schlanker Valenz-
sprachen etwa in Analogie zu den paired loops für kontextfreie schlanke Sprachen.

Außerdem zeigten wir, daß man für Valenzgrammatiken über (Z k,+,~0) Normalformen
konstruieren kann. Die Frage der Existenz von Normalformen für Valenzgrammatiken mit

93

Abschließende Bemerkungen 94

nichtkommutativen Steuermonoiden bleibt offen. Von Bedeutung ist dieses Problem vor
allem für Valenzgrammatiken über endlichen Monoiden, da diese äquivalent zu Matrix-
grammatiken sind.

Insgesamt ist das Konzept der Steuerung durch Valenzen sehr attraktiv. Es ist einfach
und durch die Verwendung verschiedener Monoide sehr flexibel. Außerdem stellen sich ei-
nige Operationen wie die Permutation und der Durchschnitt mit semilinearen Mengen als
einfache Valenztransduktionen heraus. Es gibt viele Verallgemeinerungen und Varianten,
wie z.B. die Kopplung von Valenzen mit anderen Steuerungsmechanismen oder paralle-
le Systeme mit Valenzen. Einige Untersuchungen in diesen Richtungen wurden bereits in
Zusammenarbeit mit Herrn Dr. Fernau unternommen, für eine Zusammenfassung der Er-
gebnisse siehe [15].

Literaturverzeichnis

[1] Francine Berman. Edge grammars and parallel computation. In Proceedings of the Al-
lerton Conference on Communication, Control, and Computing, pages 214–223, 1983.

[2] Francine Berman and Gregory Shannon. Edge grammars: Formal languages and deci-
dability issues. In Proceedings of the Allerton Conference on Communication, Control,
and Computing, pages 921–930, 1983.

[3] Francine Berman and Gregory Shannon. Representing graph families with edge gram-
mars. Information Sciences, 70:241–269, 1993.

[4] Francine Berman and Lawrence Snyder. On mapping parallel algorithms into parallel
architectures. Journal of Parallel and Distributed Computing, 4:439–458, 1987.

[5] Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages.
Springer-Verlag, Berlin–Heidelberg, 1988.

[6] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 5,
pages 193–242. Elsevier, 1990.

[7] J. Dassow, G. Pǎun, and A. Salomaa. On thinness and slenderness of L languages.
Bulletin of the European Association for Theoretical Computer Science, 49:152–158,
February 1993. Technical Contributions.

[8] Jürgen Dassow. Decision problems for edge grammars. In Mathematical Foundations
of Computer Science 1994 (LNCS 841), pages 286–295, 1994.

[9] Jürgen Dassow and Gheorghe Păun. Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, 1989.

[10] Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. Hyperedge replacement
graph grammars. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars and
Computing by Graph Transformation, volume 1, pages 95–162. World Scientific, Sin-
gapore, 1997.

[11] Heinz-Dieter Ebbinghaus, Jörg Flum und Wolfgang Thomas. Einführung in die ma-
thematische Logik. Spektrum Akademischer Verlag, Heidelberg–Berlin–Oxford, 1996.

95

Literaturverzeichnis 96

[12] Grzegorz Rozenberg (editor). Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1. World Scientific, Singapore, 1997.

[13] Joost Engelfriet. Context-free graph grammars. In Grzegorz Rozenberg and Arto
Salomaa, editors, Handbook of Formal Languages, volume 3, pages 125–213. Springer-
Verlag, Berlin–Heidelberg–New York, 1997.

[14] Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph grammars. In
Grzegorz Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1, pages 1–94. World Scientific, Singapore, 1997.

[15] Henning Fernau and Ralf Stiebe. Regulation by valences. In Igor Pŕıvara and Peter
Ružička, editors, Mathematical Foundations of Computer Science 1997, pages 239–
248, 1997.

[16] Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science, 7:311–324, 1978.

[17] Annegret Habel. Hyperedge Replacement Grammars and Languages. Number 643 in
LNCS. Springer-Verlag, Berlin–Heidelberg–New York, 1992.

[18] John Hopcroft and Jeffrey Ullman. Einführung in die Automatentheorie, formale
Sprachen und Komplexitätstheorie. Addison Wesley, Bonn–Reading(Mass.), 1979.

[19] O. H. Ibarra, S. K. Sahni, and C. E. Kim. Finite automata with multiplication.
Theoretical Computer Science, 2:271–296, 1976.

[20] Oscar H. Ibarra. Restricted one-counter machines with undecidable universe problems.
Mathematical Systems Theory, 13:181–186, 1979.

[21] Lucian Ilie. On a conjecture about slender context-free languages. Theoretical Com-
puter Science, 132:427–434, 1994.

[22] Lucian Ilie. On lengths of words in context-free languages. Technical Report 137,
TUCS - Turku Centre for Computer Science, 1997.

[23] Dirk Janssens and Grzegorz Rozenberg. On the stucture of node label controlled graph
languages. Information Sciences, 20:191–216, 1980.

[24] Dirk Janssens, Grzegorz Rozenberg, and R. Verraedt. On sequential and parallel node-
rewriting graph grammars I. Computer Graphics and Image Processing, 18:279–304,
1982.

[25] Dirk Janssens, Grzegorz Rozenberg, and R. Verraedt. On sequential and parallel node-
rewriting graph grammars II. Computer Vision, Graphics, and Image Processing,
23:295–312, 1983.

Literaturverzeichnis 97

[26] Victor Mitrana. Valence grammars on a free generated group. EATCS Bulletin,
47:174–179, 1992.

[27] Victor Mitrana and Ralf Stiebe. The accepting power of finite automata over groups.
In G. Păun and A. Salomaa, editors, New Trends in Formal Languages, pages 39–48,
1997.

[28] Gheorghe Păun. A new generative device: Valence grammars. Rev. Roum. Math.
Pures Applic., 1980.

[29] D. Raz. Length considerations in context-free languages. Theoretical Computer
Science, 183(1):21–32, August 1997.

[30] V. Red’ko and L. Lisovik. Regular events in semigroups (in Russian). Problems of
Cybernetics, 37:155–184, 1980.

[31] Hans-Joachim Röder. Parallele BNLC-Graphgrammatiken. Dissertation, Universität
Passau, 1992.

[32] Joseph J. Rotman. An Introduction to the Theory of Groups. Springer-Verlag, New
York, 1995.

[33] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages.
Springer, Berlin, 1997.

[34] Arto Salomaa. Formale Sprachen. Springer, Berlin, 1973.

[35] Arto Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series.
Springer-Verlag, New York – Heidelberg – Berlin, 1978.

[36] Giorgio Satta. The membership problem for unordered vector grammars. In J. Dassow,
G. Rozenberg, and A. Salomaa, editors, Developments in Language Theory II, pages
267–275, 1996.

[37] Ralf Stiebe. Slender matrix languages. In Wolfgang Thomas, editor, Developments in
Language Theory (Preproceedings), Aachener Informatik-Berichte 99-5, 1999.

[38] Sorina Vicolov. Hierarchies of valence languages. In J. Dassow and A. Kelemenova,
editors, Developments in Theoretical Computer Science, pages 191–196, Basel, 1994.
Gordon and Breach.

[39] Sorina Vicolov-Dumitrescu. Grammars, grammar systems, and gsm mappings with
valences. In Gheorghe Păun, editor, Mathematical Aspects of Natural and Formal
Languages, pages 473–491, Singapore, 1994. World Scientific.

[40] Lutz Volkmann. Fundamente der Graphentheorie. Springer-Verlag, Wien–New York,
1996.

Erklärung

Hiermit erkläre ich, daß ich die Arbeit selbständig und ohne fremde Hilfe verfaßt, andere
als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten
Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Halle (Saale), den 13. Januar 2000

98

Lebenslauf

Name: Ralf Stiebe
Geburtsdatum: 8. Februar 1968
Geburtsort: Rostock
Staatsbürgerschaft: deutsch
Familienstand: ledig, 1 Kind

Ausbildung:

September 1988 – Mai 1993: Mathematikstudium
an der TU

”
Otto von Guericke“ Magdeburg

Mai 1993: Diplom-Mathematiker
Juni 1993 – März 1996 : Promotionsstudium der Informatik

an der Otto-von-Guericke-Universität Magdeburg

Tätigkeiten:

seit April 1996: wissenschaftlicher Mitarbeiter
am Fachbereich Mathematik und Informatik
der Martin-Luther-Universität Halle-Wittenberg

Halle (Saale), den 13. Januar 2000

	Inhaltsverzeichnis
	Einleitung
	1 Grundlagen
	1.1 Grundbegriffe und Notationen
	1.2 Graphen
	1.3 Sprachen und Grammatiken
	1.4 Formale Potenzreihen

	2 Valenzgrammatiken
	2.1 Definitionen und bekannte Resultate
	2.2 Beispiele
	2.3 Ableitungsbäume für Valenzgrammatiken
	2.4 Normalformen für Valenzgrammatiken
	2.5 Valenzgrammatiken über kommutativen Monoiden
	2.6 Iterationslemmata für Valenzgrammatiken
	2.7 Schlanke Valenzsprachen

	3 Kantengrammatiken
	3.1 Definitionen und Beispiele
	3.2 Kantengrammatiken und formale Sprachen
	3.3 Erzeugungskraft von Kantengrammatiken
	3.4 Kantengrammatiken mit kürzbarer Graphenfolge
	3.5 Abschlußeigenschaften
	3.6 Entscheidungsprobleme

	Abschließende Bemerkungen
	Literaturverzeichnis

