Untersuchungen zu
Kantengrammatiken und Valenzgrammatiken

elektronisches

Dissertation dokument
ULB Sachsen-Anhalt

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Mathematisch-Naturwissenschaftlich-Technischen Fakultét
(mathematisch-naturwissenschaftlicher Bereich)
der Martin-Luther-Universitat Halle-Wittenberg

von Herrn Ralf Stiebe
geb. am: 8. Februar 1968 in: Rostock

Gutachterin bzw. Gutachter:

1. Prof. Dr. Annegret Habel, Oldenburg
2. Prof. Dr. Jiirgen Dassow, Magdeburg
3. Prof. Dr. Ludwig Staiger, Halle

Halle (Saale), 13. Juli 2000



Inhaltsverzeichnis

Einleitung

1 Grundlagen
1.1 Grundbegriffe und Notationen . . . . . . . . .. ... .. ... ... ...
1.2 Graphen . . . . . .
1.3 Sprachen und Grammatiken . . . . . . . . ... ...

1.4 Formale Potenzreihen . . . . . . . . . . .

2 Valenzgrammatiken
2.1 Definitionen und bekannte Resultate . . . . . . . .. ... ... ... ...
2.2 Beispiele . . . . .
2.3 Ableitungsbéume fiir Valenzgrammatiken . . . . . . . . . ... .. ... ..
2.4 Normalformen fiir Valenzgrammatiken . . . . . . ... .. ... ... ...
2.5 Valenzgrammatiken iiber kommutativen Monoiden . . . . . . . . . . . . ..
2.6 Iterationslemmata fiir Valenzgrammatiken . . . . . . . . .. ... ... ..

2.7 Schlanke Valenzsprachen . . . . . . . ... .. ... ... ... .. ...

3 Kantengrammatiken
3.1 Definitionen und Beispiele . . . . . . ... ...
3.2 Kantengrammatiken und formale Sprachen . . . . . . . . ... ... .. ..
3.3 Erzeugungskraft von Kantengrammatiken . . . . . . . . .. .. ... .. ..
3.4 Kantengrammatiken mit kiirzbarer Graphenfolge. . . . . . . . .. . .. ..
3.5 Abschlueigenschaften . . . . . . . ... ...
3.6 Entscheidungsprobleme . . . . . . . . . ... ..o

Abschlieflende Bemerkungen

Literaturverzeichnis

O o o O

12

15
15
20
21
24
35
36
40

43
43
47
49
ol
29
74

93

95



Danksagung

Die vorliegende Arbeit enthélt Ergebnisse, die wéhrend meines Promotionsstudiums an der
Otto-von-Guericke-Universitdt Magdeburg und meiner Tétigkeit an der Martin-Luther-
Universitédt Halle-Wittenberg entstanden.

Mein erster Dank geht an Herrn Prof. Dr. Dassow, der mich wéhrend meines Studiums in
die Theorie der formalen Sprachen einfiihrte, die Untersuchung von Kantengrammatiken als
Promotionsthema vorschlug und mir auch nach meinem Wechsel nach Halle fiir zahlreiche
Diskussionen zur Verfiigung stand.

Dem schliefit sich nahtlos der Dank an Herrn Prof. Dr. Staiger an, der mit dem Beginn
meiner Zeit in Halle die Betreuung iibernahm, mir grofien Freiraum fiir meine Forschung
lief3, die Ergebnisse kritisch mit mir diskutierte und auch mit dem nétigen Nachdruck auf
die Fertigstellung der Arbeit dréangte.

Besonders herzlich mochte ich mich bei Prof. Dr. Salomaa aus Turku bedanken, bei dem
ich einen dreimonatigen, sehr anregenden Forschungsaufenthalt verbringen konnte.

Herrn Dr. Fernau bin ich fiir zahlreiche fachliche Diskussionen, insbesondere zu Valenz-
grammatiken, dankbar.

Den Kolleginnen und Kollegen am Fachbereich Mathematik und Informatik der Martin-
Luther-Universitdat Halle, ganz besonders Frau Dr. Winter, danke ich fiir die gute und
stimulierende Arbeitsatmosphére.

SchlieBlich bedanke ich mich bei meinen Eltern, die mir eine sorgenfreie Kindheit ermoglich-
ten und meine Begabungen férderten, bei meiner Lebensgefahrtin Katharina fiir ihre Ge-
duld und fiir das Korrekturlesen einer fritheren Fassung und bei meinem Sohn Viktor, der
immer wieder fiir die notwendige Erholung von der Arbeit sorgte.



Einleitung

Graphen und Familien von Graphen spielen in vielen Gebieten der Informatik eine heraus-
ragende Rolle. Schon seit den siebziger Jahren versuchte man deshalb, Familien von Gra-
phen mit Hilfe von Grammatiken zu beschreiben. Dabei verfolgt man das Ziel, die in der
Theorie der formalen Sprachen bewédhrten Methoden bei der Untersuchung von solcherart
erzeugten Graphenfamilien zu verwenden. Ein Uberblick zu verschiedenen Aspekten von
Graphgrammatiken und Graphtransformationen ist u.a. im Handbook of Graph Grammars
[12] sowie in mehreren Kapiteln des 3. Bandes des Handbook of Formal Languages [33| zu
finden.

Die in der vorliegenden Arbeit betrachteten Kantengrammatiken (edge grammars) wurden
von F. BERMAN im Zusammenhang mit Fragen aus der Theorie der parallelen Program-
mierung eingefiithrt. In diesem Bereich besitzen Graphen in zweifacher Hinsicht eine Be-
deutung. Einerseits 148t sich eine parallele Rechnerarchitektur als Graph darstellen, wobei
die Knoten jeweils einen Prozessor darstellen und eine Kante zwischen zwei Knoten einer
Verbindung zwischen den Prozessoren entspricht. Rechnerarchitekturen mit struktureller
Ahnlichkeit werden zu Familien (z.B. Hyperwiirfel, Gitter) zusammengefaft. Andererseits
wird ein paralleler Algorithmus durch eine Familie von sogenannten Kommunikationsgra-
phen représentiert. Ein Knoten eines Kommunikationsgraphen stellt einen Prozefl dar,
wahrend eine Kante die Kommunikation zwischen zwei Prozessen symbolisiert.

Ein wichtiges Problem bei der Anwendung eines parallelen Algorithmus ist die Einbettung
des zur Probleminstanz gehorigen Kommunikationsgraphen in die konkrete Rechnerarchi-
tektur. Dabei sollten kommunizierende Prozesse an nicht weit voneinander entfernte Pro-
zessoren iibergeben werden. Eine iibliche Idee besteht darin, den Kommunikationsgraphen
auf einen kleinen Graphen der gleichen Familie so zu kontrahieren, dal die Kommunikati-
onsstruktur erhalten bleibt. Der kleinere Graph wird dann mittels einer Heuristik in den
Graphen H eingebettet.

Viele in der Theorie der parallelen Algorithmen relevante Graphenfamilien lassen sich auf
natiirliche Weise durch einfache Wortrelationen beschreiben. Beispielsweise besitzt der Hy-
perwiirfel der Dimension n als Knoten alle Worter der Lénge n iiber {0, 1}, und Kanten
bestehen genau zwischen Wortern mit Hamming-Abstand 1. Auch das Problem der Kon-
traktion ist einfach zu l6sen, sofern die Wortrelation préafixabgeschlossen ist. In diesem
Falle kann die Kontraktion erfolgen, indem ein Knoten auf sein Préfix der entsprechenden
Lénge abgebildet wird.
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Aus den eben genannten Griinden liegt es nahe, Wortgrammatiken so zu modifizieren, daf3
sie Paare von Wortern erzeugen. Ein Paar von Wortern der Linge n wird als Kante im
n-ten Graphen der Familie interpretiert. Bei Kantengrammatiken wird die Modifikation
erreicht, indem Paare von Wortern (nicht notwendig gleicher Lénge) als Terminalsym-
bole verwendet werden. Verschiedene Aspekte der Erzeugung von Graphenfamilien durch
Kantengrammatiken, insbesondere Fragen der Erzeugungskraft, der Beziehung zu klassi-
schen formalen Sprachen und der Entscheidbarkeit, wurden von BERMAN [1], BERMAN
und SHANNON [2, 3], BERMAN und SNYDER [4] sowie von DASSOW [8] untersucht.

Diese Untersuchungen werden in der vorliegenden Arbeit fortgesetzt. Hauptsichlich wird
die Familie der synchronen reguliren Kantengrammatiken, das sind Kantengrammatiken
mit rechtslinearen Regeln und Wortpaaren gleicher Lange, betrachtet. Diese Teilfamilie ist
zum einen besonders interessant, da die in der Theorie der parallelen Algorithmen wichti-
gen Graphenfamilien durch Kantengrammatiken dieses Typs erzeugt werden. Andererseits
besteht ein enger Zusammenhang zur Theorie endlicher Automaten, so dafl zahlreiche Re-
sultate iiber die Familie der reguldren Sprachen nutzbar sind.

Bei der Betrachtung der von (nicht synchronen) Kantengrammatiken erzeugten Sprachen
zeigte sich, dafl diese durch die von PAUN [28] eingefiihrten Valenzgrammatiken beschrieben
werden konnen. Dies sind Grammatiken, deren Regeln durch Elemente eines Steuermonoids
(hier (Z, +,0)) bewertet sind. Die Bewertungen werden auf Ableitungen ausgedehnt, und es
werden nur solche Ableitungen zugelassen, deren Bewertung das neutrale Element ergibt.
Valenzgrammatiken sind ein Beispiel fiir die gesteuerte Ersetzung (regulated rewriting) und
iiber die Beziehungen zu Kantengrammatiken hinaus von Interesse. Deshalb ist ihnen ein
eigener Abschnitt gewidmet.

Die Arbeit ist folgendermaflen gegliedert. In Kapitel 1 werden die notwendigen Grundla-
gen aus der Graphentheorie und der Theorie der formalen Sprachen bereitgestellt. Danach
folgen im Kapitel 2 die Untersuchungen zu Valenzgrammatiken. Das Hauptresultat ist die
Konstruktion von Normalformen fiir Valenzgrammatiken mit (Z*, +,6) als Steuermono-
id. Damit wird auch die seit langerem offene Frage nach der Existenz von Normalformen
fiir ungeordnete Vektorgrammatiken positiv beantwortet. Es wird weiter gezeigt, dafl Va-
lenzgrammatiken iiber beliebigen kommutativen Monoiden keine gréflere Erzeugungskraft
als Valenzgrammatiken iiber (Q, -, 1) besitzen. Aulerdem werden schlanke Valenzsprachen
(das sind Sprachen mit beschriankter Strukturfunktion) untersucht. Fiir diese Teilfamilie
werden einige positive Abschluf- und Entscheidbarkeitsresultate bewiesen. Diese Ergebnis-
se werden hier u.a. benutzt, um die Entscheidbarkeit des Elementproblems fiir kontextfreie
Kantengrammatiken zu zeigen.

Kapitel 3 ist den Kantengrammatiken gewidmet. Abschnitt 3.1 enthélt die Definitionen
sowie einige motivierende Beispiele. Die Verbindungen zwischen Kantengrammatiken und
klassischen formalen Sprachen, insbesondere Valenzsprachen, werden in Abschnitt 3.2 be-
trachtet. Anschliefend wird in Abschnitt 3.3 die Erzeugungskraft von synchronen reguléren
Kantengrammatiken untersucht. Unter Verwendung von bekannten Resultaten iiber re-
gulére Sprachen erhélt man einige wichtige Strukturaussagen. In Abschnitt 3.4 wird die
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Teilfamilie der synchronen reguldren und kiirzbaren Kantengrammatiken gesondert be-
trachtet. Unter anderem wird gezeigt, dal diese Art von Kantengrammatiken dquivalent
zu einer parallelen Variante von Knotenersetzungsgrammatiken ist. In den Abschnitten 3.5
und 3.6 folgen Untersuchungen zu Abschlu- und Entscheidbarkeitseigenschaften von Kan-
tengrammatiken. Einerseits werden Abschluf}- und Entscheidbarkeitsprobleme diskutiert,
die sich als direkte Verallgemeinerung analoger Fragestellungen aus der Theorie der forma-
len Sprachen ergeben, wie z.B. das Leerheitsproblem und das Endlichkeitsproblem. Zum
anderen werden graphentheoretisch motivierte Probleme betrachtet, wie das Abschluf3-
verhalten unter Graphenoperationen oder die Frage nach der Existenz von Graphen mit
bestimmten graphentheoretischen Eigenschaften.



Kapitel 1

Grundlagen

Nach der Einfithrung einiger mathematischer Notationen werden in diesem Abschnitt die
grundlegenden Begriffe aus der Graphentheorie und der Theorie der formalen Sprachen
erklirt. Eine ausfiithrliche Einfithrung in diese Gebiete wird beispielsweise in [40] bzw.
[18, 34] gegeben.

1.1 Grundbegriffe und Notationen

Die leere Menge wird mit (), die Potenzmenge einer Menge M wird mit P(M), die Méchtig-
keit einer Menge M wird mit card M bezeichnet.

Wir notieren die Menge der natiirlichen Zahlen einschlieflich 0 mit N, die Menge der
ganzen Zahlen mit Z, die Menge der rationalen Zahlen mit Q und die Menge der positiven
rationalen Zahlen mit Q. .

Das kartesische Produkt A x B zweier Mengen A, B ist als A x B = {(a,b) :a € A,b € B}
definiert. Das n-fache kartesische Produkt einer Menge A wird als A™ notiert. Fiir eine
Menge A, n € N und ein k-Tupel (iy, ..., i) mit 1 <iy,...,0 < n ist die Projektion von
A" auf die Komponenten (iy, ..., i) definiert als die Abbildung pr,,.;, ;. : A" — A" mit
DY A iy (W1, oo W) = (W, ... wy, ) flir (wy, ..., w,) € A™. Wenn w explizit als Element

.....

Es sei R C A x B eine Relation. Fiir A’ C A definieren wir das Bild von A’ unter R als
R(A") = {b € B : da(a € A" A(a,b) € R)}; fiir a € A schreiben wir R(a) anstelle von
R({a}). Die zu R inverse Relation R™* C Bx Aist als R~' = {(b,a) € Bx A: (a,b) € R}
definiert. R heifit partielle Funktion, falls card R(a) <1 fiir alle a € A und Funktion, falls
card R(a) =1 fiir alle a € A.

Eine Relation R C M x M wird binire Relation auf M genannt. Anstelle von (mq,ms) € R
schreiben wir hdufig mj; Rmy. Die Relation Idy, := {(m,m) : m € M} wird als identische
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Relation auf M bezeichnet. Fiir eine bindre Relation R C M definieren wir

R’ =1dy;, R™" = {(m,n): Im/((m,m) € RA (m/,n) € R")}, R¥ = J R/,
§=0

R" = GRi, R = [OJRi.
=1 =0

Die Relationen R bzw. R* heiflen der transitive Abschlufl bzw. der transitive und reflexive
Abschluf$ von R.

Eine binédre Relation R C M x M heifit transitiv, wenn aus xRy und yRz stets xRz folgt,
reflexiv,, wenn xRz fir alle x € M gilt, symmetrisch, wenn aus zRy stets yRx folgt,
antisymmetrisch, wenn aus xRy und yRx stets x = y folgt. Eine binére Relation auf M
heift Aquivalenzrelation, wenn sie transitiv, reflexiv und symmetrisch ist; sie zerlegt M
in Aquivalenzklassen. Eine binire Relation < auf M heifit Halbordnung, wenn sie reflexiv,
transitiv und antisymmetrisch ist; sie heifit Totalordnung oder einfach Ordnung, wenn = <y
oder y < z fiir alle z,y € M gilt.

Es folgen einige Definitionen fiir ganzzahlige Vektoren. Der i-te Einheitsvektor in ZF,
k> 1,1 <i <k, wird mit €; bezeichnet. Die 1-Norm eines Vektors 7 = Zle rié; aus Z*
wird als ||7]|; == Zle |r:], seine Mazimum-Norm wird als ||7]|; := max{|r;| : 1 < i < k}
definiert. Die Ordnungsrelation auf Z wird in natiirlicher Weise zu einer Halbordnung auf
ZF verallgemeinert: (ay,...,ag) < (by,...,bp) : = a; < b;,1 <i < k.

Die Operationen der ganzzahligen Division bzw. des Restes bei ganzzahliger Division wer-
den mit div bzw. rest bezeichnet. Fiir a,b € Z,b > 0 ist adivb := |a/b] und arestb :=
a — (adivb)b. Die gleichen Operationen werden fiir a € Z* b € N\ {0} definiert, indem
man sie komponentenweise ausfiihrt. Auf Z* definieren wir die Kongruenz modulo m € N
als: a = b(modm) : <= arest m = brest m.

Eine Menge S C NF heift linear, wenn es endlich viele Vektoren @y, 71, . . ., Uy € NF mit
m
S = {ﬁO—FZOAlﬁZQlEN,lSZSm}
i=1

gibt. Eine Teilmenge von N¥ heifit semilinear, wenn sie die Vereinigung endlich vieler
linearer Mengen ist.

Eine (algebraische) Struktur ist ein Konstrukt (M, Ry, ..., R,,), bestehend aus einer Men-
ge M und Relationen Ry C M* ... M* ki, ... k., € N. (Funktionen sowie Konstanten
werden als Relationen angesehen.) Spezielle im folgenden betrachtete Strukturen sind Mo-
noide, Graphen und Halbringe. Es seien M = (M, Ry,...,R,,) und N = (N, R},..., R
Strukturen mit Ry C M* ... Mk~ RY C Nk .. Nk ki, ... k, € N. Ein Homomor-
phismus von M nach N ist eine Abbildung h : M — N mit (a1,...,a,) € R <=
(h(ay),...,h(a,)) € R, fir alle 1 < ¢ < m. Ist h auBerdem eine bijektive Abbildung,
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so wird h ein Isomorphismus genannt. Zwei Strukturen heiflen isomorph, wenn zwischen
ihnen ein Isomorphismus existiert.

Ein Monoid ist ein Tripel M = (M, o, 1), wobei M eine nichtleere Menge, o eine Abbildung
von M x M auf M und 1 ein Element aus M sind und (a o b) oc = ao (bo c) fiir alle
a,b,c € M sowie 1oa =aol = a fir alle a € M erfiillt sind. Die n-te Potenz von a € M
ist rekursiv definiert als a® = 1, a” = a" ' o a fiir n > 1.

Fiir A, B C M definieren wir das Produkt Ao B := {aob:a € Ab € B}. Das n-fache
Produkt A™ von A ist definiert als A° = {1}, A" = A" 1o A fiir n > 1. Das von A erzeugte
Untermonoid A* bzw. die von A erzeugte Unterhalbgruppe sind

A* = G A AT = G A
n=0 n=1

M heiflt endlich erzeugt, wenn es eine endliche Teilmenge A C M mit A* = M gibt.

Ein Monoid (M, o,1) heiflt Gruppe, wenn es zu jedem m € M ein inverses Element m™*

mit mom™t =m~tom =1 gibt.
Ein Monoid (M, o, 1) heifit kommutativ, wenn aob = bo a fiir alle a,b € M gilt.

1.2 Graphen

Ein (gerichteter) Graph ist ein Paar G = (V, E'), wobei V eine Menge und £ C V X V eine
binére Relation auf V' sind. Man nennt die Elemente von V bzw. E Knoten bzw. Kanten.
Eine Aquivalenzklasse von isomorphen Graphen wird als abstrakter Graph bezeichnet. Der
zu G gehorige abstrakte Graph wird mit [G] notiert; fiir eine Menge von Graphen G ist
G] :={[G]: G € G}.

Es folgen einige Begriffe aus der Graphentheorie. Es sei ein Graph G = (V, E) gegeben.

Ein Graph G’ = (V', E’) heifit Teilgraph von G, wenn V' C V und E' C ENV' x V' gelten.
Fiir V! C V nennen wir den Graphen Gy = (V', E') mit E' = EN (V' x V') den durch V'
induzierten Teilgraphen von G.

Eine Kante (v,v) heifit Schlinge. Ein Graph ohne Schlingen wird schlicht genannt. Im
folgenden beschranken wir uns auf schlichte Graphen. Fiir v € V' definieren wir den FEin-
gangsgrad d;,(v) bzw. den Ausgangsgrad dy.;(v) als d;,(v) = card E71(v) bzw. dyw(v) =
card E(v).

Eine Kantenfolge von vy nach vy, der Linge k in G ist eine Folge von Knoten (v, vq, . .., vg)
mit v; € V fiir 0 <i < k und (v;_1,v;) € E fir 1 < i < k. Eine Kantenfolge (vo, vy, ..., vx)
heifit Weg, falls v; # v; fiir 0 < ¢ < j < k gilt; sie heifit Zyklus, falls vy = vy, gilt. Ein Graph
ohne Zyklus wird azyklisch genannt.

Der Abstand von v € V zu w € V ist die Lénge des kiirzesten Weges von v nach w

bzw. oo, falls kein Weg existiert. Zwei Knoten v, w eines Graphen G heiflen (stark) zu-
sammenhdingend, wenn es einen Weg von v nach w und einen Weg von w nach v gibt.
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Sie heiBlen schwach zusammenhingend, wenn es in G* := (V,E") mit E* = E U E!
einen Weg von v nach w gibt. Offenbar sind der starke wie auch der schwache Zusammen-
hang Aquivalenzrelationen auf V. Die von den Aquivalenzklassen beziiglich des starken
bzw. schwachen Zusammenhangs induzierten Teilgraphen bezeichnen wir als starke bzw.
schwache Zusammenhangskomponenten von G. Gibt es genau eine starke bzw. schwache
Zusammenhangskomponente, so heiflit G stark bzw. schwach zusammenhdingend.

Ein azyklischer Graph G = (V, E) heifit Wald, wenn 6;,(v) < 1 fir alle v € V gilt. Ein
schwach zusammenhéngender Wald heifit Baum. Ein Baum besitzt genau einen Knoten mit
dem Eingangsgrad 0, der als Wurzel bezeichnet wird. In einem Baum werden die Knoten
mit dem Ausgangsgrad 0 als Bldtter bezeichnet, alle anderen Knoten heiflen innere Knoten.
Ist (v,w) eine Kante in einem Baum, so nennt man v den Vater von w und w den Sohn
von v. Sind v und w Knoten des Baumes G = (V, E) mit (v, w) € E*, so bezeichnet man
die von {u : (v,u) € E*} bzw. {u : (v,u) € E* A (w,u) ¢ E*} induzierten Untergraphen
(die beide Baume mit der Wurzel v sind) als den Unterbaum von v bzw. als den Unterbaum
zwischen v und w.

Ein ungerichteter schlichter Graph ist ein Paar G = (V, E), wobei V eine Knotenmenge und
E eine Menge von ungerichteten Kanten, das sind zweielementige Teilmengen von V', sind.
Es ist fiir die folgendenden Ausfithrungen bequem, ungerichtete Graphen als gerichtete
Graphen mit symmetrischer Kantenrelation zu definieren. Die ungerichtete Kante {v,w}
wird durch die gerichteten Kanten (v, w) und (w,v) dargestellt.

Fiir jeden Knoten v eines ungerichteten (schlichten) Graphen ist der Eingangsgrad gleich
dem Ausgangsgrad und wird einfach als Grad d(v) bezeichnet. Den mazimalen Knotengrad
A(G) bzw. minimalen Knotengrad 6(G) eines ungerichteten Graphen G definieren wir als
A(G) = maxyey {d(v)} bzw. §(G) = min,ey{d(v)}.

Ist G ein beliebiger gerichteter Graph, so heifit der bereits erwihnte Graph G" der zu
G gehirige ungerichtete Graph. FEin ungerichteter Graph wird ungerichteter Wald bzw.
ungerichteter Baum genannt, wenn er der zu einem gerichteten Wald bzw. Baum gehorige
ungerichtete Graph ist.

1.3 Sprachen und Grammatiken

Ein Alphabet ist eine endliche Menge X; die Elemente eines Alphabets werden Buchstaben
oder Symbole genannt. Ein Wort {iber X ist eine endliche Folge von Buchstaben. Wie allge-
mein iiblich, benutzen wir fiir ein Wort (aq, as, . . ., a,) die kiirzere Schreibweise ajas - - - a,.
Die Linge eines Wortes w ist die Anzahl der Folgeglieder und wird mit |w| bezeichnet.
Das Wort der Léange 0 wird das leere Wort genannt und mit A bezeichnet. Die Menge aller
Worter iiber X wird mit X* bezeichnet. Sind v = a; - - - a,, und w = by - - - b,, Worter, so ist
ihr Produkt (Konkatenation) v -w (oder kurz vw) als ay - - - ay,by - - - by, definiert. Offenbar
bildet (X*,-, A) ein Monoid, das freie Monoid iiber X. Eine (formale) Sprache iiber X ist
eine Teilmenge von X*. Wegen der Monoideigenschaft von (X*, -, A) sind die Definitionen



Kapitel 1: Grundlagen 10

der Sprachen L; - Ly, L* (k > 0), L* und LT entsprechend Abschnitt 1.1 klar.

Ein Wort u heifit Prdfix des Wortes w, in Zeichen u C w, wenn es ein Wort v mit w = uw
gibt. Fiir ein Wort w der Lénge n wird mit pref, (w) das Prifix der Linge k < n bezeichnet.

Fiir ein Alphabet Y und ein beliebiges Alphabet X bezeichnen wir den Homomorphismus
Ty : X* = Y*mit my(y) =y, fallsy € Y, my(x) = A, falls z € X \ Y, als die Projektion
auf Y. Vereinfachend schreiben wir 7, statt my fiir a € Y sowie |w|y, |wl|, anstelle von
[y (w)], | ma(w)]

Es sei L C X* eine Sprache. Die charakteristische Funktion von L ist die Abbildung
XL s X* —{0,1} mit x(w) =1, falls w € L, x(w) = 0, falls w ¢ L. Die Lingenmenge
(length set) von L ist A(L) = {|w| : w € L}. Die Strukturfunktion von L ist die Abbildung
s : N — N mit sp(n) = card {w € L : |w| = n}. Ist s, beschrinkt bzw. durch k
beschrankt bzw. fast iiberall durch £ beschrénkt, so nennt man L schlank bzw. im strengen
Sinne k-schlank bzw. k-schlank.

Ist X ein Alphabet mit n Symbolen, so ist eine Parikh-Abbildung ein Monoidhomomorphis-
mus von (X*,-,\) nach (N”, +,0), der ein Symbol aus X eineindeutig auf einen Einheits-
vektor abbildet. Da Parikh-Abbildungen bis auf Isomorphie gleich sind, wird eine dieser
Abbildungen als die Parikh-Abbildung von X* bestimmt und mit ¥ bezeichnet. Fiir eine
Sprache L C X* wird U(L) als die Parikh-Menge von L bezeichnet.

Formale Sprachen lassen sich durch Grammatiken und Automaten beschreiben. Eine kon-
textfreie Grammatik ist ein Quadrupel G = (N, T, P, S), bestehend aus dem Alphabet der
Nichtterminale N, dem zu N disjunkten Alphabet der Terminale 7', der Regelmenge P,
einer endlichen Teilmenge von N x (N UT)*, und dem Startsymbol S € N. Eine Regel
(A, ) € P wird allgemein als A — £ notiert. Uber (N U T)* definiert man fiir eine Regel
p = (A, ) aus P bzw. fiir G die bindren Ableitungsrelationen =, bzw. = als

v=pw <= Ju3ue(v = v Avg A w = vy 0vs)
v=gw <= dp(pE€ PAv=,w).

Die von G erzeugte Sprache ergibt sich als L(G) = {w € T* | S = w}. Eine kontextfreie
Grammatik G = (N, T, P, S) heifit

e [inear, wenn P nur Regeln der Form A — vBw, A — v mit A,B € N, v,w € T*
enthélt,

e reguldr, wenn P nur Regeln der Form A — vB, A — v mit A, B € N, v € T* enthalt.

Eine Sprache L heif3t kontextfrei, linear bzw. requldr, wenn es eine kontextfreie, eine lineare
bzw. eine regulire Grammatik G mit L(G) = L gibt. Die Familien der kontextfreien bzw.
linearen bzw. reguléren Sprachen werden mit £(CF) bzw. L(LIN) bzw. L(REG) bezeichnet.

Von den Automatenmodellen erwdhnen wir nur die endlichen Automaten, die dquivalent
zu den reguldren Grammatiken sind, sowie die endlichen Transducer (endliche Automaten
mit Ausgabe).
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Definition 1.3.1 FEin (nichtdeterministischer) endlicher Automat ist ein Quintupel A =
(Z,X, 20,6, F), bestehend aus der endlichen Zustandsmenge Z, dem Eingabealphabet X,
dem Startzustand zy € Z, der Menge der Endzustinde ' C Z und der endlichen Uber-
gangsrelation 6 C Z x X X Z.

Die Relation 6 wird auf Z x X* X Z wie folgt fortgesetzt:
(z2,\,2)€b:<= z="2 firz 7 € Z,
(z,wa,2') €6 : <= ylye Z AN (z,w,y) €A (y,a,2') €06) firzz € Z,we X*acX.

Die von A akzeptierte Sprache L(A) ist definiert als

L(A) ={w € X" : (20, w,q) € ¢ fiir ein q € F}.

Ist 6 eine Funktion bzw. eine partielle Funktion von Z x X nach Z, so heifst A determini-
stischer bzw. partieller deterministischer Automat.

Ein Lauf von A auf dem Wort w =ay---a,, a1,...,a, € X, ist eine Folge von Zustinden
20021y - -y Zn Mt (2i-1,04,2;) € 6 fiir 1 < i < n. Ist zusdtzlich z, € F, so heifit der Lauf
akzeptierend. Fiir ein Wort w € X* ist der Grad der Mehrdeutigkeit beziiglich A, da(w),
als die Anzahl der akzeptierenden Liufe von A aufw definiert. Der Grad der Mehrdeutigkeit
von A ist dg = sup{da(w) : w € X*}.

Definition 1.3.2 FEin endlicher Transducer ist ein Sextupel A = (Z, X,Y, 29,6, F), wobei
Z, X, zy und F" wie bei einem endlichen Automaten definiert sind, Y ein Ausgabealphabet
st und die Uberfiihrungsrelation 6 eine endliche Relation 6 C Z x X* X Y* X Z 1ist.

Die Relation 6 wird zu einer Relation 6* C Z x X* X Y* x Z wie folgt fortgesetzt:

o O:={(2,\,\,2): 2z € Z},

o (z1,wy,Wwo, 27) € 6" =
Jz3uy Fvy JuaFvg (w1 = ugvr, wo = Uy, (21, Ur, Ug, 2) € 8™, (2,01, V9, 23) € b),

o 0 :=J 2, 0"
Die von A akzeptierte Relation T4 ist definiert als
74 = {(wy,wy) € X* X Y™ : (20, w1, ws,q) € 6" fiir ein q € F}.

Eine Relation R C X* x Y* heifit regulére Transduktion, falls es einen endlichen Trans-
ducer A mit T4 = R gibt.

Eine Sprachfamilie £ heifit abgeschlossen unter der Operation F', die k Sprachen auf eine
Sprache abbildet, falls aus Lq,..., Ly € L stets F(Ly,..., L) € L folgt. Einige wichtige
Abschlufeigenschaften der Familien der kontextfreien, linearen bzw. reguléren Sprachen
werden im folgenden zusammengefafit, siehe auch [18]:
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Satz 1.3.1 Die Familien L(X),X € {REG, LIN, CF}, sind abgeschlossen unter Vereini-
gung und reguldren Transduktionen. Die Familien L(REG) und L(CF) sind auflerdem un-
ter Konkatenation und Hillenbildung abgeschlossen. Weiterhin ist L(REG) abgeschlossen
unter Komplementierung.

Da Homomorphismen, inverse Homomorphismen, der Durchschnitt mit einer regulédren
Sprache und die Substitution durch eine regulidre Sprache spezielle reguldre Transduktio-
nen sind, besteht hinsichtlich dieser Operationen ein positives Abschluffverhalten fiir die
genannten Sprachfamilien.

Wichtige Entscheidungsprobleme fiir Grammatiken sind das
e Elementproblem: gegeben eine Grammatik G und ein Wort w; ist w € L(G)?
e Leerheitsproblem: gegeben eine Grammatik G; ist L(G) leer?

Endlichkeitsproblem: gegeben eine Grammatik G; ist L(G) endlich?

Universalititsproblem: gegeben eine Grammatik G = (N, T, P, S); ist L(G) = T*?

Schlankheitsproblem: gegeben eine Grammatik G; ist L(G) schlank?

Aquivalenzproblem: gegeben zwei Grammatiken G und H; ist L(G) = L(H)?

Disjunktheitsproblem: gegeben zwei Grammatiken G und H; sind L(G) und L(H)
disjunkt?

Satz 1.3.2 Das Element-, das Leerheits-, das Endlichl?eits— und das Schlankheitsproblem
sind entscheidbar fiir kontextfreie Grammatiken. Das Aquivalenz- und das Disjunktheits-
problem sind entscheidbar fiir requldre Grammatiken und unentscheidbar fir lineare Gram-
matiken.

Eine parallel arbeitende Variante von Grammatiken stellen die Lindenmayer-Systeme dar.
Wir werden im folgenden nur deren einfachste Version, die DOL-Systeme, betrachten.

Ein DOL-System ist ein Tripel G = (X, h,w), bestehend aus einem Alphabet 3, einem
Homomorphismus A : ¥* — ¥* und dem Axiom w € ¥*. Die von G erzeugte Folge ist
S(Q) = (w;)i>p mit wy = w, w; = h(w;_1) = h*(w) fiir i > 1. Die von G erzeugte Sprache
ist L(G) = {w : w € S(G)}, die Funktion go : N — N mit gg(i) = |w;| nennt man die
Wachstumsfunktion von G. Eine Funktion g : N — N heifit DOL- Wachstumsfunktion, falls
es ein DOL-System G mit g = g gibt.

1.4 Formale Potenzreihen

Eine wichtige Verallgemeinerung von Sprachen stellen die formalen Potenzreihen dar. Im
folgenden werden die Definitionen und Fakten zu formalen Potenzreihen und ihre Beziehung
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zu endlichen Automaten in dem hier benotigten Umfang angegeben. Fiir eine ausfiihrliche
Erorterung dieses Themas siehe z.B. [5, 35].

Definition 1.4.1 Ein kommutativer Halbring ist ein Quintupel (A,+,-,0,1). Dabei sind
(A, +,0) und (A, -, 1) kommutative Monoide, und auflerdem gilt

o YavbVe((a+0b)-c=(a-c)+ (b-c)) (Distributivgesetz) sowie
o Va(0-a=0).

Beispiele fiir kommutative Halbringe sind der Boolesche Halbring B = ({0, 1},+,-,0,1)
mit 1+ 1 = 1, der Halbring der natiirlichen Zahlen N = (N, +,-,0,1), der Ring der ganzen
Zahlen Z = (Z,+,-,0,1) und Ny, der Restklassenring modulo k.

Definition 1.4.2 FEs seien A = (A, +,-,0,1) ein Halbring und X ein Alphabet. Eine Ab-
bildung r : X* — A wird als (formale) Potenzreihe bezeichnet. Der Wert von r fir w € X*
wird als (r,w) und r selbst als formale Summer =3 _y.(r,w)w notiert. Fine Potenzreihe
r heifit quasireguldr, wenn (r,\) = 0 gilt.

Die Menge aller w € X* mit (r,w) # 0 wird als Trigermenge von r, support(r), be-
zeichnet. Ist support(r) endlich, so wird r ein Polynom genannt. Die Menge der formalen
Potenzreihen wird mit A({X™*)), die Menge aller Polynome wird mit A(X™*) bezeichnet.

Als néchstes definieren wir einige Operationen fiir Potenzreihen. Es seien A, B Halbringe,
a € A, X,Y Alphabete, h : A — B ein Halbringhomomorphismus, H : X* — Y* ein Mo-
noidhomomorphismus, r, 7" Potenzreihen aus A((X*)) und s eine Potenzreihe aus A((Y™*)).
Dann sind die Potenzreihen r + ', ar,ra,rr',r © ', H 's,rt € A((X*)), hr € B{{X*))
und Hr € A((Y™*)) wie folgt definiert:

(r+7r,w) (r,w) + (r',w), die Summe,
(ar,w) = a(r,w), externes Produkt von links,
(ra,w) = (r,w)a, externes Produkt von rechts,
(rr',w) = Z (r,wy)(r',wy), das Produkt,

(ror,w) = (r,w)-(r',w), das Hadamard-Produkt,
(hr,w) = h((r,w)),

(Hr,w) = Z (r,v), falls H nichtloschend, d.h. (H(w) =X — w = \),
veX*,H(v)=w
(H's,w) = (s,H(w))
(rt,w) = Z(r",w), falls r quasiregulér.
n=1

Eine Teilfamilie £ von A((X™*)) heifit rational abgeschlossen, wenn fiir r,7' € E, a € A
auch r + ', rr’, ar,ra und fiir quasiregulire r auch r* in E enthalten sind.
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Definition 1.4.3 Die Menge der A-rationalen Potenzreihen A™ ((X*)) ist die kleinste
rational abgeschlossene Teilmenge von A{((X*)), die alle Polynome enthdlt.

Einige wichtige Abschluf}- und Entscheidbarkeitseigenschaften fiir rationale Potenzreihen
sowie die Zusammenhénge zwischen endlichen Automaten und rationalen Potenzreihen
werden im folgenden zusammengefafit, siehe auch [5, 35].

Satz 1.4.1 FEsseien A, B Halbringe, a € A, X,Y Alphabete, h : A — B ein Halbringhomo-
morphismus, H : X* — Y™* ein Monoidhomomorphismus, v, Potenzreihen aus A™ ((X*))
und s eine Potenzreihe aus B™'((Y*)).

Dann sind die Potenzreihen r ® r', H 's in A™((X*)), hr in B™((X*)) und, falls H
nichtloschend ist, Hr in A™ ((Y™*)).

Satz 1.4.2 Ist L C X* eine requldre Sprache, so ist die Potenzreihe Cp, mit (Cp,w) =
xro(w) in N2 (X*)) und in B™*((X*)); die Potenzreihe S;, mit (Sr,x™) = sp(n) ist in
Nt (({z})).

Ist A ein endlicher Automat mit Eingabealphabet X, so ist die formale Potenzreihe D 4
mit (D g, w) = dg(w) in N=((X*)).

Satz 1.4.3 Ist S eine Potenzreihe aus Z"™*({({x}*)), so ist die Menge {n : (S,z™) = 0}
semilinear.

Satz 1.4.4 Fir Potenzreihen aus N (({x}*)) sowie Ni#*({({z}*)), k € N, ist es entscheid-
bar, ob alle Koeffizienten gleich 0 sind bzw. ob ein Koeffizient gleich O ist.

Fiir Potenzreihen aus Z"*({({x}*)) ist es entscheidbar, ob alle Koeffizienten gleich 0 sind.

Satz 1.4.5 Flir eine Potenzreihe S aus N™*((X*)) ist es entscheidbar, ob der Wertebereich
{(S,w) : w e X*} endlich ist.



Kapitel 2

Valenzgrammatiken

In diesem Kapitel werden Valenzgrammatiken und dhnliche Konzepte untersucht. Eine Va-
lenzgrammatik ist eine kontextfreie Grammatik, wobei jeder Regel eine Bewertung (Valenz)
aus einem Monoid M zugeordnet wird. Diese Bewertung wird auf Ableitungen erweitert.
Eine Ableitung ist nur dann zuléssig, wenn ihre Bewertung gleich dem neutralen Ele-
ment von M ist. Valenzgrammatiken sind eine spezielle Variante von Grammatiken mit
gesteuerter Ersetzung (requlated rewriting). Die Idee von gesteuerten Ersetzungen ist, die
Erzeugungskraft kontextfreier Grammatiken zu erhéhen und gleichzeitig positive Abschluf3-
eigenschaften und Entscheidbarkeitsresultate der kontextfreien Sprachen zu bewahren, in-
dem die Anwendung der kontextfreien Regeln gesteuert wird. Eine umfassende Ubersicht
zu diesem Thema findet man in [9].

Nach der formalen Definition von Valenzgrammatiken werden bereits bekannte Resultate
sowie einige Beispiele angegeben, welche die Bedeutung dieses Konzeptes hervorheben. An-
schlieBend wird gezeigt, daf} es fiir Valenzgrammatiken iiber den Gruppen Z; Normalformen
analog zu den Chomsky- und Greibach-Normalformen fiir kontextfreie Grammatiken gibt.
Auflerdem wird bewiesen, dafl Valenzgrammatiken iiber beliebigen kommutativen Monoi-
den keine stéarkere Erzeugungskraft als Valenzgrammatiken iiber der Gruppe Q. besitzen.
Schliefllich werden schlanke Valenzsprachen untersucht. Wir zeigen, dafl das Problem der
k-Schlankheit fiir Q,-Valenzgrammatiken und gegebenes k entscheidbar ist. Auflerdem
besitzen schlanke Valenzsprachen niitzliche Abschlueigenschaften. Eine interessante An-
wendung der Ergebnisse beziiglich schlanker Valenzsprachen ist der Beweis der Entscheid-
barkeit des Elementproblems fiir kontextfreie Kantengrammatiken, siehe Satz 3.6.5.

2.1 Definitionen und bekannte Resultate

Wir geben zunéchst die Definition der Valenzgrammatik an; das Konzept der Valenzen
wird danach auf endliche Automaten und Transducer iibertragen.

15
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Definition 2.1.1 Es sei M = (M,o,1) ein Monoid. Fine M-Valenzgrammatik ist ein
Quadrupel G = (N, T, P,S), bestehend aus dem endlichen Alphabet der Nichtterminale
N, dem endlichen Alphabet der Terminale T mit N N\'T = 0, aus der endlichen Menge
von Valenzregeln P C N x (N UT)* x M und dem Startsymbol S € N. Fine Valenzregel
p = (A, o, m) wird iblicherweise als (A — «, m) notiert, wobei A — « die Kernregel von
p und m die Valenz von p genannt werden.

Die bindren Ableitungsrelationen =, bzw. =¢ dber (N UT)* x M beziglich einer Regel
p=(A— a,m) bzw. beziiglich G definieren wir als

(Br,m1) =p (B2,ma) <= TImIn(bi = 1Ay A By = yiaye A my = my om),
(ﬁl,ml) =>a (ﬁg,mg) R —— (ﬁl,ml) = (ﬁg,mg) fﬂ’f’ ein pE P.

Die von G erzeugte Sprache ist L(G) = {w € T* : (S,1) =% (w,1)}.

Sind die Kernregeln von G kontextfrei, linear bzw. reguldr, so nennen wir G eine kontext-
freie, lineare bzw. requldre Valenzgrammatik. Die Familie der von M-Valenzgrammatiken

vom Typ X € {CF, LIN, REG} erzeugten Sprachen wird mit L( Val, X, M) bezeichnet.

Definition 2.1.2 Es sei M = (M, o,1) ein Monoid. Ein (nichtdeterministischer) endlicher
M-Valenzautomat ist ein Quintupel A = (Z, X, 2y, 6, F), wobei Z eine endliche Menge von
Zustinden, X ein endliches Alphabet, zy € Z ein Anfangszustand, § C Zx(XU{A\})xZxM
eine endliche Ubergangsrelation und F C Z eine Menge von Endzustinden sind.

Eine Konfiguration von A ist ein Tripel aus Z x X* x M. Auf der Menge der Konfigura-

tionen definieren wir die bindre Relation = 4 als:

(z1,w1,m) =4 (20, w2, n) : <=
Ja3m’((z1,a, z2,m') € 6 ANwy = awy Amom! =n)

Die von A akzeptierte Sprache ist L(A) = {w € X* : 3q(q¢ € F A (20, w,1) =% (¢, A\, 1))}

Definition 2.1.3 Ein endlicher M-Valenztransducer dber dem Monoid M = (M, o,1)
ist ein Sextupel A = (Z,X,Y, 20,6, F), wobei Z, X, zy und F wie bei einem endlichen
Valenzautomaten definiert sind, Y ein endliches Ausgabealphabet ist und 6 C Z x X* X
Y* x Z x M eine endliche Ubergangsrelation ist.

Eine Konfiguration von A ist ein Quadrupel aus Z x X* x Y* x M. Auf der Menge der
Konfigurationen definieren wir die bindre Relation = 4 als:

(21,01, w1, m) =4 (22,V2, w2, M) : &=
Ja3BIM/ ((21, o, B, 29,m') € 6 ANy = Qug Awg = w1 S Amom’ =n)

Die von A definierte Transduktion ist

T4={(v,w) € X* xY*:3q(q € F A (20,0,\,1) =% (¢, \,w, 1))}

Eine Relation R C X* x Y™ heifit rationale M-Valenztransduktion, falls es einen endlichen
M- Valenztransducer A mit R = 7.4 gibt.
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Bemerkung. Valenzgrammatiken wurden 1980 von PAUN [28] zunichst iiber den Grup-
pen Z = (Z,+,0) und Q, = (Q,-,1) eingefiihrt. Unabhingig davon wurden etwa zur
gleichen Zeit endliche Automaten mit Multiplikation (Q4-Valenzautomaten) durch IBAR-
RA, SAHNI, Kim [19], blinde Zihlerautomaten (Zj-Valenzautomaten mit k € N) durch
GREIBACH [16] sowie endliche Automaten iiber Gruppen durch REDKO und LiSOVIK [30]
untersucht.

Da der Ableitungsprozefl in Valenzgrammatiken dem in gewohnlichen kontextfreien Gram-
matiken sehr dhnlich ist, lassen sich einige Eigenschaften aus der klassischen Theorie for-
maler Sprachen direkt iibertragen:

Satz 2.1.1 Es sei M ein Monoid.

1. Die Familien L(Val, X, M), X € {CF, LIN, REG}, sind abgeschlossen unter Vereini-
gung und requliren Transduktionen [15].

2. Die Familie der von endlichen M-Valenzautomaten akzeptierten Sprachen und die

Familie L(Val, REG, M) sind identisch.

Beweis. (zu 2.) Der Beweis der Aquivalenz von nichtdeterministischen endlichen Automa-
ten mit spontanen Transitionen und reguldren Grammatiken (siche z.B. [18, Satz 9.1,9.2])
148t sich wortlich (unter Beriicksichtigung der Valenzen) iibertragen. O

Fiir das spezielle Steuermonoid Q; = (Q, -, 1) gelten zusitzliche Abschluleigenschaften:

Satz 2.1.2 1. Die Familien L(Val, X,Q.), X € {CF, LIN, REG}, sind abgeschlossen
unter Q- Valenztransduktionen [39].

(Genauer: Ist L aus L(Val, X, Z,,) und ist T eine Z, - Valenztransduktion (m,n > 0),
so gilt (L) € L(Val, X, Zyy1n).)

2. Die Familien L(Val, CF,Q,), X € {CF, REG}, sind zusdtzlich abgeschlossen unter
Konkatenation [9)].

Beziiglich der Erzeugungskraft von Valenzgrammatiken mit verschiedenen Steuermonoiden
sind folgende Resultate bekannt.

Satz 2.1.3 1. Fir X € {CF, LIN, REG} gilt:
L(Val, X,Z;) C L(Val, X,Z;.1),i > 0,[38].
Ui, L(Val, X, Z;) = L(Val, X, Q) = L(UV,X), [9, Theorem 2.1.4].
Dabei ist L(UV,X) die Familie der Sprachen, die durch ungeordnete Vektorgram-
matiken (siehe [9, Definition 2.1.4]) erzeugbar sind.

2. Unt enaiien L(Val, X, M) = L(MAT, X) [15].
Dabei ist LIMAT, X) die Familie der Sprachen, die durch Matrixgrammatiken (siehe
[9, Definition 1.1.1]) erzeugbar sind.
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3. L(Val, REG, F») = L(CF) [30],
L(Val, REG, Fy x F3) = L(RE) [27],
L(MAT, CF) C L(Val, CF, F») C L(RE) [26].
Dabei ist Fy die von zwei Elementen frei erzeugte Gruppe.

Die Sprachfamilie £(Val, REG,Z) ist echt in £(CF) enthalten und unvergleichbar mit
L(LIN). Von Interesse ist der Durchschnitt von £(Val, REG, Z) und £(LIN). Dieser enthilt
die Familie der von blinden one-turn Zdihlerautomaten akzeptierten Sprachen. Ein blinder
one-turn Zahlerautomat ist ein blinder 1-Z&hlerautomat, der nach Anwendung einer Tran-
sition der Form (z1,x, 22, —m) (m > 0) keine Transition der Form (z}, 2/, z5,n) (n > 0)
ausfithren darf, formal:

Definition 2.1.4 FEs sei A= (Z, X, 2y, 6, F) ein blinder 1-Zihlerautomat. Die Mengen Z
und Z_ seien definiert als:

Z, = {z € Z:3a3zIm((z1,a,z3,m) € 6 Am > 0)}
Z_ = {z € Z:3a3zIMm((z1,a,z,—m) € 6 Am > 0)}

A heifit blinder one-turn Zahlerautomat, wenn aus (z1, w1, m) =% (29, wa,n) und 2z, € Z_
stets zo & Z folgt.

Satz 2.1.4 Die Familie der von blinden one-turn Zdhlerautomaten akzeptierten Sprachen
ist in L(Val, REG,Z) N L(LIN) enthalten.

Beweis. Ein blinder 1-Zihlerautomat kann durch einen Kellerautomaten simuliert wer-
den. Analog kann man blinde one-turn Zahlerautomaten durch one-turn Kellerautomaten
simulieren, die wiederum zu linearen Grammatiken dquivalent sind. O

Als néchstes soll fiir zwei wichtige Operationen gezeigt werden, dafl sie Spezialfille von
Valenztransduktionen sind. Es handelt sich um den Durchschnitt mit reguldren Valenz-
sprachen und die Permutation.

Satz 2.1.5 Fliir jedes Monoid M und jede Sprache L € L(Val, REG, M) ist Id;, eine M-

Valenztransduktion.

Beweis. Es sei A ein M-Valenzautomat mit L(.A) = L. Einen M-Valenztransducer fiir Id,
erhilt man, indem man jede Transition (z, a, 2, m) in A durch die Transition (z, a, a, z',m)
ersetzt, also die Eingabe ausgibt. a

Satz 2.1.6 Essei X ={ay,...,a.} ein Alphabet und ¥ : X* — N" eine Parikh-Abbildung.
Perm := {(v,w) : U(v) = ¥(w)} ist eine Z,-Valenztransduktion.
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Beweis. Ein entsprechender Z,-Valenztransducer ist A = ({¢}, X, X, ¢, 6, {¢}) mit
6:{((]’0@7@]';(]76_;_6_}):]_Sz"jgfr‘}' 0

Eine wichtige Eigenschaft von Q,-Valenzsprachen ist die Semilinearitdt ihrer Parikh-
Mengen, siehe [9, Lemma 2.1.9]. Gewissermaflen als Umkehrung zeigen wir, dafl das Urbild
einer semilinearen Menge eine regulidre Q. -Valenzsprache ist. Dies ist auch eine interes-
sante Erweiterung des bekannten Satzes, daf jede semilineare Menge das Parikh-Bild einer
reguldren Sprache ist.

Satz 2.1.7 Es seien X = {ay,...,a.} ein Alphabet, ¥ : X* — N" eine Parikh-Abbildung
und S C N" eine semilineare Menge. Die Sprache V~1(S) = {w € X* : U(w) € S} ist in
L(Val, REG,Z,).

Beweis. Fiir jede reguldre Sprache L C X* ist Perm(L) in £(Val,REG,Z,), da die
Permutation {iber X eine Z,-Valenztransduktion ist. Nach dem Satz von Parikh gibt es
eine regulire Sprache Lg C X* mit W(Lg) = S. Wegen Perm(Lg) = U~ 1(¥(Lg)) = ¥(.9)
folgt die Behauptung. O

Eine der Steuerung durch Valenzen #@hnliche Idee ist, die Bewertung nicht den Regeln, son-
dern den Terminalsymbolen zuzuordnen. Ein von einer Grammatik erzeugtes Wort wird
genau dann in die Sprache aufgenommen, wenn es mit dem neutralen Element des zugehori-
gen Monoides bewertet wird. Wir untersuchen diese Art von Grammatiken mit bewertetem
Alphabet, da sich die Kantensprache einer Kantengrammatik als eine Sprache {iber einem
bewerteten Alphabet auffassen 148t, siehe Abschnitt 3.2.

Definition 2.1.5 FEs seien T' ein Alphabet, M = (M, o,1) ein Monoid und ¢ : T* — M
ein Monoidhomomorphismus, der als Bewertung (valuation) bezeichnet wird. Fir eine
Grammatik G = (N, T, P,S) und eine Bewertung ¢ definieren wir die erzeugte Sprache
als

L(G,¢) ={w € L(G) : p(w) = 1}.

Die Familie der Sprachen, die durch Grammatiken vom Typ X € {CF, LIN, REG} mit
einer Bewertung iber dem Monoid M erzeugbar sind, wird mit L(Val', X, M) bezeichnet.

Ein Beispiel fiir eine Sprache aus £(Val’, REG, Zy) ist {a"b"c" : n > 0} mit der Bewertung
o(a) = (1,1), ¢(b) = (—1,0), p(c) = (0,—1). Dagegen L}t sich die Sprache L = {a*b™c" :
k > m > n > 0} nicht durch eine kontextfreie Grammatik mit bewertetem Alphabet
(iiber einem beliebigen Monoid) erzeugen, da sowohl a (wegen a € L) als auch b (wegen
ab € L) als auch ¢ (wegen abc € L) mit dem neutralen Element bewertet sein miifiten.
Folgender Zusammenhang besteht zwischen Grammatiken mit bewertetem Alphabet und
Valenzgrammatiken:

Satz 2.1.8 Ist M = (M, 0, 1) kommutativ, so gilt L(X) C L(Val', X, M) C L(Val, X, M)
fiir X € {CF, LIN}.
Fiir beliebige Monoide M = (M, o, 1) gilt L(X) C L(Val', REG, M) C L(Val, REG, M).
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Beweis. Es seien G = (N, T, P, S) eine kontextfreie Grammatik und ¢ : T* — M eine
Bewertung. Die Abbildung ¢ wird auf (N UT)* fortgesetzt, indem ¢(A) fiir alle A € N
auf 1 gesetzt wird. Wir wéhlen H als die M-Valenzgrammatik H = (N,T, P’,S) mit
P ={(A— a,¢p(a)) : A— o € P}. Durch Induktion tiber die Zahl der Ableitungsschritte
zeigt man leicht, dafl fiir kommutatives M ein Paar («,r) genau dann in H ableitbar ist,
wenn « in G ableitbar ist und r = ¢(«a) gilt. Im Falle regulérer Grammatiken kann auf die
Kommutativitdt verzichtet werden. O

2.2 Beispiele

Beispiel 2.2.1 Die Sprache L = {a,b}* \ {(a*b)**! : k > 0} wird von einem blinden one-
turn Zahlerautomaten erkannt. Ein Wort w = a™ba™b- - -a™b- - - a™*+1b ist genau dann in
L, wenn eine der Bedingungen (a)-(d) zutrifft: (a) n; > n;4; firein j <k, (b) n; < nji fir
ein j <k, (¢) ny >k, (d) n1 < k. Ein Wort besitzt Eigenschaft (a) genau dann, wenn es ein
Teilwort der Form a™*ba™b besitzt. Folglich wird die Menge aller Wérter mit Eigenschaft
(a) durch den one-turn Zahlerautomaten A = ({zo, 21, 22, 23}, {a, b}, 20, 6, {23}),

o = {(ZO> a, zyp, 0)7 (207 b; 205 0)7 (Zo, a, z1, 1); (zla a, 21, 1); (zla b> 22, 0)7
(227 a, 22, _1)a (227 ba 22, _1)a (237 a, z3, 0)7 (237 ba 23, O)}

akzeptiert. Analog konstruiert man one-turn Zihlerautomaten B bzw. C bzw. D, die alle
Woérter mit den Eigenschaften (b) bzw. (c) bzw. (d) akzeptieren.

Beispiel 2.2.2 Es sei L = {ajaz, b1by}* und M das syntaktische Monoid von L. Die M-
Valenzgrammatik G = ({S, A, B}, {a,b}, P, S) mit

P = {(S— AB,[A\L),(A— aA,[a1]L), (A — DA, [b1]L), (A — A [A]L),
(B - CLB, [GQ]L)’ (B - bB’ [bQ]L)’ (B - )" [)‘]L)}

erzeugt die Sprache {ww : w € {a,b}*}.

Beispiel 2.2.3 Interessante Zusammenhénge gibt es zwischen Valenztransducern und dem
Problem der ungefihren Ubereinstimmung (approzimate matching) zweier Worter. Fiir
zwei Worter gleicher Lange v = ay...a, und w = by...b, ist der Hamming-Abstand
dp (v, w) definiert als dy (v, w) = card {k : ax # by }.

Der Levenshtejn-Abstand dy, ist zwischen Wortern beliebiger Lénge iiber einem Alphabet
X wie folgt definiert: Es seien # ¢ X ein Blanksymbol und h : (X U {#})* — X* der
Homomorphismus mit h(a) = a,a € X, h(#) = . (h~}(v) ist also fiir v € X* die Menge
aller Worter, die aus v durch Einfiigen von Blanksymbolen hervorgehen.) Fiir v, w € X*
ist

dp(v,w) = min{dy (v, w’) : v' € A (v),w’ € h™ (w), || = |w'|}.
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Der Levenshtejn-Abstand von v und w kann als die minimale Anzahl der Operationen
,,Loschen”, | Einfiigen”, , Ersetzen eines Zeichens” angesehen werden, die man benétigt,
um von v nach w zu gelangen. Deshalb wird er auch als edit distance bezeichnet.

Es sei k € N eine Konstante. Die Relation Ry, = {(v,w) : dp(v,w) < |v|/k} ist eine ra-
tionale Z-Valenztransduktion. Ein zugehoriger Valenztransducer ist A = (Z, X, X, 29, 6, Z)
mit Z = {2p,..., 2} und

6 = {(z,a,a,241,0) :a € X,0<i<k—-1}U
{(zi,a,b,zi01,1) :a€ X, b e XU{ALa#0,0<i<k—1}U
{(zi,\,0,2;,1) :be X, 0< i <k—1}U
{(zk, A\, Ay 20,7) 1 € {—1,0}}.

Mittels der Zustdnde wird die Lénge der Eingabe modulo k gezéhlt; fiir jede Nichtiiber-
einstimmung von Eingabe und Ausgabe wird der Zéhler inkrementiert; nach einem Block
von k Eingabesymbolen darf der Zdhler in einem A-Ubergang dekrementiert werden.

Die Konstruktion 1Bt sich auch auf die in der Molekularbiologie gebriuchlichen Ahnlich-
keitsfunktionen mit affinen Gap-Kosten ausdehnen.

2.3 Ableitungsbidume fiir Valenzgrammatiken

Ein wichtiges Hilfsmittel aus der Theorie der kontextfreien Sprachen sind Ableitungsbdume,
siehe z.B. [18, Abschnitt 4.3]. Dieser Begriff 148t sich auf Valenzgrammatiken verallgemei-
nern.

Definition 2.3.1 Es seien M = (M, 0,1) ein Monoid und G = (N, T, P,S) eine kontext-
freie M- Valenzgrammatik. Fin Ableitungsbaum in G ist ein gerichteter Baum D = (V, E),
der den folgenden Bedingungen geniigt:

1. Jeder Knoten v von D besitzt eine Markierung Label(v) € N UT U {\}; jeder innere
Knoten v besitzt aufserdem eine Bewertung Value(v) € M.

2. Die Sohne eines inneren Knotens sind von links nach rechts geordnet. Besitzt ein
innerer Knoten die Markierung A und die Bewertung m und sind seine Séhne von
links nach rechts mit Xy, ..., Xy markiert, so gibt es in G die Valenzregel
(A— Xy Xp,m).

3. Wenn ein Knoten die Markierung \ hat, so ist er ein Blatt und der einzige Sohn
seines Vaters.

Die Ordnung der Sohne von links nach rechts und die Halbordnung E* kénnen auf eine
Ordnung <prs aller Knoten von V' wie folgt erweitert werden. Es seien v,w € V.
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o Aus (v,w) € E* folgt v <pps w.
e Sind v und w Sohne des gleichen Vaters und ist v links von w, so ist v <ppg w.

o Anderenfalls sei u der letzte gemeinsame Vorginger von v und w und v' sowie w' die
Sohne von u auf den Pfaden nach v sowie w. Ist v' links von w', so gilt v <ppg w.

Diese Ordnung entspricht der Reihenfolge bei der Tiefensuche (depth first search), wobei
die Suche von einem Knoten von links nach rechts erfolgt. Deshalb bezeichnen wir diese
Ordnung als DFS-Ordnung.

Die Markierungen der Bldtter ergeben von links nach rechts (d.h. in der DFS-Ordnung)
ein Wort aus (N UT)*, die Front des Ableitungsbaumes Front(D).

Wir nennen eine Ordnung < auf den inneren Knoten von D zuléssig, wenn sie eine Ver-
feinerung von E* darstellt (d.h., fir alle inneren Knoten v,w gilt: (v,w) € E* — v < w).
Eine zuldssige Ordnung ist z.B. die DFS-Ordnung. Die Bewertung des Ableitungsbaumes
beziiglich einer zuldssigen Ordnung < der inneren Knoten ergibt sich als

Value(D, <) = Value(vy) o Value(vs) o ... o Value(v;),

V1, V2, . ..,v; sind die inneren Knoten, geordnet bzgl. <

Satz 2.3.1 SeiG = (N, T, P, S) eine kontextfreie M-Valenzgrammatik mit M = (M, o,1).
Fir A € Nya € (NUT)*,m € M gilt (A,1) =% (o,m) genau dann, wenn es einen
Ableitungsbaum D = (V, E) in G mit der Wurzelmarkierung A, Front(D) = «a und eine
zuldssige Ordnung < mit Value(D, <) = m gibt.

Beweis. Der Beweis wird durch vollstdndige Induktion iiber die Zahl der Ableitungs-
schritte bzw. die Zahl der inneren Knoten eines Ableitungsbaumes gefithrt. Wegen der im
allgemeinen nichtkommutierenden Valenzen kénnen Unterableitungen nicht unabhingig
voneinander betrachtet werden. Deshalb ist die Strategie des Beweises von [18, Satz 4.1]
(im Induktionsschritt werden der erste Ableitungsschritt bzw. die Wurzel des Ableitungs-
baumes sowie die Unterableitungen bzw. die Unterbdume betrachtet) nicht auf Valenz-
grammatiken iibertragbar; wir betrachten den letzten Ableitungsschritt bzw. ein Blatt des
Ableitungsbaumes.

Fiir ”Ableitungen mit null Schritten und fiir Ableitungsbdume mit null inneren Knoten gilt
die Aquivalenz offensichtlich.

Sei nun fiir alle 0 < i < n gezeigt, daB es genau dann eine Ableitung (A, 1) =% (o, m)
gibt, wenn ein Ableitungsbaum D = (V, E) mit Wurzelmarkierung A, ¢ inneren Knoten
und einer zuldssigen Ordnung < existiert, so daf§ Front(D) = «, Value(D, <) = m gilt.

Wir betrachten eine Ableitung (A,1) =% (a,m). Nach der Definition der Ableitungsre-
lation gibt es B € N, a1, a9, € (NUT)*,my,my € M mit o = a18as, m = my o my,
(A, 1) =% (qBag,my), (B — (3,my) € P. Nach Induktionsvoraussetzung gibt es einen
Ableitungsbaum D = (V| E) mit (n — 1) inneren Knoten mit einer zuldssigen Ordnung <,
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so dafl Front(D) = a3 Bay, Value(D, <) = m; erfiillt ist. Es sei b das in der DFS-Ordnung
(laq| + 1)-te Blatt von D. Es hat die Markierung B. Fiigt man zu D noch Blitter als
Sohne von b hinzu, deren Markierungen von links nach rechts 3 ergeben, und bekommt b
die Bewertung ms, so ist wegen (B — (3, ms) € P der entstandene Baum D' = (V' E') ein
Ableitungsbaum mit Wurzelmarkierung A, n inneren Knoten und Front(D’) = «a. Die auf
den inneren Knoten von D’ definierte Ordnungsrelation <’ mit (v < w) <= (v <" w) fiir
alle inneren Knoten v, w in D und v <’ b fiir alle inneren Knoten v in D’ ist zulassig. Es
ist Value(D', <) = my o ma.

Umgekehrt sei D = (V, E) ein Ableitungsbaum mit n inneren Knoten und einer zuldssigen
Ordnung <. Ist v der beziiglich < maximale innere Knoten, so sind alle S6hne von v
Blatter. Entfernt man aus D die S6hne von v und streicht die Bewertung von v, so ist der
entstandene Baum D’ ein Ableitungsbaum mit n — 1 inneren Knoten (v ist jetzt ein Blatt).
Die Einschrankung <’ von < auf die inneren Knoten von D’ ist eine zuldssige Ordnung
fiir D'. Ist B die Markierung von v und g die Markierung der S6hne von v von links nach
rechts, so gibt es oy, ap € (N UT)* mit Front(D) = ayfBas, Front(D') = a1 Bay. Es gilt
auBerdem m = my o my fiir m = Value(D, <), my; = Value(D', <'), my = Value(v) (in D).
Nach Induktionsvoraussetzung gibt es eine Ableitung (A4,1) =% ' (a1 Bag, my). Nach der
Definition eines Ableitungsbaumes gibt es eine Valenzregel (B — 3, ms). Damit existiert
auch eine Ableitung (4, 1) =% (a18aq, m). O

Falls M kommutativ ist, hat die Ordnungsrelation keinen Einflu} auf die Bewertung des
Ableitungsbaumes:

Satz 2.3.2 Es seien M = (M, 0,1) ein kommutatives Monoid und G = (N, T, P,S) eine
konteztfreie M- Valenzgrammatik. Fir A € N,a € (NUT)* ,m € M gilt (A, 1) =¢ (a,m)
genau dann, wenn es einen Ableitungsbaum D = (V, E) in G mit der Wurzelmarkierung
A, Fronl(D) = a und Value(D,<prg) = m gibt.

Daraus folgt, da man Induktionsbeweise iiber die Zahl der Ableitungsschritte fiir Va-
lenzgrammatiken iiber kommutativen Monoiden dhnlich wie fiir kontextfreie Grammatiken
fithren kann:

Behauptung 2.3.3 Es seien M = (M, o, 1) ein kommutatives Monoid und G = (N, T, P, S)
eine kontextfreie M-Valenzgrammatik. Firn > 2, A € N, a € (NUT)*, r € M gilt
(A, 1) =% (o, r) genau dann, wenn es eine Regel (A — I ... Ly, ro) mit I, ..., I, € NUT
sowie ai, ..., € (NUT)*, ny,...,ny € N und rq,...,r € M derart gibt, dafs
O =aQu,n=n1+...+n,+1, 7 =rg0or 0...or, und (I;,1) =5 (aj,r;)
firg=1,...,m gilt.

Beweis. Es sei D ein der Ableitung (A4,1) =% (a,r) entsprechender Ableitungsbaum.
Die Wurzel von D sei w, die S6hne von w seien von links nach rechts vy, ..., v;. Es seien
Dy, ..., D die Unterbdume mit den Wurzeln vy, ..., v;. Die Front von D ergibt sich als
Front(D;) - - - Front(Dy), die Bewertung von D bzgl. der DFS-Ordnung ist

Value(D, <prg) = Value(w) o Value(D1, <ppg) o - - - o Value(Dy,, <prs).



Kapitel 2: Valenzgrammatiken 24

Die Behauptung folgt nun sofort aus dem vorigen Satz. a

2.4 Normalformen fiir Valenzgrammatiken

In diesem Abschnitt wird gezeigt, dafl es — analog zu den Chomsky- und Greibach - Nor-
malformen fiir kontextfreie Grammatiken — Normalformen fiir Z;-Valenzgrammatiken gibt.
Das Hauptresultat dieses Abschnittes ist der folgende

Satz 2.4.1 Zu jeder Zg-Valenzgrammatik G gibt es dquivalente Zy-Valenzgrammatiken
G; = (N, T,P,S;), i = 1,2,3, wobei die Valenzregeln der einzelnen Grammatiken fol-
gende Formen haben:

e Gi: (A— BC,7) bzw. (A — a,0) mit A,B,C € Ny,a e T,||f|; < 1;
o Gy: (A — BC,0) bzw. (A— a,7) mit A,B,C € Ny,a €T, ||A|; < 1;
o G3: (A—aa,7) mit A€ N3, € Nja e T,||r]]; <1.

Dabei und im folgenden verwenden wir die Konvention, daf§ A, B, C' Nichtterminalsymbole,
a ein Terminalsymbol und « ein Nichtterminalwort sind.

Eine Konsequenz aus Satz 2.4.1 ist, dafl Normalformen auch fiir ungeordnete Vektorgram-
matiken existieren und die Sprachfamilie £(Val, CF,Q,) = L(UV,CF) in der Komple-
xitédtsklasse LOGCFL enthalten ist. In [36] zeigte SATTA das Komplexitétsresultat; die
Frage nach Normalformen blieb jedoch offen.

Da der Beweis von Satz 2.4.1 recht aufwendig ist, wird er in eine Reihe von Behauptungen
zerlegt. Die meisten Beweise beruhen auf dem in Behauptung 2.3.3 gezeigten Induktions-
prinzip. Behauptung 2.4.2 ist ein Analogon zum bekannten Satz von Parikh, dal zu jeder
kontextfreien Sprache eine Parikh-iquivalente reguldre Sprache existiert. In den Behaup-
tungen 2.4.3-2.4.5 werden die Regeln der Form A — X beseitigt; anschliefend wird in den
Behauptungen 2.4.6-2.4.10 gezeigt, dal auch Kettenregeln der Form A — B eliminiert
werden konnen; schliellich werden in den Behauptungen 2.4.11-2.4.15 die Valenzvektoren
normiert und die gewiinschten Normalformen hergestellt.

Das Alphabet Xy sei fiir k > 1 im folgenden als ¥y = { X1, ..., X3} U{Y7,...,Ys} definiert.
Zwischen Z* und ¥, definieren wir die Abbildungen:

k
X;, fallsr; >0
word : Z¥ — X7 mit word (Z ria) = C‘l"l‘ . .CILW‘, C;, = { ! =
— Y; falls r; < 0

k
vector : ¥f — ZF mit vector(a) = Z(|O‘|Xi — |aly;)é;
i=1
Die Abbildung vector wird im folgenden haufig auf ¥* mit ¥, C X erweitert vermoge
vector(a) = vector(my, (o)) fiir a € X*.
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Behauptung 2.4.2 Zu jeder kontextfreien Zy- Valenzgrammatik G = (N, T, P, S) mit Kern-
regeln der Form A — a, A € N,a € N*, existiert eine requlire Zy-Valenzgrammatik H, so
dafs (N, 7) genau dann in G ableitbar ist, wenn (X, 7) in H ableitbar ist. Dabei kann man
H so wdihlen, daff (X, 7) in genau ||7]|; + 1 Schritten ableitbar ist.

Beweis. Es sei G’ die kontextfreie Grammatik G’ = (N, Xy, P’,S) mit der Regelmenge
P ={A — aword(7) : « € N*,(A — a,7) € P}. Es gilt (A,0) =¢ (\,7) genau dann,
wenn es ein § € ¥ mit A =%, § und vector(5) = 7 gibt.

Als néchstes zeigen wir, dafl die Relation
T C3p x Xy mit 7 = {(v, w) : vector(v) = vector(w)}

eine rationale Z-Valenztransduktion ist. Ein zugehoriger Z-Valenztransducer ist
A= ({z}, 2k, Xk, 2,6, {z}) mit

6 = {(z,a,b,z vector(a) — vector(b)) : a,b € X U {A}}.

Damit ist L' := 7(L(G")) = {8 € B¢ : (S,0) =% () vector(3))}. Die Sprache L” =
{word(7) : (S,0) =% (A, 7)} ergibt sich als L"” = L' N ({ X1 }* U{Y1}") - { X} U{Yi}).
Wegen der AbschluBeigenschaften der Familie der Valenzsprachen ist L” € L£(Val, CF, Zj,).
Da die Parikh-Menge einer Sprache aus L£(Val, CF,Z;) semilinear ist, siehe [9, Lemma
2.1.9], existiert eine regulire Grammatik H’' mit Regeln der Form A — aB, A — )\ mit
U(L(H')) =¥(L").

Nach den Konstruktionen gilt

vector(L(H')) = vector(L") = vector(L') = vector(L(G")) = {7: (5,0) =% (A, )}

Dabei folgt die erste Gleichheit aus der Inklusion (¥(a) = ¥(3) — vector(a) = vector(()).

SchliefSlich konstruieren wir aus H' die gesuchte reguliare Valenzgrammatik H, indem jede
Regel A — aB in die Valenzregel (A — B, vector(a)) umgeformt wird und die Regeln
A — X durch die Valenzregeln (A — \,0) ersetzt werden. In H ist (\,7) genau dann
ableitbar, wenn es ein Wort $ € L(H') mit vector(3) = 7 gibt, d.h. genau dann, wenn
(A, 7) in G ableitbar ist.

Ferner 148t sich feststellen, daf ||vector(3)||; = |B] fiix B € L(H’) gilt. Mithin 148t sich
jedes in H ableitbare Paar (A, 7) in genau ||7]|; + 1 Schritten ableiten. O

Behauptung 2.4.3 Zu jeder Zi-Valenzgrammatik existiert eine dquivalente Zy - Valenz-
grammatik mit Kernregeln der Form A — BC, A — B, A —a, A — \.

Beweis. Es sei G = (N, T, P,S) eine Z;-Valenzgrammatik. Zunéchst fithrt man fiir jedes
Terminalsymbol a ein neues Nichtterminal o’ ein. Auf jeder rechten Regelseite wird a durch
a’ ersetzt; es werden die Valenzregeln (a' — a,0) fiir alle a € T hinzugefiigt.
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Anschlieend werden fiir jede Valenzregel p = (A — Bj...B,,,7) mit m > 3 die neuen
Nichtterminale Aﬁp )., AY und die Valenzregeln

m—2

(A— B AP 7). (AP = B, AP 0), 1 <i<m -3, (4%, - B,_1B,,0)

m—2

eingefiihrt. a

Behauptung 2.4.4 Zu jeder kontextfreien Zy-Valenzgrammatik existiert eine dquivalente
Zy.-Valenzgrammatik G' = (NUN', T, P',S) mit NN N = 0, wobei die Kernregeln von P’
eine der folgenden Formen besitzen:

A— BC,A— B'CA— BC' A" - B(C'A— B,A — B, A—a A — )

mit A,B,C € NJA',B',C'" € N',a eT.

Beweis. Es sei G = (N, T, P,S) eine Z;-Valenzgrammatik mit Regeln wie in Behaup-
tung 2.4.3. Wir konstruieren jetzt die Valenzgrammatik G' = (N U N’, T, P', S). Dabei ist
N’ eine disjunkte Kopie von N (die Kopie von A € N wird mit A’ bezeichnet), und die
Regelmenge ergibt sich als

P = {(A— BC,7),(A— B'C,7),(A— BC",7),(A" - B'C'",7) : (A— BC,7) € P}U
{(A— B,7),(A" - B',F): (A— B,7) € P}U
{(A—a,7): (A—a,7)e PYU{(A = \7): (A— \T)€ P}

Durch vollsténdige Induktion iiber die Zahl der Ableitungsschritte entsprechend Behaup-
tung 2.3.3 zeigt man leicht:

1. Das einzige aus A’ € N’ ableitbare Terminalwort ist \; es gilt (4’,0) =%, (A, 7) genau
dann, wenn (A,0) = (A7) gilt.

2. Fiir A € Nyw € T*,7 € ZF gilt (A, 6) =& (w,T) genau dann, wenn w # A\ und
(4,0) =% (w,7). O

Behauptung 2.4.5 Zu jeder kontextfreien Zi-Valenzgrammatik gibt es eine dquivalente
Zy.-Valenzgrammatik mit Kernregeln der Form A — BC, A — B, A — a.

Beweis. Es sei G = (N U N/, T, P’ S) eine wie in Behauptung 2.4.4 konstruierte Va-
lenzgrammatik. Wir zerlegen P’ als P’ = P, U P, U P;, wobei die Kernregeln von P;
bzw. P, bzw. P3 die Form A — BC,A — B,A — a bzw. A — B'C,A — BC’ bzw.
A —- BC,A —- B, A — Amit A,B,C € N,A,B',C" € N',a € T besitzen.

Fiir alle A’ € N’ kann man geméifl Behauptung 2.4.2 eine reguléare Valenzgrammatik H s =
(Nar, T, Par, Sar) konstruieren, so dal das Paar (A, 7) genau dann in H 4 ableitbar ist, wenn
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es in G eine Ableitung (4’,0) =% (\,7) gibt. Man kann 0.B.d.A. verlangen, daB N, und
Np: fir A’ # B’ disjunkt sind.

Es sei H' = (Np/, T, Py, S) die Valenzgrammatik mit Ngr = N U J 4y Nas und

Py = PU |J Ppu
B’eN’
{(A—> SB/C,T_) : (A—>B,C,f> S PQ}U
{(A— Se&/B,7): (A — BC',T) € P}

Durch vollstandige Induktion iiber die Anzahl der Ableitungsschritte zeigt man leicht
(A,0) =5 (w,7) < (A,0) =% (w,7) fir Ac Nywe TH,7ezk

und folglich L(H') = L(G).

Schliefllich konstruieren wir die Valenzgrammatik H = (Ng,T, Py, S) mit Ny = N U
Uuen'(Nar x N) und den folgenden Valenzregeln:

Py = PU{(A— (Sp,C),7): (A— SpC,F) € Py} U
U U X0 - x0),7: (X =Y.7)ePp}u

CeN B'eN’

U U {x.0)—=Cm: (X -\ e Py}

CeN B'eN’

Wie man leicht durch Induktion iiber die Zahl der Ableitungsschritte sieht, existiert fiir
Y € Ng, B € N,C e N, weT", 7e ZF eine Ableitung ((Y,C),0) =% (w,7) genau
dann, wenn es Ableitungen (Y, 0) =6, (C.7) und (C,71) =% (w,7) gibt. Daraus folgt
ebenfalls per Induktion, daf eine Ableitung (A,0) =% (w,) genau dann existiert, wenn
es auch in H' eine solche Ableitung gibt. Folglich ist H dquivalent zu H' und damit zu G.

O

Definition 2.4.1 Es sei G = (N, T, P,S) eine Zy-Valenzgrammatik mit Kernregeln der
Form A — BC,A — B, A — a. Ein Loop ist eine Ableitung (A,0) = (A,7) mit A€ N.

Fir A€ N bzw. fir M C N definieren wir

Loop(A) = {7: (A, 6) =5 (A7)}

Loop(M) = {i:¥= Y Fa,7s € Loop(A) fir A € M}
AeM

=

In einem Ableitungsbaum in G heifit ein Weg von s nach t Loop-Pfad, falls s und t die
gleiche Markierung haben und der Baum zwischen s und t ein Weg ist. Eine Ableitung
heifst loop-frei, falls der zugehdrige Ableitungsbaum keinen Loop-Pfad enthdlt.
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Man beachte, daB Loop(M) ein Untermonoid von Zy ist, d.h., es gilt 0 € Loop(M), und
es besteht Abschlu unter Vektoraddition.

Behauptung 2.4.6 Es sei G = (N, T, P,S) eine Zy-Valenzgrammatik mit Kernregeln der
Form A — BC,A — B,A — a. Dann gilt (S,0) =% (w,7) genau dann, wenn es eine
Menge M C N sowie 11,75 gibt mit:

e [s ezistiert in G eine loop-freie Ableitung D von (w, ) mit M C N(D), wobei N(D)
die Menge der in D auftretenden Nichtterminale ist.

Beweis. Es sei D eine loop-freie Ableitung von (w, 1) mit M C N (D), und 75 = > 4., 74
mit 74 € Loop(A) sei ein Vektor aus Loop(M). Im zu D gehorigen Ableitungsbaum existiert
fiir alle A € M ein Knoten mit der Markierung A. Ersetzt man fiir alle A € M einen
Knoten mit der Markierung A durch einen Loop-Pfad mit der Bewertung 74, so entsteht
ein Ableitungsbaum mit Front w und Bewertung 7} + 5.

Sei andererseits eine Ableitung von (w,7) gegeben und sei Ty ein zugehoriger Ableitungs-
baum. Wir konstruieren eine (endliche) Folge von Ableitungsbdumen Ty, T4, . . ., T,,. Enthélt
der Baum T;,7 > 0, keinen Loop-Pfad, so ist m = i. Anderenfalls sei s; der beziiglich der
DFS-Ordnung minimale Knoten in 7}, der Startknoten eines Loop-Pfades in 7T; ist. Es sei
t; der Endknoten des lingsten in s; startenden Loop-Pfades. Den Baum 7T;,; erhilt man
durch Entfernen des Loop-Pfades von s; nach t;, d.h., der Unterbaum mit der Wurzel s;
wird entfernt und der Unterbaum mit der Wurzel ¢; wird an der Stelle von s; eingefiigt.

Da s; und t; die gleiche Markierung A; besitzen, ist mit T; auch T;,; ein Ableitungsbaum.
Weil aus T; lediglich ein Loop-Pfad entfernt wurde, ist die Front von T; gleich der Front
von T;,; die Bewertung v;,1 von T;,; ergibt sich als Differenz aus der Bewertung v; von
T; und der Bewertung l_; des Pfades von s; nach ¢;.

Per Induktion ergibt sich Front(7;) = Front(T,,) und 7 = 7, + 75 mit ¥; = ¥, und
7 =S . Es gilt 7% € Loop(M) mit M = {A;: 0<i<m—1}.
Schliellich ist durch die Wahl von s; und t; gewéhrleistet, dafl ¢; in der DFS-Ordnung

kleiner als s;;; ist und damit in den Badumen 7;,4,...,T,, enthalten ist. Folglich ist jedes
A; mit 0 <7 < m — 1 als Markierung eines Knoten von T, enthalten, und damit folgt
M C N(T,,). O

Behauptung 2.4.7 Es sei G = (N, T, P, S) eine Zy-Valenzgrammatik mit Kernregeln der
Form A — BC,A — B,A — a. Fir alle M C N gibt es eine Zy-Valenzgrammatik Hy,
mit Kernregeln der Form A — BC, A — a, so daff (w,T) genau dann in Hy abgeleitet
werden kann, wenn es in G eine loop-freie Ableitung D mit M C N(D) fiir (w,T) gibt.
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Beweis. Zunichst konstruieren wir eine Menge (), deren Elemente aus einer Valenzregel
und einer Teilmenge von N bestehen. Fiir jede loop-freie Ableitung

D = (A,0) =5 (A7) =¢ (o, F) mit A,A' € N,a € TUNN

nehmen wir ((A — «,7), N(D)) in Q auf.

Offensichtlich ist @ endlich. Es sei jetzt N = N x P(N) und P’ die wie folgt erhaltene
Menge von Valenzregeln: Fiir ((A — BC,7), M) € @ und fiir alle M C N enthélt P’ alle
Valenzregeln ((A, M) — (B, My)(C, M), ) mit M C My U M; U Ms. Fiir jedes Paar

(A — a,7),My) € Q enthdlt P’ alle Valenzregeln ((A, M) — a,7) mit M C M,. Die
gesuchte Valenzgrammatik H), ergibt sich fir M C N als Hy = (N', T, P', (S, M)).

Durch vollstédndige Induktion entsprechend Behauptung 2.3.3 zeigt man, daf§ fir w € T
mit |w| > 2 genau dann eine loop-freie Ableitung D : (A4,0) =¢ (w,7) mit M C N(D)
existiert, wenn es loop-freie Ableitungen

DO : (A, 6) :>Zv (BC, 770), D1 : (8,6) :>*G (wl,f'l), D2 : (C, 6) :>*G (wZ,FQ)

mit w = wlwg,F: 770 +T71 +F2, M Q N(DO) UN(Dl) U N(Dg) glbt

Mit Hilfe dieses Induktionsprinzip zeigt man, dafl genau dann eine loop-freie Ableitung D :
(A4,0) =¢ (w,7) mit M C N(D) existiert, wenn es in Hy, eine Ableitung ((A, M), 0) =7,
(w,T) gibt. O

Behauptung 2.4.8 Es sei G = (N, T, P, S) eine Zy-Valenzgrammatik mit Kernregeln der
Form A — BC,A — B, A — a. Fir alle M C N gibt es eine requlire Zy- Valenzgrammatik
Ky = (Nag, T, Pyg, Syr) mit (Syy,0) =%, (A7) <= 7€ Loop(M). Ferner ist (\,7) in
||71]1 + 1 Schritten in Ky ableitbar, falls 7 € Loop(M).

Beweis. Es sei P, die Menge aller Valenzregeln aus P mit einer Kernregel der Form
A — B. Fiir ein Nichtterminal A sei G4 = (N,T, P4, A) mit Py = P, U {(A — X,0)}.
Offensichtlich gilt (A,0) =% (A,7) genau dann, wenn (A,0) =&, (A, 7). Durch Um-
benennung erhalten wir die reguldren Zg-Valenzgrammatiken G’y = (N, T, P}, S’) mit
(A,0) =&, (A7) genau dann, wenn (S, 0) = (A, 7) und N, N N =0 fiir A # B.

Fir M = {Ay,..., Ay} C N erhalten wir Gay = (Nar, T, Par, Syr) mit Ny = U e Nas
Py = Unens PA U (S — S, -S4 ,0)}. Offensichtlich ist (), 7) genau dann in G
ableitbar, wenn es fiir i = 1,...,m Vektoren 7; gibt, so daf (), 7) in Gy, erzeugbar ist und
=Y 7 gilt, also wenn 7 € Loop(M) erfiillt ist.

Die gesuchte regulédre Z;-Valenzgrammatik K, konstruieren wir geméfl Behauptung 2.4.2
aus Gyy. O

Behauptung 2.4.9 Es seien Gy = (N1, T, P1,S1) eine kontextfreie Zy-Valenzgrammatik
mit Kernregeln der Form A — BC, A — a und Gy = (N3, T, P2, Ss) eine requlire Zy-
Valenzgrammatik mit Kernregeln der Form A — B, A — \.
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Fiir ¢ € N gibt es eine kontextfreie Zy-Valenzgrammatik G = (N, T, P, S) mit Kernregeln
der Form A — BC, A — a, so daf§ (S,0) =% (w,7) fir w € TT und ¥ € Z* genau dann
gilt, wenn es 7,7y € ZF mit folgenden Eigenschaften gibt:

(w,7) ist in Gy ableitbar.

w
(A, 7) ist in héchstens clw| Schritten in Gy ableitbar.

Beweis. G wird durch eine Tripelkonstruktion gefunden. Die Menge der Nichtterminale N
ergibt sich als N = (NoU{A}) x (N;UT) x (N2 U{A}), das Startsymbol ist S = (Sa, S1, \).
Wir konstruieren die folgenden Regelmengen )1, (2, Q3:

Ay — BiCy,7) € Py mit Ay, B;,C; € N; enthélt @), alle Regeln
AQ, Bl,Bg)(BQ, 01702),F1) mlt AQ,BQ, CQ € N2 U {)\}

e Fiir jede Regel
((A27 Al; 02) -

— A~~~

Ay — a,7) € Pp mit Ay € Nj,a € T enthilt )y alle Regeln
AQ,(L, Cg),Fl) mit AQ,CQ € Ny U {)\}

e Fiir jede Regel
((A27 Ala 02) —

e Fiir jede Ableitung (Ay =55 B, ) in G mit Ay, By € No U {A} enthilt Q3 alle
Regeln ((Ay, a, By) — a,7) mit a € T.

—~

Es sei zunédchst G' = (N, T, P, S) mit P’ = 1 U Q2 U Q3. Da durch die Regeln von @4
und ()2 nur Nichtterminale und durch Regeln von ()3 nur Terminale erzeugt werden, kann
eine Ableitung in G’ 0.B.d.A. so erfolgen, dafi zuerst mittels der Regeln aus @; und Q-
ein Paar (o, 7)) mit a € ((No U{A}) x T x (Ny U {A}))* und anschliefend aus («, 7)) mit
Hilfe der Regeln aus Q3 ein Paar (w, 7] + 73) mit w € T* erzeugt wird. Durch vollstandige
Induktion iiber die Zahl der Ableitungsschritte entsprechend Behauptung 2.3.3 zeigt man
leicht:

e Aus ((4, A1, B),0) mit A, B € N;U{\}, A; € Ny ist in G’ das Paar
((Cl,al, Dl)(CQ,a,g, Dg) s (Ck,&k,Dk),’F) mit Ci, Dl c N2 U {)\},ai c T, 1 S ) S k

genau dann ableitbar, wenn (ajas - - - ag, 7) in G7 aus A; ableitbar ist und

[ ] AUS ((D(), as, Dl)(Dl, as, Dg) e (Dk—h ag, Dk), 6) mit DO, Dz - N2 U {)\}, a; c T,
1 <i < kist das Paar (w, ) mit w € T* genau dann ableitbar, wenn w = ajas - - - ay,
gilt und (Dy, 7) in G aus (Do, 0) in hochstens ¢ - k Schritten ableitbar ist.

Damit erfiillt G’ die in der Behauptung genannten Forderungen an G beziiglich des Ab-
leitungsverhaltens. Die Valenzgrammatik G mit der geforderten Form der Kernregeln ist
G = (N,T,P,S) mit P = Qo U Q. Dabei erhilt man die Regelmenge @)y, indem fiir jedes
Paar von Regeln ((Az, A1, By) — (Ag,a, B2)™1) € Q2, ((A2,a, B2) — a,73) € Q3 die Regel
((Ag, A1, By) — a, T + T5) eingefiihrt wird. a
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Behauptung 2.4.10 Zu jeder kontextfreien Zy-Valenzgrammatik gibt es eine dquivalente
Zy.-Valenzgrammatik mit Kernregeln der Form A — BC, A — a.

Beweis. Essei G = (N, T, P,S) eine Z;-Valenzgrammatik mit Kernregeln der Form
A— BC,A — B,A — a. Fir M C N seien Hy; und K); die geméfl den Behauptungen
2.4.7, 2.4.8 konstruierten Valenzgrammatiken.

Es sei ¢j; das Maximum iiber die Normen der in H,; auftretenden Valenzvektoren. Nach
Behauptung 2.4.9 kénnen wir eine Grammatik G, konstruieren, in der (w,0) mit w € T+
genau dann ableitbar ist, wenn es ein 7 € Z* gibt, so dal (w,7) in Hy, ableitbar ist und
(A, —7) in Ky in hochstens 2c¢p/|w| Schritten ableitbar ist.

Wegen der Form der Kernregeln von Hy, ist jedes in H); ableitbare Paar (w, ) in genau
2|w| —1 Schritten ableitbar. Die Norm von 7148t sich deshalb durch ||7]]; < ep(2Jw|—1) <
2¢pr|w| — 1 abschétzen. Sind (w,7) in Hy; und (A, —7) in K, ableitbar, so ist (A, —7) in
hochstens 2¢y,|w| Schritten in K, ableitbar.

Aufgrund der Konstruktionen von Hys, Ky und Gy ist damit gezeigt, dal w € L(Gyy)
genau dann gilt, wenn es eine loop-freie Ableitung D von (w,7) mit M C N(D) und
—7 € Loop(M) gibt. Nach Behauptung 2.4.6 ist L(G) = U,;cn L(GuM)-

Schliefllich konstruiert man aus den Grammatiken G,;, M C N, eine Valenzgrammatik H
mit Kernregeln der Form A — BC, A — a und L(H) = ey L(Gn) = L(G). O

Behauptung 2.4.11 Zu jeder kontextfreien Zy-Valenzgrammatik gibt es eine dquivalente
Zy.- Valenzgrammatik mit Valenzregeln der Form (A — BC,7), (A — a,0).

Beweis. Essei G = (N, T, P, S) eine kontextfreie Z;-Valenzgrammatik mit Kernregeln der
Form A — BC'in P;, A — ain P, und P = P, U P,. Fiir jedes a € T fiihren wir ein neues
Nichtterminalsymbol a’ ein und konstruieren G' = (N', T, P/, S) mit N' = NU{d' :a € T}
und

P = PU{(d —a,0)}U
{(A—dC,7,+7,): (A— BC,7),(B— a,m) € P}U
{(A— Bd',71 +713): (A— BC,7),(C —a,r) € PtU
{(A—=db, 71 +7m+73): (A— BC, 1), (B — a,r),(C —b13) € P}

Durch vollstédndige Induktion iiber die Zahl der Ableitungsschritte zeigt man, da§ (w, )
mit w € T, |w| > 2 genau dann in G ableitbar ist, wenn es in G’ abgeleitet werden
kann. Durch Hinzufiigen der in G enthaltenen Regeln (S — a,0) erhilt man eine zu G
dquivalente Valenzgrammatik. a

Behauptung 2.4.12 Zu jeder kontextfreien Zy-Valenzgrammatik gibt es eine dquivalente
Zy,- Valenzgrammatik mit Valenzregeln der Form (A — BC,7), "=re; mit j € {1,...,k},
r € Z bzw. (A — a,0).
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Beweis. Es sei G = (N,T,P,S) eine Valenzgrammatik mit Regeln wie in Behaup-
tung 2.4.11. Wir konstruieren zunéichst Gy = (N, T, P;, S) mit

P = {(A—a,0):(A—a,0) cP}U
{(A=a,P:ae N k+1<]|a| <k(k+1),(A,0) =5 (o, )} U
(S = ,0) e N*,2< Ja] < k. (5,0) = (a,0))

Da einer Regel in P; eine Ableitung in G entspricht, ist L(G1) C L(G). Wir zeigen jetzt
L(G) C L(G)). Es reicht zu zeigen, daf aus (S,0) =4 (o, 0) mit @ € N* stets (S,0) =&,
(a,0) folgt. Fiir |a| < k gilt diese Beziehung nach Definition von Gi. Fiir || > &k + 1
beweisen wir durch Induktion iiber die Lénge von a:

(A4,0) =%, (a,7) <= (A,0) =5 (a,7) fir a € N, o] > k+ 1, 7€ ZF (%)

Fir k +1 < |a| < k(k+ 1) gilt (*) nach Konstruktion von Gy. Sei nun fiir alle m mit
k(k+ 1) <m < n die Giiltigkeit von (*) gezeigt.

Ist (o, ) mit || =n in G aus (A, 6) ableitbar, so existieren ein 7y € Z*, B; € N, 3; € N*,
7eZF, 1<i<k+1, mit

k+1

(A76) :*G (Bl o 'Bk+17F0)a (3176) :*G (ﬁlar_‘;)a 1 S l S k+ ]-7 = ﬁl o 'ﬁk—i—h F: ZF;
=0

Wir setzen jetzt

L k+1

- Bi, i), falls |G| < k . - -

(vi, 8i) = { EB‘ (—]»; sonst‘ | sowie ¥ =1+ Yer1, 8§ = 7o + E Si.
iy V) i=1

Es gilt (A,0) =% (7,5) und, wegen k + 1 < |y| < k(k + 1), (4,0) =¢, (7,5). AuBerdem
ist (03;,7;) in Gy aus (7, §;) ableitbar. Fiir |5;| < k ist dies trivial; fiir |5;| > k+ 1 folgt dies
aus der Induktionsannahme (denn es gilt |3;| < n). Damit ist L(G) C L(G;) und folglich
L(G) = L(G) gezeigt.

Als néchstes konstruieren wir die gesuchte Zg-Valenzgrammatik Go mit Valenzregeln der
Form (A — BC,7), 7" =réj, r € Z,1 < j < k, und (A — a,@). Dazu werden fiir jede
Valenzregel (A; — By - - By, Zle ri€;) in Py die neuen Nichtterminale Ay, ..., A,,_1 sowie
die Valenzregeln (A; — B;Ai1,G), 1 <i<m—2, (A1 — Bn_1Bm, @n_1) eingefiihrt,
wobei ¢; = r;¢; fir 1 <i¢ < kund ¢; =0 fir £+ 1 <7 < m gilt. Analog wird jede Regel
(S— By---Bp,0), 2 <m <k, durch Valenzregeln der Form (A — BC, 0) ersetzt. O

Behauptung 2.4.13 Zu jeder kontextfreien Zy-Valenzgrammatik gibt es eine dquivalente
Zy.- Valenzgrammatik mit Valenzregeln der Form (A — BC,7), ||F]]1 <1, und (A — a,0).
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Beweis. Es sei G = (N, T, P, S) eine Valenzgrammatik iiber Zj; mit Valenzregeln der in
Behauptung 2.4.12 genannten Form. Es sei ¢ das Maximum iiber die Normen der Valenz-
vektoren von G, und X = {0,...,c—1}* sei die Menge aller k-dimensionalen Vektoren mit
Komponenten aus {0,...,c— 1}.

-,

Wir konstruieren H = (N, T, P, S’") mit N = X x N x X, S’ = (6, S,0). P’ enthélt fur
jede Regel (A — BC,7) € P und fiir alle Z, 7, Z € X die Regel

((f, A,2) — (@, B, )7, C, 5),7?/) mit @ = (& + 7) rest ¢, 77 = (7 + ) div .

Wegen 7 = rée; und —c¢ < r < ¢ hat 7 die Form 7 = r'e;,—1 < r’ < 1. Fiir jede Regel
(A — a,0) € P und alle € X enthilt P’ die Regel ((#, A,Z) — a,0). Wie man leicht
nachrechnet, ist 7= cr’ 4+ (' — ¥).

H besitzt offenbar die in der Behauptung angegebene Form. Um die Aquivalenz von G und
H zu beweisen, zeigen wir die folgenden Aussagen:

1. Gibt es fiir A € N,w € TT,m € N,7 € ZF eine Ableitung (A, 0) =% (w,7) in G, so
existiert fir alle 7,2 € X mit (2 — Z) = 7(modc) eine Ableitung ((Z, A, 2),0) =%
(w,r") mit er’ + (7 — &) = 7.

2. Gibt es fir A€ N,w e Tt,m € N, € Z*, 7,7 € X eine Ableitung (7, A,2),0) =7
(w,r’) in H, so existiert in G eine Ableitung (A 0) =% (w,7) mit cr’ + (2 — ) =T

Aus 1. und 2. folgt speziell (A4,0) =% (w,0) <= ((0,4,0),0) =% (w,0) und damit
L(G) = L(H). Wir zeigen die Giiltigkeit von 1. und 2. durch vollstdndige Induktion iiber
die Zahl der Ableitungsschritte m.

Fiir m = 1 gelten die Aussagen wegen der Definition von H.

Seien nun die Aussagen 1. und 2. fiir Ableitungen der Lénge i < m gezeigt und gelte
(A,0) =% (w, 7). Dann gibt es Ableitungen
(A4,0) =¢ (BC, ), (B,0) =& (wi,7), (C,0) =% (ws, )

mit w = wywy, =79+ 71+ 7, m =1+ 75+ 1.
Es seien &, 2 Vektoren aus X mit (Z — &) rest ¢ = Frest c. In H gibt es die Ableitung

((Z,A,2),0) =y (¢, B,§)(i],C, 2),ry) mit & = (& + 7)) rest ¢, 7o = (T + 7p) dive

fiir beliebige i € X, insbesondere fiir y = (:;’ + 71) rest c. Wegen der Wahl von Z 4 v,z
gilt

(Z-%) = 7 (mod c)
= 770+771+772 (modc)
(Z-7) = (Z-§)+@F—a)+ (@ -7 (modc)
= (5—§)+F1+Fo (modc)
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Folglich ist (Z — ) = 7 (mod ¢). Nach Induktionsannahme gibt es in H die Ableitungen

(@, B,§),0) =Y (w,™1) mit e+ (F— &) =7,
((y_" C’ 5‘)7 6) :>‘}-I (/LUZ, 7:;2) mlt C’]:;Z —+ (Z— i~

Damit gibt es in H die Ableitung ((Z, A, 2),0) =7 (w, ') mit ' = g 4 'y + /5. Wegen
To = cr'p + (x/ — ) ergibt sich

—

F=f+ 7+ =clo+ (@ — &) +eri + (§— ) +erla+ (2= §) = + (Z - 1),

womit Aussage (1) bewiesen ist.

Sei nun ((Z, A, 2),0) =7 (w, 7) eine Ableitung in H. Dann existieren Ableitungen

((fa A? 5)7 6) =H ((3?/7 B> g)(ga C; 5)7 FO); (('5577 B; Zj), 6) :>ZH (wla Fl)? ((g> 07 Z)? 6) :>]H (w2> FZ)
mit ' = (Z 4 7) rest ¢. Nach Definition von H gibt es in G eine Regel (A — BC, ¢7 +
(«/ — &)); nach Induktionsvoraussetzung gibt es in G die Ableitungen (B, 0) = (w1, ¢y +
(¥—2')) und (C,0) =% (w2, cfa+ (Z—7)). Daraus folgt (A,0) =% (w, cr'+ (27— 7)), womit
Aussage (2) gezeigt ist. O

Behauptung 2.4.14 Zu jeder kontextfreien Zy-Valenzgrammatik gibt es eine dquivalen-
te Zy-Valenzgrammatik mit Valenzregeln der Form (A — BC,0) und (A — a,7) mit
17 < 1.

Beweis. Es sei G = (N,T,P,S) eine Valenzgrammatik mit Regeln wie in Behaup-
tung 2.4.13. Es sei B}, := {7 € ZF : ||F]|; < 1}. Wir konstruieren die gesuchte Valenz-
grammatik als G’ = (N’ T, P, S") mit N' = N x Ej, S’ = (S,0) und

P = {((A,8) — (B,3)(C,7,0): (A— BC,7) € P,5€ E}} U
{((A,5) > a,8) : (A — a,0) € P,§ € E;}

Durch vollsténdige Induktion weist man leicht nach, daB ((4,5),0) =%, (w,7 + 5) fiir
w € TT genau dann gilt, wenn es die Ableitung (A4,0) =¢ (w,7) in G gibt. O

Behauptung 2.4.15 Zu jeder kontextfreien Zy-Valenzgrammatik gibt es eine dquivalente
Zy.- Valenzgrammatik mit Valenzregeln der Form (A — aa,7), ||7]|; < 1.

Beweis. Es sei GG eine Valenzgrammatik mit Regeln wie in Behauptung 2.4.14. Die Kon-
struktion der Greibach-Normalform fiir kontextfreie Grammatiken (siehe [18, S.101-104])
kann wortlich (unter Berticksichtigung der Valenzen) iibertragen werden. O

Auch fiir reguldre und lineare Zj-Valenzgrammatiken existieren Normalformen, die mit
den gleichen Methoden konstruiert werden.
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Satz 2.4.16 Es sei k € N.

o Zu jeder requldren Zy-Valenzgrammatik gibt es eine dquivalente Zy- Valenzgrammatik
mit Valenzregeln der Form (A — aB,T), (A — a,7) mit ||7]]; < 1.

o Zu jeder linearen Zy-Valenzgrammatik gibt es eine dquivalente Zy-Valenzgrammatik
mit Valenzregeln der Form (A — aB,T),(A — Ba,7), (A — a,7) mit ||F]|; < 1.

2.5 Valenzgrammatiken iiber kommutativen Monoi-
den

In diesem Abschnitt wird gezeigt, dafl Valenzgrammatiken {iber beliebigen kommutati-
ven Monoiden keine groflere Erzeugungskraft als Q.-Valenzgrammatiken besitzen. Wir
betrachten hier nur kontextfreie Valenzgrammatiken. Analoge Resultate gelten auch im
linearen bzw. reguldren Fall. Zunéchst beweisen wir einige einfache Hilfsaussagen.

Behauptung 2.5.1 Fiir ein Monoid M sei F(M) die Familie der endlich erzeugten Un-
termonotde von M. Es gilt L(Val, CF,M) = Ugczm) £(Val, CF,F).

Beweis. Die Inklusion £(Val, CF, M) 2 Ugczn) £(Val, CF, F) ist trivial; die Beziehung
L(Val,CF, M) € Ugpcrn £(Val, CF, F) folgt, da jede M-Valenzgrammatik G auch eine
Valenzgrammatik iiber dem Untermonoid ist, das von der Menge der in G auftretenden
(endlich vielen) Valenzen erzeugt wird. a

Behauptung 2.5.2 Fiir ein Monoid M = (M,0,1) sei E(M) die Menge aller Elemente
aus M, die zu 1 ergdnzt werden kénnen, d.h.,

EM) :={x € M : 3zy3xs(z1 0z 029 = 1)}.

Es gilt L(Val, CF,M) = L(Val, CF, E(M)*).
Beweis. Es sei G = (N, T, P, S) eine M-Valenzgrammatik. Ist p;---py € P eine Ab-
leitungsfolge fiir das Paar (w, 1), so kann jede der Valenzen von pi,...,pg zu 1 erginzt

werden. Folglich ist G dquivalent zur Valenzgrammatik G’, die genau die Valenzregeln aus
G enthélt, deren Valenz in E(M) ist. G’ ist eine Valenzgrammatik iiber E(M). O

Behauptung 2.5.3 Sind M und N isomorph, so gilt L(Val, CF,M) = L(Val, CF,N).

Beweis. In einer M-Valenzgrammatik G ersetze man in jeder Valenzregel die Valenz durch
ihr isomorphes Bild in N. a
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Behauptung 2.5.4 L(Val, CF,M xZ;) = L(Val, CF,Zy), fiir jedes endliche kommutative
Monoid M und k > 0.

Beweis. Esseien M = (M, o, 1) ein endliches kommutatives Monoid und G = (N, T, P, S)
eine (M xZy,)-Valenzgrammatik. Wir konnen 0.B.d.A. annehmen, daf§ P nur Kernregeln der
Form A — BC,A — B, A — a, A — X enthilt. (Dies wird durch die gleiche Konstruktion
wie in Behauptung 2.4.3 garantiert.)

Aus G konstruieren wir die Zj-Valenzgrammatik H = (N, T, P',S’) mit N’ = N x M,
S’ =(S,1) und

P = {((A,mg) — (B,m1)(C,my),7) : Im(mg = momyomy A (A — BC,(m,7)) € P)}U
{((A,mg) — (B,my),7) : Im(mg =momy A (A — B, (m,7)) € P)} U
{((A,m) — a,7): (A —a,(m,7)) € PLU{((A,m) = \,7): (A — A, (m,7)) € P}
Durch vollstdndige Induktion iiber die énzahl der Ableitungsschritte im Sinne von Be-
hauptung 2.3.3 zeigt man, da ((4,m),0) =% (w,7) fir w € T* genau dann gilt, wenn
(A, (1,0)) =& (w, (m, 7)) erfiillt ist. O

Satz 2.5.5 Es sei M ein kommutatives Monoid. Dann gilt L( Val, CF, M) = L(Val, CF, Zy,)
fir ein k>0 oder L(Val, CF,M) = L(Val, CF, Q).

Beweis. Fiir ein kommutatives Monoid F = (F,o,1) ist E(F) ={x € F: Jy(zoy =1)}.
Wegen der Kommutativitét ist £(F) unter o abgeschlossen; da aulerdem fiir jedes Element
aus E(F) ein inverses Element existiert, ist (E(F), o, 1) eine Gruppe. Besitzt F das endliche
Erzeugendensystem A, so wird E(F) durch AN E(F) erzeugt. Wir kénnen uns damit auf
endlich erzeugte Abelsche (kommutative) Gruppen beschrianken.

Nach dem Hauptsatz iiber endlich erzeugte Abelsche Gruppen (siehe z.B. [32]) ist eine
endlich erzeugte Abelsche Gruppe das direkte Produkt von endlich vielen zyklischen Abel-
schen Gruppen, d.h. isomorph zu M x Z, fiir eine endliche Abelsche Gruppe M und ein
k > 0. Nach den Behauptungen 2.5.2, 2.5.3, 2.5.4 gilt somit fiir jedes endlich erzeugte
kommutative Monoid F: £(Val, CF,F) = L(Val, CF, Z;,) fiir ein k£ > 0.

Fiir ein beliebiges kommutatives Monoid M gibt es 2 Moglichkeiten: Gibt es ein kleinstes
k > 0 mit £(Val,CF,F) C L(Val,CF,Z;) fur alle F € F(M), so ist £(Val,CF,M) =
L(Val, CF, Zy,). Anderenfalls ist £(Val, CF,M) = L(Val, CF, Q. ). a

2.6 Iterationslemmata fiir Valenzgrammatiken

In diesem Abschnitt sollen, vergleichbar zu den Pumping-Lemmata fiir reguldre und kon-
textfreie Sprachen, Iterationslemmata fiir Valenzsprachen iiber dem Monoid Z,; bewiesen
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werden. Die Idee der minimalen Zyklen findet sich bereits bei VicoLov [38], wo nachge-
wiesen wurde, dal die Hierarchie £(Val, CF,Z;) C L(Val,CF,Z;.1) echt ist. Zusitzlich
sind die folgenden Hilfssétze von Nutzen:

Lemma 2.6.1 Ist S C N' (¢t > 1) unendlich, so gibt es in S zwei Elemente d, b mit @ < b.

Beweis. Fiir t = 1 ist das Lemma offenbar korrekt. Sei die Korrektheit fiir t > 1 gezeigt
und sei S C N*! eine unendliche Menge. Wir betrachten ein Element @ = (a1, ..., ;1)
aus S. Falls es in S kein b mit a < b gibt, so existiert ein i € {1,...,t+ 1} derart, dafl
es unendlich viele Elemente in S gibt, deren i-te Komponente kleiner als a; ist. Das heifit,
es gibt in S unendlich viele Elemente, deren i-te Komponente gleich einem gewissen = €
{0,...,a;—1} ist. In dieser Menge gibt es nach Induktionsvoraussetzung zwei vergleichbare
Elemente. O

Lemma 2.6.2 FEs scien ¥4, ...,0: € ZF. Besitzt die Gleichung
ot + ... +at,=0 (%)

eine Losung in N*\ {0}, so ezistiert in N*\ {0} auch eine Lisung mit hichstens k+1 von
Null verschiedenen Komponenten.

Beweis. Es sei @ = (ay,...,a;) € N\ {0} eine Losung von (*). O.B.d.A. gelte a; > 0
fir 1 <i<sunda;, =0 firs+1<i<¢fireinse {l,...,t} Gilt s < k+ 1, so
ist @ eine Losung der gesuchten Form. Anderenfalls konstruieren wir folgendermafien eine
Losung mit weniger von Null verschiedenen Komponenten.

In Z' \ {0} hat (*) cine Losung b = (by, ..., b,) mit b =0 fir j € {k+2,...,t}. Sind
alle Komponenten von b nichtnegativ, so haben wir eine Losung der gewiinschten Form
gefunden. Anderenfalls gelte 0.B.d.A. b;/a; = min{b;/a; : 1 < i < k+ 1}. Dann ist

c=(c1,...,q) = a1b — by@ ebenfalls eine Losung von (*). Es gilt ¢; = a1b; — bya; > 0 fiir
2<i<s,¢=0firi=1und s < <t. Damit hat ¢ hochstens s —1 von Null verschiedene
Komponenten. Wegen c¢; = —bjas > 0 ist diese Losung nicht der Nullvektor. a

Satz 2.6.3 Essei L C T* eine Sprache aus L(Val, CF,Zy). Dann existieren eine Konstan-
te n und eine endliche Menge I C (T*)**2 von iterativen (2k + 2)-Tupeln mit folgenden
Eigenschaften.

(1) |onag - - - agra| > 0 fir alle (a1, an, ..., aopr0) € 1.

(2) Fiir alle w € L mit |w| > n gibt es eine Zerlegung w = 2123 - + Zopyo2op+3 und ein
iteratives Tupel (v, g, . .., Qogt2) € I mit

2100 2900 + + * Zog 420y 9 2%0k43 € L fiir alle v € N.
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Beweis. Essei G = (N, T, P, S) eine Z;-Valenzgrammatik in Normalform mit L = L(G).
Eine Ableitung der Form (A,0) =* (vAw,) mit A € N,vw € Tt 7 € Z* heiBt Zyklus.
Ein Zyklus ist ein elementarer Zyklus, wenn keine seiner Unterableitungen einen Zyklus
bildet. Da G in Normalform ist, insbesondere also keine léschenden Regeln und keine
Kettenregeln enthilt, kann man jede Ableitung A : (S,0) =* (w,0) durch das sukzessive
Streichen von Unterableitungen, die elementare Zyklen darstellen, zu einer zyklenfreien
Ableitung A’ : (S,0) =* (w’,7) umformen.

Mit Nj,r bezeichnen wir die Menge aller Teilmengen M C N, fiir die es unendlich viele
Ableitungen A : (S,0) =* (w,0) mit w € T* und N(A) = M gibt. Im folgenden sei M
in Nj,¢. Weiterhin sei Z(M) = {(y,..., ¢} mit ¢ ¢ (Ai,ﬁ) =* (v;A;w;, 7;) die Menge der
minimalen Zyklen der Form (A,0 =* (vAw,7) mit A € M. Wird in dem oben beschriebe-
nen ReduktionsprozeB der minimale Zyklus (;, 1 < ¢ < t, genau a;-mal gestrichen, so gilt
a7+ ...+ a7y = —7, wobei 7 die Bewertung der entstandenen zyklenfreien Ableitung ist.

Da es nur endlich viele zyklenfreie Ableitungen gibt, existiert eine zyklenfreie Ableitung
A’ auf die unendlich viele Ableitungen reduziert werden. Damit hat die Gleichung

(ll’f_ﬁ + ...+ atﬁ = —Value(A’)

unendlich viele Losungen in N*\ {0}. Unter diesen gibt es nach Lemma 2.6.1 zwei Losungen
Z;, ¢ € Nt mit b < & Die Gleichung a7 + ... + a;7; = 0 hat somit eine Losung in N*\ {6},
nimlich @— b. Nach Lemma 2.6.2 gibt es fiir die letztgenannte Gleichung eine Losung
(a1,...,a;) € N*\ {0} mit hochstens k 4 1 positiven Komponenten. O.B.d.A. seien diese
unter den ersten k 4+ 1 Komponenten zu finden, d.h. es gelte a17 + ... aps17541 = 0 mit
(a1,...,ape1) € NFHI\ {0}

In eine Ableitung A : (S,0) =* (w, 0) mit N(A) = M kann man fiir i > 1 sukzessive (i-a;)-
mal den Zyklus (i, (i - az)-mal den Zyklus (s, ..., (i - ags1)-mal den Zyklus ;1 einfiigen.
Die so entstandene Ableitung liefert wieder ein Terminalwort und ist mit 0 bewertet. Die
iterativen Worter sind agj_q = v;lj , Qigj = w;-lj , 1 < j < k+1; ihre Reihenfolge ist abhéingig
von der Position der zugehorigen Nichtterminale A; im Ableitungsbaum. Die Menge der
iterativen Tupel beziiglich M ergibt sich damit als

I(M) = {(ar(1), - - -, Qr(2r+2)) : 7 ist Permutation von {1,...,2k +2}} .

(Genauer betrachtet, kommen nur bestimmte Permutationen in Frage.) Weiterhin erhélt
man

I = |J 1(M)und
MENinf

n = max{|jw|:we T*AIJA(A: (S,0) =" (w,0) A N(A) ¢ Niyny)}O
Analog zeigt man im Falle regulérer Valenzgrammatiken:

Satz 2.6.4 Es sei L C T eine Sprache aus L(Val, REG,Zy). Dann ezistieren eine Kon-
stante n und eine endliche Menge I C (T*)k*1 von iterativen (k + 1)-Tupeln mit folgenden
Eigenschaften.
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(1) |arag - - agyr] > 0 fir alle (a1, ag, ..., 0p41) € 1.

(2) Fiir alle w € L mit |w| > n gibt es eine Zerlegung w = 2129+ - Zp112k1+2 und ein
iteratives Tupel (o, o, ..., cpy1) € I mit

21002900 « -+ 210G, 22 € L fiir alle i € N.

Gibt es einen Zyklus (A, 0) =* (vAw, 0), so stellt (v, w) fiir jede Ableitung, die das Symbol
A enthilt, ein iteratives Paar dar. Besitzt also einer der im Beweis von Satz 2.6.3 betrach-
teten minimalen Zyklen die Bewertung 0, so kann man sogar ein iteratives Paar finden. Bei
Grammatiken mit bewerteten Alphabeten entspricht ein Zyklus (A,0) =* (vAw,0) einer
Bewertung von vw mit 0. Damit ergeben sich folgende Resultate:

Satz 2.6.5 Es sei L C T* eine Sprache aus L(Val', CF,Z;,) mit Bewertung ¢ : T* — 7ZF.
Dann emistieren eine Konstante n, eine endliche Menge I' C (T*)? von iterativen Paa-
ren und eine endliche Menge I C (T*)***2 yon iterativen (2k + 2)-Tupeln mit folgenden
FEigenschaften.

(1) Fiir alle (g, 0, ..., opss) € I existiert ein i mit p(c;) # 0.
(2) |aras| >0 fir alle (a1, aq) € I'.
(8) Fiir alle w € L mit |w| > n gibt es

— eine Zerlequng w = 2125 - - - Zap 422243 und ein iteratives Tupel (a1, Qa, . . ., Qgpy2)
aus I mit 21002000 « - * Zogp 2y, 9 20k13 € L fiir alle © € N oder

— eine Zerleqgung w = 212923 und ein iteratives Paar (a1, ag) € I' mit
2ol zmabzg € L fiir allei € N.

Satz 2.6.6 Essei L CT* eine Sprache aus L(Val', REG, Z) mit Bewertung ¢ : T* — Z*.
Dann existieren eine Konstante n, eine endliche Menge von iterativen Wortern I’ C T* und
eine endliche Menge I C (T*)**1 von iterativen (k+1)-Tupeln mit folgenden Eigenschaften.

(1) Fiir alle (o, 0, . .., aps1) € I existiert ein i mit p(a;) # 0.
(2) |a| >0 fir alle a € I'.
(8) Fir alle w € L mit |[w| > n gibt es

— eine Zerlegung w = 2123+ * Zjr12k12 und ein iteratives Tupel (o, oo, ..., 0gy1)
aus I mit 2102000 « - 210G, 1 2K2 € L fiir alle i € N oder

— eine Zerlequng w = 2120 und ein iteratives Wort o aus I' mit z1a'zy € L fiir

alle i € N.
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2.7 Schlanke Valenzsprachen

Schlanke Sprachen, d.h. Sprachen mit beschrankter Strukturfunktion, wurden in den letz-
ten Jahren in zahlreichen Arbeiten untersucht. ILIE [21], [22] sowie RAZ [29] zeigten, dafl
schlanke kontextfreie Sprachen sich als endliche Vereinigung von paired loops darstellen las-
sen (ein paired loop ist eine Sprache der Form {uv™wz™y : m > 0} mit u, v, w,z,y € X*).
RAZ zeigte auflerdem die Entscheidbarkeit der Frage, ob eine kontextfreie Grammatik eine
schlanke Sprache erzeugt.

In diesem Abschnitt werden die Untersuchungen beziiglich Schlankheit auf Valenzsprachen
iiber Q. ausgedehnt. Es wird die Entscheidbarkeit der Frage, ob eine Q-Valenzgrammatik
eine k-schlanke Sprache erzeugt, gezeigt. Auflerdem ergeben sich einige Abschlueigenschaf-
ten der Familie der schlanken Q_-Valenzsprachen. Wesentliches Hilfsmittel in den Beweisen
ist die Abgeschlossenheit der Familie der Q-Valenzsprachen unter Q-Transduktionen. Es
sei darauf hingewiesen, dafl mit der gleichen Methode analoge Resultate fiir die umfassende-
re Familie der Matrixsprachen sowie fiir einige Variationen des Schlankheitsbegriffes erzielt
werden konnen [37].

Im folgenden seien X ein Alphabet, # ¢ X ein Trennsymbol, L C X* eine Sprache. Wir
definieren fiir £ > 1 die folgenden von L abgeleiteten Sprachen:

LEZF = {wr#wodt - - wpF# - w; € L, |wy| = |wy| fiir 1 <i <k,w;, #w; fir 1 <i<j<k}
Ly = {weL:sy(|lw]) >k}
Ly = {wel:s(jw|)=k}
Siwxe = {we X" :sp(|w]) >k}

Siwp = {we X" :sp(jw) =k}

Als erstes werden wir beweisen, dafl mit L auch LZ* und L~y Q4-Valenzsprachen sind.
Daraus folgt, dafl Siz > und Sjz x) reguldre Sprachen sind und L) eine Q,-Valenzsprache
ist. Da die Abgeschlossenheit effektiv ist, folgt sofort die Entscheidbarkeit des Problems
der (k —1)-Schlankheit, denn L ist genau dann (k — 1)-schlank bzw. streng (k — 1)-schlank,
wenn S|z, >x endlich bzw. leer ist.

Behauptung 2.7.1 Aus L € L£(Val, CF,Q.) folgt L=* ¢ £(Val, CF, Q) fiir k > 1.

Beweis. Offensichtlich gilt LIZ¥ = (L#)* N A, N By mit

Ay = {wnFHw# .. . wpF# w, € X" (1 <i<k),w, #wj(l1 <i<j<k)}
Br = {wiFwe# .. wpt i w; € XA |wy| = |wy|(1 <i < k)}

Wegen der Abgeschlossenheit von £(Val, CF, Q) unter Konkatenation ist (L#)* eine Q.-
Valenzsprache. Fiir den Beweis der Behauptung geniigt es zu zeigen, dafl Ay und By von
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endlichen Q,-Valenzautomaten akzeptiert werden. Wegen

A = (] Agay mit
1<i<j<k
A = {wiHwe# .. wp# cwp, € X1 <m < k), w; # w,}
= {wviugvouz  ug € (X ) ug € (X*#) 7 ug € (X*#)*,
vy, vy € X #, 0109 € Ag},

Bk = ﬂ Bk;i mit
2<i<k

B, = {wi#wo .. wi# wy, € X1 <m < k), |w| = |w|}
= {vuvoug s uy € (XF#) ™ uy € (X #) 7 vy, vy € X* 4, 0105 € By}

reduziert sich dieses Problem darauf, fiir die Sprachen A und B, Valenzautomaten tiber
Z zu finden, was im folgenden geschieht:

1. Zwei Worter wy, wy € X* sind genau dann verschieden, wenn es ein ¢ mit
1 < i < min{|wyl,|ws|} + 1 gibt, so dafl die i-te Position von w;# und die i-te
Position von wy# verschieden sind. Ein nichtdeterministischer Z-Valenzautomat, der
Ag akzeptiert, arbeitet folgendermaflen.

Zunéchst wird der blinde Zahler fiir jedes gelesene Symbol um 1 erhoht. Irgendwann
bis zum Lesen des ersten # wird nichtdeterministisch geraten, daf§ die Position er-
reicht ist, an der sich der erste und der zweite Teil des Wortes unterscheiden. Das
Symbol an dieser Stelle wird im Zustand des Automaten gespeichert, der Zahler wird
bis zum Ende des ersten Teiles nicht verdndert.

Beim Lesen des zweiten Teiles wird der Zihlerinhalt zunéchst fiir jedes Symbol um
1 verringert. Ist das aktuelle Symbol verschieden vom gespeicherten, so kann nicht-
deterministisch das Verringern des Zé&hlerinhaltes beendet werden. Der Zé#hler hat
genau dann den Inhalt 0, wenn im zweiten Teil die gleiche Position wie im ersten Teil
gewahlt wurde.

2. By = L(B) mit B = ({z0, 21, 22}, X U {#}, 20, 6, 22), wobei
6 = {(Zo, Z, 2o, 1)7 (207 #7 21, 1)7 (217'7:7 21, _1)> (21, #7 22, _1) HEAES X}
Ein Wort tiber X U {#} wird genau dann akzeptiert, wenn es die Form w;#ws#,

wy, we € X*, besitzt und w; und wy gleiche Léange besitzen. O

Behauptung 2.7.2 Aus L € L(Val,CF,Qy) folgt Ly, Li=xy € L(Val, CF,Qy) sowie
Siek, Sip>k € L(REG).
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Beweis. Es gilt Ly = {w € X* : Ja(a € (X U {#})* Aw#a € LEM)} und damit
Li>y € L£(Val, CF, Q). Die Langenmenge A(L>y)) ist demzufolge semilinear. Die Sprachen
Sk = {w € X* 1 Jw| € ML)} und Six = Sie>k \ Siz,>k+1] sind reguldr; daraus
folgt: Ly = L N Sip g ist in £(Val, CF, Q) enthalten. O

Satz 2.7.3 Fir eine Q. -Valenzgrammatik G und eine gegebene Zahl k € N ist es ent-
scheidbar, ob L(G) (echt) k-schlank ist.

Beweis. Sei L = L(G). L ist genau dann k-schlank bzw. echt k-schlank ist, wenn Li>4q)
endlich bzw. leer ist. Die Beweise der letzten beiden Behauptungen sind konstruktiv. Damit
148t sich eine Q-Valenzgrammatik konstruieren, die Lj>j1) erzeugt. Da Endlichkeit bzw.
Leerheit fiir Q-Valenzgrammatiken entscheidbar sind, folgt der Satz. a

Satz 2.7.4 1. Aus L,M € L(Val, CF, Q) und der Schlankheit von M folgt L\ M €
L(Val, CF,Q,).

2. Aus L,M € L(Val, CF,Qy) und der Schlankheit von L und M folgt L N M €
L(Val, CF, Q).

Beweis.

1. Die Strukturfunktion von M sei durch k beschrankt. Fir 1 < m < k betrachten wir

Lg\?) — {wo#wl#..-wm# two € Lywy, ..., wy, € M[m},
w; # wj, lwo| = |w;| fir 0 <i < j <m}.

Wegen L, M, € £(Val, CF, Q) kann man analog zum Beweis von Behauptung 2.7.1
zeigen, daB L™ in £(Val, CF, Q) ist. Sei nun Ly, = {w € L\ M : sy (Jw|) = m}
fir 0 < m < k. Es gilt Lyjo = LN Sy und Ly = {w € X* : Ja(w#a € Lg\?))},
1 < m < k. Damit sind die Sprachen Lys,,, 0 < m < k, in £(Val,CF, Q). Mit
L\M = UI;ZO Ly, folgt die erste Aussage.

2. Folgt nach Aussage (1) und wegen LN M = L\ (L\ M). O

Satz 2.7.5 Es seien G1 und Go konteztfreie Q. - Valenzgrammatiken, die jeweils schlanke
Sprachen erzeugen. Es ist entscheidbar, ob L(G1) C L(Gs) bzw. ob L(G1)NL(Gs) = 0 gilt.

Beweis. Die in Satz 2.7.4 aufgefiihrten Abschlufleigenschaften sind effektiv. Das heifit,
man kann Valenzgrammatiken konstruieren, die L(G)\ L(G2) bzw. L(G1)NL(Gs) erzeugen.
Damit sind das Inklusionsproblem sowie das Disjunktheitsproblem auf das Leerheitspro-
blem fiir Valenzgrammatiken reduziert. a
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Kantengrammatiken

3.1 Definitionen und Beispiele

Zunichst werden Wortrelationen als Verallgemeinerungen von Sprachen eingefiihrt. Fiir
eine zweistellige Wortrelation wird auf natiirliche Weise eine Folge von Graphen definiert.
SchliefSlich werden Kantengrammatiken als Mittel zur Erzeugung von Wortrelationen und
damit von Graphenfolgen eingefiihrt.

In diesem Kapitel werden héufig kartesische Produkte von Alphabeten und Sprachen auf-
treten. Um Verwechslungen zu vermeiden, werden fiir eine Sprache L das n-fache Monoid-
produkt mit L™ und das n-fache kartesische Produkt mit L" notiert. Insbesondere ist X[
die Menge aller Worter der Lénge n iiber dem Alphabet X. Dagegen wird fiir ein Wort w
die Schreibweise w" fiir die n-fache Konkatenation von w beibehalten.

Eine Wortrelation R C (X*)™ heiflt synchron, wenn |v;] = |v1],1 < i < n, fiir alle
(v1,...,v,) gilt. Mit Syn(R) wird die grofite in R enthaltene synchrone Relation bezeich-
net. Offenbar sind die Monoide Syn((X™*)") und (X™)* isomorph. Wir werden deshalb im
folgenden synchrone n-stellige Relationen iiber X* und Sprachen iiber X™ miteinander
identifizieren.

Definition 3.1.1 Es seien X ein Alphabet und E C X* x X* eine synchrone Relation.
Die Knotensprache von E ist

V(E)={ve X": Jw((v,w) € EV (w,v) € E)}.
Der zu E gehdérige n-te Graph G, (E), n > 0, ist definiert als
Gn(E) = (Vo(E), E,) mit Vo(E) =V(E)n X" E, = (E\ Idy) n (X" x X)),
Bemerkung. Aus der Kantenrelation E werden alle Paare der Form (v, v) entfernt; damit

ist gewahrleistet, dafl nur schlichte Graphen erzeugt werden, und es ist moglich, isolierte
Knoten zu erzeugen.

43
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Beispiel 3.1.1 Wir betrachten folgende Wortrelationen:

B, = {(2™"w,2™aw): m > 0,a € {0,1},w € {0,1}*}

Ey, = {(0™10™* 0™"*1,0") :m,n >0,k > 1}

Es = {(0™™*1",0m1"%) :m,n >0,k > 1}

Ey = {(w0,wl):w € {0,1}*'} U{(wa,aw) :a € {0,1},w € {0,1}*}

Der Graph G, (F,) ist fiir n > 1 der vollstdndige bindre Baum der Tiefe n, wobei die
Knotenmenge {2'w : w € {0,1}""1 0 < 4 < n} ist. Der Knoten 2" ist die Wurzel, die
Knoten aus {0, 1}/ sind die Blitter, und die S6hne von 2'w, 1 < i < n, w € {0, 1},
sind die Knoten 2710w und 21 1w.

Gn(ByUEyY) und G, _1(E3 U E3t), n > 2, sind jeweils die vollstindigen Graphen mit n
Knoten, wobei die Knotenmengen {0107 : i + 7 = n — 1} bzw. {017 : i + j = n — 1} sind.
Gn(E,UE;Y) ist der n-te Shuffle- Exchange-Graph, bestehend aus der Knotenmenge {0, 1},

den (ungerichteten) Shuffle-Kanten der Form {aw,wa} und den Ezchange-Kanten der
Form {w0,w1}.

Definition 3.1.2 Fine Kantengrammatik ist ein Quintupel T = (N, X, T, P, S), wobei X
ein Alphabet, T' eine endliche Teilmenge von X*x X* und [ = (N, T, P,S) eine Grammatik
sind. I' heifst kontextfreie, lineare bzw. reguldre Kantengrammatik, wenn [ eine kontextfreie,
lineare bzw. requlire Grammatik ist. Gilt |v| = |w| fir alle Paare (v,w) € T, so nennt man
I' synchron.

Die von T erzeugte Sprache iiber T ist L(T) := {w € T* : w € L(I') A |pr,(w)| = |pry(w)]|}.
Die Kantensprache von T', E(T), ist die durch L definierte synchrone bindre Relation tiber
X, formal E(T) := {(v,w) € X* x X* : Ju(u € L(T') A pry(u) = v Apry(u) = w)}, die
Knotensprache von I" ist V(I') = V(E(I)).
Der n-te von I' erzeugte Graph ist G,,(I') = (V,(I"), E,(T')) = G,(E(T)
bzw. der Ausgangsgrad des Knoten v € V,(T') in G,(I') wird mit d,(v|
bezeichnet.

). Der Eingangs-
[) bzw. dyys(v|T)

Wir unterscheiden zwischen

e der von I' erzeugten Graphenfolge G(I') = {G,(I")}>2, und

e der von I' erzeugten (abstrakten) Graphensprache
[GI(T) = {[Gn(I)] : Vo() # O,n > 0}

Der von G, (I') induzierte ungerichtete Graph wird mit G*(I") bezeichnet; die Folge bzw.
die Graphensprache der induzierten ungerichteten Graphen sind G*(I') bzw. [G*|(T).

Definition 3.1.3 Fir X € {CF, LIN, REG} bezeichnen wir mit £E(X) bzw. V(X) die Fa-
milien der von Kantengrammatiken vom Typ X erzeugten Kantensprachen bzw. Knoten-
sprachen; mit E(SYN — X) bzw. V(SYN — X)) werden die entsprechenden von synchronen
Kantengrammatiken des Typs X erzeugten Sprachfamilien bezeichnet.
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Beispiel 3.1.2 Die Wortrelationen E;, 1 < i < 4, aus Beispiel 3.1.1 (und damit die
entsprechenden Graphenfamilien) werden jeweils durch die Kantengrammatiken T'; erzeugt:

[i: S —(2,2)5](2,1)B|(2,0B, B — (1,1)B ] (0,0)B | A
Ts: S — (0,005 ](0,1)A](1,00B, A— (0,004 | (1,0)C,
B — (0,0)B](0,1)C, C — (0,0)C | A
Dy: S — (0,005 ] (0,1)A | (1,0)B, A — (0,1)A | (1,1)C,
B— (1,0)B|(1,1)C, C — (1,1)C | A,
Ty: S — (MOA|NDB|E, A— (0,00A] (1,1)A | (0, ),
B — (0,00B] (1,1)B|(1,\), E — (0,0)E | (1,1)E| (0,1) | (1,0)

Die folgenden Lemmata geben Normalformen fiir Kantengrammatiken an, die in den wei-
teren Untersuchungen niitzlich sind.

Lemma 3.1.1 1. Zu jeder kontextfreien, linearen bzw. reguldren Kantengrammatik
I'=(N,X,T,P,S) existiert eine dquivalente kontextfreie, lineare bzw. reguldre Kan-
tengrammatik mit dem Terminalalphabet T = (X x {A\}) U ({A\} x X).

2. Zu jeder synchronen kontextfreien, linearen bzw. reguliren Kantengrammatik
I' = (N,X,T,P,S) existiert eine dquivalente synchrone kontectfreie, lineare bzw.
requlire Kantengrammatik mit dem Terminalalphabet X?2.

Beweis.

1. Man ersetze in jeder rechten Regelseite ein Symbol (aj -« -apm,by---b,) € T mit
A1y ..y, by, ..., b, € X durch das Wort (ag, A) - -+ (@, A)(A, b1) -+ (A, by) € T

2. Man ersetze in jeder rechten Regelseite ein Symbol (aq---apm,b1---by) € T mit
A1y- -y Ay b1y ..o by € X durch das Wort (a1, ;) -+ (am, b)) € (X?)*. O

Mit der erwéhnten Identifizierung von Sprachen und synchronen Relationen ist die von
einer synchronen reguliren (kontextfreien) Kantengrammatik mit dem Knotenalphabet X
erzeugte Relation eine regulire (kontextfreie) Sprache iiber X? und umgekehrt. Die von
synchronen reguldren Kantengrammatiken erzeugten Relationen werden im folgenden als
synchrone requlire Relationen bezeichnet. Wegen der vielen positiven Eigenschaften der
reguldren Sprachen steht diese Teilklasse im Mittelpunkt der Untersuchungen.

Lemma 3.1.2 Zu jeder synchronen kontextfreien, linearen bzw. reguliren Kantengramma-
tik ' existiert eine synchrone kontextfreie, lineare bzw. requlire Kantengrammatik I"' mit

G(T) = G(I'") und E(I") = E(T') U Idy(r.
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Beweis. Wie bereits gesagt, ist eine Sprache F C (X?)* genau dann kontextfrei, line-
ar bzw. reguldr, wenn eine synchrone Kantengrammatik I des entsprechenden Typs mit
E(I') = E existiert. Es gilt V(I') = pr{(E(T")) U pry(E£(I")) und Idyry = h(Vr), wobei h
der Homomorphismus h : X* — (X?)* mit h(a) = (a,a) fiir a € X ist. Ist nun T syn-
chron und kontextfrei, linear bzw. regulér, so ist £/ = E(I") U Idy () ebenfalls kontextfrei,
linear bzw. regulér; es existiert folglich eine synchrone kontextfreie, lineare bzw. regulére
Kantengrammatik IV mit E(I") = E’. O

Wie schon in der Einleitung erwéhnt, ist die geeignete Kontraktion grofler Graphen auf klei-
nere Graphen der gleichen Familie eine wichtige Aufgabe in der Parallelprogrammierung.
Fiir viele durch Kantengrammatiken erzeugte Graphenfolgen gibt es eine sehr einfache
Kontraktion, die dadurch erfolgt, dafl man von jedem Wort aus der Knotenmenge die letz-
ten k Buchstaben abschneidet. Graphenfolgen mit dieser Eigenschaft wurden von BERMAN
und anderen als kiirzbar (truncatable) bezeichnet [1, 2, 4].

Definition 3.1.4 Es seien G = (V,E) und G' = (V', E') schlichte Graphen. Eine Kon-
traktion von G auf G’ ist eine Abbildung

h:V — V' mit Vovw ((v,w) € E — (h(v) = h(w) V (h(v), h(w)) € E")) .

Der Kontraktionsfaktor o(h) ist definiert als o(h) = max{card h=1(v') : v/ € V'}.

Definition 3.1.5 Es sei G = {G,},>0 eine Folge von Graphen. Fine Folge H von Kon-
traktionen {hy }n>n, von Gyx auf G, heifit k-Kontraktion von G. Der Kontraktionsfaktor
o(H) ist definiert als o(H) = sup{o(h,) : n > ng}.

Beispiel 3.1.3 Es sei G = {G,}n>0 eine Folge nichtleerer Graphen. Eine Folge H =
{hn}n>0 von Abbildungen h,, : V(Gpy1) — V(G,) mit hy(v) = hy(w) fir alle v,w €
V(Gpy1) ist eine (triviale) 1-Kontraktion von G. Es gilt o(h,) = card V(Gp11).

Wie man leicht sieht, stellt die iterierte Anwendung von Kontraktionen wieder eine Kon-
traktion dar, so daf8 in einer Graphenfolge {G,}n>0 mit der k-Kontraktion {h;,},>n, €in
Graph G,, durch Anwendung der Kontraktionen A, x, hp, hp_s, ... auf einen Graphen G,
mit r < ng kontrahiert werden kann.

Definition 3.1.6 FEs sei I' = (N, X,T,P,S) eine Kantengrammatik. Die Graphenfolge
G(T) heift

o k-kiirzbar fir k > 1, falls es ein ng > k g¢ibt, so dafl die Abbildungsfolge
truncg, = {hy, : Voik(T) = Vo (D) bsne mit hyp(v) = pref, (v) fir v € V(1)

eine k-Kontraktion von G(T') ist,
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e im strengen Sinne k-kiirzbar fir k > 1, wenn zusdtzlich ng = 0 gilt,

e kiirzbar, wenn ein k > 1 existiert, so dafi G(I') k-kiirzbar ist.

Beispiel 3.1.4 Die Graphenfolgen G(I'y) und G(I'3) aus Beispiel 3.1.2 sind 1-kiirzbar,
wéhrend G(I'g) und G(I'y) nicht kiirzbar sind.

Ist die Folge truncy eine k-Kontraktion einer Graphenfolge iiber dem Knotenalphabet X,
so gilt fiir den Kontraktionsfaktor p(truncy) < (card X)*. Damit ist gesichert, dal das
Kiirzen nicht nur eine einfache, sondern auch eine relativ effiziente Art der Kontraktion
ist. In der Arbeit [4] untersuchten BERMAN und SNYDER Probleme der Kiirzbarkeit und der
Kontraktionsfaktoren fiir zahlreiche aus der Theorie der Parallelprogrammierung bekannte
Graphenfolgen.

3.2 Kantengrammatiken und formale Sprachen

Die Untersuchung der von Kantengrammatiken erzeugten Knoten- bzw. Kantensprachen
ist von besonderem Interesse, da sich aus Aussagen iiber diese Sprachen Eigenschaften der
erzeugten Graphen ableiten lassen. So ist z.B. die Knotenzahl des Graphen G, (I") gleich
der Strukturfunktion von V(I') an der Stelle n.

In diesem Abschnitt setzen wir die Untersuchungen zu den Knotensprachen kontextfreier
Kantengrammatiken von BERMAN und SHANNON in [2] fort. Die Kantensprachen wer-
den durch Grammatiken mit Bewertung, die Knotensprachen durch Valenzgrammatiken
charakterisiert. Am Ende folgen einige Resultate {iber endliche Automaten und formale
Potenzreihen, die spédter von Nutzen sein werden.

Zusétzlich zu den bereits genannten Knoten- und Kantensprachen betrachten wir die Start-
knotensprache V1(I') bzw. die Zielknotensprache V2(I') einer Kantengrammatik I'. Diese
sind definiert als V1(I') := {v : 3w((v,w) € E(I')} bzw. V2(I') := {w : Fv((v,w) € E(I')}.
Die Familien der Startknotensprachen, die durch Kantengrammatiken vom Typ Y erzeug-
bar sind, werden als V1(Y") notiert.

Satz 3.2.1 Es seien X ein Alphabet, T C X* x X* eine endliche Menge, ¢ : T* — Z
die Bewertung mit p((v,w)) = |v| — |w| fir (v,w) € T. Eine Sprache L C T* wird genau
dann von einer kontextfreien (linearen, reguliren) Grammatik G = (N,T, P, S) mit der

oben definierten Bewertung ¢ erzeugt, wenn sie von der kontextfreien (linearen, reguldiren)
Kantengrammatik T’ = (N, X, T, P, S) erzeugt wird.

Beweis. Fiir a € T* gilt p(a) = |pry(a)|—|pry(a)| und damit a € L(G, ) <= «a € L(I).
O
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Satz 3.2.2 FirY € {CF, LIN, REG} gilt:
1. VI(SYN — Y) = V(SYN — V) = £(Y),
2. V(YY) CVI(Y) =L(Val,Y,Z).

Beweis. Die erste Aussage wurde bereits in Lemma 3.1.2 gezeigt. Wir zeigen die zweite
Aussage fiir den kontextfreien Fall.

Ist ' = (N, X,T,P,S) eine kontextfreie Kantengrammatik, so erzeugt die kontextfreie
Z-Valenzgrammatik G = (N, X, P, S) mit

P ={(A = pri(), [pri(@)| = [pry(a)]) : A — a € P}

die Sprache V1(I"). Analog konstruiert man eine kontextfreie Grammatik H mit L(H) =
V2(T"). Wegen der Abgeschlossenheit von L£(Val, CF,Z) unter Vereinigung folgt V(I") €
£(Val, CF, Z).

Sei schlielich G = (N, T, P, S) eine kontextfreie Z-Valenzgrammatik mit Valenzregeln der
Form (A — BC,0), (A — a,r),r € {—1,0,1} (nach Satz 2.4.1 kann man dies 0.B.d.A.
voraussetzen). Man konstruiert die kontextfreie Kantengrammatik I' = (N, X, X2 P’ S)
mit

P = {A—-BC:(A— BC,0) € P}U{A — (a,#) : (A —a,0) € P} U
{A— (a,##): (A —a,-1) e PYU{A — (a,\): (A —a,1) € P}.

Offensichtlich gilt L(G) = V1(I'). Die Echtheit der ersten Inklusion ergibt sich aus der
folgenden Behauptung. O

Behauptung 3.2.3 1. Ly = {a™" :n > 1} € L(Val, REG,Z) \ V(REG)
2. Ly = {a™"c"d" : n > 1} € L(Val, LIN,Z) \ V(CF)

Beweis. Dafl die oben genannten Sprachen in den entsprechenden Familien von Valenz-
sprachen liegen, ist klar. Wir zeigen mit Hilfe des Iterationslemmas fiir kontextfreie Gram-
matiken mit bewertetem Alphabet (Lemma 2.6.5), dal Ly nicht die Knotensprache einer
kontextfreien Kantengrammatik sein kann.

Anderenfalls wire die zugehorige Kantensprache Fy = {(v,v) : v € Lo} wegen sr,(n) <1
fiir alle n > 0. Sei nun I eine kontextfreie Kantengrammatik mit E(I') = Ey. O.B.d.A. sei
T = ({a,b,c,d} x {\}) U ({\} x {a,b,c,d}) das Terminalalphabet von I'. Seien n die zu
L(T") gehorige Konstante aus dem Iterationslemma und I bzw. I’ die iterativen Quadrupel
bzw. Paare. Dann ist z mit pr,(z) = pry(z) = (a"b"c"d", a"b"c"d") in L(I") enthalten.

Seien nun (a, 3,7, 6) ein iteratives Quadrupel aus I und z = wvwzy eine Zerlegung mit 2’ =
uc?vfPwy?rd?y € E,. Um pry(2') € a*b*c*d* zu gewihrleisten, miissen die Projektionen
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auf die erste Komponente von a, 3, v und 6 in a* Ub*Uc* Ud* enthalten sein. Damit pr,(z’)
in Ly ist, muf sogar pry(a) = a”,pr,(8) = 0", pry(y) = ¢, pry(6) = d" fiir ein r € N gelten.
Analog mufl pry(a) = a®, pry(5) = b°, pry(y) = ¢, pry(6) = d° fiir ein s € N erfiillt sein.
Um |pry(2')| = |pry(2')| zu erfiillen, mul r = s gelten. Daraus folgt, dal «, 3, v, ¢ jeweils
die Bewertung 0 besitzen. Dies steht im Widerspruch zur Aussage des Iterationslemma,
dafl wenigstens eines dieser Worter eine von 0 verschiedene Bewertung hat.

Fiir ein iteratives Paar (o, 3) aus I’ und jede Zerlegung z = wvw kann man gleichfalls
zeigen, dafl das zu ua?v3?w gehorige Wortpaar nicht in Ej ist. O

Im Falle synchroner und reguldrer Kantengrammatiken lassen sich auflerdem Verbindungen
zwischen dem Knotengrad und dem Grad der Mehrdeutigkeit eines endlichen Automaten
herstellen.

Lemma 3.2.4 Esseil’ = (N, X, X? P,S) eine synchrone und requlire Kantengrammatik.
Es existiert ein endlicher Automat A mit L(A) = V(') und d4(w) = dout(w|I') +1 fir alle
we V(D).

Beweis. Essei A; = (Z, X?, 2, 6, F) ein deterministischer endlicher Automat mit L(A;) =
E' =E)U{(v,v):v e V1(I')}. Dann ergibt sich A als A = (Z', X, zp, ¢, F') mit

7' = ZxXU{z}

8 = {(z0,0a,(2,b)) :a,b€ X,z € Z,6(z0,(a,b)) = 2z} U
{(21,¢),a,(22,0)) : a,b,c € X, 21,29 € Z,6(21, (a,b)) = 23},

F' = FxXUSmitS=0, falls 2o ¢ F, S = {2}, falls zg € F.

Wie man leicht durch vollstdndige Induktion iiber die Wortldnge sieht, gibt es fiir das
Wort ay---a,, n € N, a; € X fir 1 < ¢ < n, genau dann einen Lauf des Automaten
A mit der Zustandsfolge zy, (z1,b01), ..., (2n,bn), wenn es fir das Wort (ay,by) - (an, by,)

einen Lauf des Automaten A; mit der Zustandsfolge zg, 21, . .., 2, gibt. Damit ist fiir ein
Wort v € X* der Grad der Mehrdeutigkeit von v beziiglich A gleich der Zahl der Worter
w mit (v,w) € E'. Wegen (v,v) € E' ist dies gerade dy,(v|T") + 1. O

3.3 Erzeugungskraft von Kantengrammatiken
Wesentliche Aussagen iiber strukturelle Eigenschaften der von synchronen reguldren Kan-

tengrammatiken erzeugten Graphenfamilien lassen sich leicht aus Resultaten iiber die
Strukturfunktion regulérer Sprachen gewinnen.

Lemma 3.3.1 Es sei L eine reguldre Sprache.

1. Es gibt Konstanten co, ko, so daf card s;* (k) < co fiir alle k > kq gilt.
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2. Es gibt Konstanten ng, p,« mit sp(n +p) < asp(n) fir alle n > ny.

Beweis. Nach [35, Lemma II1.7.4] existieren eine Zahl p und eine Zahl ng mit
sp(no +1i+mnp)=gi(n), i=0,...,p—1),n >0,

wobei go, . . ., gp—1 DOL-Wachstumsfunktionen sind.

Wir betrachten jetzt eine DOL-Wachstumsfunktion g. Ist g beschrinkt, so gibt es eine
Konstante mg(g) mit card g~ (m) = 0 fiir alle m > my(g). Ist g unbeschriinkt, so ist die von
einem DOL-System G mit g = g erzeugte Sprache M unendlich. In diesem Falle sind alle
Glieder der Folge S(G) verschieden, und card g~!(m) = card {w € M : |w| = m} = sp(m)
fiir alle m > 0. Zusammenfassend gilt fiir beliebige DOL-Wachstumsfunktionen g: Es gibt
ein my(g), so daB card g~'(m) = sy (m) fiir alle m > my(g) erfiillt ist. Da DOL-Sprachen
schlank sind [7], gibt es eine Konstante co(g) mit card g~'(m) < ¢o(g) fiir alle m > mq(g).
Setzt man jetzt kg = max{mg(g;) : i =0,...,p—1} und ¢y = max{cy(g;) : i =0,...,p—1},
so erhélt man die erste Behauptung.

Die zweite Behauptung folgt unmittelbar aus der Tatsache, daf fiir jede DOL - Wachstums-
funktion ¢ ein a mit g(n + 1) < ag(n) existiert, siehe [35, Theorem II11.7.6]. O

Satz 3.3.2 FEs sei I' eine synchrone regulire Kantengrammatik.

1. Es gibt eine Zahl k, so dafi G(T') fiir alle n € N hichstens k paarweise nichtisomorphe
Graphen mit n Knoten enthidlt.

2. Es gibt eine Zahl o > 1 und ein ng € N, so daf$ es fiir jeden Graphen G € G(I)
mit n > ng Knoten einen Graphen H € G(I') mit mindestens n/a und weniger als n
Knoten gibt.

Beweis.

1. Nach Lemma 3.3.1 gibt es Konstanten ¢y, ng mit Sx_/%r) (n) < ¢ fiir alle n > ny. Da
sy)(m) gleich der Zahl der Knoten von G,,(I') ist, gibt es in G(I') fiir n > ng
hochstens ¢y Graphen mit n Knoten. Die Anzahl ¢; der paarweise nichtisomorphen
mit hochstens ny Knoten ist endlich. Mit & = max{cg, ¢} ist die erste Behauptung
gezeigt.

2. Dies folgt unmittelbar aus der zweiten Aussage von Lemma 3.3.1. a

Damit ist gezeigt, dafl synchrone reguldre Kantengrammatiken zum einen nur ,schlanke
Graphensprachen erzeugen konnen, die Zahl der nichtisomorphen Graphen mit gleicher
Knotenzahl also beschrankt ist, und andererseits das Wachstum der Knotenzahl inner-
halb der Graphenfolge hichstens exponentiell ist. Analoge Resultate gelten auch fiir die
Kantenzahlen. Als eine erste Anwendung zeigen wir:
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Satz 3.3.3 Es gibt eine Graphensprache [G], die durch requlire bzw. synchrone lineare,
jedoch nicht durch synchrone requldre Kantengrammatiken erzeugt werden kann.

Beweis. Essei L = {a,b}* \ {(a*b)*™! : k > 0}. L ist sowohl in £(Val, REG, Z) als auch
in L(LIN) enthalten, siehe Beispiel 2.2.1. Es gibt eine regulire bzw. eine synchrone lineare
Kantengrammatik I" mit

E) = {(v,w) : v,w € {a,b}*, |v] = |w|} U{("w) :we LY U{(w,c™) :we L}.

Der Graph G,(I'), n > 1, enthdlt 2" + 1 Knoten. Er ist genau dann vollstéindig, wenn
n keine Quadratzahl ist. Gdbe es nun eine synchrone regulire Kantengrammatik © mit
[G](©) = [G](I"), so wiirde nach Satz 3.5.12 auch eine synchrone reguldre Kantengrammatik
©' derart existieren, dal [G](©') die nicht vollstdndigen Graphen aus [G](©) enthilt. Die
Menge der Knotenzahlen der Graphen aus [G](©') wire {2¥° +1: k > 1}, im Widerspruch
zur zweiten Aussage von Satz 3.3.2. O

3.4 Kantengrammatiken mit kiirzbarer Graphenfolge

Kantengrammatiken mit kiirzbarer Graphenfolge besitzen eine besondere Bedeutung, da
die Kontraktion von groflen auf kleine Graphen der Folge in diesem Fall besonders einfach
realisiert werden kann. In diesem Abschnitt zeigen wir zunéchst, dafl man eine beliebige von
einer synchronen reguldren Kantengrammatik erzeugte Graphenfolge G in eine kiirzbare
Graphenfolge H gleichen Typs ,einbetten* kann (d.h., die n-ten Graphen von G sind Un-
tergraphen der n-ten Graphen von H), ohne die Grofle der Graphen sowie den Knotengrad
iiberméfig zu erhohen. AnschlieBend wird gezeigt, dafl synchrone regulire Kantengramma-
tiken mit im strengen Sinne 1-kiirzbaren Graphenfolgen dquivalent zu einer speziellen Art
von parallelen Knotenersetzungsgrammatiken sind.

Als erstes zeigen wir einige einfache Fakten iiber kiirzbare Kantengrammatiken. Dabei
wird die Eigenschaft der Kiirzbarkeit von Graphenfolgen auf eine analoge Eigenschaft fiir
Sprachen zuriickgefiihrt.

Definition 3.4.1 FEs sei X ein Alphabet. Eine Sprache L C X* heifit

e k-kiirzbar fiir k > 1, falls es ein ng € N gibt, so daf fir alle w € L mit |w| > ng + k
auch pref,,_,(w) in L enthalten ist.

e im strengen Sinne k-kiirzbar fiir k > 1, wenn in der obigen Aussage zusdtzlich ng = 0
qgilt,

e kiirzbar, wenn ein k > 1 existiert, so dafi L k-kiirzbar ist.

Aus den Definitionen der Kiirzbarkeit von Graphenfolgen bzw. Sprachen folgt unmittelbar:
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Lemma 3.4.1 Esseil’ = (N, X, X? P,S) eine Kantengrammatik mit Idyy C E(T'). Fiir
k> 1ist G(T') genau dann (als Graphenfolge) k-kiirzbar bzw. im strengen Sinne k-kiirzbar,
wenn L(I") (als Sprache) k-kiirzbar bzw. im strengen Sinne k-kiirzbar ist.

Bemerkung: Nach Lemma 3.1.1 und Lemma 3.1.2 kann man fiir synchrone Kantengram-
matiken immer eine dquivalente synchrone Kantengrammatik gleichen Typs finden, welche
die Voraussetzung des Lemmas erfiillt.

Lemma 3.4.2 Gegeben sei eine requldre Sprache L C X*. Die folgenden Aussagen sind
Gquivalent.

1. L ist prifizabgeschlossen (d.h., aus vw € L folgt v € L fiir alle v,w € X*).
2. L ist im strengen Sinne 1-kiirzbar.

3. L wird durch einen partiellen deterministischen endlichen Automaten akzeptiert, der
nur Endzustinde besitzt.

4. L wird durch einen nichtdeterministischen endlichen Automaten akzeptiert, der nur
Endzustinde besitzt.

Beweis. Die Implikationen (1) — (2), (3) — (4) und (4) — (1) sind trivial.

Um (2) — (3) zu beweisen, betrachten wir fiir eine im strengen Sinne 1-kiirzbare Sprache
L einen deterministischen endlichen Automaten A = (Z, X, 2y, 6, F') mit L(A) = L. Fiir
alle z € Z\ F und alle a € X gilt 6(z,a) € Z \ F. Der partielle deterministische endliche
Automat A" = (F, X, 2,8, F) mit ' = 6§ N F x X x F akzeptiert ebenfalls L und besteht
nur aus Endzusténden.

Satz 3.4.3 FEs sei I' eine synchrone requlire Kantengrammatik. Dann existiert eine syn-
chrone regulire Kantengrammatik ©, so daff G, (T) fiir allen € N ein Teilgraph von G,,(0)
ist und G(©) im strengen Sinne 1-kirzbar ist. Wichst aufSerdem die Zahl der Knoten, die
Zahl der Kanten bzw. der mazimale Knotengrad von G,(I") polynomiell, so wachsen die
entsprechenden Parameter von G, (I") mit dem gleichen Grad polynomiell.

Beweis. Es sei ' = (N, X, X? P S) eine synchrone regulire Kantengrammatik mit
Idyry € E(I'). Da die Familie der reguléren Sprachen abgeschlossen unter Préfixbildung
ist, gibt es eine synchrone regulire Kantengrammatik © mit L(0) = pref(L(I')). Es gilt
L(T") C L(©®), und folglich ist G,,(I") ein Teilgraph von G,(0) fiir alle n € N. Weiterhin ist
L(©) prifixabgeschlossen, und damit ist G(©) im strengen Sinne 1-kiirzbar.

Da L(T') eine reguldre Sprache ist, gibt es eine Konstante k derart, dal zu jedem z €
pref(L(T")) ein 2’ € L(I") mit z C 2’ und |2| < |z|+k existiert. Damit gibt es zu jedem Paar
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(v,w) € E(O) ein Paar (v, w') € E(I') mitv C v/, w C w' und |¢'| = [0'| < |v|+k = |w|+k.
Die Zahl der Kanten von G, (©) kann somit wie folgt abgeschétzt werden:

n+k

card E,(T) < card E,(©) <Y Ei(I') < (k+ 1) max{E;(T) :n <i <n+k}.

Eine analoge Abschétzung ergibt sich fiir die Zahl der Knoten. Fiir den Ausgangsgrad von
v gilt:

dout(v|r) S dout(v|@)§ Z dout(vl‘F)

v v AV [<|v|+k
< (card X)) max{d,.(v|T) :v T A [V < |v| + k}.

O

Im Rest dieses Abschnittes beschiftigen wir uns mit der Beziehung zwischen Kantengram-
matiken und Knotenersetzungsgrammatiken. Als erstes fithren wir den Begriff des knoten-
und kantenmarkierten Graphen ein.

Es seien X (die Menge der Knotenmarken) und Y (die Menge der Kantenmarken) zwei
endliche Mengen. Ein gerichteter knoten- und kantenmarkierter Graph iber (X,Y") ist ein
Tripel G = (V, E, ). Dabei ist V eine endliche Menge von Knoten, E CV x Y x V eine
Menge gerichteter und markierter Kanten und ¢ : V' — X die Knotenmarkierung. Der
Graph G' = (V, E') mit E' = {(v,w) : 3a((v, a,w) € E)} wird als der G zugrundeliegende
Graph bezeichnet. Ist Y einelementig, so nennt man einen knoten- und kantenmarkierten
Graphen iiber (X,Y) einfach einen knotenmarkierten Graphen iiber X und gibt nur das
Tripel (V, E’, @) an.

Wortgrammatiken werden zu Graphgrammatiken erweitert, indem Regeln zu Grapherset-
zungsregeln verallgemeinert werden. Eine Graphersetzungsregel (M — D, E) besteht aus
dem markierten Muttergraphen M, dem markierten Tochtergraphen D und der Einbet-
tungsvorschrift . In einem Ableitungsschritt wird ein zu M isomorpher Untergraph M’
(einschlieBlich seiner Kanten zum Rest des Graphen) durch einen zu D isomorphen Gra-
phen D’ ersetzt. Anschliefend wird D’ mit den Nachbarknoten von M’ entsprechend der
Einbettungsvorschrift durch Kanten verbunden.

Von besonderem Interesse sind , kontextfreie“ Graphgrammatiken, bei denen die Mutter-
graphen markierte Knoten bzw. markierte Kanten sind. Die entsprechenden Knoten- bzw.
Kantenersetzungsgrammatiken sowie die allgemeineren Hyperkantenersetzungsgrammati-
ken wurden in den letzten Jahren ausfiihrlich untersucht. Uberblicke zu den Ergebnissen
findet man fiir Knotenersetzungsgrammatiken in [13, 14] und fiir Hyperkantenersetzungs-
grammatiken in [10, 17].

Fiir 1-kiirzbare Kantengrammatiken bietet sich der Vergleich mit deterministischen par-
allelen Knotenersetzungsgrammatiken an. Enthilt der Graph G,, einen Knoten v € X[
und enthélt G, die Knoten vay,...,vag, aq,...,ar € X, so kann dies als Ersetzung des
Knoten v durch den von wag,...,va, induzierten Teilgraphen interpretiert werden.
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Diese Feststellung wird im folgenden formal bewiesen, indem die Aquivalenz von im stren-
gen Sinne 1-kiirzbaren synchronen reguldren Kantengrammatiken und einer parallelen de-
terministischen Variante von Knotenersetzungsgrammatiken gezeigt wird.

Zunichst definieren wir die passende parallele Variante von Knotenersetzungsgrammatiken.
Es handelt sich um eine spezielle NLC-Grammatik. NLC-Grammatiken (node label control-
led graph grammars) sind Knotenersetzungsgrammatiken, bei denen die Einbettungsvor-
schrift eine zweistellige Relation iiber dem Knotenalphabet ist. Jeder Knoten des eingesetz-
ten Graphen wird mit einem Nachbar des ersetzten Knotens genau dann verbunden, wenn
ihre Knotenmarkierungen in der Einbettungsrelation enthalten sind. NLC-Grammatiken
gehoren zu den &ltesten und am meisten erforschten Varianten von Graphgrammatiken.

In einem Ableitungsschritt einer parallelen NLC-Grammatik werden alle Knoten des Gra-
phen gleichzeitig durch paarweise disjunkte Graphen ersetzt. Anschlielend werden die aus
benachbarten Knoten hervorgegangenen Teilgraphen entsprechend der Einbettungsrelati-
on miteinander verbunden. Verschiedene Versionen paralleler NLC-Grammatiken werden
in [24, 25] sowie in [31] untersucht. Die hier verwendete Variante arbeitet mit gerichteten,
knoten- und kantenmarkierten Graphen und ist deterministisch (zu jeder Knotenmarkie-
rung gibt es genau eine Ableitungsregel).

Die Definition erfolgt derart, dafl die Knoten eines in n parallelen Schritten erzeugten
Graphen Worter der Lange n sind. Dadurch lassen sich leichter Beziehungen zu Kanten-
grammatiken herstellen; es bedeutet jedoch keine Einschrankung gegeniiber den in [24, 25]
betrachteten parallelen NLC-Grammatiken.

Definition 3.4.2 Eine parallele deterministische NLC-Grammatik (PDNLC-Grammatik)
ist ein Tupel ' = (X, A, P,C,S), bestehend aus den Alphabeten der Knotenmarkierungen
bzw. der Kantenmarkierungen 3 bzw. A, der Regelmenge P, die eine Abbildung von ¥ in
die Menge der (X, A)-markierten gerichteten Graphen ist, dem Startsymbol S € ¥ und der
Einbettungsrelation C C A x X x A x 3.

Fir A € ¥ wird der markierte Graph P(A) auch mit G 4, seine Knotenmenge mit Vy, seine
Kantenmenge mit E4 und die Knotenmarkierung mit o bezeichnet. Das Knotenalphabet
Xp von I ist definiert als Xt = J c5 Va-

Fir n > 0 wird der n-te von I' erzeugte markierte Graph G,(I') = (V,, E,, ¢,) wie folgt
induktiv definiert:

1. Vo={A}, Eo =0, po(\) = 5.
2. Gilt 'V, C X%n], so ergibt sich G, 11(T") folgendermafen:

e Jeder Knoten v € V,, wird durch den markierten Graphen H, ersetzt; H, ist
isomorph zu G, (v), wobei ein Knoten a € V,, ) auf den Knoten va in H,
abgebildet wird.

e Fine Kante (v, 3,w"), wobei v' bzw. w' Knoten in H, bzw. H, mitv # w sind,
existiert genau dann, wenn es in G,(I') eine Kante (v, a, w) mit

(a, pni1(V'), B, pnia(w')) € C gibt.
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Der zu G, (T") gehorige unmarkierte Graph wird mit G, (T") bezeichnet.
Beispiel 3.4.1 Es sei I' = ({5, A}, {a}, P,C,S) mit C = {(a, A, a, A)} und
(2/4)

P(S) = P(A) =
(115)  (0[9)

(Die Schreibweise (v|C) bedeutet, dafi der Knoten v die Markierung C' besitzt.) Die Gra-
phen Go(T'), G1(T"), Go(T") sehen folgendermafen aus:

(214)

Go(I') G1(I) G(I)
(22]4)
(2]A)
(ALS)
. /\ (12| A) (02| A)
(115) (015)

(1) (10[S) ~ (01]5)  (00[S)

Wie man leicht sieht, ist der zugehorige unmarkierte Graph fiir G,,(I") identisch mit G,,(I';)
aus Beispiel 3.1.2.

Satz 3.4.4 Zu jeder PDNLC-Grammatik I' gibt es eine im strengen Sinne 1-kiirzbare Kan-
tengrammatik ©, so daf fir alle n > 0 die (unmarkierten) Graphen G, (T') und G, (©)
tdentisch sind.

Beweis. Es sei die PDNLC-Grammatik T' = (X, A, P,C, S) gegeben. Von I' ausgehend
konstruieren wir den nichtdeterministischen endlichen Automaten A = (Z, Xrx Xr, S, 6, Z)
mit
Z = YU(ExAxY)
0 = {(A (z,2),B): Ae X,z € Vy,pa(z) = B} U
{(A, (z,9), (0a(z),0,04(y))) : A€ L, (z,0,y) € Ea} U

{((A7 a, B)7 (CL‘, y)’ (SOA(J:)a 67 @B(y))) :
A BeX,aeAxeVyye Vs (apalz),s 05(y) eCt

Offenbar gibt es fiir alle A € ¥ und alle a € X hochstens ein B mit (A, (a,a),B) € ¢
(und dieses B ist aus X). Folglich gibt es auch fiir alle w € X* und alle A € ¥ hochstens
ein B mit (A, (w,w), B) € 6. Im folgenden schreiben wir deshalb (A, (w,w)) = B statt
(A, (w,w), B) € 6.

Durch vollstédndige Induktion iiber n zeigen wir jetzt:
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]

1. G,(T') enthélt genau dann den Knoten w € X} " mit der Markierung A € ¥, wenn

6(5, (w, w)) = A gilt.

2. G,(T') enthilt genau dann die Kante (v, a, w), v, w € Xl[ﬂn}7 a € A, wenn v,w € V,,(T)

und (pn(v), @, pn(w)) € 6 (S, (v, w)).

Fiir n = 0 gelten die Behauptungen offenbar. Seien nun fiir n € N beide Behauptungen
bewiesen.

1. Fiirw e X", ¢ € Xp und B € ¥ gilt:

wa € Vo1 () A opy1(wa) = B

— weV,(T)ANIJA(pn(w)=ANa € VaNApala)=DB)
nach Definition der PDNLC-Grammatik
— JA6 (S, (w,w))=ANb(A,(a,a)) = B)
nach Induktionsvoraussetzung und Definition von A
<~ 6(S5,(wa,wa)) =B

nach Definition der Transitionsrelation.

2. Fir w € X%n], a,b € Xr,a#b,und g € A gilt:

(wa, B, wb) € E,,1(T)

— weV,(D)ANIAC (pp(w)=CAhaceVeAbe VeoAl(a,fB,b) € Ep)
nach Definition der PDNLC-Grammatik
- 303A3B (5 (S, (w,w)) = C A8 (C, (a,a)) = AN (C, (b,b)) = B

A(A,8,B) € 6(C, (a,b)) )
nach Induktionsvoraussetzung und Definition von A

s 3A3B (5 (S, (wa, wa)) = AN 6 (S, (wh, wb)) = B
A(A, B, B) € 6 (S, (wa, wb)) )

nach Definition der Transitionsrelation
— wa, wb € Vn+1(F) N (SDnJrl(wa)? ﬁ; SDnJrl(wb)) €é (Sa (waa wb))
wegen (1).
3. Furv,w € Xan}, v#w, a,be Xp,und § € A gilt:

(U(L,ﬁ, wb) € En-i—l(r)
= Ha((v, a,w) € En(T) Na € Vo, @) ANb € Vi, )
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N (Od, SD(/’TL('U) (a’)7 57 SD(/’n(w) (b)) € C)
nach Definition der PDNLC-Grammatik
= 3a((palv), 0, pu(w)) € 8 (S, (v,1)) A

(2o0)(0): By P (8)) € 8((9n(0), @, pu(w)), (a,0)))

nach Induktionsvoraussetzung und Definition von A

= (pns1(va), B, pni1(wd)) € 6(5, (va, wbd))
wegen Definition der Transitionsrelation und 6(5, (v, w)) € ¥ x A x X.

Nun kann man die im strengen Sinne 1-kiirzbare Kantengrammatik © mit £(0) = L(.A)
konstruieren. Offenbar gilt (v,v) € E(O) fir v € X%"] genau dann, wenn v € V,(I") und
gilt und (v,w) € E(O) mit |v| = |w| = n, v # w genau dann, wenn (v, a, w) € E, (') fiir
ein a € A erfiillt ist. Damit sind G, (©) und der zu G, (I") gehorige unmarkierte Graph
gleich. a

Satz 3.4.5 Zu jeder streng 1-kiirzbaren Kantengrammatik © gibt es eine PDNLC-Grammatik
[, so daf fiir alle n > 0 die (unmarkierten) Graphen G| (I') und G,(©) isomorph sind.

Beweis. Es sei X das Knotenalphabet von ©, und A = (Z,X x X, 20,6, Z) sei ein
partieller deterministischer endlicher Automat, der E(0)U {(v,v) : v € V(O)} akzeptiert.
Wir konstruieren jetzt die PDNLC-Grammatik I' = (X,A, P,C, (), 2z)) mit Xr = X,
Y=XxZU{(\z2)}, A=Z, sowie P und C wie folgt:

Viesy = {be X :6(2(b,b)) # 0}, fir (a,2) € (X x Z) U{(X 2)}
©V(a,2)(b) = (b,6(z, (b)) fiir b€ Vigz,(a,2) € X x ZU{(X, 20)}
Eaz = {(0,7,c) e X xZxX:6(z (b)) =2 ,b#c} fir (a,2) € X x ZU{(\ 2)}

C = {(z,(a,2),7,(b,20)) : 2,2, 21,22 € Z,a,b € X,6(2,(a,b)) =2}

Der Graph Gy(I') besteht aus dem Knoten A mit der Markierung S. Durch vollstandige
Induktion zeigen wir jetzt fiir n > 1:

1. G,(T') enthilt genau dann den Knoten wa mit w € XY a € X mit der Markierung
Ae X x Z ,wenn 6 (2, (wa,wa)) =z und A = (a, 2) gilt.

2. G,(T) enthélt genau dann die markierte Kante (v, z,w) € V,,(T") x Z x V,,(T'), wenn
8(z0, (v,w)) = z gilt.

Fiir n = 1 sind die Behauptungen wegen der Definition von G, ., erfiillt. Seien nun die
Induktionsbehauptungen fiir n € N gezeigt. Daraus folgt
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1. Fiir wab, w e X" a,be X, z € Z gilt:

wab € V,11(T) A ppi1(wab) = (b, 2)

wa € V(D) Ab € Vi, (wa) A P (wa) (D) = (b, 2)

nach Definition der PDNLC-Grammatik

Fy (y € Z ANwa € Vo(T) A pp(wa) = (a,y) A € Vig) A @ay)(b) = (b, 2))
nach Induktionsvoraussetzung

Fy (y € Z N6 (20, (wa,wa)) =y A6 (y, (b)) = z)

nach Induktionsvoraussetzung und Definition von I'

8(z0, (wab, wab)) = z

nach Definition der Transitionsrelation.

[

2. Fiir wab, wac mit w € X" a, b c € X,b+# ¢,z € Z gilt:

(wab, z,wac) € E,1(T)

— waeV,(I)A(bzc) € Ey,(wa)
nach Definition der PDNLC-Grammatik

<~ Jy(y e ZNb(z,(wa,wa))=yANé(y,(bc)) ==z)
wegen (1) und nach Definition von I'

<~ (20, (wab,wac)) = z

nach Definition der Transitionsrelation .

3. Fiir vb, we mit v,w € X", b,c € X,v # w, z € Z gilt:

(vb, z,wc) € Epy1(I)

<~ vbywc € V1 (T) A
3 (v € Z A (0.9 w) € B(D) A (3, @nia (00), 2, 9 (w0)) € C)
nach Definition der PDNLC-Grammatik

<~ JyIynidy, (ya Yy1,Y2 € Z N b(z0, (v, w)) =y A 6(20, (vb, b)) = y1 A

8(20, (we,we)) = ya A 6(y, (b,c)) = z)
nach (1), Induktionsvoraussetzung und Definition von T’
<~ (20, (vb,wc)) =z
wegen 1. und nach Definition der Transitionsrelation.

Damit ist durch vollstandige Induktion gezeigt, daB8 der Graph G,(I") genau dann einen
Knoten v € X" enthilt, wenn es ein z € Z mit §(z, (v,v)) = 2z gibt, d.h. wenn v ein
Knoten von G,(0) ist, und dal G,,(I") genau dann eine (markierte) Kante (v, z, w) mit
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v,w€ XM v #£w, z € Z, enthilt, wenn §(z, (v,w)) = 2 gilt, d.h. wenn (v, w) eine Kante
von G,(0) ist. Damit sind der zu G,(I") gehérende unmarkierte Graph und G,,(0) gleich.
(I

3.5 Abschluleigenschaften

Analog zur Theorie der formalen Sprachen untersucht man fiir Familien von Graphenspra-
chen das Abschlufiverhalten unter mengentheoretischen Operationen, wie z.B. Vereinigung
oder Durchschnitt, wobei sich diese Operationen auf die Aquivalenzklassen isomorpher
Graphen beziehen. Dariiber hinaus ist es fiir Graphensprachen interessant, den Abschlufl
unter graphentheoretischen Operationen (z.B. Bildung des Komplementargraphen) bzw.
graphentheoretischen Eigenschaften (z.B. Zusammenhang) zu untersuchen.

Abschlufl unter Mengenoperationen

Satz 3.5.1 FEs seien I'y und I'y synchrone regulire Kantengrammatiken. Man kann eine
synchrone regqulire Kantengrammatik © derart konstruieren, daff [G](©) = [G](I'1)U[G](T2)
qgilt.

Beweis. Es seien I'y und I's mit dem gemeinsamen Knotenalphabet X gegeben. Man
kann eine synchrone regulire Kantengrammatik © mit F(©) = h(E(I'1)) U (a,a)h(E(T3))
konstruieren, wobei h : (X x X)* — (X x X)* der Homomorphismus mit h(z) = zx fiir
x € (X x X) und a ein Symbol aus X sind.

Fiir alle n > 0 ist Go,(0) isomorph zu G,(T';), wobei ein Knoten v = ajas...a, 10, €
Vo(T'1) auf den Knoten v' = ayajasas ... an_1a,_1a,a, € V,(I'1) abgebildet wird. Analog
ist der Graph G,.1(0) fiir beliebiges n > 0 zum Graphen G, (I'y) isomorph. Damit gilt
[G1(©) = [G](I'1) U [G](T2).

Als néchstes werden wir zeigen, dafl die Familie der von synchronen regulédren Kantengram-
matiken erzeugten abstrakten Graphensprachen nicht unter Durchschnitt abgeschlossen ist.

Zunichst zeigen wir einige Hilfsresultate, die auch bei Unentscheidbarkeitsbeweisen von
Nutzen sein werden. Es seien X ein Alphabet und # ¢ X ein Symbol. Fiir ein Wort
w € X*#X* mit w = w#w, sei word(w) das Wort wyjwy € X* und num(w) die Position,
an der das Symbol # auftritt, also |w;| + 1. Fiir eine Relation R C X* x X* sei

RI# :={(v,w) : v,w € X*#X* A (word(v), word(w)) € R Anum(v) + 1 = num(w)}.

Lemma 3.5.2 Ist R C X* x X* eine synchrone requldre Relation, so ist auch RII# eine
synchrone requldre Relation.

Beweis. Es sei A = (Z, X x X, 2, 6, F') ein endlicher Automat mit L(.A) = R. Dann wird
die Relation RIT# von dem endlichen (Wort-)Automaten A" = (ZUZ', X' x X', 29, 6U¢', F”)
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mit 7' =7 x {1}, X' = X U{#}, F/ = F x {1} und

6, = {((217 ) ((L b) (22’ )) : (217 (a’ b)722) S 6}U{(zl7 (#a b)(aa #)7 (227 1)) : (zhaa b7 22) € 6}
akzeptiert.

Lemma 3.5.3 Es secien X ein Alphabet, # ¢ X ein Symbol, R C X* x X* eine synchrone
Relation und E = RI1#. Es gelten folgende Aussagen:

1. Firn > 2 existiert in G,,(E) ein gerichteter Weg der Linge j > 1 von v € V,,(F)
nach w € V,,(E) genau dann, wenn num(w) — num(v) = j und (v,w) € R’ gelten.

2. Ist R eine partielle Funktion, so ist G,(E) fir alle n > 2 ein umgekehrt gerichteter
Wald.

3. Ist R eine bijektive Funktion, so besteht G,(E) fir alle n > 2 aus (card X)" !
Komponenten, die jeweils gerichtete Wege der Linge n—1 sind. Dabei gilt num(s) = 1
fir jeden Startknoten s und num(t) = |t| fir jeden Endknoten t.

Beweis.

1. Ein gerichteter Weg der Lénge 1 existiert von v € V,,(F) nach w € V,,(E) genau dann,
wenn (v, w) € F gilt, d.h., wenn num(w) — num(v) = 1 und (word(v), word(w)) € R
erfiillt sind.

Sei nun fiir j > 1 gezeigt, dafl ein gerichteter Weg der Lange j von v nach w genau
dann existiert, wenn num(w) — num(v) = j und (word(v), word(w)) € R’ gelten. Ein
gerichteter Weg der Linge j 4+ 1 von v nach w existiert genau dann, wenn es einen
gerichteten Weg der Lange j von v nach w’ und einen gerichteten Weg der Lénge
1 von w' nach w fiir einen Knoten w’ € V,,(E) gibt. Nach Induktionsannahme und
Induktionsanfang ist das genau dann der Fall, wenn es ein w’ gibt, so dafl

num(w’) — num(v) = 7, num(w) — num(w’)

(word(v), word(w')) € R?, (word(w'), word(w ))
Dies ist dquivalent zu num(w) — num(v) = j + 1 und (word(v), word(w)) € R/ *L.

2. Nach (1) ist G,,(F) fiir n > 2 azyklisch. Ist R eine partielle Funktion, so hat aulerdem
jeder Knoten v € V,,(E) mit num(v) < n den Ausgangsgrad 1 und jeder Knoten v €
Vo (E) mit num(v) = n den Ausgangsgrad 0, womit G,,(E) ein umgekehrt gerichteter
Wald ist.

3. Ist R eine bijektive Funktion, so hat zusitzlich zu (2) jeder Knoten v € V,(F) mit
num(v) > 1 den Eingangsgrad 1 und jeder Knoten v € V,,(E) mit num(v) = 1 den
Eingangsgrad 0. Wegen (1) sind die Komponenten von G, (E) gerichtete Wege der
Lange n — 1 mit num(s) = 1 fiir jeden Startknoten s und num(¢) = n fiir jeden
Endknoten ¢. Da G,,(F) genau (card X)" ! Knoten s mit num(s) = 1 besitzt, ist die
Anzahl der Komponenten (card X)"!
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Beispiel 3.5.1 Es sei X = {a,b,c,d} und Ry C X* x X* die synchrone Relation mit

RA = RBURC'URDUREURF mat
Rg = {(d*ca™b" " ca™'0") : k,n > 0,m > 1},

Re = {(a™cb",a™db™ ') :m >0,n > 1},
Rp = {
Rg = {(da™b",ca™b"):n >0,m > 1},

(
(
(a*da™b", a* 1 da™ ") i m,n > 0,k > 1},
(
(

Rr = {(a"c,cb™):m > 1}.

Da R, Rc,Rp, R, Rr jeweils synchrone reguldre Relationen sind, ist auch R4 synchron
und reguldr. Wie man leicht sieht, ist R4 aulerdem eine bijektive Abbildung von

S ={d*ca™" : k+m+n>1}U{d"da™b" : k +m > 1,n > 0}

auf sich. Damit ist die synchrone reguldre Relation Ry = Ry U {(v,v) : v € X* \ S} eine
Bijektion von X* auf X*. Dabei gilt fiir ein Wort w = ca’b* mit i > 0,k > 1:

alcaIbF fiir 0 < j <1,

Ry (w)
RéJrl(w) — aiJrldbkfl’
R?Hj(w) = a4 fiir 0 < j <i+1,
R%Hg(w) ca'TTHF L,

Daraus folgt insbesondere: (cb*, ca™b* ™) € RE™ «—= k = ZT:_Ol(Qj +3)=(m+1)*-1.
Ist © eine Kantengrammatik mit E(0) = Ry IT #, so besteht der Graph G, (0) aus 4" !

disjunkten Wegen der Lange n. Unter anderem enthélt G,,(0) fiir n = 3,4, 5 die folgenden
Wege:

n=3: #cb — a#d — da#,
n=4: #cbb — a#db — da#b — cab#,
n=>5: #cbbb — aFdbb — da#bb — cab#b — acbb#.

Satz 3.5.4 Sind I'y und I'y synchrone regulire Kantengrammatiken, so ist [G](I'1)N[G](T2)
im allgemeinen nicht durch eine synchrone requlire Kantengrammatik erzeugbar.

Beweis. Es sei X = {a,b,¢,d}, Ry = Idx- und R, wie in Beispiel 3.5.1. R; und R, sind
synchrone reguldre Relationen und auBerdem bijektive Funktionen auf X*. Nach Lemma
3.5.2 gibt es fiir ¢ = 1,2 synchrone regulire Kantengrammatiken ©; mit F(©;) = R; IT #.
Die Graphen G, (0;) und G,,(©3) bestehen nach Lemma 3.5.3 jeweils aus 4"~ ! disjunkten
gerichteten Wegen der Lénge n, sind also isomorph. Im folgenden werden ©; und O, so
zu synchronen regulidren Kantengrammatiken I'y, 'y umgeformt, dafl G,(I';) und G, (I'2)
genau dann isomorph sind, wenn n eine Quadratzahl ist. Mit Hilfe von Satz 3.3.3 folgt, dafl
[G](I'y) N[G](T'2) nicht von einer synchronen reguldren Kantengrammatik erzeugt werden
kann.
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Wir betrachten fiir n > 3 in G,(0;) und G, (03) jeweils den Weg mit dem Startknoten
Cp = #cb" 2. In G,,(©1) endet der Weg von C,, im Knoten cb"?#. In G,,(0;) endet dieser
Weg genau dann in dem Knoten ca’b" " =3#, wenn Ry '(cb"2) = ca’b"~"~3 gilt. Nach den
Betrachtungen aus Beispiel 3.5.1 gilt dies genau dann, wenn n = (i + 1)2.

Da die Sprache L = {ca'b/# : i + j > 1} reguliir ist, ist die Relation
Rg ={(v,a"™) :v e L,|v|=n}U{(v,b") :v e X"#\ L, |v|=n}

synchron und regulir. Es gibt somit synchrone reguldre Kantengrammatiken I} und T
mit E(I") = E(0;) U Rg, i = 1,2. Die Graphen G,(I"}), i = 1,2, n > 3, bestehen aus zwei
umgekehrt gerichteten Badumen, deren Wurzeln die Knoten a™ bzw. " sind. Die Kompo-
nente mit dem Knoten a™ besteht in beiden Graphen aus (n — 1) gerichteten Wegen der
Léange n, die nur a™ als gemeinsamen Knoten haben; die Komponente mit dem Knoten 0"
besteht aus 4"~ — (n — 1) Pfaden der Léinge n, deren einziger gemeinsamer Knoten b ist.
Der Knoten C,, liegt in G, (I'}) fir alle n > 3 in der Komponente von a”, wéhrend C,, in
G, (T'}) in der Komponente von a” genau dann liegt, wenn n eine Quadratzahl ist.

Da auch die Sprache L' = {#cb" 2 : n > 3} regulér ist, lassen sich synchrone reguliire
Kantengrammatiken I'y und I'y mit E(I;) = E(I') U {(",w) : w € L'|lw| = n > 3}
konstruieren. Die Graphen G, (I';) entstehen aus den Graphen G, (I%), indem eine Kante
von 0" nach C, eingefiigt wird. G,(I';) und G,(I'2) sind genau dann isomorph, wenn
a” und C, in G,(T'y) in der gleichen Komponente liegen, d.h., wenn n = k? gilt. Da
G,(I'1) und G,,(I'y) fiir m # n wegen unterschiedlicher Knotenzahl nicht isomorph sind,
gilt [G](T'1) N [G](T'2) = {[Gk2(T'1)] : k > 2}. Die Anzahl der Knoten des Graphen G2 (I';)
ist k24% 1 4+ 2 k > 2. Nach Satz 3.3.3 kann die Graphenmenge [G](I';) N [G](I'y) nicht von
einer synchronen reguldren Kantengrammatik erzeugt werden.

Abschlufl unter Graphenoperationen

Eine k-stellige Graphenoperation ist eine Abbildung von einem k-Tupel von Graphen auf
einen Graphen, wobei die Bilder isomorpher Graphen wieder isomorph sind. Man kann
diese Operationen zu Abbildungen von Graphenfolgen in Graphenfolgen erweitern, indem
man sie auf die einzelnen Graphen anwendet. Sind k£ Kantengrammatiken I'y, ..., I'; sowie
eine k-stellige Graphenoperation f gegeben, so stellt sich die Frage, ob die Graphenfol-
ge {G;}, mit G; = f(Gi(T'1),...,Gi(Tk)) auch durch eine Kantengrammatik erzeugt
werden kann. Im folgenden betrachten wir die Abschlufleigenschaften der Familie der von
synchronen reguldren Kantengrammatiken erzeugten Graphensprachen unter verschiede-
nen Graphenoperationen.

Definition 3.5.1 G = (V, E), Gy = (V1, Ey) und Gy = (Va, E») seien schlichte Graphen.

e Der Komplementirgraph G von G ist definiert als G = (V, E) mit

E=(VxV)\ (EU Idy).
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o Flir eine natiirliche Zahl p ist der p-te Potenzgraph GP von G definiert als
GP = (V,E=P\ Idy)

e Der Hiillengraph G* von G ist definiert als G* = (V, E* \ Idy).

e Der Kantengraph oder Line-Graph L von G ist definiert als L(G) = (E, L(E)), wobei
die Kantenmenge von L(G) definiert ist als

LE) = {(kD)]|kl€Ek=(,uw),l=(waz)}

Die Knotenmenge des kartesischen Produkts G; x Gs, des lexikographischen Produkts
G1]|Gs], der Konjunktion G A Gy sowie der Disjunktion G V Gy ist jeweils Vi x Va. Die
jeweiligen Kantenmengen sind wie folgt definiert:

o ((v1,v2), (wi,ws)) € E(Gy X Gg) : <= (v1 = w1 A (v2,ws) € E3) V
(v = wa A (v1,wy) € Ey)

o ((v1,v2), (wi,ws)) € E(G1[Gs)) : <= (v1 = w1 A (v2,ws) € E3) V (v, wy) € Fy
o ((v1,v2), (wy,ws)) € E(G1 AN Gs) : <= ((v1,w1) € Ey A (ve,ws) € Es)

° ((Ul,/l]g), (11)1,11)2)) c E(Gl V Gg) D ((vl,wl) c E1 V (Ug,wg) < Eg)

Satz 3.5.5 FEs sei I' eine synchrone requlire Kantengrammatik. Man kann eine synchrone
requldre Kantengrammatik © konstruieren, so daf$ G,(©) fir alle n > 0 der von G,(I)
induzierte ungerichtete Graph ist.

Beweis. Ist £ = E(I') C X* x X* synchron und regulir, so ist auch E~! synchron
und regulédr. Folglich kann man eine synchrone und reguldre Kantengrammatik © mit
E(©) = E U E~! konstruieren. G,(0©) ist dann der von G,(T') induzierte ungerichtete
Graph. a

Satz 3.5.6 FEs sei I' eine synchrone requlire Kantengrammatik. Man kann eine synchrone
requldre Kantengrammatik © konstruieren, so dafi G,(0©) fir alle n > 0 der Komple-
mentdrgraph von Gp(I") ist.

Beweis. Das Knotenalphabet von I' sei X. Da die Sprachen V(I') C X* und L(I") C
(X x X)* regular sind, ist £’ = Idyy USyn(V(I') x V(I')) \ E(I") eine synchrone regulére
Relation. Es gibt eine synchrone reguldre Kantengrammatik © mit F(©) = E’. Wegen
Idyqry € E' C Syn(V(I') x V(I")) ist V(©) = V(I'). Weiterhin gilt fiir alle (v,w) €
Syn(V(I") x V(")) mit v # w: (v,w) € E(I') <= (v,w) ¢ E(O). Folglich ist G, (©) der
Komplementérgraph von G, (T") fiir alle n > 0. O
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Satz 3.5.7 Es sei ' eine synchrone requlire Kantengrammatik und p € N. Man kann eine
synchrone requlire Kantengrammatik © konstruieren, so daff Gn(0) = (G,(I"))? fir alle
n>1 gqilt.

Beweis. Sind R,S C Syn(X* x X*) synchrone und reguldre Relationen, so ist auch
Ro S = {(u,w) : Fv((u,v) € RA (v,w) € S)} synchron und reguldr. Daraus folgt durch
vollsténdige Induktion iiber p, dafl fiir jede synchrone regulidre Relation £ C X* x X*
und jedes p € N auch die Relation EP synchron und reguldr ist. Wegen des Abschlusses
synchroner regulirer Relationen unter Vereinigung ist auch E<P synchron und reguldr. O

Satz 3.5.8 FEs sei ' eine synchrone requlire Kantengrammatik. Man kann im allgemeinen
keine synchrone regulire Kantengrammatik © mit [G](©) = [G*](T") = {[G*] : G € G(I')}

konstruieren.

Beweis. Ein Graph G ist genau dann stark zusammenhéngend, wenn G* vollstindig ist.
In Satz 3.5.12 wird ferner gezeigt, dal mit [G] auch die Menge der vollstdndigen Graphen
[Guoust] durch eine synchrone regulidre Kantengrammatik erzeugt werden kann. Kann man
also [Gr ](T') nicht durch eine synchrone regulire Kantengrammatik, so ist dies auch
nicht fir [G*](I") moglich.

Ausgehend von der Kantengrammatik I'y aus Beispiel 3.5.1 wird spéter (Satz 3.5.13) eine
synchrone regulidre Kantengrammatik I' derart konstruiert, dafl der Graph G, (I") genau
dann stark zusammenhéngend ist, wenn n eine Quadratzahl ist. Dabei ist die Knotenzahl
des Graphen G,,(T") gleich n4"! + 2 ist. Analog zum Beweis von Satz 3.5.4 folgt, daf§ die
Graphensprache [G* (") nicht durch eine synchrone regulére Kantengrammatik erzeugt
werden kann. a

Satz 3.5.9 Es sei ' = (N, X, X2 P, S) eine synchrone regulire Kantengrammatik. Man
kann eine Kantengrammatik © konstruieren, so dafi G,(©) isomorph zu L(G(T")) fir
n > 1 ist.

Beweis. Es seien E, Ey, B3 C Syn(X* x X* x X* x X*) die synchronen Relationen mit

By = {z€Syn(X" x X" x X* x X*) : pry o(x),pra(x) € E(T) \ Idy(m)},
Ey = {z€Syn(X" x X" x X" x X"):pry;(z) € ldyn)},
Bz = {z € Syn(X" x X" x X" x X¥) : pry 3(x), pro(x) € Idy(r)}.

E\, E,, B3 sind synchron reguliir. Damit ist auch E* = (E;NE,)U(E;NE;) synchron regulir.
Im folgenden fassen wir E* als synchrone biniire Relation E¢ C Syn((X x X)* x (X x X)*)
auf. Es gibt eine synchrone reguldre Kantengrammatik © mit dem Knotenalphabet X x X
und E(0©) = E’. Nach Definition von E* ist ein Paar (ey, ;) mit e;,e; € (X x X)I" genau
dann in F(O), wenn e; und e Kanten des Graphen G,, sind und entweder der Zielknoten
von ey und der Startknoten von e, gleich sind oder e; und e; gleich sind. Damit ist gezeigt,
daf der Graph G,,(0) gleich dem Kantengraphen von G, (I") ist.
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Satz 3.5.10 Sind ' und © synchrone requlire Kantengrammatiken mit dem gemeinsamen
Knotenalphabet X, so gibt es synchrone regulire Kantengrammatiken, die {G;(I') x G;(©) :
i > 0}, {Gi(I)[Gi(O)] : i > 0}, {G;(T') AGi(©) : i > 0} bzw. {G;(T") V G;(©) : i > 0}
erzeugen.

Beweis. Esseien Ey, By, By, B3, E; C Syn(X* x X* x X* x X*) die synchronen Relationen
mit

Ey = {zeSyn(X" x X" x X" x X") :pry(z),prs(z) € V(I'), pry(x), pry(z) € V(O)},

( )
By = {zeSyn(X"x X" x X" x X*) :pry3(x) € E(I') \ Idy(n)},
Ey, = {ze€Syn(X"x X" x X" x X*) :pry,(z) € £(0)\ Idy(e)},
By = {z€Syn(X"x X*x X* x X*) :pry4(z) € Idyn},
Ey = {z€Syn(X" x X" x X" x X*) : pry,(z) € Idy(e)}.

Diese Relationen sind synchron und regulér, wie auch die mit ihrer Hilfe definierten Rela-
tionen

E* = EyN((EsNEy)U(ELNEy)U(EsNEY)),
EU = E,n((EsNEy)UFE, U (EsNEy)),

EN = Eyn(E1NEyU(EsNE)),

EY = EyN(EyUE,U(EsNE)).

Die zuletzt definierten Relationen werden im folgenden als synchrone binére Relationen
iiber dem Alphabet X x X aufgefait. Es gibt synchrone regulire Kantengrammatiken mit
dem Knotenalphabet X x X, die E*, Ell, E bzw. EY erzeugen.

Ein Paar (ej,ez) mit e = (v1,v2),€3 = (wy,ws) ist genau dann in E* enthalten, wenn
lv1] = |va| = |wi| = |wa] = n, v, w1 € Vo(T),v9,wy € V,(O) erfiillt ist und auBerdem
[v1 = wy und (ve,ws) € E,(O)] oder [vg = wy und (vy,w;) € E,(I')] oder [e; = es]
gilt. Damit ist gezeigt, dafl der Graph G,(E*) als Knotenmenge genau die Knoten aus
Gn(T') x G,(0) besitzt und genau die Kanten von G, (I") x G,(0) enthilt. Analog zeigt
man, dafl die Relationen Ell, E* EY die lexikographischen Produkte, die Konjunktionen
bzw. die Disjunktionen beschreiben. O

Abschlufl unter graphentheoretischen Eigenschaften

Héufig ist man daran interessiert, aus einer gegebenen Graphenmenge die Graphen mit
einer bestimmten Eigenschaft herauszufiltern. Formal ist eine graphentheoretische Eigen-
schaft eine unter Isomorphismus abgeschlossene Menge von Graphen.

Fiir eine graphentheoretische Eigenschaft P und eine Kantengrammatik I" sei Gp(I") die
Graphenfolge Gp(I') := {Gpi(I") }iso mit Gp;(I") = G,(I), falls G;(I") € P, und Gp;(I") =
(0,0), sonst. AuBerdem sei [Gp|(T') = {[G] : G € Gp(T') AG # (0,0)}. Wir untersuchen fiir
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verschiedene graphentheoretische Eigenschaften P die Frage, ob fiir jede synchrone regulére
Kantengrammatik T" auch [Gp](T") durch eine synchrone regulidre Kantengrammatik erzeugt
werden kann.

Zunéchst zeigen wir, dal dies moglich ist, sofern P mittels der Pradikatenlogik erster
Stufe definiert werden kann. Danach wird die Nichtabgeschlossenheit unter einigen anderen
graphentheoretischen Eigenschaften, wie z.B. Zusammenhang, nachgewiesen. Schliellich
zeigen wir einige positive Resultate mit Hilfe von formalen Potenzreihen.

Der Vollstandigkeit halber geben wir zunéchst die hier benotigten Definitionen der Syntax
und der Semantik der Pradikatenlogik 1. Stufe an. Fiir eine umfassende Einfiihrung in die
mathematische Logik verweisen wir auf [11].

Definition 3.5.2 Es sei Aedge = {(,), =V, I, A, V,— } U{z; : i € N} U {edge}. Die
Symbole x;,1 € N, heiffen Variablen, das Symbol edge ist ein zweistelliges Relationssymbol.
Die Menge der pradikatenlogischen Formeln 1. Stufe {iber Aeqge, im folgenden kurz Formeln
genannt, ist wie folgt induktiv definiert:

1. x; = z; und edge(z;, x;) mit i,j € N sind Formeln.
2. Sind ¢ und ¢ Formeln, so sind auch —p, (¢ A1), (¢ V) und (¢ — ) Formeln.

3. Ist ¢ eine Formel und ¢ € N, so sind auch z; und Vx;0 Formeln.

Definition 3.5.3 Die Menge der in einer Formel ¢ vorkommenden Variablen wird mait
var(p) bezeichnet. Die Menge der in einer Formel ¢ frei vorkommenden Variablen free(y)
ist wie folgt induktiv definiert:

1. free(z; = ;) = free(edge(w;, x;)) = {x;, z;}

2. free(—p) = free(yp)

3. free((p AN)) = free((p V) = free((p — ) = free(p) U free(y)
4. free(Fwip) = free(Vwip) = free(p) \ {z:}

Ist free(¢) =0, so wird ¢ ein Satz genannt.

Definition 3.5.4 Fiir einen Graphen G = (V, E) und eine Formel ¢ ist eine Belegung
von ¢ in G definiert als eine Abbildung von der Menge der Variablen nach V. Fiir eine
Belegqung 3 und v € V' ist ﬁw%_ die Belegung

v v, falls 1= j,

92w ={ ey, Lot
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Definition 3.5.5 Fiir einen Graphen G = (V, E), eine Formel ¢ und eine Belegung 3 von
¢ in G definieren wir die Beziehung (G, ) | ¢ induktiv wie folgt:

(G,B) Ex = x; t= PBz) = B(zy)

(G,ﬂ) ): edge(l‘hx]‘) L= (ﬂ(xl)aﬂ( ))

(G,0) E —p <= (G,0) E ¢ gilt mcht

(G,B) E (pA) = (G,B) Fyund (G,B) v
(G.B) = (pV) i< (G,B) Ey oder (G,B) =
(G,B) E (¢ — ) i aus (G,B) E ¢ folgt (G, ) E ¢
(G,0) E Jzip 1= (G,B7) F ¢ firemveV
(G, B) = Va;p <= (G,B%) E @ firaleveV

T

Gilt (G, ) = ¢ so heifit (G, 3) ein Modell fiir .

Es seien G = (V, E) ein Graph, ¢ eine Formel mit free(p) C {xy,...,2,} und 3 eine
Belegung von ¢ in G mit B(x;) = v;. Nach dem Koinzidenzlemma, siehe [11, 111.4.6], gilt
(G, B) E ¢ genau dann, wenn (G, ') = ¢ fur alle 8’ mit §'(x;) = v;, 1 < i < n. Aus diesem
Grunde schreiben wir statt (G, 3) | ¢ kiinftig hdufig G |= ¢vy, ..., v,]. Ist insbesondere
¢ ein Satz, so schreiben wir G |= ¢, falls (G, ) = ¢ fiir eine Belegung [ gilt.

Nach dem Isomorphielemma [11, 111.5.2] gilt fiir isomorphe Graphen G, G": G E ¢ <
G' | ¢. Folglich wird durch einen Satz ¢ eine graphentheoretische Eigenschaft definiert.

Beispiel 3.5.2 Es folgen die Definitionen einiger graphentheoretischer Eigenschaften mit
Hilfe von Sétzen 1. Stufe.

1. Ein Graph G ist genau dann schlicht, wenn G = ¢, mit ¢, = ~Ir1edge(zy, x1).
2. Der Graph G ist genau dann diskret (d.h., er enthilt keine Kanten), wenn G |= ¢
mit
¢ = —~Jdr;Ixrsedge(ry, xa).
3. Der Graph G ist genau dann schlicht und vollstindig, wenn G = ¢ mit

@ = (ps ANVT1VEs (21 = 22 V edge(z1, 12))) -

4. Der Graph G ist genau dann ungerichtet, wenn G | ¢, mit

Yy = YV 1Vro (edge(xy, o) — edge(xs, x1)) .

Fiir eine Formel ¢ mit free(¢) C {z1,...,2,} und einen Graphen G = (V, E) bezeichnen
wir mit B(G,p,n) die Menge aller n-Tupel (v1,...,v,) € V* mit G | ¢[vq,...,v,]. Fir
eine Kantengrammatik I" mit dem Knotenalphabet X sei L(I',p,n) C Syn((X™*)") die
synchrone Relation mit L(T", p,n) = {B(Gk(T"), p,n) : k > 0}.
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Satz 3.5.11 FEs seien I eine synchrone und requldre Kantengrammatik und ¢ eine Formel
mit var(p) C {x1,...,x,}. Dann ist L(T',p,n) = {B(Gx(I'),,n) : k > 0} synchron
requldr.

Beweis. Der Satz wird durch Induktion {iber den Formelaufbau bewiesen. Dabei ist es
im Induktionsschritt ausreichend, sich auf Formeln zu beschranken, die nur den Disjunk-
tionsoperator V, den Negationsoperator — sowie den Existenzquantor 3 enthalten. Als
Induktionsanfang zeigen wir:

e p=r,=1;,1<1,j<n
Ein n-Tupel (vq,...,v,) € Vi(I')" ist genau dann in B(Gg(I'), p,n), wenn v; = v;
gilt, d.h.,

LT, p,n) = Syn(V(I')") N {z € Syn((X™)") : pr; ;(x) € Idx-}.
Aus der Regularitidt von V(T') und Idy- folgt, dal L(T, ¢, n) synchron regulir ist.

o ¢ =edge(z;,z;),1 <i,j <n
Ein n-Tupel (vq,...,v,) € Vi(I')" ist genau dann in B(Gk(I'), p,n), wenn (v;,v;) €
E(T) gilt, d.h.,

L(T, ¢,n) = Syn(V(I")") N {z € Syn((X*)") : pr; ;(z) € E(I) \ Idx-}.
Da V(I'), E(T') und Idx~ synchron regulér sind , ist L(I', ¢, n) synchron regulér.

Sei nun fiir die Formeln )y, 1y mit var(¢yy), var(vs) C {x1,...,z,} bereits gezeigt, daB
L(T"; 41, n) und L(T', 15, n) synchron reguldr sind.

o = Y:
Ein n-Tupel (vq,...,v,) € Vi(I')™ ist genau dann in B(Gk(I"), ¢, n), wenn es nicht in
B(Gg(T"),¢1,n) enthalten ist, d.h.

L(F> 2 n) = Syn(V(F)") \ L(F> (P TL)

Da Syn(V(I')") und L(T", 91, n) synchron regulér sind und die Familie der synchron
reguldren Relationen unter Differenz abgeschlossen ist, ist L(I', p,n) synchron re-
gular.

° o= (1 V)
Ein n-Tupel (vq,...,v,) € Vi(I')™ ist genau dann in B(Gk(I'),p,n), wenn es in
B(Gk(T"),11,n) oder B(Gg(T'"), 12, n) enthalten ist, d.h.

L(Fa QD,TL) = L(Fawbn) U L(Fﬂb,n)-

Da L(T',41,n) und L(T', 45, n) synchron regulér sind und die Familie der synchron
reguldren Relationen unter Vereinigung abgeschlossen ist, ist L(I", ¢, n) synchron re-
gulér.
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o o =dz;1h, 1 <i<n:
Ein n-Tupel (vq,...,v,) € Vi(I')" ist genau dann in B(Gk(T'),p,n), wenn es ein
w € Vi(T') gibt, so daB (vy,...,v;_1, W, Vis1,...,0,) in B(Gg(T'), 11, n) enthalten ist,
d.h.

L(Fa ¥, TL) = Syn(V(F)") N

Da L(T',41,n) und Syn(V (I")") synchron regulér sind und die Familie der synchron
reguliren Relationen unter endlicher Substitution und Durchschnitt abgeschlossen
ist, ist L(I", ¢, n) synchron regulér. a

Satz 3.5.12 Zu jedem Satz 1. Stufe ¢ und zu jeder synchronen reguliren Kantengrammatik
I' gibt es eine synchrone regulire Kantengrammatik I', mit G(I',) = {G € G(I') : G |= ¢}.

Beweis. Es sei X das Knotenalphabet von I" und ¢ ein Satz 1. Stufe mit var(y) C
{z1,...,2,}. Es sei L(T',p,n) die in Satz 3.5.11 konstruierte Sprache. Da ¢ keine freien
Variablen enthilt, ist ein n-Tupel (wy, ..., w,) € V(') genau dann in L(T', ¢, n), wenn
w; € Vg(T'), 1 <i <n, und Gi(T") = ¢. Die Relation

E, = E(I) N {(v,w) € Syn(X* x X*) 1 v,w € pry(L(T, p,n))}

ist synchron und regulédr. Ist I', eine synchrone reguldre Kantengrammatik mit E(I',) =
E,, so ist der Graph G (I',) gleich Gy ('), falls Gx(I') = ¢, und anderenfalls leer. O

Durch Séatze 1. Stufe lassen sich nur ,lokale“ Eigenschaften definieren (siehe [6]). Deshalb
sind viele wichtige graphentheoretische Eigenschaften nicht mit den Mitteln der Pradika-
tenlogik 1. Stufe definierbar. Fiir einige dieser Eigenschaften beweisen wir im folgenden,
daf beziiglich ihnen keine Abgeschlossenheit der Familie der durch synchrone regulire Kan-
tengrammatiken erzeugten Graphensprachen besteht. Zunéchst seien der Vollstdndigkeit
halber die Definitionen dieser graphentheoretischen Eigenschaften angegeben:

Definition 3.5.6 FEs sei G = (V, E) ein gerichteter schlichter Graph.

e [ine Knotenfarbung mit k& Farben von G ist eine Abbildung c:V — {1,... k}. Eine
Knotenfirbung ¢ heifit zulissig, wenn c(v) # c(w) fir alle v,w € V mit (v,w) €
E gilt. G heifst k-knotenfarbbar, falls eine zulissige Knotenfirbung mit k Farben
existiert.

e G heifit planar, wenn es eine Finbettung in den zweidimensionalen euklidischen Raum
gibt, so daf keine zwei Kanten einen inneren Schnittpunkt haben. (Fir eine exakte
Definition siehe [40, Definitionen 11.1,11.2].)
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e [in Kantenzug vg, vy, . .., vy in G heifit gerichteter Eulerweg, wenn fir alle (v, w) € E
genau ein i € {1,...,k} mit (vi_1,v;) € (v,w) existiert. Ist zusatzlich vy = vy, so ist
Vo, - - -, Uk_1, Vg ein Eulerzyklus. G heiffit Eulerscher Graph, wenn G einen Eulerzyklus
enthdlt. Ein ungerichteter Graph heif$t ungerichtet Eulersch, wenn er durch einen ge-
richteten Eulerschen Graphen mit antisymmetrischer Kantenrelation induziert wird.

o Lin Weg vy,...,vr in G heifit Hamiltonweg, wenn fir alle v € V genau ein i €
{1,...,k} mit v; = v existiert. Ist vy,..., v ein Hamiltonweg und (vg,v1) € E, so
heifit vy, ..., v, v1 Hamiltonkreis. G heifst Hamiltonsch, wenn G einen Hamiltonkreis
enthdlt.

Satz 3.5.13 Es sei I' eine synchrone regulire Kantengrammatik. Die folgenden Graphen-
mengen lassen sich im allgemeinen nicht durch synchrone requlire Kantengrammatiken
erzeugen:

1. die Menge aller zusammenhdngenden Graphen aus [G](T'),

die Menge aller azyklischen Graphen aus [G|(T'),

die Menge aller k-knotenfirbbaren Graphen mit k > 2 aus [G](T),
die Menge aller planaren Graphen aus [G|(T'),

die Menge aller Eulerschen Graphen aus [G](T),

S R N

die Menge aller Hamiltonschen Graphen aus [G](T').

Beweis. Es sei I' eine synchrone reguldre Kantengrammatik mit Knotenalphabet X, so
daB G, (I") fiir n > ng folgende Eigenschaften besitzt:

e G,(I") besteht aus zwei Komponenten, die jeweils umgekehrt gerichtete Baume sind.

e In G, (") gibt es drei paarweise verschiedene Knoten a,, b,, ¢, derart, da8 a,, und b,
die Wurzeln der umgekehrt gerichteten Baume sind, ¢,, ein Blatt ist und die Sprachen
A={a,:n>ne}, B={b,:n>np}und C = {c, :n>ny} jeweils regulér sind.

(Diese Bedingungen werden beispielsweise von der Kantengrammatik I, aus dem Beweis
von Satz 3.5.4 mit ng = 2, a, = a", b, = 0", ¢, = #cb"? erfiillt.) Ausgehend von T’
konstruieren wir im folgenden synchrone regulidre Kantengrammatiken I';, ¢ = 1,...,5, so
daB G,(I';) genau dann eine der oben genannten Eigenschaften besitzt, wenn a, und ¢, in
einer Komponente liegen.

1. Die Relation Ey = E(I') U{(by, ¢,) : n > 1} ist synchron und regulér. Folglich gibt es
eine synchrone regulire Kantengrammatik I'y mit E(I';) = E; sowie eine synchrone
regulire Kantengrammatik I'} mit E(T)) = E; U E;'. G, (') bzw. G,(I') ist ge-
nau dann schwach bzw. stark zusammenhéngend, wenn b, und c, in verschiedenen
Komponenten von G, (I") liegen.
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2. G,(T'1) ist genau dann azyklisch, wenn b,, und ¢, in verschiedenen Komponenten von

Gn(T) liegen.
3. Essei X' = X U{1,...,k}. Die Relation
Ey = {(vi,vj) v e V([),1 <4, <k}U{(vi,wl): (v,w) € ET),2<i<k}

ist synchron reguldr. Es gibt daher eine synchrone reguldre Kantengrammatik I%
mit E(I'y) = EY. Der Graph G,,11(I') entsteht, indem man in G, (") einen Knoten
v durch den vollstédndigen Graphen mit den Knoten v1,..., vk ersetzt und fiir eine
Kante (v,w) die Kanten (v2,wl),..., (vk,wl) einfiigt. G,1(I") besteht aus zwei
Komponenten. Sind v und w in G,(I") in derselben Komponente, so befinden sich
vi und wj fir 1 < 4,5 < k in derselben Komponente von G, 1(I';). Offenbar ist
Gpn11(T%) mit k Farben knotenfarbbar. Eine zuléssige k-Fiarbung erhélt man, indem
man in der Komponente mit dem Knoten a,,1 allen Knoten der Form vi mit 1 <i < k
die Farbe 7 gibt und in der Komponente mit dem Knoten b,,1 allen Knoten der Form
vi mit 1 < i <k die Farbe (i + 1) rest k gibt.

Ferner gilt fiir jede zuldssige k-Féarbung ¢, des Graphen G, 1(I'}) und alle v, w €
Vo(T): Sind v, w in derselben Komponente von G, (I'), so ist ¢,+1(v1) = cpp1(wl).
Dies ist sehr leicht durch vollstédndige Induktion iiber den Abstand von v und w zu
zeigen.

SchliefSlich konstruieren wir eine synchrone reguldre Kantengrammatik I'y mit
E(Ty) = E(Ty) U{(b1,c,1) :n > 1}

Sind in G, (') die Knoten b, und ¢, in unterschiedlichen Komponenten, so bleibt
die oben angegebene Knotenmarkierung fiir G, 1(I'5) eine giiltige Markierung fiir
Gpn11(T). Sind in G,,(T") die Knoten b,, und ¢, in der gleichen Komponente, so wird
jede giiltige Knotenmarkierung c¢,+1 von G,11(I',) wegen c,11(bnl) = cpy1(cpl) zu
einer ungiiltigen Markierung fiir G,,;1(I'). Folglich ist G,,41(I'2) genau dann mit k
Farben knotenfiarbbar, wenn ¢, und a, in der gleichen Komponente von G, (I") sind.

4. Wir wahlen als Alphabet X U {1,2,3}, 1,2,3 ¢ X. Es gibt eine synchrone regulédre
Kantengrammatik I's mit

ET3) = ET)U{(by,z"):n>1,xz€{1,2,3}}U
{(z",y"):n>1,z,y€{1,2,3}}U{(2",¢c,) : n> 1,2 € {1,2,3}}.

Der von den Knoten b, ¢,, 1™, 2", 3" induzierte ungerichtete Teilgraph ist bis auf die
Kante zwischen b, und ¢, vollstindig. Liegen ¢, und b, in G,(I') in der gleichen
Komponente, so ist dieser Graph mit dem Weg von ¢,, nach b,, eine Unterteilung des
vollstdndigen Graphen mit 5 Knoten, und damit ist G,,(I") nicht planar.

Sind dagegen ¢, und b, in verschiedenen Komponenten, so ist G,(I's) planar. Man
bettet die Komponenten von ¢, bzw. b, innerhalb bzw. auflerhalb des Dreiecks ein,
welches durch 17,2", 3" definiert ist.
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5. Zunéchst sei daran erinnert, dal ein Graph genau dann Eulersch ist, wenn er stark
zusammenhéngend ist und fiir jeden seiner Knoten der Eingangsgrad und Ausgangs-
grad gleich sind.

Wir wéhlen als Alphabet X U {1,2}, 1,2 ¢ X und setzen
Ey={(v1,v2) :v e V1(I')) }U{(v2,w]) : (v,w) € E(T'1)}U{(wl,vl): (v,w) € E(I'y)}.

Es gibt eine synchrone regulire Kantengrammatik I’y mit E(T'y) = E4. Der Graph
Gpn:1(T4) entsteht, indem in G, (I'1) ein Knoten v durch die Knoten v1,v2 ersetzt
wird, falls eine Kante von v ausgeht, und sonst durch v1 ersetzt wird, und eine Kante
(v, w) durch den Zyklus (v1,v2, w1, v1) ersetzt wird. Fiir jeden Knoten v1 ist der Ein-
gangsgrad offensichtlich gleich dem Ausgangsgrad. Da von jedem Knoten v € V1(T'y)
genau eine Kante ausgeht, hat jeder Knoten v2 Eingangsgrad und Ausgangsgrad 1.
Weiterhin folgt durch vollstindige Induktion, dal vi, wj, i,5 € {1,2}, genau dann in
der gleichen starken Zusammenhangskomponente von G, .1(I'4) liegen, wenn v und
w in der gleichen schwachen Zusammenhangskomponente von G,(I'y) liegen. Damit
ist Gpy1(I'y) genau dann Eulersch, wenn G,,(I'y) schwach zusammenhéngend ist.

6. Zunichst stellen wir fest, daf fiir einen Eulerschen Graphen G mit antisymmetri-

scher Kantenrelation der Kantengraph £(G) Hamiltonsch ist, denn einem Eulerkreis
V1, V2, V3, ..., Uk_1, Uk, ¥1 in G entspricht der Hamiltonkreis
(v1,v2), (V2,v3), ..., (Vg_1, V&), (Vk, v1), (V1,v2) in L(G).
Nun konstruieren wir nach Satz 3.5.9 die synchrone reguldre Kantengrammatik I's,
so daBl G,41(['5) fiir n > 1 der Kantengraph von G,;1(I'4) ist. Ist G,41(I'4) nicht
zusammenhéngend, so ist auch G,,41(I's) nicht zusammenhéngend und folglich nicht
Hamiltonsch. Ist G, 41(I's) zusammenhéngend, so ist G,1(I's) Eulersch, und wegen
der Antisymmetrie von E, 1 (I'y) ist Gy, 11(I's) Hamiltonsch. Somit ist Gy, 41(I's) genau
dann Hamiltonsch, wenn G,,1(T"y) zusammenhéngend ist, also genau dann, wenn a,,
und ¢, in G,(T") in der gleichen Komponente liegen.

Nach den Konstruktionen ist

card V,(T'1) = card V,, ('), card V,,41(I'2) = kcard V,,(T"), card V,,(I's) = card V,(T") + 3,
card V,,41(T'y) = card V,,(I'y)+card E,(I'1) = card V,,(I')4card E,(I')+1 = 2 card V,(I") — 1,
card V,(I's) = card E,(I'y) = 3card (E,(I'1)) = 3card (V,(I')) — 3.

Waihlt man fiir I' die Kantengrammatik I}, aus dem Beweis von Satz 3.5.4 a,, = a™, b, = b",
Cn = #cb" 2, so ist card V,(T') = nd"! + 2, und ¢, und a, sind genau dann in der glei-
chen Komponente, wenn n eine Quadratzahl ist. Mit den Argumenten aus dem Beweis von
Satz 3.5.4 148t sich zeigen, dafl die Menge aller zusammenhéngenden Graphen aus G(T'y),
die Menge aller azyklischen Graphen aus G(T';), die Menge aller k-knotenfirbbaren Gra-
phen aus G(I'y), die Menge aller planaren Graphen aus G(I's), die Menge aller Eulerschen
Graphen aus G(I'y) und die Menge aller Hamiltonschen Graphen aus G(I's) nicht durch
synchrone reguldre Kantengrammatiken erzeugbar sind.
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Als letztes zeigen wir zwei positive Abschlufiresultate mit Hilfe rationaler Potenzreihen.
Ein ungerichteter Graph heiflt requldr vom Grad k, wenn alle Knoten den Grad k besitzen
und reguldr, wenn er reguldr von beliebigem Grad k ist.

Satz 3.5.14 Es sei I' eine synchrone regulire Kantengrammatik. Es existiert eine syn-
chrone regulire Kantengrammatik ©, so daff G(©) die Menge aller requliren Graphen aus

G*“(T") ist.

Beweis. Es sei X das Knotenalphabet von I' und = € X. Ferner setzen wir V = V(I).

Zunéchst 148t sich ein nichtdeterministischer endlicher Automat A derart konstruieren,
dal L(A) =V gilt und d4(v) = d(v|I') + 1 fiir alle v € V erfiillt ist.

Weiter sei auf X eine Ordnungsrelation < gegeben, die auf X* zur quasilexikographischen
Ordnung <gex erweitert wird. Es sei

M={weV :Vo((veVAl=|w)—w<gexv)}
Wie man leicht sieht, ist mit V' auch M reguldr. Fiir n € N definieren wir m,, als das

(einzige) Wort aus M mit der Liange n bzw. als 2", falls ein solches Wort nicht existiert.

Da V und M regulér sind, sind die Potenzreihen

Dy= Z da(w)w = ZdA(w)w, Cy = Zw und Cjy = Zw

weX* weV weV weM

N-rational. Es sei ferner hy : X* — {z}* der Homomorphismus mit ho(a) = =z fiir alle
a € X. Wir konstruieren jetzt die Potenzreihen rq,..., r5:

rn = Dao0Cy= Z da(w)w = ZdA(mn)mn
n=0

weM
o0
re = h07”1:§ da(my)z"
n=0

r3 = (halm) o Cy = Z dA(th‘)w
weV
ry = (rs—Da)®(rs—Da) =Y _(da(mju)) — da(w))*w

rs = hoMZZ Z (rg,w) | z"

n=0 \weVnxlnl

Wegen der Abschlufleigenschaften rationaler Potenzreihen sind die Reihen 7,715,735 N-
rational und 74, 75 Z-rational. Offenbar ist (r5,2") = 0 genau dann, wenn d4(w) = d4(my,)
fiir alle w € V N X[ gilt, d.h. genau dann, wenn G,,(T") regulir oder leer ist.
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Fiir eine Z-rationale Potenzreihe r = Y °  a,z" ist die Sprache {z" : a, = 0} regulér
[5, Theorem IV.4.1]. Folglich gibt es eine synchrone regulire Kantengrammatik © mit
Gn(0) = G,(I), falls (r5,2™) = 0, und G,,(0) = (0, 0), sonst. O

Satz 3.5.15 Es sei I' eine synchrone requlire Kantengrammatik. Es existieren synchrone
requldre Kantengrammatiken ©1, ©,, so daff G(O1) bzw. G(O2) die Mengen aller Graphen
aus G(I') bzw. G*(I') mit ausschlieflich Eulerschen bzw. ungerichtet Eulerschen Kompo-
nenten sind.

Beweis. Es sei X das Knotenalphabet von I' und z € X. Sei I', eine synchrone regulére
Kantengrammatik mit G(I',) = G*(I"). Ferner setzen wir V = V(I') = V(I',).

Aus I' bzw. I', kann man nichtdeterministische endliche Automaten A;, Ay bzw. A derart
konstruieren, dafl L(A;) = V(L) fir ¢ = 1,2 baw. L(A) = V(') gilt und d4, (v) =
dout(V|T) + 1 fiir alle v € VI(T'), da,(v) = din(v|I") + 1 fiir alle v € V2(I") sowie d4(v) =
d(v|l'y) + 1 fiir alle v € V(T') erfiillt ist.

Es seien D1, Dy, D, C' die rationalen Potenzreihen mit

D; = Z da,(ww,i=1,2, D= Z da(w)w, C = Z w.

weX* weX* weV(T)

Es sei h : X* — {z}* der Homomorphismus mit h(a) = z fiir alle a € X, und H sei der
natiirliche Halbringhomomorphismus von N nach Ny mit H(n) = nrest 2 fiir alle n € N.

Die Potenzreihe R = h((Dy — D) ® (D1 — D)) = Y07 | (3 pextn (D1 — Do, w)?) ™ ist

in Z'((z)). Bs gilt (R,2") = 0 genau dann, wenn d 4, (v) = d4,(v) fiir alle v € X" d.h.,
wenn alle Komponenten von G, (I") gerichtet Eulersch sind.

Die Potenzreihe £ = H(D + C) = Y v. ((C + D,w)rest2) w ist Ny-rational. Es gilt
(E,w) = 1 genau dann, wenn d(w|[',) ungerade ist. Das heifit, alle Komponenten von
G,(I') sind genau dann ungerichtet Eulersch, wenn (E,w) = 0 fiir alle w € X,

Die Sprachen L; = {2" : (R,2") = 0} sowie L, = {2" : (E,w) = 0 fiir alle w € X"} sind
regulér. Es gibt demzufolge synchrone regulire Kantengrammatiken ©;, © mit

| Gn(), fallsa™e L, | G,(Iy), fallsz”™ e L
Gn(61) = { (0,0), sonst bzw. Gn(62) = { 0,0), sonst : H

3.6 Entscheidungsprobleme

Fiir eine gegebene Kantengrammatik stellen sich zum einen die aus der klassischen Theorie
der formalen Sprachen bekannten Entscheidungsprobleme, wie z.B. das Leerheitsproblem,
das Elementproblem oder das Aquivalenzproblem. Aufilerdem ergeben sich Entscheidungs-
probleme beziiglich graphentheoretischer Eigenschaften. Im folgenden werden die Probleme
und die Resultate kurz genannt. Danach werden zuerst die positiven und anschliefend die
negativen Ergebnisse bewiesen.



Kapitel 3: Kantengrammatiken 75

Klassische Entscheidungsprobleme. Da Graphensprachen Verallgemeinerungen von
Sprachen darstellen, lassen sich die Entscheidungsprobleme aus der Theorie formaler Spra-
chen auf Graphensprachen iibertragen. Im einzelnen betrachten wir folgende Probleme fiir
gegebene Kantengrammatiken I', ', I'y und Graphen G..

e Leerheitsproblem: Ist G(T') leer?

e [Endlichkeitsproblem: Ist [G](T) endlich?

e FElementproblem: Ist [G] in [G](I") enthalten?

e Teilgraphproblem: Enthilt ein Graph aus [G](T") einen zu G isomorphen Teilgraphen?

o universelles Teilgraphproblem: Enthélt jeder Graph aus [G](T") einen zu G isomorphen
Teilgraphen?

e Aquivalenzproblem: Gilt [G](T'y) = [G](T2)?
o Disjunktheitsproblem: Ist der Durchschnitt von [G](I';) und [G](T'2) leer?

o Kiirzbarkeitsproblem: Ist die Graphenfolge G(I") kiirzbar?

In [3] wurden die meisten dieser Fragen bereits untersucht. Dabei wurde fiir alle genannten
Probleme die Unentscheidbarkeit fiir den Fall gezeigt, dal die gegebenen Kantengramma-
tiken monoton sind. Aulerdem wurden die Entscheidbarkeit des Leerheitsproblems sowie
die Unentscheidbarkeit des Teilgraphproblems fiir den (nichtsynchronen) reguldren Fall
bewiesen.

Wir zeigen im folgenden die Entscheidbarkeit des Leerheitsproblems und des Elementpro-
blems fiir kontextfreie Kantengrammatiken sowie die Entscheidbarkeit des Endlichkeitspro-
blems fiir synchrone kontextfreie und fiir reguldre Kantengrammatiken. Das Teilgraphpro-
blem, das universelle Teilgraphproblem und das Kiirzbarkeitsproblem sind fiir synchrone
regulire Kantengrammatiken entscheidbar. SchlieBlich sind das Aquivalenzproblem sowie
das Disjunktheitsproblem fiir synchrone reguldre Kantengrammatiken unentscheidbar.

Graphentheoretische Entscheidungsprobleme. Fiir eine Kantengrammatik I" und
eine graphentheoretische Eigenschaft P stellen sich die Entscheidungsprobleme, ob die Fa-
milie [Gp|(T") aller von I' erzeugten Graphen mit der Eigenschaft P endlich, leer bzw.
gleich [G](T") ist. Entscheidungsprobleme dieser Art wurden von BERMAN und SHANNON
[3] bzw. von DAssow [8] betrachtet. In [3] wurde die Unentscheidbarkeit der entsprechen-
den Fragestellungen fiir einige Eigenschaften und monotone Kantengrammatiken gezeigt;
in [8] wurden Unentscheidbarkeitsresultate fiir lineare Kantengrammatiken und einige Ei-
genschaften gezeigt.

Wir konzentrieren uns im folgenden auf synchrone reguldre Kantengrammatiken. Positi-
ve Resultate lassen sich als Folge der Resultate aus Abschnitt 3.5 fiir solche Eigenschaften



Kapitel 3: Kantengrammatiken 76

erzielen, die durch préadikatenlogische Sétze 1. Stufe beschreibbar sind. Negative Entscheid-
barkeitsresultate erhédlt man dagegen fiir die in Satz 3.5.13 genannten Eigenschaften, also
insbesondere die Eigenschaften, zusammenhéngend, azyklisch oder ein Baum zu sein. Eine
weitere Art von Entscheidungsproblemen ist die Frage, ob ein graphentheoretischer Para-
meter (z.B. der maximale Knotengrad) fiir alle Graphen einer Graphenfamilie beschrénkt
bzw. durch eine gegebene Konstante beschrinkt ist. Wir zeigen unter anderem, dafl das
Problem der Beschrinktheit des maximalen Knotengrades (bounded degree problem) fiir
synchrone reguldre Kantengrammatiken entscheidbar ist; bei vorgegebener Schranke ist
dieses Problem auch fiir beliebige reguldre Kantengrammatiken entscheidbar; fiir synchro-
ne lineare Kantengrammatiken sind beide Varianten unentscheidbar.

Positive Entscheidbarkeitsresultate

Die Entscheidbarkeit der Probleme der Leerheit, der Endlichkeit sowie der Kiirzbarkeit 1463t
sich direkt aus analogen Entscheidbarkeitsresultaten fiir gewohnliche Sprachen ableiten.

Satz 3.6.1 Das Leerheitsproblem ist fiir kontextfreie Kantengrammatiken entscheidbar;
das Endlichkeitsproblem ist fiir synchrone kontextfreie sowie fiir requldre Kantengramma-
tiken entscheidbar.

Beweis. Es sei I' eine Kantengrammatik. Dann ist [G](I") genau dann leer bzw. endlich,
wenn V/(I') leer bzw. schlank ist. Das Problem der Leerheit ist fiir Z-Valenzgrammatiken,
das Problem der Schlankheit ist fiir kontextfreie Grammatiken entscheidbar. O

Offen ist die Entscheidbarkeit des Problems der Schlankheit fiir Z-Valenzgrammatiken und
damit das Endlichkeitsproblem fiir kontextfreie Kantengrammatiken. Entscheidbar ist fiir
Valenzgrammatiken das Problem der k-Schlankheit bei gegebenem £ (Satz 2.7.3) und damit
fiir kontextfreie Kantengrammatiken die Frage, ob fiir gegebenes k die Knotenzahl jedes
erzeugten Graphen durch k beschrinkt ist.

Lemma 3.6.2 Es sei A = (Z, X, 20,06, F) ein deterministischer endlicher Automat. Es ist
entscheidbar, ob die Sprache L(A)

1. k-kiirzbar (im strengen Sinne k-kiirzbar) fir gegebenes k € N ist,
2. kiirzbar ist.

Beweis. Fiir ¢ € F' sei Aj der endliche Automat A} = (Z,{a},q, ', F') mit

8 = {(22,a,21) : 6(21,7) = 2, fiir ein x € X},
F' = {2€ Z\ F: 6(2,w) = z fiir unendlich viele w € X*}.

Die Menge F" ist effektiv berechenbar. Offensichtlich gilt z € §'(q, a*) genau dann, wenn
§(z,w) = q fiir ein w € X erfiillt ist. Man kann effektiv einen deterministischen endlichen
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Automaten A’ mit L(A') = U cp L(A)) konstruieren. Ist a* € L(A’) fiir k > 1, so gibt es
einen Zustand z € F”, einen Zustand ¢ € F und ein Wort w € X¥ mit §(z,w) = ¢. Nach
Definition von F” gibt es dann unendliche viele Worter v mit v ¢ L(A) und vw € L(A),
d.h., L(A) ist nicht k-kiirzbar.

Ist umgekehrt L(.A) nicht k-kiirzbar, so gibt es unendlich viele Worter v ¢ L(A), fiir die
ein u € X mit vu € L(A) existiert. Wegen der Endlichkeit von Z und X ¥ gibt es einen
Zustand z € Z \ F, einen Zustand ¢ € F und ein Wort w € X so daB §(zy,v) = z und
6(z, w) = ¢ fiir unendlich viele v gilt, d.h. a* € L(A)).

Damit ist L(A) genau dann k-kiirzbar, wenn a* nicht in L(A’) ist; L(A) ist genau dann
kiirzbar, wenn {a}*\ L(A’) nicht leer ist. Die Frage der k-Kiirzbarkeit bzw. der Kiirzbarkeit

von L(A) ist damit auf das Elementproblem fiir A’ und a* bzw. das Leerheitsproblem fiir
L(A") zuriickgefiihrt.

Analog 148t sich das Problem der strengen k-Kiirzbarkeit von L(A) auf das Elementpro-
blem fiir a* und A" zuriickfithren, wobei A" aus A’ entsteht, wenn man als Menge der
Endzustinde F" = {z € Z \ F': (20, w) = z fiir ein w € X*} statt F’ verwendet. O

Satz 3.6.3 Fliir eine gegebene synchrone requlire Kantengrammatik I und eine natirliche
Zahl k ist es entscheidbar, ob G(I") kiirzbar bzw. (streng) k-kiirzbar ist.

Beweis. Es sei I' = (N, X, X2, P, S). Man kann eine synchrone reguliire Kantengrammatik
© derart konstruieren, dafl die Graphenfolge G(I') genau dann (streng) k-kiirzbar ist, wenn
die reguléire Sprache F(©) C (X?)* (streng) k-kiirzbar ist. Mit Lemma 3.6.2 ist der Satz
bewiesen.

Satz 3.6.4 Es seir ¢ ein pradikatenlogischer Satz 1. Stufe. Fiir eine synchrone requldre
Kantengrammatik T ist es entscheidbar,

1. ob G = ¢ fiir ein G € G(I") gilt,
2. ob G E o fiir alle G € G(I) gilt,

3. ob G |= ¢ fiir hichstens endlich viele paarweise nichtisomorphe G € G(T') gilt,
4. 0b G |= o fiir alle bis auf endlich viele paarweise nichtisomorphe G € G(I') gilt.

Beweis. Die Grammatik I', im Beweis von Satz 3.5.12 kann effektiv konstruiert werden.
Es gilt G |= ¢ fiir ein G € G(I') bzw. fir alle G € G(I') genau dann, wenn E(I'y) bzw.
E(T'-,) nicht leer ist. Es gilt G |= ¢ fiir hochstens endlich viele nichtisomorphe G € G(I")
bzw. fiir alle bis auf endlich viele nichtisomorphe G € G(I') genau dann, wenn E(I',)
bzw. E(I'-,) schlank ist. Damit sind die Probleme auf das Leerheitsproblem bzw. das
Schlankheitsproblem fiir reguldre Sprachen zuriickgefiihrt. a

Als Folgerung ergeben sich die Entscheidbarkeit des Elementproblems, des Teilgraphpro-
blems und des universellen Teilgraphproblems:
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Satz 3.6.5 Es seien I' eine synchrone requlire Kantengrammatik und H ein Graph. Es
15t entscheidbar,

e 0b ein Graph aus [G](I") einen zu H isomorphen Teilgraphen enthilt,
e 0b jeder Graph aus [G](T') einen zu H isomorphen Teilgraphen enthiilt,

e ob hichstens endlich viele Graphen aus [G](T') einen zu H isomorphen Teilgraphen
enthalten,

e 0b alle bis auf endlich viele Graphen aus [G|(I") einen zu H isomorphen Teilgraphen
enthalten,

e ob ein Graph aus [G|(T") zu H isomorph ist.

Positive Resultate gelten auch fiir die analogen Probleme beziiglich induzierter Teilgraphen.

Beweis. Es sei H = (V| E) ein Graph mit V = {vy,...,v,}. Ein Graph G enthilt einen
zu H isomorphen Teilgraphen genau dann, wenn G = ¢ mit

=73r,...3z, /\ -z = x5 A /\ edge(z;, x;)

1<i<j<k (i,j)€E

G enthélt einen zu H isomorphen induzierten Teilgraph genau dann, wenn G |= ¢ mit

Y =3x;...3x, /\ -z =2 A /\ edge(z;, z;) A /\ —edge(z;, z;)

1<i<j<k (’Ui,Uj)EE (’Ui,Uj)¢E

G ist genau dann isomorph zu H, wenn G | x mit

X =vUAVry... Ve, \/ T =Tj.

1<i<j<n+1

Die Behauptungen des Satzes folgen nun unmittelbar aus Satz 3.6.4. a

Auch die Beschranktheit einiger graphentheoretischer Parameter durch eine gegebene Kon-
stante kann mit den Mitteln der Logik erster Stufe beschrieben werden. Der Vollstéandigkeit
halber geben wir die Definitionen dieser Parameter hier an.

Es sei G = (V, E) ein ungerichteter Graph. Der Durchmesser von G ist das Supremum
der Knotenabsténde in . Die Taillenweite von G ist die Lénge des kleinsten Kreises.
Falls G keinen Kreis enthélt, so wird sie auf oo gesetzt. Eine Clique ist ein vollsténdiger
Untergraph; die Cliquenzahl von G ist die maximale Knotenzahl einer Clique in G.
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Satz 3.6.6 Fiir eine synchrone requlire Kantengrammatik I' und eine gegebene Zahl k ist
es entscheidbar, ob fir alle G € G*(I") der mazimale Knotengrad, der minimale Knoten-
grad, der Durchmesser, der maximale Komponentendurchmesser, die Taillenweite und die
Cliquenzahl von G durch k beschrinkt sind.

Beweis. Es sei G ein Graph. Die Taillenweite von G ist genau dann durch k& beschrénkt,
wenn G einen Kreis der Lange ¢ mit 3 < ¢ < k enthalt; die Cliquenzahl ist genau dann durch
k beschriankt, wenn der vollstindige Graph mit (k+1) Knoten nicht als Teilgraph enthalten
ist. Der Durchmesser von G bzw. der maximale Durchmesser der Komponenten von G
ist durch k& beschrinkt, wenn der k-te Potenzgraph G* vollstindig ist bzw. vollstindige
Graphen als Komponenten besitzt. Der minimale Knotengrad von G ist durch k beschrénkt,
falls G = ¢ mit

k+1
v = JxgVry...Vag (/\ edge(zg, ;) — \/ T = xj> .

i=1 1<i<j<k+1

O

Einige positive Entscheidbarkeitsresultate lassen sich mit Hilfe von formalen Potenzreihen
zeigen.

Satz 3.6.7 Es sei [' eine synchrone regqulire Kantengrammatik. Es ist entscheidbar, ob es
eine Zahl K gibt, so daf$ fir alle Graphen in G*(I') der maximale Knotengrad durch K
beschrinkt ist.

Beweis. Wie bereits gezeigt, kann man aus I' einen nichtdeterministischen endlichen Au-
tomaten A konstruieren, so dal L(A) = V(I') und d4(v) = d(v|I") gilt. Die Frage, ob der
maximale Knotengrad beschriankt ist, kann damit auf das Problem der Endlichkeit des
Grades der Mehrdeutigkeit fiir endliche Automaten und damit auf das Problem der End-
lichkeit des Wertebereichs einer N-rationalen Potenzreihe zuriickgefiihrt werden (Satz 1.4.2
und Satz 1.4.5). O

Satz 3.6.8 Fiir eine gegebene synchrone requlire Kantengrammatik I' sind folgende Fragen
entscheidbar:

1. Gibt es in G*(I") einen ungerichteten Graphen, dessen Komponenten ungerichtet Eu-
lersch sind?

2. Bestehen alle ungerichteten Graphen in G*(I') aus ungerichtet Eulerschen Kompo-
nenten?

3. Bestehen alle Graphen in G(I') aus Eulerschen Komponenten?

4. Sind alle ungerichteten Graphen in G*(I') reguldr?
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Beweis. Im Beweis von Satz 3.5.15 wurde eine formale Potenzreihe aus NP*((z)) kon-
struiert, deren Koeffizient fiir ™ genau dann 0 ist, wenn die Komponenten von G*(T")
ungerichtet Eulersch sind. In den Beweisen der Sétze 3.5.15, 3.5.14 wurden Potenzreihen
aus Z"™*((z)) konstruiert, so dafi der Koeffizient von 2™ genau dann 0 ist, wenn der Graph
G, (T") bzw. der ungerichtete Graph G*(I") aus Eulerschen Komponenten besteht bzw. re-
guldr ist. Mit Satz 1.4.4 folgen die Behauptungen.

SchlieBlich wollen wir das Elementproblem und das Teilgraphproblem fiir allgemeinere
Kantengrammatiken betrachten. Bislang war lediglich bekannt, dafl das Teilgraphproblem
fir reguldre Kantengrammatiken unentscheidbar ist [3]. Wir werden die Entscheidbarkeit
des Elementproblems fiir kontextfreie Kantengrammatiken sowie die Entscheidbarkeit des
Teilgraphproblems fiir gerichtete Baume und regulidre Kantengrammatiken zeigen. Da-
bei werden die Resultate und Methoden aus Abschnitt 2.7 {iber schlanke Valenzsprachen
benétigt.

Fiir den Rest dieses Unterabschnittes betrachten wir Kantengrammatiken mit dem Kno-
tenalphabet X und dem Terminalalphabet T = (X x {\})U({\} x X). Es seien # ¢ X ein
Symbol, Y = X U {#} und g : T* — (Y?)* der Homomorphismus mit g((a,\)) = (a, #),
g((A\,a)) = (#,a) fir a € X. Mit #,, bezeichnen wir das Symbol (#,...,#) € Y™ Die
Homomorphismen h,,; : (Y")* — X* seien durch h,, ;(a) = mx(pr;(a)) fir a € Y™ definiert.
Ist T' eine kontextfreie bzw. regulire Kantengrammatik, so ist g(L(I")) eine Sprache aus
L(Val,CF,Z) bzw. L(Val, REG,Z). Ein Paar (v,w) ist genau dann in E(I'), wenn es in
g(L(I")) ein Wort o mit pry () = v, pry(a) = w gibt.

Satz 3.6.9 Das Elementproblem ist entscheidbar fiir kontextfreie Kantengrammatiken.

Beweis. Essei I' = (N, X, T, P,S) eine kontextfreie Kantengrammatik. Wir betrachten
zunéchst die Sprache L = g(L(T")) N D mit D = {a € (Y?)* : ha1(a) # haa(a)}. Analog
zum Vorgehen fiir die Sprache Ay aus Behauptung 2.7.1 zeigt man D € L(Val, REG, Z).
Wegen L(T") € L(Val,CF,Z) ist L in L(Val, CF, Q).

Zwei Worter o, 8 € (Y?)* heiflen dquivalent, in Zeichen o = (3, wenn hy (o) = hoi(0)
fir 1 <4 < 2 erfiillt ist. Die Aquivalenzklasse von a € (Y?)* beziiglich = wird mit [a]
bezeichnet. Die Strukturfunktion modulo = fiir L definieren wir als

siry(k) :=card {[w]:w e LA |w| =k} .

Offensichtlich ist ein Paar (v, w) € X* x X*, genau dann in E(T") \ Idx+, wenn es ein o € L
mit pr,(«) = v, pry(a) = w gibt. Dabei gilt |a| = 2|v| = 2|w|. Da dquivalente Worter aus
(Y2)* zum gleichen Wortpaar aus X* x X* gehoren, ist die Zahl der Kanten des Graphen
Gr(T') gleich sg1y(2k).

Sei nun G = (V, E) ein Graph mit V = {vy,...,v,} und E = {ey,...,en}. § ¢ X sei
ein weiteres Symbol Wir konstruieren im folgenden eine Sprache L(G,T), die alle Worter
w1Swa$ - - w, S Sy s w; € Xy, € (YA, 1 <i<n,1<j<m,mitden folgenden
Eigenschaften enthélt:
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w, € V(I'),y; € Lfurallel1 <i<n,1<j<m.
ly;| = 2|w;| fiir alle 1 <i<n,1<j<m.

(0)
(1)
(2) svy(wi) =n, sry(y;) = m fiiralle 1 <é <n,1 <j <m.
(3)
(4)

4) ho1(y;) = wr, hoo(y;) = ws, falls e; = (v,,v5), 7,5 € {1,...,n}, fiiralle 1 < j <m.

Nach Definition enthélt L(G,T') genau dann ein Wort der Form w;$---w,$1:$ - - - 48,
wenn der Graph Gi(I'), k = |w;], isomorph zu G ist wobei v; € V, 1 < i < n, durch den
Isomorphismus auf w; € Vi (I") abgebildet wird.

Es bleibt noch zu zeigen, dafl L(G,T") (effektiv) eine Sprache aus £(Val, CF, Q. ) ist. Wegen
V(T'), L € L(Val,CF, Q) und der Abgeschlossenheit dieser Sprachfamilie unter Konkate-
nation ist auch die Menge aller Worter, die Bedingung (0) erfiillen, in £(Val, CF, Q).
Analog zum Vorgehen in Abschnitt 2.7 zeigt man, dal die Mengen der Worter, die Bedin-
gung (1),(2) bzw. (3) erfiillen, in £(Val, REG, Q) sind. Da durch Bedingung (2) garantiert
ist, daBl V(T') mit k = |w,| genau n Worter enthélt, kann man die Bedingung (4) durch

(4’) h2,1(yj) 7é Wy, h2,2(yj) 7& Wy, mit ej = (Umvs)a b,q,7,S8 € {17 cee ,Tl}, b 7é rq 7é S
(fiir alle 1 < j <m)

ersetzen. Erneut kann man zeigen, dafl die Menge aller (4’) erfiillenden Worter eine Sprache
aus L(Val, REG, Q) ist. Damit ergibt sich L(G,T") als Durchschnitt einer Sprache aus
L(Val, CF, Q) mit Sprachen aus £(Val, REG, Q). a

Es folgen einige weitere technische Definitionen und Resultate, um das Teilgraphproblem
fiir regulidre Kantengrammatiken und Baume zu entscheiden. Auf (Y")* definieren wir die
binédre Relation <,, wie folgt:

v<,w: <= Juy---Ju 303044 (v =v- U AW = #fjvl i -#f{vr#f{“) .

sowie Ry, ;(v) = hp(w) .

Als Wortrelation ist <,, eine reguldre Transduktion. Fiir eine Sprache L C (Y™)* notieren
wir das Bild von L unter <,, als L<. Wegen der Reflexivitdt und Transitivitdt von <,, gilt

Le = (L)<

Behauptung 3.6.10 Firw € (Y")* und y € Y* mit pr,(w) <y y existiert ein v € (Y™)*
mit w <; v und pry(v) =y.

Beweis. Es seien
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& W = WiajWads - - - Wya, Wy Mit pry(w;) = Hlwsl fiir 1 < j < r+1, pri(a;) = z;,
;e X, firl<j<r,
o y=H#HMgy . HF My, # mit my > |w;| fir 1 <j <r+1und
o lj=m;—|w;| fir 1 <j<r+1.
Das gesuchte Wort v ergibt sich als v = #%wa; - - - #owea, #5051 w4 1 . a

Behauptung 3.6.11 Fir w € (Y")*, y1,y2 € Y* mit hy1(w) = h11(y1) und hy,(w) =
h11(y2), 2 <i < n, existiert ein v € (Y")* mit w <, v, y1 <1 pr;(v) und y2 <; pr;(v).

Beweis. Es seien

o W = Wia1Waas - - - Wy, Wy Mit pry(w;) = Hlwil fir 1 < j < r+1, pri(a;) = zj,
zj€ X, fir1 <j <rund

o Yy =FHMxy T FETHL

Fiir u = #™Mwyay - - - #weap #0r w4 gilt w <o w und 3 < pry(u). Analog konstruiert
man ein Wort v € (Y2)* mit v <5 v und yo <; pr;(v). Aus den oben angegebenen Eigen-
schaften von <,, (Transitivitit, Ubertragbarkeit auf Projektionen) folgt w <5 u <5 v und

y1 <1 pry(u) <1 pry(v), H

Satz 3.6.12 Fiir eine requlire Kantengrammatik I' und einen gerichteten Baum B ist es
entscheidbar,

e ob in einem Graphen aus G(I') ein zu B isomorpher Teilgraph enthalten ist,

e 0b in jedem Graphen aus G(I') ein zu B isomorpher Teilgraph enthalten ist.

Beweis. Zunichst geben wir eine dquivalente induktive Definition der gerichteten Baume
an, die im wesentlichen dem Vorgehen bei der Tiefensuche entspricht.

(a) Ein Graph mit einem Knoten v und ohne Kanten ist ein gerichteter Baum und hat
die Wurzel v.

mn 1= (V1, £71) un o = (Va, B») gerichtete Baume mit den Wurzeln r; bzw. ro
b) Sind B i, E d B Vo, E ich B it den Wurzel b
und disjunkten Knotenmengen, so ist der Graph B mit V =V, UV,, E = F, U Ey U
{(r1,72)} ein gerichteter Baum mit der Wurzel 4.

(c) Alle gerichteten Baume lassen sich geméfl (a) und (b) darstellen.
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I'=(N,X,T,P,S) sei eine reguldre Kantengrammatik, L’ sei die Sprache L' = g(L(T"))<.

Fiir einen Baum B mit den Knoten vy, ..., v, in DFS-Reihenfolge und eine Kantengram-
matik I' konstruieren wir im folgenden eine Sprache L(B,T") C (Y™)* mit w € L(B,T)
genau dann, wenn der Graph Gi(T'), k = |hy,1(w)|, einen zu B isomorphen Untergraphen
mit den Knoten h,, 1 (w), ..., hy»(w) enthélt, wobei v; durch den Isomorphismus auf h,, ;(w)
abgebildet wird.

Induktiv definieren wir L(B,T") so:

e Besteht B aus einem Knoten, so ist L(B,I") = V(I')<.

e Sind B; = (V4, £1) und By = (V3, E3) Baume mit den disjunkten Knotenmengen V;
und V5, card Vi = nq, card V5 = ng, ny +ny = n, mit den Wurzeln ry bzw. r, und ist
B = (V,E) der Baum mit V =V, UV, E = E; U Ey U {(r1,72)} so ist

L(B,T) = {ac(Y") :pry_, (o) € L(By, 1)} N
)" Py,
fa € (") pryp(e) € U0
{ae Y™")" : hyi(a) # hpj(a),1 <i<j<n}.

Durch vollstdndige Induktion iiber die Knotenzahl n zeigen wir jetzt:

(1) L(B,I') € L(Val,REG, Q) und L(B,I') = L(B,T')< fiir alle gerichteten Béume B.

(2) Enthélt L(B,I') ein Wort w € (Y™)*, so enthilt G(I'), k = |hp1(w)|, einen zu B
isomorphen Untergraphen mit den Knoten h,, 1 (w), .. ., hy»(w) (in DFS-Reihenfolge).

(3) Enthilt Gi(T') einen zu B isomorphen Untergraphen mit den Knoten i, ..., y, (in
DFS-Reihenfolge), so gibt es ein w € L(B,T") mit h,1(w) = y1, ..., hpn(w) = yp.

Fir n = 1 sind alle drei Aussagen korrekt. Sei die Richtigkeit von (1),(2),(3) fiir alle
1 <7 < n bewiesen.

(1) L' und {a € (Y™)* : hyi(a) # hyj(a),l < i < j < n} sind in £(Val, REG, Q).
Nach Induktionsvoraussetzung gilt L(B;,T"), L(Bs,I') € L(Val, REG, Q,). Wegen
der Abgeschlossenheit von £(Val, REG, Q. ) unter inversen Homomorphismen und
unter Durchschnitt ist auch L(B,T") in £(Val, REG, Q). L(B,I') = L(B,T")< folgt
ebenfalls leicht per Induktion.

(2) Es sei w € L(B,T") mit h,;(w) = y;, 1 < ¢ < n. Nach Induktionsvoraussetzung
und Definition von L(B,T") enthdlt G(I') mit k = |y;| die Kante (y1, Yn,+1), woraus
|Yny 11| = k und per Induktion |y;| = k, fiir alle 1 < i < n, folgt. AuBlerdem sind die y;,
1 < i < n, paarweise verschieden, und G (I") besitzt einen zu B; isomorphen Teilgra-
phen mit den Knoten y, ..., y,, (in DFS-Reihenfolge) sowie einen zu By isomorphen
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Teilgraphen mit den Knoten ¥, 11, - - ., ¥y, (in DFS-Reihenfolge). Nach Definition von
B gibt es nun in G(T") einen zu B isomorphen Teilgraphen mit den Knoten y, . .., y,
(in DFS-Reihenfolge).

(3) Gg(I") enthalte einen zu B isomorphen Teilgraphen mit den Knoten yy,...,y, (in
DFS-Reihenfolge). Nach Induktionsvoraussetzung enthdlt L(B;,I") ein Wort wy €
(Y™)* mit Ay, ;(w1) = v, 1 < 4 < ny, und L(B,,I') ein Wort we € (Y"2)* mit
P i(W2) = Yny iy 1 <0 < o

Weiterhin gibt es wegen (yi1,Yn,+1) € E(I') in L' ein Wort v mit hy;(v) = y; und
h22(v) = Yn,+1. Nach Behauptung 3.6.11 existiert ein Wort o' € L’ mit pr(w;) <y
pry (v), pry(ws) <;i pry(v') und v <y v'. Nach Behauptung 3.6.10 gibt es Worter w) €
L(By,T), wh € L(By,T") mit wy <,,, w} und pr;(w}) = pry(v') sowie wy <,, wh und

----------

gehort damit zu L(B,TI") und erfiillt die Bedingung h,, ;(w) = y; fiir 1 <i < n.

Ist B ein gerichteter Baum mit n Knoten so ergibt sich die Menge
M (B) = {k : Gx(I") enthilt einen zu B isomorphen Teilgraphen}

als die Langenmenge von h,, 1(L(B,T")). Es gibt in [G](I') einen Graphen mit einem zu B
isomorphen Teilgraphen genau dann, wenn M (B) nicht leer ist; alle Graphen in [G](T")
besitzen einem zu B isomorphen Teilgraphen genau dann, wenn M (B) und die Léngen-
menge A(V(I")) gleich sind. Wegen h,, 1(L(B,T")), V(I') € L(Val, REG, Q) sind M (B) und
A(V(T")) effektiv semilinear. Die Leerheit von M (B) bzw. die Gleichheit von M(B) und
A(V(T)) sind damit entscheidbar. O

Unentscheidbarkeitsresultate

Zunichst zeigen wir die Unentscheidbarkeit einiger Probleme fiir synchrone regulére Kan-
tengrammatiken. Dies betrifft das Aquivalenzproblem, das Disjunktheitsproblem sowie die
Entscheidungsfragen beziiglich der Leerheit und Endlichkeit von [Gp|(I'), wobei P eine der
in Satz 3.5.13 genannten Eigenschaften bzw. deren Negation ist. Der Beweis der Unent-
scheidbarkeit erfolgt jeweils durch Reduktion einer Variante des speziellen Halteproblems
fiir Turing-Maschinen. Zu einer gegebenen deterministischen Turing-Maschine M konstru-
ieren wir eine synchrone regulire Kantengrammatik I'. Jeder Graph G, (T'), n > 3, besteht
aus zwei umgekehrt gerichteten Baumen mit den Wurzeln A,, und B,,. Ein spezieller Blatt-
knoten C, ist in der Komponente von A, falls M das leere Wort in hochstens n Schritten
akzeptiert, und in der Komponente von B, anderenfalls. Aus der Unentscheidbarkeit des
Halteproblems fiir das leere Wort folgt die Unentscheidbarkeit der Frage, ob C), fiir alle
n > 3 in der gleichen Komponente wie B,, liegt.

Definition 3.6.1 FEine deterministische Turingmaschine mit einseitigem Eingabeband ist
ein Tupel M = (Z, X, 2z, £,%,6, F). Dabei sind Z eine endliche, nichtleere Menge von
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Zustinden, X ein Alphabet, X N Z =0, 29 € Z der Anfangszustand, £ ¢ X U Z das linke
Begrenzungssymbol, $ ¢ X U Z das Blanksymbol, F C Z die Menge der Endzustinde und
§: Zx (XU{£,$}) — Z x (XU{£,8$}) x{R,N,L} die Uberfihrungsfunktion, wobei
folgende Einschrinkungen gelten:

8(z,£) € Z x{£} x{R,N},

6(z,a) € Z x (X U{S$}) x {R,N, L} firze Z,a € X U{$}.
Das heif§t, das Begrenzungssymbol tritt genau am linken Rand auf und wird nicht nach
links tiberquert.

FEine Konfiguration von M ist ein Wort aus £(X U{$})*Z(X U{$})*. Eine Konfiguration
heifst Endkonfiguration, falls sie in £(X U{$})*F(X U {$})* ist. Die Menge aller Konfi-
gurationen bezeichnen wir mit C(M), die Menge aller Endkonfigurationen mit FC(M).
Die Uberfihrungsfunktion & : C(M) — C(M) ist fir z € Z,a,b € (X U{£,$}),v,w €
(X U{£,8})" definiert als:

é(vaz) = vd'$z, falls 6(z,a) = (¢,d, R)
S(vazbw) = wad'bzw, falls §(z,a) = (2/,d', R)

. B vZ'dw, falls §(z,a) = (2',d', L)
b(vazw) = { va'Z'w,  falls §(z,a) = (2/,d’, N)

Die von M akzeptierte Sprache L(M) ist definiert als:

LM) ={we X*:In(n e NA 6" (Lzw) € FC(M))}.

Zwei Konfigurationen ¢y, c; € C(M) heilen dquivalent, falls ¢;$* = ¢,$* gilt. Sind ¢; und
o dquivalent, so sind auch 6(¢;) und 6(cy) dquivalent.

Die Interpretation der Turingmaschine erfolgt wie iiblich: Entsprechend der Ubergangsta-
belle wird das aktuelle Symbol (links vom Zustand) umgewandelt und der Lese-Schreib-
Kopf verschoben.

Wie man leicht sieht, gilt |¢| < |8(c)] < |¢| + 1 fiir jede Konfiguration c. Im folgenden
wird 0.B.d.A. zusétzlich 6(20, £) = (21, £, N), 6(z1, £) = (22, £, N) verlangt. Dadurch ist
garantiert, dafl [6"(£2p)| < n fiir alle n > 2 gilt.

Wegen der Aquivalenz von deterministischen Turingmaschinen mit einseitigem Band und
allgemeinen Turingmaschinen und nach dem Satz von RICE [18, Satz 8.6] gilt:

Satz 3.6.13 Fiir eine deterministische Turingmaschine mit einseitigem Band M ist es
unentscheidbar, ob A € L(M) gilt.

Sei nun M = (Z, X, 2o, £,8, 6, F') eine gegebene deterministische Turingmaschine mit ein-
seitigem Band. Wir konstruieren die von M abhéngige binére Relation

Um ={(c,6(c)) : c€ C(M)N|6(c)| = ||} U{(c,c): c € C(M)NI6(c)| = |e| +1}.
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Offensichtlich ist Upq eine Abbildung von C(M) auf sich. Es gilt U (c) = 6™(c) mit
m = max {E L0<L<nAlbc) = |c|} Insbesondere gilt fiir die Konfigurationen ¢, =
£20872 n > 2: Uy (cn) = 6™(cy), und damit ist U7, (c,) dquivalent zu 6"(£z). AuBer-
dem ist Uy eine synchrone regulire Relation, da sich ¢ und Uj(c) nur an maximal drei

aufeinanderfolgenden Stellen unterscheiden.
Die Relation

E(M) = (Us IL#) U {(c#, #11) 1 c € FOM)}U{(c#,8") s c € (M) \ FC(M)}

ist synchron und regulér; es existiert eine Kantengrammatik I'yy mit E(I'y) = E(M).
Fiir n > 3 besteht der Graph G,,(I'y() aus zwei umgekehrt gerichteten Baumen mit den
Wurzeln #" und $". Der Knoten C,, = #.£2,$" % ist ein Blatt und genau dann in der
Komponente von A, = #", wenn 6" (£2z) € FC(M) gilt.

Wegen der Unentscheidbarkeit der Frage, ob A von M akzeptiert wird, ist es unentscheid-
bar, ob es ein n gibt, so daf§ C}, und A, in einer Komponente liegen. Setzt man aulerdem
voraus, daB 6(¢q,a) = (q,a,N) fiir ¢ € F, a € X U{£,$} gilt, so folgt die Unentscheidbar-
keit der Frage, ob C),, und A, fiir alle bis auf endlich viele n in einer Komponente liegen.
Die Anwendung der Konstruktionen aus Satz 3.5.13 liefert jetzt:

Satz 3.6.14 FEs sei " eine synchrone reguldre Kantengrammatik und P eine der in Satz 3.5.13
erwdhnten graphentheoretischen Figenschaften. Die folgenden Fragen sind unentscheidbar:

Hat ein Graph aus [G)(I") die Eigenschaft P?

Haben alle Graphen aus [G|(I') die Eigenschaft P?
Haben unendlich viele Graphen aus [G|(T") die Eigenschaft P?

Haben alle bis auf endlich viele Graphen aus [G|(T") die Eigenschaft P?

Als weitere Folgerung erhélt man

Satz 3.6.15 Fiir eine synchrone requldre Kantengrammatik I' und eine Konstante k ist
es unentscheidbar, ob fir alle G € G*(I") die Komponentenzahl beschrinkt bzw. durch k
beschrdnkt ist.

Beweis. Essei ' = (N, X, X2, P, S) eine synchrone regulire Kantengrammatik. Ferner
sei fiir jedes n > 1 ein Knoten A,, aus V,,(I") derart definiert, da A = {A,, : n > 1} eine
regulire Sprache ist, und 1 ¢ X sei ein Symbol. Die Relationen E; und E; mit

By = {(vilwy, volws) : (vjwr, vows) € E(L), |v1| = |va|},
Ey, = 1daII1={(v1lawy,vialw;),a € X, viaw; € A}
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sind synchron und regulir. Es gibt eine Kantengrammatik © mit E(©) = E; U E,. Der
Graph G,,+1(0) besteht nach der Konstruktion von E; aus (n + 1) disjunkten Kopien von
G, (I"), wobei dem Knoten v aus G,(I') in der i-ten Kopie (1 < i < n + 1) der Knoten
v1lvg mit vive = v, |vy| = i — 1 zugewiesen ist. Nach der Definition von FE, gibt es in
Gn(T) fir 1 <4 < n eine Kante von der i-ten Kopie von A, zur (i + 1)-ten Kopie.
Ist G,(T") schwach zusammenhéngend, so ist auch G,1(0) schwach zusammenhéngend.
Anderenfalls besteht G, | (©) aus mindestens (n+2) Komponenten. Die Komponentenzahl
der Graphen von G*(0) ist genau dann beschréinkt, wenn alle bis auf endlich viele Graphen
von G*(I') zusammenhéngend sind. Aus der Unentscheidbarkeit des letzteren Problems
folgt die Behauptung. O

Um die Unentscheidbarkeit des Aquivalenzproblems und des Disjunktheitsproblems zu
zeigen, wird die obige Konstruktion verfeinert. Uber die Graphen von Upq IT # weif man
zunéchst nur, dafl ihre Komponenten umgekehrt gerichtete Badume sind. Die folgenden
Umformungen sorgen dafiir, dafl die Komponenten der Graphen gerichtete Wege sind.
Dies wird erreicht, indem man einem Wort iiber dem Knotenalphabet nicht nur eine Kon-
figuration, sondern zusétzlich eine Folge von lokalen Konfigurationen zuordnet. Die lokale
Konfiguration loc(c) von ¢ = vazw € C(M), a € X U{£,8}, 2z € Z, ist definiert als

[ (2,a,0), fallsw# A,
loc(c) = { (2,a,1), fallsw=\.

Es sei I die Menge der lokalen Konfigurationen und Cy(M) = {c € C(M) : loc(c) = t}
fir t € I. Aus ¢ # ¢ und loc(c) = loc(c) folgt Upi(c) # Urp(c). Damit gibt es fiir jede
Konfiguration ¢ und jedes ¢t € I hochstens eine Konfiguration ¢; € Cy(M) mit 6(¢;) = c.

Im folgenden sei Y = X U Z U {£,$,#} U . Ausgehend von Cy(M), C(M) und Uy
definieren wir Cy(M), C(M) C (Y2)* und Uy C (Y4)*:

(jt(./\/l) = {w e (YH* : pr;(w) = vi#vs, V105 € Ci(M), pry(w) € st$*, s € I*, |s| = |vy|},

cMm) = [Jam)

U = {we (¥ pryo(w), prs 4(w) € O(M)ﬂprl,?)( ) € Um 1T #,
pro,(w) € {(t,t) : t € I}*($ x I)(8,8)"}.

Fiir w € C(M) mit pr,(w) = v1# v, pry(w) = s$1-1sl s € I+ setzen wir:
e conf(w) := vjve (zu w gehorige Konfiguration),
e seq(w) := s (Folge von lokalen Konfigurationen),
e num(w) := |v1| + 1 (Position von # in pr, (w)).

Man beachte, dafl das letzte Glied der Folge seq(w) die lokale Konfiguration von conf(w) ist.
Als biniire Relation iiber (Y2)* betrachtet, ist Uy, eine injektive Abbildung von C1(M) :=
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{pro(w) s w € Up} nach C2(M) == {prs4(w) - w € Up}. Aus (v, w) € Uy folgt néimlich
conf(w) = Up(conf(v)) und seq(w) = seq(v)loc(conf(w)), womit w durch v eindeutig
bestimmt ist. AuBerdem gilt num(w) = num(v) + 1. Umgekehrt ist seq(v) durch seq(w)
gegeben, und da das letzte Zeichen von seq(v) die lokale Konfiguration von conf(v) festlegt,
ist conf(v) durch conf(w) bestimmt.

Offensichtlich sind die Komponenten der Graphen Cfn(U m) Wege mit einer Linge von
hochstens (n — 1). Die folgenden Schritte erweitern Upq derart, dafi der n-te Graph aus
Wegen der Linge (n — 1) besteht.

In Anlehnung an C' definieren wir
CiM) = {we (V)" : pry(w) = vi#vs, vy € C(M), pry(w) € st§*, s € I*, |s| > |1},
M) = [ Jam.

tel

Als Sprachen sind C'(M), U M, C1(M), C1(M) und C'(M) regulir. Die Abbildungen conf,
seq und num setzen wir auf C” fort. Es seien 79,71 C (Y?)* x (Y?)* die Relationen

n = {(w):vel(M),we (M), conf(v) = conf(w),seq(v) = seq(w)},
n o= {(ww):vel'M)we ' (M)UCM),
conf(v) = conf(w), seq(v) = seq(w), num(v) + 1 = num(w)}.

Beide Relationen sind synchron und regulér, 7 ist aulerdem eine injektive Funktion. Wei-
terhin seien CO(M) = C\ C2(M), Uy, = {(v,w) : v € 7(COM),w = 7(v)} und
E M= U MU U M- C’O(/\/l) ist eine regulére Sprache, U v und EM sind synchrone regulére
Relationen.

Durch die Kanten aus U y wird fiir jeden Knoten w aus C’, der kein Endknoten einer
Kante aus Uy, ist, ein Weg der Lénge num(w) — 1 mit dem Endknoten w eingefiigt. Der
n-te Graph von G(F ) besteht somit aus paarweise disjunkten Wegen der Linge (n — 1).
Die Endknoten der Wege sind die Knoten w € C'(M) mit num(w) = |w|. Startknoten sind
die Knoten v € C(M) U 75(C0(M)) mit num(v) = 1. Der Weg mit dem Startknoten é&,,
conf(é,) = £29$"7, seq(¢,) = (20, £, 0), num(¢,) = 1, endet genau dann in einem Knoten
w mit conf(w) € FC(M), wenn das leere Wort durch M in genau (n — 1) Schritten
akzeptiert wird.

Ist andererseits £y = {(v,w) € 7 : [seq(v)] = |v|}, so besteht der n-te Graph von
G(E),) ebenfalls aus paarweise disjunkten Wegen der Lénge (n — 1) mit den Endknoten
w € C(M), num(w) = |w|. Startknoten sind die Knoten v € C'(M) mit num(v) = 1 und
|seq(v)| = |v|. Der Weg mit dem Startknoten c,, conf(c,) = £2,$"7, seq(c,,) = (20, £, 0)",
num(c,) = 1, endet nie in einem Knoten w mit conf(w) € FC (M), wihrend der Weg mit
dem Startknoten ¢/, conf(c!) = £q$"7?, seq(c!) = (¢, £,0)", num(c!) = 1, immer in
einem Knoten w mit conf(w) € FC(M) endet.

SchlieBlich konstruieren wir die synchronen reguliren Relationen E1, E s E20, E 2, C
(Y2)* x (Y?)* mit

Ely = EMU {(v,é) :ve C(M), num(v) = |v|, conf(v) € FC(M)},
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Ely = EyU{(v,¢,):ve
E2y = EMU{(v,¢y)) v €
B2y = EyU{(v,c,):ve

C(M), num(v) = |v], conf(v) € FC(M)},
C(M),num(v) = |v|, conf(v) € FC(M)}.

C’(M),num(v) = |vl|, conf(v) € FC(M)},

Die Graphen G,,(E1,) und G, (E1),) sind genau dann isomorph, wenn M das leere Wort
nicht in (n — 1) Schritten akzeptiert, G, (E2,) und G,,(E2),) sind genau dann isomorph,
wenn M das leere Wort in (n — 1) Schritten akzeptiert. Damit ist das Problem, ob M
das leere Wort akzeptiert, auf das Aquivalenzproblem fiir Elp und E1,, sowie auf das
Disjunktheitsproblem fiir £2, und E?2), , reduziert. Da alle Schritte bei der Definition von
Elpm, E1),, E2, und E?2),  konstruktiv waren, folgt:

Satz 3.6.16 Das Aquivalenzproblem und das Disjunktheitsproblem sind unentscheidbar fir
synchrone requldre Kantengrammatiken.

Zum Schluf des Kapitels zeigen wir fiir einige Probleme, die beziiglich synchronen reguléren
Kantengrammatiken entscheidbar sind, die Unentscheidbarkeit fiir umfassendere Familien
von Kantengrammatiken. Dazu werden einige Unentscheidbarkeitsresultate fiir one-turn
Zahlerautomaten benotigt.

Lemma 3.6.17 Gegeben sei ein one-turn Zihlerautomat A mit Eingabealphabet X . Die
folgenden Fragen sind unentscheidbar:

1. Gilt L(A) = X* ¢
2. Gilt L(A) N XM = X fijr einn > 072
3. Ist L(A) kiirzbar? Ist L(A) k-kirzbar fir ein gegebenes k?

Beweis.

1. Siehe z.B. den Beweis von IBARRA in [20)].

2. Wir modifizieren den Beweis fiir (1) aus [20]. Es sei M = (Z, X, 2, £, 8,0, F') eine
deterministische Turingmaschine mit einseitigem Eingabeband. Der Lauf von M auf
dem leeren Eingabeband wird durch das unendliche Wort

€ = cd(cp)6(cy) - -+ mit cg = £2

beschrieben. Es sei L die Menge aller Worter, die kein Prifix von ¢ sind oder ein
Symbol aus F' enthalten. Falls M das leere Wort akzeptiert, so kommt in £ ein
Zeichen aus F' vor, und das Komplement von L ist endlich. Anderenfalls ist fiir alle
n € N das Préfix der Lange n von £ nicht in L enthalten.

Damit gilt: LN XM = X fiir ein n € N <= X € L(M).

Es bleibt zu zeigen, daf§ L von einem blinden one-turn Zéhlerautomaten akzeptiert
wird. Dazu stellen wir L wie folgt dar:
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(1) L enthélt alle Worter, die nicht mit £ beginnen.

(2) L enthilt genau dann ein Wort w = £w; £ws - -+ Lw,, w; € (X U Z U {$})*,
wenn
(a) wy # 2y oder
(b) £w; ¢ C(M) fiir ein 1 < i <n—1 oder
(¢) £w; € FC(M) fiir ein 1 < i < n oder
(d) (Lw;, Lwiyq) ¢ 6 fiirein 1 <i<n—2oder
(

e) wy, ist kein Prafix von é(w,_1).

Die Bedingungen (1) und (2a,2b,2c) kann man leicht durch einen endlichen Automa-
ten iiberpriifen. Um die Verletzung der Nachfolgebedingung, also die Erfiillung von
(2d,2e), zu iiberpriifen, benotigt man einen Automaten mit one-turn Zéhler, siehe

[20].

3. Es sei A ein one-turn Zidhlerautomat mit Eingabealphabet Y mit der akzeptierten
Sprache L = L(A), a ¢ Y sei ein Symbol und X = Y U {a} sei ein Alphabet. Die
Sprache L' = a*L U a*Y*a™ wird durch einen (effektiv konstruierbaren) one-turn
Z#ahlerautomaten akzeptiert. Gilt L = Y™, so ist L' = a*Y*a* und damit im strengen
Sinne 1-kiirzbar. Gilt hingegen w ¢ L fiir ein w € Y™, so sind alle Worter a™wa"
mit m > 0 und n > 1 in L', wihrend a™w fiir alle m > 0 nicht in L' enthalten
ist, d.h., L’ ist nicht kiirzbar. Damit ist das Universalitdtsproblem fiir A auf das
Kiirzbarkeitsproblem fiir L’ zuriickgefiihrt. a

Satz 3.6.18 Es ist unentscheidbar, ob eine requldre bzw. eine synchrone lineare Kanten-
grammatik eine kiirzbare Graphenfolge erzeugt.

Beweis. Zu einem one-turn Zahlerautomat A kann man eine regulére bzw. synchrone
lineare Kantengrammatik I' mit E(T") = {(w, c!) : w € L(A)} konstruieren. Die Behaup-
tung folgt damit unmittelbar aus der letzten Aussage des vorigen Lemmas. a

Satz 3.6.19 FEs ist unentscheidbar, ob fir eine gegebene regulire bzw. synchron lineare
Kantengrammatik T’

e cin Graph aus G(I") vollstindig ist,

e alle Graphen aus G(I') vollstindig sind.

Beweis. Es seien X ein Alphabet a ¢ X ein Symbol und A ein one-turn Zihlerauto-
mat mit dem Eingabealphabet X. Man kann eine synchrone lineare bzw. eine reguldre
Kantengrammatik I" mit dem Knotenalphabet X U {a} konstruieren, so dafl

E(T) = {(a w), (w,a™) : w e LA} U (X* x X*)U (a* x a*) \ {(\,\)}
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gilt. Der Graph G,(T") hat die Knotenmenge X U {a"}. Er ist genau dann vollstéindig,
wenn L(A)N XM = X[ erfiillt ist. Damit existiert ein vollstindiger Graph in G(I') genau
dann, wenn L(A) N X" = XM fiir ein n gilt; alle Graphen aus G(I') sind genau dann
vollstandig, wenn L(A) = X gilt. O

Zum Schluf soll gezeigt werden, dafl die Frage nach der Beschréanktheit der Knotengra-
de fiir synchrone lineare Kantengrammatiken unentscheidbar ist. Dies steht im Kontrast
zu den Sidtzen 3.6.7 und 3.6.12. Es besteht erneut ein enger Zusammenhang zwischen
Knotengrad und dem Grad der Mehrdeutigkeit fiir lineare Grammatiken. Fiir eine kon-
textfreie Grammatik G = (N, T, P,S) und ein Wort w € T* ist der Grad der Mehrdeu-
tigkeit dg(w) von w beziiglich G definiert als die Anzahl der zu w gehorenden Ablei-
tungsbdume, was im Falle linearer Grammatiken mit der Anzahl der verschiedenen Ablei-
tungen von w in G identisch ist. Der Grad der Mehrdeutigkeit dg von G ist definiert als
dg = sup{dg(w) : w € T*}. Auerdem sei dg(A,w) fiir a € N der Grad der Mehrdeutig-
keit von w beziiglich G4 = (N, T, P, A). Wir beschréinken uns auf lineare Grammatiken
G = (N, T, P,S) in der folgenden Normalform:

.N:N1UN2,N1QN2:®,S€N1

e Alle Regeln von G haben eine der Formen A; — aB, Ay — Ba, B — a, jeweils mit
Al € Nl,AQ € Ng,& € T,B € N.

Lemma 3.6.20 FEs sei G eine lineare Grammatik in Normalform. Man kann eine synchro-
ne lineare Kantengrammatik ' konstruieren, so daff V1(I') = L(G) und dyw(v|T') = dg(v)
fir v e L(G) gilt.

Beweis. G = (N,T,P,S) habe m paarweise verschiedene Regeln pq,...,pn,. Sei H =
(N, T x Y,Q,S) die lineare Grammatik mit Y = {1,...,m} und Q = {4 — o) : p; =
A — a,1 < j <m}, wobei a9 aus a € (N UT)* entsteht, indem man a € T durch (a, 7)
und A € N durch A ersetzt. Wir zeigen durch vollstédndige Induktion iiber die Lénge von
w, dafl

dg(A,w) =card {a € (T xY)*: A=} a,pry(a) = w}

fiir alle w € X* und A € N gilt. Fiir a € T ergibt sich:

do(Aa) = {1, falls A —>a € P

0, sonst
= card{a € (T xY): A=y a,pr,(a) =a}.
Fiir w =av,a € T,v € TT und A € N gelten folgende Rekursionen:
dG(A7 U)) - Z dG(B7 U)
A—aBeP

= card Z card {a € (T xY)": B =% a,pry(a) = v}
A—aBeP
= card{a € (T xY) : A=} a,pry(a) =w}.
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Analog zeigt man das entsprechende Resultat fiir A € N,. Interpretiert man jetzt H als
synchrone lineare Kantengrammatik, so folgt sofort die Behauptung. a

Lemma 3.6.21 FEs sei G eine lineare Grammatik in Normalform. Es ist unentscheidbar,
ob dg < 0o sowie ob dg < k fiir ein gegebenes k € N gilt.

Beweis. Zu jeder linearen Grammatik H = (N, T, P, S) mit Regeln der Form A — uBwv,
A — w mit A,B € N, ww,w € T kann man eine iquivalente lineare Grammatik
G in Normalform konstruieren, so dafl dg(w) = dy(w) fir alle w € T* gilt. (Fiir ei-
ne Regel A — ay...a,Bb;...b,, m,n > 2 fithrt man z.B. die neuen Nichtterminale
Ay, A1, By, ..., B, sowie die Regeln A — a1A, Ay — axAs, ..., A1 — @By,
B, — By, _1ib,,...,B; — Bb ein.) In [18, Satz 8.9] wird durch Reduktion des Postschen
Korrespondenzproblems gezeigt, dal das Problem der Mehrdeutigkeit einer linearen Gram-
matik H unentscheidbar ist. Dieser Beweis 148t sich leicht erweitern, um zu zeigen, dafl die
Frage nach der Beschréinktheit von dg unentscheidbar ist, selbst wenn bekannt ist, dafl dg
entweder 1 oder oo ist. a

Aus den letzten beiden Lemmata folgt:
Satz 3.6.22 Es sei I' eine synchrone lineare Kantengrammatik. Es ist unentscheidbar,

ob der Ausgangsgrad der Knoten in G(T') beschrinkt ist bzw. durch eine gegebene Zahl k
beschrdnkt ist.



Abschlielende Bemerkungen

Die Erzeugung von Graphenfamilien mittels Kantengrammatiken wurde ausfiihrlich un-
tersucht. Die Attraktivitidt dieses Modells der Erzeugung von Graphen liegt in der engen
Verbindung zur klassischen Theorie der formalen Sprachen und in der Moglichkeit, wichtige
Graphenfamilien einfach zu beschreiben.

Besonders viele positive Resultate konnten unter Verwendung der Theorie der endlichen
Automaten fiir die Teilfamilie der synchronen reguliren Kantengrammatiken nachgewiesen
werden. Aussagen zur Struktur der erzeugten Graphen wie auch die Entscheidbarkeit der
Beschrianktheit des maximalen Knotengrades ergaben sich direkt aus bekannten Resultaten
iiber rationale Potenzreihen. Einige mengentheoretische und graphentheoretische Operatio-
nen, wie die Vereinigung, die Bildung des Komplementirgraphen oder des Line-Graphen,
konnten auf natiirliche Weise in Operationen mit Sprachen umgewandelt werden.

Positive AbschluB- und Entscheidbarkeitsresultate wurden fiir jene graphentheoretischen
Eigenschaften, die mit den Mitteln der Logik erster Stufe definierbar sind, gezeigt. Fiir an-
dere Eigenschaften, wie z.B. Zusammenhang, wurden negative Ergebnisse bewiesen. Dies
ist ein Nachteil gegeniiber , konfluenten“ Knotenersetzungsgrammatiken sowie Hyperkan-
tenersetzungsgrammatiken, wo positive Resultate fiir jene Eigenschaften bekannt sind, die
mit Hilfe der monadischen Logik zweiter Stufe definiert werden kénnen [13, 10]. Offen bleibt
die Frage, ob die negativen Ergebnisse auf Kantengrammatiken mit kiirzbarer Graphen-
folge (d.h. auf deterministische parallele NLC-Grammatiken) iibertragen werden kénnen.
Die Ideen der Unentscheidbarkeitsbeweise fiir sequentielle NLC-Grammatiken sind hier
anscheinend nicht zu verwenden.

Als wichtigste neue Ergebnisse fiir allgemeine kontextfreie Kantengrammatiken zeigten wir
die Charakterisierung der erzeugten Knoten- und Kantensprachen durch Valenzgramma-
tiken und die Entscheidbarkeit des Elementproblems. Das zweite Resultat bildet einen
interessanten Kontrast zur Unentscheidbarkeit des Teilgraphproblems. Es ergibt sich aus
den positiven AbschluB- und Entscheidbarkeitseigenschaften fiir schlanke Valenzsprachen,
die ebenfalls in dieser Arbeit gefunden wurden. Einige Varianten und Erweiterungen des
Problems der Schlankheit fiir Grammatiken mit gesteuerter Ersetzung werden in [37] be-
trachtet. Als wichtiges offenes Problem verbleibt die Charakterisierung schlanker Valenz-
sprachen etwa in Analogie zu den paired loops fiir kontextfreie schlanke Sprachen.

Auflerdem zeigten wir, dafi man fiir Valenzgrammatiken iiber (Zk,+,6) Normalformen
konstruieren kann. Die Frage der Existenz von Normalformen fiir Valenzgrammatiken mit
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nichtkommutativen Steuermonoiden bleibt offen. Von Bedeutung ist dieses Problem vor
allem fiir Valenzgrammatiken iiber endlichen Monoiden, da diese dquivalent zu Matrix-
grammatiken sind.

Insgesamt ist das Konzept der Steuerung durch Valenzen sehr attraktiv. Es ist einfach
und durch die Verwendung verschiedener Monoide sehr flexibel. Auflerdem stellen sich ei-
nige Operationen wie die Permutation und der Durchschnitt mit semilinearen Mengen als
einfache Valenztransduktionen heraus. Es gibt viele Verallgemeinerungen und Varianten,
wie z.B. die Kopplung von Valenzen mit anderen Steuerungsmechanismen oder paralle-
le Systeme mit Valenzen. Einige Untersuchungen in diesen Richtungen wurden bereits in
Zusammenarbeit mit Herrn Dr. Fernau unternommen, fiir eine Zusammenfassung der Er-
gebnisse siehe [15].
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