

On Optimal Storage for Heterogeneous

Hybrid Transactional/Analytical Processing

DISSERTATION

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von M.Sc. Marcus Pinnecke

geb. am 08.09.1986 in Merseburg

Gutachter*innen

Prof. Dr. Gunter Saake
Prof. Dr. Kai-Uwe Sattler
Prof. Dr. Bernhard Seeger

Magdeburg, den 13.07.2022

Pinnecke, Marcus:
On Optimal Storage for Heterogeneous Hybrid Transactional/Analytical Pro-
cessing
Dissertation, University of Magdeburg, 2022.

Abstract

Hybrid Transactional/Analytical Processing (HTAP) promises continuous ana-
lytics of operational data by eliminating costly upfront data extraction or data
transformation. Thus, a higher business value is achievable since business
intelligence reporting, real-time data visualization or decision support are
enabled to operate on the latest business moments. Heterogeneous Hybrid
Transactional/Analytical Processing (H2TAP) extends the idea of HTAP to keep
that promise by optimizing for the underlying heterogeneous compute plat-
form. The idea of H2TAP poses inherent challenges to any database system
design since the optimization goals of the contained disciplines typically con-
tradict each other. Consequently, a variety of competitive solutions spread
over the last decade. Apart from that, the availability of modern hardware
for database systems additionally increases the solution space size. Namely,
modern hardware features lead to both, a desired dedicated performance for
particular tasks and potentially to undesired negative effects on the overall
system performance when used without caution. The goal of this thesis is to
provide insights into concepts, feasibility and effects of Heterogeneous Hybrid
Transactional/Analytical Processing to elaborate costs of an optimal solution
at storage engine level. To achieve this, we take the perspective of a stor-
age engine to survey and classify state of the art storage layout proposals.
We conclude a limited support for the H2TAP, and outline missing insights on
transaction-optimized data stored on graphic cards. To give an informed state-
ment on the feasibility of low-latency transactions on graphic cards, we explore
data organization strategies in graphic card memory, and evaluate transaction
primitives on different data organization strategies effectively showing lim-
its for low-latency on dedicated graphic cards. Arguing for an asynchronous
partial snapshot approach to keep data in the graphic cards memory in sync
without blocking a transaction request in main memory, we suggest a highly
flexible and adaptive data structure, a GridTable, to physically organize sparse
and structured records in face of mixed workloads. We explore the internals
and architecture of GridTables highlighting design goals, outlining concepts
and explaining trade-offs. We close this thesis by stating and analysing open
research questions and challenges that are addressable within GridTables.
Overall, this thesis presents the backbone of a fundamental research project
on cross-device transaction and analytics processing extending graphic card
accelerated analytical main memory database system, such as CoGaDB.

Zusammenfassung

Hybrid Transactional/Analytical Processing (HTAP) verspricht eine kontinuier-
liche Analyse von operativen Daten durch Entfernung kostenintensiver Date-
naufbereitung. Hierdurch wird ein Mehrwert erzielt, denn Reportierung, Visu-
alisierung oder Entscheidungsfindung wäre in der Lage auf Echtzeitdaten zu
arbeiten. Heterogeneous Hybrid Transactional/Analytical Processing (H2TAP)
erweitert die Idee von HTAP um die Integration und Optimierung der zugrun-
deliegenden heterogenen Compute Platform. H2TAP stellt Entwicklung und
Forschung vor besondere Herausforderungen, da sich Optimierungsziele der
enthaltenen Disziplinen widersprechen. Ferner vergrößert die, für Daten-
banksysteme relevante, Menge moderne Hardware diesen Lösungsraum weiter,
denn obwohl der korrekte Einsatz moderner Hardware Leistungssteigerung
verspricht, so kann ein unbedachter Einsatz ebenfalls zu Leistungsminderun-
gen führen. Das Ziel dieser thesis ist es Einsichten in aktuelle Konzepte,
Umsetzungsbetrachtungen und Folgen von H2TAP zu geben, um Kosten einer
optimalen Lösung auf Höhe des Speicherungssubsystems zu ermitteln. Um dies
zu erreichen, werden aktuelle Vorschläge zum Aufbau klassifizierend betrachtet.
Es zeigt sich eine eingeschränkte Unterstützung im Sinne von H2TAP in Hin-
blick auf transaktionsbasierende Verarbeitung auf Grafikkarten. Entsprechend
wird ein Konzept erörtert, welches ferner effektive Grenzen für die latenzmini-
male Transaktionsverarbeitung auf (dedizierten) Grafikkarten aufzeigt. Dies
mündet im Ansatz Schnappschüsse des Datenbestandes zu Analysezwecken im
Grafikkartenspeicher asynchron abzulegen, so dass der Transaktionsbetrieb
Störungsfrei ablaufen kann. Hierauf aufbauend wird eine flexible und adaptive
Datenstruktur, die GridTable, vorgestellt. Diese ermöglicht die physische Or-
ganisation von spärlich besetzten, strukturierten Daten vor dem Hintergrund
hybrider Arbeitslasten. Es werden die Interna und Architektur von GridTables
erkundet, Designziele werden hervorgehoben und grundlegende Konzepte
und Abwägungen werden aufgezeigt. Diese thesis schließt mit einer Benen-
nung und Kostenbestimmung möglicher Optimierungen ab. Insgesamt wird in
dieser thesis das Rückgrat eines Grundlagenforschungsprojekts präsentiert,
das geräteübergreifende operationale Analyse im Kontext grafikkartenbeschle-
unigter Hauptspeicherdatenbanken am Beispiel des Prototypen CoGaDB zum
Ziel hatte.

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 The H2TAP Promise . 1
1.2 Research Challenges . 3

1.2.1 Mixed Workloads Storage Engineering 3
1.2.2 Low-Latency GPU Transactions 3
1.2.3 A Flexible and Unified Storage Engine 4

1.3 Contributions . 6
1.3.1 Mixed Workloads Storage Engineering 6
1.3.2 Low-Latency GPU Transactions 6
1.3.3 A Flexible and Unified Storage Engine 6
1.3.4 Publications . 7

1.4 Outline . 9

2 Fundamentals and Needs for Heterogeneous Computing 11
2.1 Introduction . 12
2.2 On The Demand for Parallel Computing 12

2.2.1 Running Example . 12
2.2.2 Single-Core Architectures 14
2.2.3 Multi-Core Architectures . 17

2.3 Fundamentals of GPGPU Programming 21
2.3.1 Graphic Cards as a Computation Power House 21
2.3.2 General Purpose Computation on GPUs 22
2.3.3 Program and Data Flow Overview 23
2.3.4 Performance Boundaries . 25
2.3.5 CPU and GPU Design in Comparison 27
2.3.6 CUDA Thread Management in a Nutshell 29

2.4 High-Throughput GPU Transactions 30
2.4.1 Major Challenge in a Nutshell 31
2.4.2 The Bulk Execution Model 32
2.4.3 Transaction Execution . 33
2.4.4 T-Dependency Graph Analysis 35

2.5 Summary . 38

3 A Storage Engines Perspective on Hybrid Workloads 39

viii Contents

3.1 Motivation . 42
3.1.1 Classic Physical Record Organization for OLTP & OLAP . . . 44
3.1.2 Contradicting Optimization Goals within HTAP Workloads . 45

3.2 Terminology and Definitions . 47
3.2.1 Layouts and Fragments . 47
3.2.2 Layout Handling . 49
3.2.3 Layout Flexibility . 49
3.2.4 Layout Adaptability . 50
3.2.5 Data Location . 50
3.2.6 Fragment Linearization . 50
3.2.7 Fragment scheme . 51

3.3 Survey and Classification . 51
3.3.1 Storage Engines . 51
3.3.2 Database Systems . 55

3.4 Summary . 59

4 Memory Management in GPU/CPU Systems 61
4.1 Background . 63

4.1.1 GPU Memory Types . 63
4.1.2 SIMD-fashioned Thread Execution 64
4.1.3 Programming and Execution Models of GPUs 64

4.2 GPU Memory Management . 65
4.2.1 Divide-and-Conquer (D&C) 65
4.2.2 Mapped Memory (MM) . 69
4.2.3 Unified Virtual Addressing (UVA) 71
4.2.4 Unified Memory (UM) . 71
4.2.5 Other Solutions . 72

4.3 Bringing It All Together . 73
4.4 Summary . 76

5 Column vs. Row Stores for CPU/GPU Database Systems 77
5.1 Storage Model Implementation . 79

5.1.1 Data structures . 79
5.1.2 Operator implementation in OpenCL 79

5.2 Evaluation . 81
5.2.1 Execution Time (Including Transfer Time) 84
5.2.2 Execution Time (Excluding Transfer Time) 84
5.2.3 Execution Time for Different Table Column Fractions 85
5.2.4 Evaluation Conclusion . 86

5.3 Summary . 88

6 Low-Latency GPU Transactions: Dream or Reality? 89
6.1 Design Decisions . 91

6.1.1 Framework Design . 91
6.1.2 Yahoo! Cloud Serving Benchmark (YCSB) 92

6.2 Evaluation . 92
6.2.1 Pure Reads and Updates . 92
6.2.2 Concurrency Control . 93

Contents ix

6.2.3 Discussion and Summary . 96

7 The One-Size-Fits-Most H2TAP Data Store: GridTables 99
7.1 Research Efforts . 100
7.2 A Unified Physical Relational Format 101

7.2.1 Overview and Concept . 102
7.2.2 Hybrid Processing on Modern Hardware 102
7.2.3 Motivation Experiment . 103

7.3 Data Store Requirements . 103
7.3.1 Transactional Access Patterns 103
7.3.2 Analytical Access Patterns 104
7.3.3 Physical Adaptiveness . 104
7.3.4 Co-Processor Data Placement 104
7.3.5 Autonomous Optimization Knobs 104

7.4 Technical Considerations . 105
7.5 Definition and Manipulation . 106
7.6 A Stacked Architecture Concept 107

7.6.1 Flexible Partitions . 107
7.6.2 Grid Formats . 108
7.6.3 Grid Storage . 108
7.6.4 Data Packing . 109
7.6.5 Schema Reordering . 109
7.6.6 Storage Organization . 110
7.6.7 Problem Statement . 110

7.7 Building Blocks . 110
7.7.1 GridTable . 110
7.7.2 Regions . 111
7.7.3 Zero Regions . 111
7.7.4 Managed Regions . 111
7.7.5 Core Components . 112
7.7.6 Placement Abstraction . 112
7.7.7 Definition and Manipulation Path 114
7.7.8 Level-Specific Operations. 114

7.8 Open Challenges . 115
7.8.1 Record Organization Problem 116
7.8.2 Data Placement Problem . 116
7.8.3 Transition Cost Problem . 117
7.8.4 Read Set Labeling Problem 117
7.8.5 Wide-Partitioning Problem 118
7.8.6 Attribute Ordering Problem 119
7.8.7 Null-Region Maximization Problem 119
7.8.8 Compression Problem . 120

7.9 Summary . 121

8 Related Work 123
8.1 GPUs as Co-Processor . 123
8.2 Adaptive Stores . 124

x Contents

9 Wrap-Up 127
9.1 Summary . 127
9.2 Conclusion . 129
9.3 Future Work . 131

Bibliography 133

List of Figures

2.1 Painting walls of a room by some painters (running example).
Painters, brushes and color buckets are threads, CPUs and block-
ing resources. 13

2.2 Single threaded software on a single-core CPU: one painter, one
brush and one color bucket. The painter benefits from increasing
brush sizes . 14

2.3 The free performance lunch has the effect of increasing perfor-
mance over time: the same work is done in less time but workload
size increases . 15

2.4 The CPU clock speed as a function of time over roughly 30 years of
development. Around 2005 physical limits prevent a continuously
increase. 16

2.5 Keeping up with growing workload by using more workers for the
job does not help to get the job faster done: a single worker blocks
the others. 17

2.6 Expected performance drop even with novel hardware: single
threaded, sequential software does not benefit from further hard-
ware evolution. 18

2.7 Change to multi-core architectures correspond to multiple painters
with multiple brushes in the example. Enables division of labour
in parallel. 18

2.8 Task and data parallelism by means of the running example. . . . 20

2.9 Potential performance gains if novel hardware and parallel solu-
tions are in place; compared to degeneration when invested only
in novel hardware. 21

2.10Analogy of graphic cards in terms of number of cores and number
of threads as number of brushes and number of painters in the
example. 22

2.11CUDA GPGPU program and data flow between host and device. . 23

2.12Overview of a CPU (left) and a GPU architecture (right) involv-
ing control unit(s), arithmetic logic unit(s), cache(s) and working
memory. 27

xii List of Figures

2.13Relationship between the CUDA concepts grid, block and threads. 29

2.14One major challenge in task parallel jobs for the GPU: how to avoid
underutilization. 32

2.15Overview of transaction execution in GPUTx proposed by He et
al. [HY11] (own interpretation) . 33

2.16Visualization of the analysis of a given set of transactions that
result in a T-Dependency Graph . 35

2.17A T-Dependency Graph and resulting k-sets (own example) 36

3.1 Physical record layout re-organization and compute device re-
assignment in database systems that manage HTAP workloads
efficiently. 40

3.2 Different attribute- and record-centric operations executed on
the same tables of the TCP-C bechmark dataset. None of the
solutions is optimal for HTAP workloads w.r.t. the storage layout,
the threading policy or the data placement. The consequence is
a space of choices that must be considered by the storage- and
execution engine. 43

3.3 Terminology used. A relation R can have multiple layouts each
describing R in terms of several fragments (thin or fat). Pure-
vertically partitioned layouts are called sub-relations. A tuple
fragment in a fragment is called tuplet. Depending on the fragment
type, the linearization type varies for NSM and DSM. 48

3.4 Taxonomy on classification properties of storage engines. 49

4.1 Serial processing; the second chunk is transferred only after the
result of the processing of the first chunk is returned. 66

4.2 Asynchronous processing; the transfer of a chunk is overlapped
with the processing of the previous chunk. 66

4.3 Mapped memory; the data goes directly from the main memory to
the GPU’s local memory during the execution. 69

4.4 Unified Virtual Addressing: shared address space for CPU and GPU 71

4.5 Unified Memory; the data migrates to the device that accesses it. 72

5.1 Functions to access or write a value, given its position 81

5.2 Execution time for insert operator (incl. transfer time) 83

5.3 Execution time for update operator (incl. transfer time) 83

5.4 Execution time for projection operator (incl. transfer time) 83

5.5 Execution time for insert operator (excl. transfer time) 84

List of Figures xiii

5.6 Execution time for update operator (excl. transfer time) 85

5.7 Execution time for projection operator (excl. transfer time) 85

5.8 Execution time for update operator for different fractions of the
table’s columns . 86

5.9 Execution time for projection operator for different fractions of
the table’s columns . 86

6.1 Latency (in ms) and throughput (op/s) for read-only workload. . . 93

6.2 Latency (in ms) and throughput (op/s) for update-only workload. . 93

6.3 Throughput (op/s) for mixed read and update workload, CPU &
row store. 94

6.4 Throughput (op/s) for mixed read and update workload, CPU &
column store. 94

6.5 Throughput (op/s) for mixed read and update workload, GPU &
row store. 95

6.6 Throughput (op/s) for mixed read and update workload, GPU &
column store. 95

7.1 Stacked architecture at a glance: indirection levels and compo-
nents as well as two-way access path to raw data stored in host or
device memory. 105

7.2 Feature summary of GridTables. Flexible partitions (i), per-grid
formats (ii), per-grid storage (iii), data packing (iv), and schema-
reordering (v). 107

7.3 Views on GridTable storage, table index, and organization. 111

List of Tables

3.1 Summary of survey (Host = host memory, Dev = device memory).
Continued in Table 3.2. 52

3.2 Summary of survey ordered by date (Host = host memory, Dev =
device memory). Continuation of Table 3.1. 52

4.1 Comparison of the approaches. 1 = Data location, 2 = Transfers/ex-
ecutions, 3 = Explicit allocations/transfers, 4 = Synchronization,
5 = Coherence maintenance, 6 = Unnecessary data transfers, 7
= address space, Memory accesses speed, Memory oversubscrip-
tion, D& C = divide-and-conquer, MM = mapped memory, UVA =
Unified Virtual Addressing, UM = Unified Memory 75

Chapter 1

Introduction

1.1 The H2TAP Promise

The success of database management systems (database systems, for short) for
at least half a century [Cod70] shows the relevance of data management as the
backbone of modern information technology. Database systems allow humans
and programs to query and manipulate arbitrary-scale collections of data while
guaranteeing a set of application-specific properties, such as durability or multi
user isolation [KE13, SSH19]. Internally, traditional database system organize
records in a row-wise layout that was effectively stored on hard drive disks as
primary record location [SSH19].

With the on-going evolving needs of operational and analytical applications in
the mid 1980’s, database systems diverge into a broad landscape of database
management solutions in which traditional design principles on the architec-
ture of database systems were re-thought and re-evaluated. For instance, the
demand for efficient analytics lead to columnar record layouts as alternative to
row-wise record layouts effectively enabling business intelligence applications
to aggregate on large-scale datasets under more complex conditions more
efficiently [CK85, CD97, ABH09]. Another example is the need for wire-speed
reads on databases for operational applications where dataset durability guar-
antees of traditional database systems are secondary and single system failures
are covered by a cluster of redundant and synchronized database systems, lead
to the design of in-memory database systems which store their records in the
volatile working memory of the machine rather than on disk [Eic87].

In the last decade, database system technology evolved to serve particular
application needs, such as the mentioned efficient analytics on durable datasets
or the mentioned efficient operations on non-durable datasets, but also to
serve application needs in between, such as efficient analytics on non-durable
datasets or both analytics and operations in one single system [Pla09, KN11].

The evolution of database system technology is inherently connected to the
evolution of hardware as increasing query execution performance, higher mem-
ory efficiency, or faster network communication require low-level, machine-

2 1. Introduction

dependent exploitation of the hardware capabilities. As there is no free per-
formance lunch in general, database system vendors and researchers in par-
ticular must be aware of changes in the hardware landscape and adapt to
it [MBK00, BBHS14].

As both the data management market and the hardware landscape offer diverse
needs and solutions, adapting database systems on all levels to new hardware
is far from trivial [SKNT19], for instance:

• Two decades ago, Central Processing Units (CPUs) have moved from
single-core architectures to multi-core architectures in commodity ma-
chines. As a result, the raise of many-core architectures within the last
decade require novel task scheduling techniques considering non-uniform
memory access costs [Chr14, LBKN14].

• Fifth-teen years ago, Graphic Processing Units (GPUs) has been opened
for general purpose computing, and exposed several challenges for in-
tegration into analytic systems as co-processor among others [CMG14,
BHS+14b, BLB+18]

Clearly, besides technical considerations for the hardware evolution, at database
system level, the ever-increasing diversity in potential storage locations, state
management and state transitions, or optimal record layout determination is its
own management issue. This especially holds for the recently-emerged class of
Heterogeneous Hybrid Transactional/Analytical Processing (H2TAP for short)
database system that aim to marry operational and analytical functionalities
under one hood while likewise optimizing for the heterogeneous compute plat-
form at which the database system runs [AKPA17]. H2TAP is an extension of a
concept called Hybrid Transactional/Analytical Processing (HTAP) originally
coined by Gardner in 2014 that promises empowerment of "application leaders
to innovate via greater situation awareness and improved business agility (...)
driven by use of in-memory computing technologies as enablers" [PFRE14].

A fully fledge H2TAP system, from a database systems researchers point of
view, promises to support transactions and analytics in one system on all levels
of the compute platform, involving a series of different processors and co-
processors, in an self-optimizing fashion. Up to now, this promise still remains
an ideal state to which research and development step by step converges. For
instance, although first investigations are made for high-throughput transaction
processing on graphic cards by He et al. [HY11], it was left unclear to which
extent low-latency transaction processing is possible. As the latter is part of
the (potential) optimization space within a fully fledge H2TAP system, feasibility
and reasonability must be elaborated first.

With pre-conditions stated, we now formulate the goal of this dissertation:

The goal of this dissertation is to provide insights into concepts, feasibility
and effects of Heterogeneous Hybrid Transactional/Analytical Processing
in order to elaborate on costs of an optimal solution at storage engine level.

For ease of focus, we limit studies to GPUs as potential co-processor.

1.2. Research Challenges 3

1.2 Research Challenges

H2TAP raises various research challenges by its own. While this chapter is
about a brief summary on the challenges for an optimal H2TAP at storage
engine level, the interested reader might read [ABA+13, ÖTT17, VTC+17,
BHS+14b, MS16, BLB+18, MAR+19, CRL+20, ZCO+15, FKM+14] as excellent
surveys on this subject.

1.2.1 Mixed Workloads Storage Engineering

As H2TAP inherently contains access patterns for both, analytics and opera-
tional workloads, any storage engine for H2TAP is challenged by its physical
optimization in face of this workload mix. As neither a strictly analytics-
optimized storage layout nor a strictly operational-optimized storage layout
can be optimal for a mixed workload, more advanced techniques are required.

Continuous physical record layout organization and compute device assignment
along with simultaneous support for analytical and transactional processing
promises a larger business value by minimizing analytic latency and data
synchronization effort.

The research on heterogeneous systems introduces design considerations into
single-machine system architectures which are driven by data transfer costs,
heterogeneous memory types, and memory-specific capacity limitations. H2TAP
database systems address particular challenges implied by the hybridization of
both analytical and transactional workload processing into one system, such as
different data access patterns implied by different workload types, continuous
physical optimization under contradicting goals, and interferences between
long-running ad-hoc analytical queries and massive short-living write-intensive
transactional queries. Consequently, a special demand for physical storage
layout handling exists, that include online adoption to changes in the workload,
and advanced techniques to detach analytical query execution from mission-
critical transactional data.

A storage engine is highly tailored to challenges that a database system faces
and is fundamental for the entire system. The first research challenge to study
an optimal H2TAP at storage engine is, therefore, to survey the current degree
at which currently proposed design met the requirements.

1.2.2 Low-Latency GPU Transactions

Utilization of co-processor spans a range of system-related tasks, such as
query optimization or query execution. In fact, co-processors are applied to
accelerate both online analytical processing and online transaction processing.
However, the latter focusses on avoiding underutilization of the graphic card
and optimizes for throughput of transactions. Clearly, this is only half of the

4 1. Introduction

story for transaction processing as a single transactional query in applications
may require the database system to respond as immediately as possible, i.e,.
with the lowest latency as possible.

GPU-accelerated computing involves a significant challenge: the memory size
of a GPU is limited to several gigabytes and is often smaller than the data
to process, while the main memory nowadays can consist of hundreds of
gigabytes. While entire databases can be kept in main memory, this must not
hold for the memory of graphic cards. On the one hand side, storage of the
whole data on the GPU can be very beneficial, since it eliminates overheads
introduced by transferring the data to the GPU and back. On the other hand
side, today’s device memory capacity is far too limited to hold real-world
databases completely. Hence, there is the need for strategies considering
the fact that the database can only be partially moved to the GPU. In the last
decade, the research community suggested a variety of solutions to face these
issues. Hence the first part to investigate low-latency GPU transactions is to
survey the state of the art in GPU memory management, providing insights
into how different approaches attempt to approximate an ideal GPU memory
management model.

We must add arguments to the ongoing debate about the best storage model
as efficient insertions relying on a row-wise storage but updates that involve a
smaller number of attributes could perform better with a column-wise storage.
Since column-wise storage is favoured when integrating GPUs as co-processors
for online analytical processing, it is still unclear what the break-even points
between a row-wise and a column-wise storage for co-processor-accelerated
online transaction processing is. Hence, the research challenge is to investigate
the favoured storage model for inserts, updates, and projections operations
in a CPU/GPU system that is used for GPU-accelerated online transaction
processing.

1.2.3 A Flexible and Unified Storage Engine

The database research community has focused on challenges for data manage-
ment and system design implied by the ongoing needs to manage and analyze
web-scale, frequently changing, diverse datasets. A key enabling factor for
processing both transactional and analytical workloads in a single system is
modern hardware that promises novel ways for data processing of relational,
as well as benefits for several database system components, such as query
optimization. However, within this dissertation, we concluded the existence
of missing synergy effects in the state-of-the-art since existing solutions are
examined in isolation which leaves optimization potential unexplored and unex-
ploited, such as unsatisfactorily support of row-wise storage for co-processors,
adaptive indexing across multiple devices, or an excellent online re-organization
for H2TAP workloads for cross-device databases as already studied in depth for
CPU-only database systems.

1.2. Research Challenges 5

In addition to that, it is not yet clear how to combine novel research suggestions
in a unified system, and how such suggestions may affect or benefit from
each other. In particular, the research community shows opportunities and
challenges of modern hardware in database systems in isolation. Among them
is the need for analysis of novel adaptive data layouts and data structures for
operational and analytical systems. Others are novel processing, storage and
federation approaches on non-relational data models, as well as benefits and
drawbacks of porting to new compute platforms. Moreover opportunities and
limitations of GPUs and other co-processors as building blocks for storage and
querying purposes where identified. Finally, novel proposals for main memory
databases on modern hardware, and adaptive optimization with first attempts
towards self-managing database systems are made.

Therefore, the final research challenge is the design and study of a storage
engine design that face the challenges of H2TAP on multiple devices by enabling
the combination of established solutions so far considered in isolation. For
this, stating requirements for a storage engine is needed that match a One-
Size-Fits-Most design for competing access patterns and optimization goals,
co-processor support and self-tuning. Afterwards, an architecture design is
needed from which the feasibility of a fully-fledged H2TAP storage engine
can be imagined. Then, the stage is opened for exploration and analysis of
optimization problems that are needed to address to step further towards the
promise that is H2TAP.

6 1. Introduction

1.3 Contributions

This chapter states the main contributions in this dissertation in context of the
research challenges mentioned in the previous chapter.

1.3.1 Mixed Workloads Storage Engineering

A first attempt in 2016 was made to define a flexible storage model between the
row-wise storage model and the column-oriented storage model, the flexible
storage model (FSM). Following and expanding the concept of FSM, we build
a taxonomy of existing storage engines, and propose a series of more fine-
grained concepts, including record layout and data fragment management.
This results in the first contribution, a novel storage engine design taxonomy.
We survey storage engines and database systems to classify them regarding
the properties that we suggest in the taxonomy. As the taxonomy allows to
conceptually compare different approaches by the same vocabulary, we distil
commonalities and differences and provide an overview on the state of the art
as the second contribution.

1.3.2 Low-Latency GPU Transactions

We start with a survey on the state of the art in GPU memory management, pro-
viding insights into how different approaches attempt to approximate an ideal
GPU memory management model, that should be able to allow for GPU mem-
ory oversubscription, utilize the GPU efficiently by overlapping transfers and
computations, hence minimizing the idle time of the GPU, avoid unnecessary
transfers via the PCI-E bus and keep the data coherent. This survey is the third
contribution in context of this dissertation. Then, we researched on the effect of
storing a database in both columnar and row-wise fashion on the GPU to study
which is promising be used for GPU co-processors running transactional rather
than analytical workloads. In particular, we give a description of data struc-
tures for a column or row store for GPU co-processor acceleration as the fourth
contribution, provide a prototypical implementation for transactional operators
in OpenCL as the fifth contribution, and run a first proof-of-concept evaluation
for inserts, updates, and projections comparing columnar and row-wise record
layouts on graphic cards as the sixth contribution.

1.3.3 A Flexible and Unified Storage Engine

We state requirements for a storage engine matching a One-Size-Fits-Most
design for competing access patterns and optimization goals, co-processor
support and self-tuning with the seventh contribution. Then, we propose a
stacked architecture for highly-flexible partitioning, multiple storage formats

1.3. Contributions 7

and placement options as the eighth contribution, and discuss most represen-
tative aspects in a flexible storage for H2TAP, namely the data storage and
querying. With this, we do the ninth contribution, a design space exploration
in a flexible and unified storage engine. Finally, we formulate and analyze open
research challenges with this flexible and unified storage engine by broadening
the canvas for (autonomous) optimization, and explore optimization problems
that we propose to address in order to step towards an optimal H2TAP storage
engine. This final formulation and analysis of open research challenges is then
the last, the tenth contribution made in this dissertation.

1.3.4 Publications

The content of the remaining chapters of this dissertation have been published
to refereed journals and workshops.

• Marcus Pinnecke, David Broneske, Gabriel Campero Durand, and Gunter
Saake. Are Databases Fit for Hybrid Workloads on GPUs? A Storage
Engine’s Perspective. In IEEE 33rd International Conference on Data
Engineering (ICDE) (pp. 1599-1606), 2017

• Iya Arefyeva, David Broneske, Marcus Pinnecke, Mudit Bhatnagar, and
Gunter Saake. Column vs. Row Stores for Data Manipulation in Hardware
Oblivious CPU/GPU Database Systems. In Workshop on Grundlagen von
Datenbanken. (pp. 24-29)., 2017

• Iya Arefyeva, David Broneske, Gabriel Campero Durand, and Marcus Pin-
necke, and Gunter Saake. Memory Management Strategies in CPU/GPU
Database Systems: A Survey. In International Conference: Beyond
Databases, Architectures and Structures. Springer, Cham., (pp. 128-
142), 2018

• Iya Arefyeva, Gabriel Campero Durand, Marcus Pinnecke, David Broneske,
and Gunter Saake. Low-Latency Transaction Execution on Graphics
Processors: Dream or Reality?. In International Workshop on Accelerating
Analytics and Data Management Systems Using Modern Processor and
Storage Architectures at VLDB, (pp. 16-21), 2018

• Marcus Pinnecke, Gabriel Campero Durand, David Broneske, Roman
Zoun, and Gunter Saake. GridTables: A One-Size-Fits-Most H2TAP Data
Store. In Datenbank-Spektrum, 20. Jg., Nr. 1, (pp. 43-56), 2020

Starting in 2016, the background chapter, Fundamentals and Needs for Het-
erogeneous Computing, has been given as regular guest lectures in the bache-
lor’s course Transaction Processing at the Institute of Technical and Business
Information Systems (ITI) of the Otto-von-Guericke University, Magdeburg
(Germany). As this dissertation provides a compacted version of this lecture,
the original and in parts extended lecture slides as well as a recorded version

8 1. Introduction

from 2021 can be found in the archives or on the website of the Database
and Software Engineering Group. Alternatively, the author of this disserta-
tion is pleased to provide access to these materials at personal request to
pinnecke@ovgu.de.

pinnecke@ovgu.de

1.4. Outline 9

1.4 Outline

In this first chapter, Chapter 1, we gave an introduction to the H2TAP promise
by a brief recap on the history that lead to the demand of hybrid workload
processing on heterogeneous compute platforms. We introduced H2TAP and
outlined the promise that is given for a fully fledged H2TAP system. With
this, we set this as a pre-condition to the dissertation goal, and stated the
dissertation goal of illuminating opportunities and elaborate costs of optimal
H2TAP at storage engine level. We continued with a more detailed explanation
of the addressed research challenges, and stated the contributions in this
context. Finally, we showed published work that backup this dissertation.

This dissertation consists of the following six content chapters:

• Chapter 2 aims for a solid foundation on concepts and needs for heteroge-
neous computing. Based on our guest lectures materials, we argue for
the end of a free performance lunch, introduce fundamentals on graphic
card programming by example of CUDA, and summarize the research
work on high-throughput transaction processing on graphic cards.

• Chapter 3 is about establishing the state of the art by surveying and
classifying storage engine architectures towards the promise of a fully
fledged H2TAP system. We present a proposal for a unified terminol-
ogy and taxonomy to compare current engines showing similarities and
differences.

• Chapter 4 deals with memory management strategies for CPU/GPU
database systems. In particular, we address the limited memory capacity
of graphic cards and possible solution to avoid out-of-memory errors.
Thus, we perform a survey of four main techniques for managing GPU
memory.

• Chapter 5 is about a study on row-wise data storage on graphic cards as
alternative to the traditional column-wise data storage. Row-wise storage
allows to read and modify multiple fields of a record at once and suites
point-access. This kind of storage potentially allows low-latency but to
the cost of less high throughput. Thus, we perform an experimental study
on row-wise storage on graphic cards.

• Chapter 6 picks up the insights from the previous chapter and asks the
question to which degree low-latency transactions are reasonable to be
executed on graphic cards. For this, we run a quantitative study to inves-
tigate the effect of batch-sizes, chosen record layout, and concurrency
control design.

• Chapter 7 states and analyses optimization problems in a unified storage
engine for H2TAP. More precisely, we show how to instrument this engine
by a series of multiple tuning knobs that showed by considered at once.
In its consequence, we state eight open research challenges that be
researched in isolation and provide a theoretical problem statement
description for all of them as wells as a compact cost analysis.

10 1. Introduction

The remainder serves the following purpose. The Chapter 8 ensembles related
work related towards the promise of H2TAP. Chapter 9 provide a final summary
on the content chapters, states an overall conclusion and outlines directions
for future research. The final Section 9.3 is the bibliography.

Chapter 2

Fundamentals and Needs for
Heterogeneous Computing

Acknowledgments

We want to thank our colleagues and other authors who shared their
insights that ultimately form the basis of this chapter. Namely, we want
to thank Sebastian Breß for his excellent lectures on Co-Processor Accel-
erated Data Management1 in 2014 and the following years, Herb Sutter
for his exhausting insights on concurrency and parallel programming
needs in Dr. Dobb’s Journal back in March 20052, He et al. for their work
on high-throughput transaction execution on graphic processors [HY11],
Cheng et al. for their efforts to communicate the CUDA programming
model to the public [CMG14], Herlihy et al. for their insights into the art
of multi processor programming [HS08], and all our colleagues at the
University of Magdeburg who helped to improve our guest lectures.

1Sebastian Breß. Co-Processor Accelerated Data Management. Guest Lecture in Advanced
Topics in Database Systems. Otto-von-Guericke University, 2014 and following

2Herb Sutter. The Free Lunch is Over: A Fundamental Turn Towards Concurrency in
Software. http://www.gotw.ca/publications/concurrency-ddj.htm

http://www.gotw.ca/publications/concurrency-ddj.htm

12 2. Fundamentals and Needs for Heterogeneous Computing

2.1 Introduction

The following chapter serves as a gentle introduction to the background and
motivation of this dissertation. In particular, we explore why novel computation
concepts and architectures arose in the latest past that center around parallel
computing, multi-threading and integration of co-processors in data-intensive
systems. We show first attempts to exploit these concepts and architectures
in context of database (high-throughput) transaction processing, and provide
both technical and conceptual fundamental knowledge required to understand
the purpose of this dissertation.

The core content of this chapter has been delivered and has been expanded
through several guest lectures in the master course Transaction Processing at
the University of Magdeburg over the years, starting in fall 2016. As we are
used to explain verbosely, we explicitly state here that the following content
is a condensed and connected understanding of work done by others from
several domains. The aim of this chapter is to get a fundamental understand-
ing of (database system related) processing concepts in a self-contained and
consistent way.

2.2 On The Demand for Parallel Computing

In a nutshell, the free performance lunch was the possibility to keep up with
growing workloads without the need to re-think either architecture or concepts
by automatically benefiting from enhancements on the underlying hardware.
However, a series of limitations, such as physical ones, in combination with
the ever-increasing workload size require, if not forces one, to re-think ar-
chitecture of and programming for data-intensive systems, such as database
systems [SC05, SMA+07, SBÇ+07]. Namely, without strategies to exploit par-
allel computing architectures, one risks to get overwhelmed by the increasing
workload size [MBS15, LBKN14, ZHHL13, HSP+13].

In this section, we provide an overview on the historical evaluation from single-
core CPU architectures to multi-core CPU architectures. Especially, we explore
consequences for data-parallel workloads, which leads to the second part of
this chapter: many-core architectures built for data-parallel computing, graphic
cards.

2.2.1 Running Example

As we perceived that communicating fundamentals was greatly supported by
simplified, in parts "cartoonish", illustrations during my guest lectures, we
decided to keep this concept with the intention to lower the learning curve for
readers new to the field, but also to add something interesting to look at for
readers already familiar with the topic.

2.2. On The Demand for Parallel Computing 13

Figure 2.1: Painting walls of a room by some painters (running example). Painters,
brushes and color buckets are threads, CPUs and blocking resources.

To understand the demand for parallel computing and the differences between
concepts such as task and data parallelism, let us start with a running example
on which we will explain concepts.

Domain

In Figure 2.1, we illustrate a job as running example; painting walls of one
particular room from white to a specific color. In this example, there are
painters for the job, who use one brush per painter and only one or multiple
shared color bucket containing the specific color. Each painter has to work
independently but in a particular context, so the painter represents a single
thread in a technical scenario. A brush that a single painter is using is the
one thing that actually performs the work as the painter wants; so a brush
represents a single CPU core3. Finally, since the wall surface dimension matters
when one give time constraints for the painting task, we can consider the room
size as the workload for the painting job.

Rules and Conditions

Painters can share brushes, but a single brush is fixed to a single painter at a
given time. In more technical terms, a single thread is executed on a single
CPU core, but a single CPU core is able to run multiple threads concurrently
but not in parallel (see differences in Section 2.2.2). Despite that painters are
now able to use brushes as their tool of choice to paint walls as requested,
painters still need color for the task. In the example, the color is stored in a
color bucket from which the painter must pick up some fresh color paint from
time to time. Let us agree that painters want to have their color buckets close
to them in order to avoid additional movement and work. Hence, a single color
bucket becomes a blocking resource between multiple painters if they have to
share that resource.

Having the running example and rules established, let us start with different
strategies, their benefits and drawbacks. We start with the traditional single
threaded execution model on a single-core CPU.

3Real-world painters are able to operate on more than one brush at a time, but for ease of
understanding let us agree that one painter is using exactly one brush in an instant of time.

14 2. Fundamentals and Needs for Heterogeneous Computing

Figure 2.2: Single threaded software on a single-core CPU: one painter, one brush
and one color bucket. The painter benefits from increasing brush sizes

2.2.2 Single-Core Architectures

In the early days, painting a wall looks roughly like depicted in Figure 2.2. One
has had only one painter with one brush and one single color bucket. If it is to
paint the walls to black, then that single painter was starting his work on one
edge of choice, and was painting column by column in a sequential way until
the job was done.

Threading on Single-Cores

In technical terms, the most earliest software was code running exclusively on
a single CPU [Gel01]. The earliest operating systems did not even know about
the concept of threads, such that while the CPU was busy with executing the
given code, one has to explicitly invoke interrupts to get the CPU executing
another piece of code ("preemption") [Laz93]. The AmigaOS of the Commodore
Amiga from 1982 is one example of such a legacy systems, in which context
switches between units of work had to be explicitly programmed [Trz04].
Although preemption and context switches between threads were made more
easier, more accessible and less error-prone to execute once schedulers and
the concept of (preemptive) multitasking were established and provided by
operating systems, the fundamental concepts remain the same for decades:
a single machine has had a single CPU that was able to exclusively run one
instruction at a single time instant.

Hardware Evolution

From a performance perspective, this kind of software and architecture greatly
benefited from hardware evolution for decades [Sut05]: for instance, the Intel
CPU increased clock speed from 300 MHz in 1993 to around 4200 MHz in
2016, such that more instructions could be executed within a single second.
Or, the dynamic RAM capacity increased from 640 KB (e.g., in the IBM PC with
Intel 8088 from 19794) to more than 8 TB (e.g., HPE Integrity Superdome 2

4Intel 8088 8-Bit HMOS Microprocessor (Specs): http://datasheets.chipdb.org/Intel/x86/
808x/datashts/8088/231456-006.pdf

http://datasheets.chipdb.org/Intel/x86/808x/datashts/8088/231456-006.pdf
http://datasheets.chipdb.org/Intel/x86/808x/datashts/8088/231456-006.pdf

2.2. On The Demand for Parallel Computing 15

Time

P
er

fo
rm

an
ce

Constant
workload

novel hardware
old hardware

Increasing
workload

novel hardware
old hardware

Figure 2.3: The free performance lunch has the effect of increasing performance over
time: the same work is done in less time but workload size increases [Sut05, BMC19].

Server from 20175), such that more code and more user data could be stored in
working RAM avoiding costly swapping to disk. In addition, larger static RAM
capacity was available from year to year such that CPU caches or registers
could hold more data spatially close to CPU, which means more space in the
top of the memory hierarchy and therefore effectively more speed [TE91]. Also,
CPU vendors enabled more optimization to get more work done within a single
cycle: concepts such as pipelining, branch prediction, or out-of-order execution
were implemented - and single threaded software automatically benefited from
all these advantages without the needs for engineers to rewrite their code
and their software was executed faster and faster from year to year, a free
performance lunch for sequential executed code [DB99, GGPY89].

In the example, the free performance lunch stemming from performance im-
provements by hardware evolution for single threaded software correspond to
executing the painting job by a single painter with a single brush and a single
color bucket faster if the brush is increasing in its size in Figure 2.2.

A Free Performance Lunch

Let us first assume that the workload is stable, i.e., that the same work is to be
done independent of the current time. Then sequential software benefits from
hardware and compiler improvements over time in the way that application
performance increases over time, if novel hardware is in use, or - in worst case
- remains stable if the same application is executed on the same, old hardware.
Clearly, the reality shows that workload is not stable and is increasing over
the time as well, e.g., by the on-going digitalization in the finance or pharmacy
economy within the last two decades [BMC19]. In the example, this unfortu-
nately means that the room size is increasing over time as well. We illustrate
the consequences of the free performance lunch effect in Figure 2.36.When
considering growing workload over time, then one must necessarily invest in
novel hardware to keep or improve performance. Otherwise a decrease in

5HPE Integrity Superdome 2 Server (Specs): https://www.hpe.com/psnow/doc/
PSN4311905DEDE.pdf

6Note that Figure 2.3 is an illustration on the concept of increasing performance despite
increasing workload due to improvements in hardware (the Free Performance Lunch); actual
functions might differ in particular domains and might not hold in any scenario.

https://www.hpe.com/psnow/doc/PSN4311905DEDE.pdf
https://www.hpe.com/psnow/doc/PSN4311905DEDE.pdf

16 2. Fundamentals and Needs for Heterogeneous Computing

Year

C
lo

ck
 s

pe
ed

 (M
H

z)
Single (Intel) CPU clock speed

1985 1990 1995 2000 2005

0.1
1

10
100

1,000
10,000

100,000

Year
1985 1990 1995 2000 2005

Enough!

Figure 2.4: The CPU clock speed as a function of time over roughly 30 years of
development [Sut05]. Around 2005 physical limits prevent a continuously increase.

performance is inevitable. In the example, it means that one is good with the
painting job as long as the brush increases in its size at least as much as the
room size increases.

A question that is immediately raised, whether that size relationship between
room size and brush size remains the same until the end of time. In technical
terms: is the solution to keep up with growing workload by enjoying the free
performance lunch by just buying new hardware. Unfortunately, the answer to
this question is no - for at least two reasons. First, the workload might grow just
faster than the performance gains by the free performance lunch. Second, we
already hit hard physical limits that stopped the traditional hardware evolution.

End of the Free Performance Lunch

Almost two decades ago, practical limits for the physical construction of chips
in particular and hardware in general were reached. Whereas the traditional
hardware evolution was driven by, roughly speaking, putting more elements
(e.g., transistors) on a smaller and smaller space, first signs of exhaustion of
this strategy became obvious between the years 2000 and 2005 [Sut05]. Based
on this, we depict the growth of a single CPU clock speed in Figure 2.4 as
an example for this effect. While there is a steady growth in the clock speed
until around 2000, physical limits such as too much heat production, too much
energy consumption along with leakage and hazard issues prevent a reasonable
development under the traditional strategy.

With no further increases in CPU clock speed within a single CPU, sequential
programs could no longer just benefit from the hardware evolution in the
traditional way. In terms of the example, at some point in time, the painter
rejects to work with the ever increasing brush, because it is too heavy at
some particular scale. Falling back to use the largest brush that the painter
can practical handle, the job gets then harder and harder because the room -
relative to the brush size - gets bigger and bigger over time. As one painter
cannot operate more than one brush at a time, one might think a solution is just
to put more painters in the room to get the job done more quickly (illustrated
in Figure 2.5). Unfortunately, there is only one brush that those painters can
use. This means, all painters have to share that single brush. Clearly, there

2.2. On The Demand for Parallel Computing 17

(today) (tomorrow) (day after tomorrow)
2 1

zzz

Figure 2.5: Keeping up with growing workload by using more workers for the job
does not help to get the job faster done: a single worker blocks the others.

might be observable progress on different edges of the wall over time, but one
working painter blocks the work of all other painters in the room - all workers
in the room work concurrently but not in parallel . When each painter holds the
brush only for the tiniest possible amount of time and the brush is transitioned
from painter to painter almost instantly, one might actually have the illusion
that progress is made on all walls in parallel - but it remain an illusion, since
only one painter is actually working at one instant in time.

In sum, the room is painted with multiple painters as fast as it is painted with a
single painter7 resp. multiple threads running on a single CPU do not increase
the processing throughput - the free performance lunch was over.

2.2.3 Multi-Core Architectures

To overcome the practical limits for a single chip, a strategy change was
necessary. In simple words, since it was no longer reasonable to make a single
CPU more and more efficient by means of more density of that single CPU, the
machine architecture was changed instead. Starting around 2001, machines
made a transition from this uniprocessor model to a multi-core processor
model in which multiple CPUs (now called cores) were packed together on a
mainboard - from a hardware perspective, further performance scaling was
now feasible again[HS08]. However, sequential, single threaded software
did not automatically benefit from this change as they did with traditional
hardware evolution in uniprocessor architectures because additional cores
remain (almost) unused.

No Free Performance Lunch

We show in Figure 2.6 the effective of the end of the free performance lunch for
sequential software. Since there is no further performance gains, e.g., by clock
speed, for free in sequential software, additional effort must be invested to
re-think software architecture to benefit from multi-core architectures. Without

7Actually, the more painters are involved the longer the job requires because painters have
additional effort for giving the single brush from one painter to the other.

18 2. Fundamentals and Needs for Heterogeneous Computing

Time
P

er
fo

rm
an

ce

Increasing
workload

novel hardware
old hardware

end of free performance lunch

Figure 2.6: Expected performance drop even with novel hardware: single threaded,
sequential software does not benefit from further hardware evolution.

22+ +

multiple brushes
(CPU cores)

multiple painters
(threads)

2 2
It‛s faster!

Figure 2.7: Change to multi-core architectures correspond to multiple painters with
multiple brushes in the example. Enables division of labour in parallel.

this, no further performance gains can be expected and an effective perfor-
mance drop is expected when workload grows over time. In terms of the
example, the change from uniprocessors to multi-core processors allow for
multiple painters doing the job where multiple brushes are available (cf. Fig-
ure 2.7). In its consequence, multiple painters not only work concurrently as
they already could in Section 2.2.2, but since they must not necessarily wait for
each other, painting can be done in parallel - and therefore, effectively faster
than just concurrently.

Multi Threaded and Parallel Solutions

In order to take advantages of the change from the uniprocessor to the multi-
core architecture, (sequential) software must also be redesigned to match the
multi-core architecture in order to keep up with growing workload. Directly
speaking, software must explicitly be designed to be multi-threaded in order
to effectively be executed in parallel [HS08, ASDR14, LHZ+21, KKG+11]. Al-
though this is not a trivial concern [HS08], the basic idea is to split a larger
problem into smaller problems (often called tasks) and carry out each task in a
reasonable mapping to different worker threads. Then the problem is solved in
parallel on different cores.

One limiting factor for parallelization is that a proper data dependency analysis
is needed in advance to find out whether a particular problem can be split
into independent tasks, or if there are dependencies between sub problems

2.2. On The Demand for Parallel Computing 19

that prevent computation of the sub problems solution in parallel [HS08]. For
instance, computing the sum of elements in an integer sequence can be carried
out in parallel by computing the sum of sub sequences that are then summed
up in a final merge step. In contrast, a stateful filtering of the same sequence
require some communication between tasks to align on the shared state which
is a coordination problem in distributed systems [Adl95].

Besides algebraic considerations on the kind of operation that shall be paral-
lelized, other requirements must be taken into consideration. For instance, for
a given sorted sequence of unique numbers, finding out whether a particular
number is contained can be done by binary search. Although binary search can
be easily invoked on n distinct sub sequences of the input sequence, doing so
is a waste of computational and energy resources. Since at most one task will
find the desired number, all other (n − 1) task will not find any match8. It is
questionable whether CPU cycles wasted for those (n− 1) tasks could be better
investigated by searching for n numbers on the original input sequence rather
than for 1 number on n sub sequences.

While the first approach to parallelize the binary search is known as data
parallelism, the latter is known as task parallelism.

Task and Data Parallelism

To understand the challenges addressed by He et al. in [HY11] (summarized
in Section 2.4) and further addressed by us in Chapter 6, we now want to show
the differences between task and data parallelism more in detail [SSOG93],
and provide first insights which processor type (i.e., CPU resp. GPU) favours
which approach in general:

• Task parallelism. A generally well-suited approach for CPUs as paral-
lelization is done by distribution of processing.

– A number of n different (parameterized) functions are invoked on
the same or on different data sets

– All n computations typically run asynchronously, and the parallelism
degree is proportional to n

– Load balancing between threads require smart scheduling to not
waste computational resources or overwhelm a single core

• Data parallelism. A generally well-suited approach for GPUs as paral-
lelization is done by distribution of data.

– The same function is invoked on different (typically distinct) subsets
of the same data.

– The computation typically runs synchronously in the sense that the
entire dataset computation must be completed.

8This statement does not hold for sequences of non-unique numbers

20 2. Fundamentals and Needs for Heterogeneous Computing

Task Parallelism Data Parallelism
Figure 2.8: Task and data parallelism by means of the running example.

– As the number n of data partitions can be set to the number of cores,
load balancing might not be managed manually

To understand the differences between task and data parallelism, we visualized
the application in context of the running example in Figure 2.8. In both, task
and data parallelism, more than two painters (i.e., threads) and more than two
brushes (i.e., cores) are available, such that the painting job can be done in
parallel by the workers. If the painting job is not limited to rooms, but chairs
and tables should be painted in different colors, then one can call this task
parallelism as each painter paints - independently of the other - one particular
object with a different color. In contrast, if the job is limited to get the room
painted in exactly one particular color, and all painters paint on different walls
with their own brushes in parallel, then this can be called data parallelism.

It is worth to note here, that we did not include the color bucket in this example
for ease of understanding so far. However, when designing parallel problem
solutions one must keep shared mutable resources in mind: if there is only one
color bucket for one color, then painters begin to block each other in order to,
even briefly, pick up new color. The more color buckets per color are available,
the less painters painting with the same color must communicate to each other
in order to share a color bucket - they become more independent and do not
block each other from time to time. In contrast, the less color bucket per
color exists, the more painters on the same color must communicate and start
blocking each other - they become more dependent. Note that this effect is an
analogy to data dependency between tasks, and must be carefully taken into
consideration to accidentally serialize the work that could be done in parallel
otherwise.

Beyond a Free Performance Lunch

To keep up with growing workload, sequential software must be redesigned
to match multi-core architectures [Sut05, ASDR14, LHZ+21, RRB+08]. We
illustrate the promising effect in Figure 2.10.

By carefully designing parallel solution as mentioned in Section 2.2.3, additional
performance gains can be expected when also novel hardware is taken into

2.3. Fundamentals of GPGPU Programming 21

Time

P
er

fo
rm

an
ce

Increasing
workload

sequential, novel hardware
sequential, old hardware

end of free performance lunch

parallel, novel hardware

zzz

z
zz

6

3

z
z
z

Figure 2.9: Potential performance gains if novel hardware and parallel solutions are
in place; compared to degeneration when invested only in novel hardware.

account. As depicted in the illustration, there is a point in time at which
additional performance is only gained further with the extra effort to invest
in novel solutions on novel hardware. Note that this point in time especially
marks the end of the free performance lunch, and - as discussed through this
chapter - that point already lies in the past.

As we are now aware that high performance nowadays require well-designed,
carefully analysed architectures combining both, task and data parallelism
over the entire system while deeply integrating with hardware, we now want
to focus on a many core architecture that promises high efficiency for task
parallelism [LBKN14, DS13], graphic cards [Bre14, BC12, Sit16].

2.3 Fundamentals of GPGPU Programming

This section is about fundamentals of the programming model in CUDA by
Nvidia that allows to program for graphic cards [CMG14]. In particular, this
section shows the architecture of graphic cards in comparison to the traditional
CPU architecture. We outline architectural differences and show how and why
particular design choices support special tasks.

In this section it becomes clear why the use of graphic cards promise extraordi-
nary performance advantages for particular tasks but also where disadvantages
are. Namely, (dedicated) graphic cards interconnected via the PCIe bus to
the system suffer from data movement costs [ABP+17]. Novel techniques and
specialized concepts are often required to exploit the immense efficiency of
graphic cards in terms of throughput, as initial shown for high-throughput
transactions by He. et al. in [HY11], summarized in Section 2.4 and further
investigated in Chapter 6 by us in context of low-latency transactions.

2.3.1 Graphic Cards as a Computation Power House

The architecture of a graphic card, especially the architecture and program-
ming model of a Graphic Processing Unit (GPU) can be considered as a game

22 2. Fundamentals and Needs for Heterogeneous Computing

10,0002,000+ +

multiple brushes
(CPU cores)

multiple painters
(threads)

Figure 2.10: Analogy of graphic cards in terms of number of cores and number of
threads as number of brushes and number of painters in the example.

changer for data parallelism [BBR+13]. In terms of the running example, a
graphic card is a power house that offers 10,000+ of painters and 2,000+ of
brushes to do the job (Figure 2.10). The direct comparison between an Intel
Core i7 (Sandy Bridge) CPU with 4 cores and a Tesla K40 (Kepler) GPU with
2880 cores illustrates the relationship between CPUs and GPUs in number of
cores.

Clearly, there are (technical) constraints to cores and threads resp. brushes and
painters, such as that each brush favours the same color and painters want to
work in groups on the same object rather than completely independent of each
other, but the promised throughput make graphic cards an inevitable hardware
to research on for data-intensive analytics in specific and data-intensive systems
in general.

2.3.2 General Purpose Computation on GPUs

Graphic cards are traditionally one of the major building blocks in todays
high-quality (realtime) rendering that enables photorealistic computer graph-
ics across several domains, such as data exploration [PPA+09, SLW+14] or
entertainment [MMNL16, GDG11], to name a few.

Since the mid 2000, graphic card vendors opened their programming interface
to support application areas beyond graphic rendering, such as data mining
for healthcare [RT19], traffic simulation [SN09], or image classification by
neural networks [GB19]. The concept of General Purpose Computation on
Graphic Processing Units (GPGPU) generalizes the GPU to a general pur-
pose massively parallel co-processor [BFT16], that enables compute-intensive
graphic-unrelated, data parallel tasks, such as query optimization [BHS+14a],
or join order determination [Mei15], SQL database operator [BS10b], to be
carried out by the graphic card. Namely, the traditional compute pipeline,
which consists of fragment and vertex shader programming, in graphic cards
was abstracted into a dedicated programming model that stems (but abstracts)
from the architecture of a graphic card [CMG14].

Typically, high-end powerful GPUs are located at the graphic card (called the
device) which is connected via the PCIe bus to the CPU (called the host and
is following a shared-nothing approach with the host - although GPUs might
alternatively be co-located to the CPU effectively sharing the same working

2.3. Fundamentals of GPGPU Programming 23

CPU
(host)

GPU
(dedicated device)

DRAM DRAM

Bottleneck!

copy input from host to device

copy output from host to device

1

2

3

4

11

11

5

6

8

9
10

7
device memory
allocation call
copy data
to device call
invoke kernel
on device
continue host
program flow
synchronize
with device
copy result
back to host call

cleanup

computation

memory allocation

memory deallocation
and cleanup

typically required optional PCIe bus

Figure 2.11: CUDA GPGPU program and data flow between host and device.

memory (called integrated graphic card), such as the Apple M1 from end of
20219. The main players for GPGPU are Nvidia with their CUDA framework
and OpenCL as framework open for a variety of vendors, such as AMD.

2.3.3 Program and Data Flow Overview

Integrating the GPU as a co-processor requires to understand the typical
program and data flow between the host and the device. In Figure 2.11, we
depict this by example of CUDA. In this figure, we show hosts to the left and
devices to the right, both interconnected via the PCIe bus10 and with their
own, dedicated working memory (dynamic RAM). To involve a device within
a computation at the host, a typical ritual is performed that we are exploring
next.

When using the GPU as co-processor, the typical ritual to get a computation
result consists of the following steps11:

1. Device memory allocation call. A call at host side is made to reserve a
particular amount of device memory for both the input data and the output
data. Depending on the dataset, the memory capacities and operations,
this call might not necessarily be done in each program.

2. Device memory allocation execution. Once the call from host side
has been made, the device is performing memory allocation in order to
reserve a piece of working memory for data being transferred from host
to device, and for reserving a location in which the device function(s) can
write to.

3. Call to copy data from host to device memory. In order to invoke a
device function on input data, this data must be explicitly copied from the

9Apple M1 press release: https://www.apple.com/newsroom/2020/11/apple-unleashes-m1
10Other architectures might directly connect devices and host by a shared working memory

such that the PCIe bus might not be part of those architectures.
11Some of these steps might not be mandatory if non-straightforward solutions are imple-

mented. For instance, static input data must not be moved over and over again to the device
and might be transferred once in advance.

https://www.apple.com/newsroom/2020/11/apple-unleashes-m1

24 2. Fundamentals and Needs for Heterogeneous Computing

dedicated working memory of the host to the dedicated working memory
of the device. For this, the host typically calls a hard copy function at
least once to ship data from the host to the device.

4. Copying data from host to device memory. This action performs a
hard copy of data located in the host memory to the destination location
in the device memory. Note that this action must not be performed on
all architectures, i.e., copying is not needed if device and host share
memory. Likewise, if a read-only dataset is in place and fits completely
into the device working memory, then neither copying nor the call to
copy is needed in each program multiple times. However, if a mutable
dataset is in place, then data copying quickly becomes the bottleneck
when working with devices.

5. Function invocation on the device. A user-defined function (called
kernel) located at the device is invoked at and parameterized by the host.
Host-callable kernels might call further device-only-callable kernels in the
device as some kind of sub routine. However, once the host-called kernel
returns, the device has completed computation.

6. Program flow continuation at host. As the device operates indepen-
dently from the host, especially as GPUs are not instrumented by the
CPU, running a kernel is a non-blocking asynchronous task. Hence, as
soon as the kernel is called from host side, the program flow at host side
continues without any knowledge on the state of the called kernel.

7. Computation at device side. Once a callable kernel from the host was
called by the host, the device starts executing this kernel at the device.
We show internals and details later in Section 2.3.6 when we talk about
CUDA thread management.

8. Synchronisation between device and host. At some point in time,
the output data computed by the kernel is expected to be transferred
from the device to the host. As kernel computation runs asynchronously,
a barrier at host side is needed to wait for the device to finish. In case
that the device has finished its computation before the barrier is entered,
no blocking at host side is required. Otherwise, the host is blocked by the
device and must actively wait.

9. Call to ship output data from device to host memory. Once the
barrier has passed, device and host are synchronized and the output data
(if any) is available at the device. The host calls a function to ship the
output data to a location (e.g., the host working memory) at which the
host can read it from.

10. Actual data copying from device to host memory. As for shipping
input data from the host to the device, the computation outcome must
be shipped back as output data from the device to the host. Similar to
shipping the input data, shipping of this output data might involve data
copying from the device working memory into the host working memory
if both, the device and the host, do not share working memory. Typically,
if host and device do not share working memory, then this data copying is

2.3. Fundamentals of GPGPU Programming 25

the second bottleneck when involving devices into computations. However,
in contrast to input data shipping, output data shipping is rarely optional
in the ritual.

11. Cleanup operations at device side. The last step is manual cleanup in
which reserved memory at the device side is freed to not unnecessarily
block memory or produce memory leaks. Depending on the solution
design, reserved output data or input data (or both) memory is freed

For dedicated GPUs connected via PCIe bus, some consequences of the ritual
mentioned above must be taken into account. Although the throughput of a GPU
is notably higher in order of several magnitudes compared to the thoughput of
CPUs [ZWY+15], data movement of the output (and potentially input) data can
be a typical bottleneck [ABP+17], such that porting an operation from host to
device is not always a reasonable solution [ABP+17, ADP+18].

Typically, new joiners to device programming are surprised that for trivial tasks,
a dedicated GPU actually performs worse than the CPU counterpart [CMG14] -
which might result from the data movement bottleneck, too much control flow
inside kernel functions, or just too simple computation tasks for the CPU, to
name a few.

2.3.4 Performance Boundaries

Given a computational problem, the time required to compute the solution is
limited by the available hardware. Typically, this limit is determined either
by data transfer costs, or by the number of computational steps required to
deliver the computation. These performance bounds are called memory-bound
and compute-bound, respectively.

According to Ofenbeck etl al, [OSC+14] an indicator to determine whether a
computational problem is memory-bound or compute-bound is the operational
intensity I that is defined as the ratio

I =
W

Q

where W is called work and models the number of computational steps, and
where Q is called traffic and models the number of bytes required to be moved
around for the computation.

The operational intensity I determines the number of computational steps per
byte of memory transfer. Along with the ratio γ = π

β
of a given architecture

peak compute performance π and the peak memory bandwidth β, an operation
is memory-bound if I < γ, and compute-bound if I > γ holds. Otherwise, the
computation is called balanced and computational performance and memory
bandwidth are optimally used.

Thus, a high operational intensity renders a computational problem compute-
bound while a low operational intensity indicates that the computation is
memory-bound.

26 2. Fundamentals and Needs for Heterogeneous Computing

An operations performance bound depends on the architecture, i.e., on π and β,
such that it is hard to say in general whether an operation is compute-bound,
memory-bound, or balanced across several architectures.

Consider for example, the matrix multiplication AB = C where A, B, and C
are square matrices of size n with entries ai,j, bi,j and ci,j for the entry i, j,
respectively:

cik =
m∑
j=1

aij · bjk

For the operation AB = C, it holds12 that W = Θ(2n
√
m) but Q = Θ(n

√
m)

when sub matrices of A and sub matrices of B are multiplied in blocks of size
2
√
m once A and B are split into blocks of the cache size m.

To understand how an operations property of being memory-bound, compute-
bound or balanced is architecture-dependent, consider the following real-word
setting with peak performance values for π and β. Assume a device with NVIDIA
GPU Tesla V100 with 15700 GFLOPS for single precision operations13, a PICe
bus in version 3.0 with the use of 16 lanes peaking a bandwidth of 15.754 · 109

bytes/second14, and a host with Intel CPU Xeon Skylake SP 614815 with 1536
GFLOPS with a L1 cache bandwidth 5 · 109 bytes/second. For both, the host and
the device, AB = C is clearly memory-bound as I � γ holds. However, on a
theoretical machine with a host having a L1 cache bandwidth of factor 153.6 ×
higher than in the real-word setting, or with a device having a factor 46.85 ×
higher PICe bus bandwidth, AB = C can be balanced or even compute-bound.
Though, it is hard to tell whether these theoretical assumptions will hold in
practice as memory bandwidth might hit some practical limits and other factors
come into play, such as the cache size m. We agree with the statement of Dwork
et al., that constructing a machine particular for that purpose is feasible but
out of scope of the subject of this work [DGN03].

Additionally, the theoretical peak performances are typically not reached in
practical applications, and the performance bound might additionally change
depending on the size of A, B, and m. Chen et. al stated from practical
experience that AB = C can become compute-bound for large matrices when
the input matrix is loaded into GPU for computation, and that AB = C can
become memory-bound once A and B are not square matrices and parts can
be re-used [CXL+19].

Finally, as performance bounds are architecture-dependent, it is hard to state
with confidence whether a compute-bound or memory-bound operation is better
to be executed on the host or device in general. As a computational solution is
best optimized to be balanced [OSC+14] and as the property of being balanced

12Performance Modeling: https://spcl.inf.ethz.ch/Teaching/2013-dphpc/balance_principles_
solution.pdf

13NVIDIA Tesla V100 GPU architecture: https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf

14Wikipedia article on PCIe: https://de.wikipedia.org/wiki/PCI_Express
15Intel CPU Xeon Skylake SP 6148 spec at Inspect: https://rrze-hpc.github.io/INSPECT/

machines/SkylakeSP_Gold-6148

https://spcl.inf.ethz.ch/Teaching/2013-dphpc/balance_principles_solution.pdf
https://spcl.inf.ethz.ch/Teaching/2013-dphpc/balance_principles_solution.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://de.wikipedia.org/wiki/PCI_Express
https://rrze-hpc.github.io/INSPECT/machines/SkylakeSP_Gold-6148
https://rrze-hpc.github.io/INSPECT/machines/SkylakeSP_Gold-6148

2.3. Fundamentals of GPGPU Programming 27

CPU GPU

Host DRAM Device DRAM

vs

Control Unit Cache Arithmetic Logic Unit

Figure 2.12: Overview of a CPU (left) and a GPU architecture (right) involving control
unit(s), arithmetic logic unit(s), cache(s) and working memory.

is architecture-dependent, experimental evaluation has to show which compute
platform is the better choice for a particular computational problem - especially
since other factors must be considered, such as transfer costs or the overall
system architecture.

2.3.5 CPU and GPU Design in Comparison

So far, we have stated that GPUs support massive parallelism, achieve high
throughput, and promise to outperform its CPU counterpart for data parallel
compute-bound tasks. In the following, we want to briefly introduce and com-
pare the general architecture of both, CPU and GPU, for a better understand of
this statement and promise.

Building Blocks

We depict a simplified architecture overview of both processor types in Fig-
ure 2.12. Both processor share common components, which are:

• Control Unit (CU). The responsibility of the control unit is to step through
program instructions by loading the current instruction and its operands
(if any), interpret and execute that instruction, and step the program
counter to the next program instruction until the program end is reached.
In order to do so, the control unit sends and retrieves signals to resp.
from other components, such that operand values are set correctly to
ALU registers for instance. A control unit has some spatially close and
fast memory slots, called registers. These registers are on the top of
the memory hierarchy since they are the fastest available memory slots
to read and write for a processor. Examples are the program counter
register, or the instruction register.

• Arithmetic Logic Unit (ALU). This unit computes the outcome of apply-
ing one particular logical or arithmetic function on two given input values.

28 2. Fundamentals and Needs for Heterogeneous Computing

As such, this unit is responsible to compute boolean operations (such as
and and not, or composites such as or, exclusive or, or bit manipulations),
and arithmetic operations (such as addition, or composites such as multi-
plication, inverse operations of the former two, or comparisons). As the
control unit, the arithmetic logic unit has own registers to read operands
and write results fast, such as the accumulator register.

• Cache. The cache is the second fastest memory after registers, and is a
fast buffer memory used to speed up read and write operations to and
from the primary working memory. Typically, there are several levels
of caches within a cache, with a smaller capacity but more read/write
performance the closer the cache level is to the control and arithmetic
logic unit. The memory bandwidth of a cache is an important factor, as
the processor must not be slowed-down for accessing data stored in the
cache.

• Dynamic Random Access Memory (DRAM). The DRAM is a component
that implements the working memory of the machine as the third fastest
memory after the cache memory. As for the other components from
above, data stored in this working memory is volatile is lost under certain
conditions, such as power-loss of the machine. However, data is not
directly transferred between processor and working memory but buffered
by the cache. However, especially for in-memory database technologies,
the working memory has become the primary storage medium to hold
(active parts of) the database.

As illustrated in the simplified architecture overview, CPUs and GPUs generally
differ in the number (and complexity) of involved control units, caches and
arithmetic logic units. In the consequence, particular workloads are principally
favoured by one of those two processor types. We are going to explain this in
the following in more detail.

Architectural Differences Explained

The architectural differences in the number and usage of building blocks
explained in Section 2.3.5 for both processor types stem from different design
goals based on different purposes [CMG14].

CPU The CPU is a general-purpose processor built for control-intensive tasks
favouring task parallelism. As such, the design of a CPU follows the expectation
that a typical program has a significant number of potentially unpredictable
conditional and unconditional jumps executed by the control unit. Further,
the primary focus is on manipulation of single data items of varying type or
smaller vectors of that data rather than on large vectors of simple-structured
data. In consequence, CPUs are optimized by out-of-order execution, pipelining,
branch-predictions and others. Further, the design expects multiple, explicitly
managed threads, following a task-parallel approach. Although vendor-specific

2.3. Fundamentals of GPGPU Programming 29

Grid Block (0, m, 0)
Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)

Block
(0, 0, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)

Block
(1, 0, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)

Block
(n, 0, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)

Block
(0, 1, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)

Block
(1, 1, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)

Block
(n, 1, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)

Block
(0, m, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)

Block
(1, m, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)

Block
(n, m, 0)

...

...

...

...

z-index

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)
Thread
(0, 0, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)
Thread
(1, 0, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)
Thread
(p, 0, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)
Thread
(0, 1, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)
Thread
(1, 1, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)
Thread
(p, 1, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)
Thread
(0, q, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)
Thread
(1, q, 0)

Block
(0, 0, 0)
Block
(0, 0, 0)

Block
(0, 0, 0)
Thread
(p, q, 0)

...

...

...

...

z-index

Figure 2.13: Relationship between the CUDA concepts grid, block and threads.

hardware optimizations are in place to support efficient concurrent execution
of threads, such as Intels Hyper-Threading Technology, the typical number of
parallel running threads is expected to be low per CPU core. Hence, more
context switches are expected which make thread management more heavy-
weight compared to its GPU counterpart.

GPU The GPU is a specialized processor built for data-intensive tasks favour-
ing data parallelism. Hence, the design of a GPU assumes that a typical kernel
has no or only a tiny amount of conditional jumps in the program flow. Ker-
nels are expected to be non-complex in the sense that branch-free, loop-free
programming is favoured and the typical case to implement manipulations of
data items in parallel. As such, the primary focus is on manipulation of large
vectors of simple-structured data on which branch-less/branch-free functions
are applied in parallel. In consequence, GPUs are optimized to apply kernels on
partitions of the input data vector where each partition is operated by multiple
threads that are grouped together. Following this design, context switches are
rare and thread management is lightweight compared to its CPU counterpart
as GPU threads are not explicitly managed. Typically, GPUs consists of 100+
cores managing a total of 10,000+ threads.

Graphic card programming for general purpose use-cases cannot be carried
out by explicit management of GPU threads. However, the benefit of involving
a GPU in a computation stems from utilization of thousand of threads. In
consequence, thread management is typically abstracted and an integral part
of the programming interface for GPGPU programming. In the following section,
we briefly introduce the fundamentals needed in the domain of database system
engineering and research by example of CUDA.

2.3.6 CUDA Thread Management in a Nutshell

Nvidia CUDA abstracts from thread management as part of its programming
model [CMG14]. Since a single kernel function is run by at least one thread,
any kernel is able to determine its current data item to work on based on

30 2. Fundamentals and Needs for Heterogeneous Computing

information about the current thread that runs the kernel. For this, CUDA
provides the following thread hierarchy abstraction [CMG14] illustrated in
Figure 2.13.

• Grid. All threads being spawned for a single kernel execution are orga-
nized as a grid. Threads within a grid share the same global memory,
and are grouped within one to three dimensional thread blocks. Note
that two and three dimensions are traditionally used for rendering 2D
surfaces resp. 3D models, and one dimension can be used whenever
one dimensional sequences of data is being used, such as single columns
within a column-oriented database system.

• Block. A single group within a grid that consists of a fixed number of
threads being available to run kernels on the data partition. The block
is assigned to by CUDA. Threads within a thread block are synchro-
nized and share memory such that communication within a block is a
cheap operation. However, across block boundaries, global memory for
communication must be used instead, which slows down the execution
performance. In addition, threads across blocks are not automatically
synchronized by CUDA. Therefore, thread communication (if any) should
ideally be limit to threads within the same block.

• Thread. A single thread within a block is identified by three triple-values
computed, managed and assigned by CUDA, the thread index, the block
index, and the block dimension. The thread index contains the three
dimensional position of the current thread within the current block. The
block index is the tree dimensional position of the current block within
the grid, and the block dimension stores information about a blocks width,
height and depth.

Whenever writing a kernel function, the required code is expressed in a spe-
cialized programming language, called CUDA C/C++ [Har17], that has a close
relationship to (basic) concepts and the memory model of the C/C++ program-
ming language [CMG14]. Worth to note is that kernel function code is compiled
by a dedicated CUDA C/C++ compiler into machine code of the device and
called from the host by a language extension to C/C++. This language exten-
sions allows to specify the grid and block configuration for the host-callable
("global") kernel to be invoked.

In context of column stores, both the grid and block configuration is often
enough to be one dimensional as the grid configuration correspond to the
number of partitions of a single column, and the block configuration specifies
the number of threads being invoked for one such partition [Bre14].

2.4 High-Throughput GPU Transactions

With the fundamentals of GPGPU programming explained (cf. Section 2.3,
and with the understanding that there is a high need for parallel computation

2.4. High-Throughput GPU Transactions 31

to keep up with growing workloads (cf. Section 2.2), graphic cards are an
attractive subject for database research and engineering [HM12, TDB10, ZH13,
ZP13, YBF+20, TCH16, PBS15, BBHS14, MBS15]. However, due to the nature
and characteristics of the specialized graphic card architecture, integration of
GPUs as co-processor into database systems is far from trivial [KHL17].

Especially, as the GPGPU favours data parallelism, initially there was no concept
at hand on how to utilize graphic cards for typical task parallel jobs as seen in
transactional database systems. Also, there were no insights available what
can be expected when graphic cards are used in this context.

In 2011, a paper called High-throughput transaction execution on graphic pro-
cessors was published by He et al. [HY11] that explores this novel application
area of graphic cards in context of database systems. As this paper is one
fundamental background work of the dissertation, we present the major ideas
in the following.

2.4.1 Major Challenge in a Nutshell

Let us phrase an understanding of the major challenge for transactional pro-
cessing in terms of the running example. As we stated so far, to keep up with a
growing workload, more and more parallel working painters must be hired to
do the job as brushes can only scale up to a particular point. With the promise
of ten thousand and more painters and two thousand and more brushes, we
seem future-ready for the next decades of growing workloads.

Task Parallel Jobs on a Data Parallel Architecture As thousands of painters
equipped with enough brushes may help whenever giant rooms have to be
painted in the same color (i.e., whenever data parallel jobs are to be done), it
remains initially unclear whether this holds whenever huge amounts of tiny
portions of the walls, some chairs, and some tables all have to be painted
in different colors (i.e., whenever task parallel jobs are to be done), like in
transaction processing.

In Figure 2.14, we illustrate the major challenge, namely: how to solve the issue
of underutilization of the GPU while satisfying requirements to a transactional
system. In more technical terms, how to achieve hight-throughput on the GPU
compute platform while at the same time allow low-latency execution of a single
transaction.

Relationship to this Dissertation The former, hight-throughput execution
on GPUs, was investigated by He et al. [HY11] and will be explained in this
section. The latter, low-latency execution on GPUs, is part of this dissertation,
explored, analysed and evaluated in Chapter 6.

32 2. Fundamentals and Needs for Heterogeneous Computing

10,000+ +2,000

make this blue

Figure 2.14: One major challenge in task parallel jobs for the GPU: how to avoid
underutilization.

2.4.2 The Bulk Execution Model

To avoid underutilization while allowing high-throughput execution, He et al.
proposed a strategy for executing transactions on graphic processors evaluated
by a prototypic implementation, GPUTx using CUDA C, at the International
Conference on Very Large Data Bases (VLDB) in early 2011 [HY11]. The core
concepts of their proposal are explained next.

The idea behind their proposal, the Bulk Execution Model, is to analyse and
bundle a subset of pending transactions into a so-called bulk that can be safely
executed at once with a graphic card.

Assumptions For this the following assumption must hold:

• Pre-defined Transactions. Transaction types that should be executed
on the database are known in advance, pre-compiled as parameterizable
CUDA kernels which are wrapped by a global parameterizable kernel,
and called from the host on demand.

• Transaction Ordering. Transactions submitted to the system are totally
ordered by their time of arrival at the system boundaries. Therefore,
(exclusive) timestamps are assigned to a transaction request once, and
no two transactions share one timestamp.

One might think of different transaction types as stored procedures registered
at the system whenever a new application deployment is made16.

16Although not explained in detail by He et al., we want to express here that the first
assumption requires a proper kind of dynamic code-generation, compilation and loading into
the system during runtime, unless re-compilation of the entire database system for a single
deployment is acceptable. Clearly, the finit set of (parameterized) transactions registered at the
database is potentially fixed for operational applications for a single deployment (in contrast
to dynamic and explorative queries in analytical systems), but also here further research in
proper description languages, which are then compiled into fitting CUDA C, is needed to
avoid requiring application developers to write highly-specialized kernel code for the database
system graphic card sub system.

2.4. High-Throughput GPU Transactions 33

User

Transaction Pool Bulk Generator

(T-Dependency Graph) issue kernel

Bulk Executor

Graphic Card

execution strategy

Figure 2.15: Overview of transaction execution in GPUTx proposed by He et
al. [HY11] (own interpretation)

Ingredients The core components and their responsibilities in the bulk exe-
cution model are the following:

• Transaction Pool. Once transactions satisfying the assumptions men-
tioned above are submitted to the system, a component called the Trans-
action Pool collects these incoming transactions, and flags them into a
pending state.

• Profiler and Generator. A component called the Bulk Profiler continu-
ously scans the Transaction Pool in order to group pending transactions
into bulks with the Bulk Generator.

Whether a transaction is part of a particular bulk or not, depends on a data
dependency analysis that guarantees not to execute conflicting transaction
as part of a particular transaction group. This analysis is based on the T-
Dependency Graph Model, which we explain in Section 2.4.4.

2.4.3 Transaction Execution

In the previous section, we introduced the major components of the proposal
to execute transactions on graphic cards with the goal to achieve a high
throughput. In this section, we are going to show their relationship to explain
the transaction execution in GPUTx, see Figure 2.15:

1. An arriving transaction is added by its signature to the transaction pool.
This signature consists of the timestamp of its arrival along with the
transaction type name of the built-in parameterizable transaction as well
as a binding of the transaction type parameters to user-defined values.

2. The database prototype GPUTx periodically generates bulks from the
Transaction Pool by picking up pending transactions according to the
result of the T-Dependency Graph analysis.

34 2. Fundamentals and Needs for Heterogeneous Computing

3. Once a bulk is formed, the bulk is being executed by a Bulk Executor
that issues the global kernel invocation on the graphic card. With this,
required data is moved to the working memory of the graphic card, if
needed.

4. Once synchronization between host and device is done, the result data
is copied back from the device to the working memory of the host, the
pending transaction in the Transaction Pool is marked as done, and the
response to the client is made.

The bulk execution model guarantees that executing a bulk is correct. A bulk
execution is said to be correct if (and only if) the resulting database after
executing a transaction within the bulk in a parallel fashion is the same as if
transactions inside the bulk were executed sequentially in increasing order of
their timestamps. Otherwise, a bulk execution is said to be not correct.

Bulk Execution Correctness That a bulk is executed correctly is the result
of an analysis of transaction dependencies, which is part of the bulk generation
process. For a better understanding, we summarize the core definitions and
rules as provided by He et al. [HY11]:

• A transaction t consists of basic operations opp(X) on a data item X in the
database, which are read and write operations.

– A read to X is symbolized by read(X), and a write as write(X). The
timestamp time(t) of t determines the timestamp time(opp(X)) of any
basic operation within t, such that time(opp(X)) = time(t).

• Two basic operations opp1(X1) and opp2(X1) are conflicting if both operate
on the same data item, i.e., X1 = X2, and one or both are write operations,
i.e., (opp1 = write or opp2 = write).

• A transaction t1 is in conflict with another transaction t2 if t1 contains one
operation that conflicts with one operation in t2, denoted as conflict(t1, t2)

With the more formal definitions from above at hand, the correctness of a
bulk execution can now be understood more precisely in terms of conflicting
transactions.

Non-conflicting transactions can be executed without any concurrency control
within a bulk and do not harm correctness of a bulk. However, conflicting
transaction t1, t2, ..., tn risks bulk correctness, and therefore, a valid execution
order for t1, t2, ..., tn within the bulk must be determined by T-Dependency Graph
analysis.

2.4. High-Throughput GPU Transactions 35

t1

t : read(A) read(B) write(A) write(B)1

t : read(A)2

t : read(A) read(B)3

t : read(C) write(C) read(A) write(A)4

t2

t3

t4tim
e

Figure 2.16: Visualization of the analysis of a given set of transactions (left) that
result in a T-Dependency Graph (right); adapted from [HY11]

2.4.4 T-Dependency Graph Analysis

The T-Dependency Graph captures data dependencies between transactions
and is needed to determine the correctness of a bulk. He et al. proposed
the following definition [HY11]: A T-Dependency Graph is a directed acyclic
graph G, such that no deadlocks can occur in this graph, and T is the set of
transactions that should be analysed. The i-th node in G represents the i-th
transaction ti in T , and edges (tx → ty) in G represents a data dependency
between two transaction tx and ty in T .

Graph Construction

A T-Dependency Graph G with n nodes for n transactions in T is constructed by
adding edges to G according to the following rules. An edge (tx → ty) in G for
two tx, ty ∈ T is added, if

1. tx and ty are in conflict, i.e., conflict(tx, ty) holds

2. tx was submitted before ty, i.e., time(tx) < time(ty) holds

3. the captured dependency is minimal in the sense that 6 ∃t ∈ T \ {tx, ty} :
time(tx) ≤ time(t) ≤ time(ty) ∧ conflict(t, tx) ∧ conflict(ty, t)

In Figure 2.16, we show an adapted visualization of the original example
presented in the paper by He et al. [HY11]:

Example Given four transactions t1 that firsts reads two data items A and B
and writes afterwards to them, t2 that just reads A, t3 that reads first A and
then B, and finally t4 that performs a read followed by a write to a data item C
followed by the same for A.

The T-Dependency Graph G consists therefore of four nodes associated to t1−t4:

• (t1 → t2) because t1 writes to A which is read by t2

• (t1 → t3) because t1 writes to A and B which are read by t3

• (t2 → t4) because t4 writes to A which is read by t2

36 2. Fundamentals and Needs for Heterogeneous Computing

t1

source

T-Dependency Graph

3

t

t

5t2

t4

t8

t7

t6

0-set

1-set
t1

k-Sets

3

t

t

5t2

t4

t8

t7

t6

2-set

Figure 2.17: A T-Dependency Graph and resulting k-sets (own example)

• (t3 → t4) because t4 writes to A which is read by t3

Note for the construction of the T-Dependency Graph that transaction conflicts
are captured in order of the timestamps of the conflicting transactions, and that
no cycles are allowed. Therefore, if one conflict was found for two transactions,
only the first conflict is added as edge to the graph.

Graph Analysis

The actual graph analysis aims to determine partitions of the graph that are
safe to be executed in parallel. In simpler worlds, the result from this analysis
are bundles of transaction where bundles are executed one after the other,
such that the bulk correctness will hold.

For the analysis, He et al. proposed the following notion and terms for a
T-Dependency Graph G [HY11]:

• Graph nodes with no incoming edges are considered as source nodes, and
represent transactions without preceding conflicting transactions

• The node depth d(u, s) of a node u is the length of the longest path from a
source node s to u

• The graph depth d(G) is the maximum of all nodes depths in G

With source nodes, and depths of nodes and graphs defined, a k-set can be
defined as a set of nodes in G with a maximum depth of k.

For understandability, it is worth to note, that for any node depth d(·, s), the
node s must be a node with no incoming edges. Consequently, there is no node
depth d(·, x) in any k-set present for which x is an inner node. Especially, d(s, s)
is only present in some k-set, if s is a source node.

2.4. High-Throughput GPU Transactions 37

Example Assume a T-Dependency Graph G of nodes t1, t2, . . . , t8 with edges
(t1 → t3), (t1 → t4), (t1 → t5), (t3 → t5), (t2 → t5), and (t7 → t8). We illustrate
this example in Figure 2.17. Then with d(G) = 2, the following k-sets exist:

• 0-set = {t1, t2, t6, t7} because d(t1, t1) = d(t2, t2) = d(t6, t6) = d(t7, t7) = 0

• 1-set = {t3, t4, t8} because d(t3, t1) = d(t4, t1) = d(t5, t2) = d(t8, t7) = 1

• 2-set = {t5} because d(t5, t1) = 2

According to He et al., the following properties hold for k-sets [HY11]: first,
transaction from the same k-set are conflict free, and second, k-sets must be
executed sequentially by their natural order of k, i.e., the first executed set is
the 0-set, then the 1-set until the last k-set.

Restating the investigation executed by He et al. [HY11], the bulk generation is
a bottleneck in the process and consumes between 66% to 70% of the execution
time in their experiments. However, since 0-sets can be continuously extracted
from the transaction pool, the k-set algorithm achieves a stable throughput.
With this, the prototype GPUTx achieves 4 to 10 times higher throughput
compared to a CPU-based alternative that mimics H-Store [KKN+08].

38 2. Fundamentals and Needs for Heterogeneous Computing

2.5 Summary

This chapter was an introduction to the background and motivation of this
dissertation. We explore reasons for parallel computing, multi-threading and
integration of co-processors in data-intensive systems, and showed attempts to
exploit these for high-throughput transaction processing.

We started in Section 2.2 with the insight that around two decades ago, the free
performance lunch has ended, which means that nowadays high-performance
is only reached by explicitly (rather than automatically) exploiting particular
hardware capabilities and programming models.

We continued in Section 2.3 with a dedicated computing platform with an
architecture built especially for the parallel application of a fairly-simple, single
functions on a huge set of data points at once, data-parallelism in graphic
cards.

Afterwards, we explained the motivation and direct background work on high-
throughput transactions on graphic cards in Section 2.4; a work carefully done
by He et al. and published in 2011. We finished this chapter with an outlook
of the direct effects to the work carried out by us through this dissertation in
particular and the effect to the research community in general.

Chapter 3

A Storage Engines Perspective on
Hybrid Workloads

The following chapter is an extended version of

Marcus Pinnecke, David Broneske, Gabriel Campero Durand, and Gunter
Saake. Are Databases Fit for Hybrid Workloads on GPUs? A Storage
Engine’s Perspective. In IEEE 33rd International Conference on Data
Engineering (ICDE) (pp. 1599-1606), 2017

40 3. A Storage Engines Perspective on Hybrid Workloads

Introduction

Since H2TAP by its nature contains access patterns for both analytical and
operational workloads across different compute platforms, any storage en-
gine for H2TAP is challenged by its physical optimization given this workload
mix [KN11, APM16, GKP+10, RDHF12]. Since neither a purely analytically
optimized storage layout nor a purely operationally optimized storage layout
can be optimal for a mixed workload for one particular device, more advanced
techniques are needed [PFRE14].

Are Databases Fit for Hybrid Workloads on GPUs?
A Storage Engine’s Perspective

Marcus Pinnecke, David Broneske, Gabriel Campero Durand1 and Gunter Saake
University of Magdeburg

Email: {firstname.lastname}@ovgu.de & 1campero@ovgu.de

Abstract—Employing special-purpose processors (e.g., GPUs)
in database systems has been studied throughout the last decade.
Research on heterogeneous database systems that use both
general- and special-purpose processors has addressed either
transaction- or analytic processing, but not the combination of
them. Support for hybrid transaction- and analytic processing
(HTAP) has been studied exclusively for CPU-only systems. In
this paper we ask the question whether current systems are
ready for HTAP workload management with cooperating general-
and special-purpose processors. For this, we take the perspective
of the backbone of database systems: the storage engine. We
propose a unified terminology and a comprehensive taxonomy to
compare state-of-the-art engines from both domains. We show
similarities and differences, and determine a necessary set of
features for engines supporting HTAP workload on CPUs and
GPUs. Answering our research question, our findings yield a
resolute: not yet.

I. INTRODUCTION

Two challenges are being set today for database systems:
continuous physical record layout organization and continuous
compute device assignment in the face of mixed workload
types (cf. Figure 1). On the one hand, database systems need to
combine simultaneous support for analytical and transactional
processing [1], [2], [3], [4]. Merging both processing types into
one single system promises a larger business value by mini-
mizing analytic latency and data synchronization effort [5]. On
the other hand, database systems must make an optimal use
of a wide range of heterogeneous processors types, such as
Graphics Processing Units (GPUs), Multiple Integrated Cores
(MICs), or Field Programmable Gate Arrays (FPGAs). Build-
ing on these heterogeneous compute platforms is necessary to
overcome limitations such as the power wall [6]. The research
on heterogeneous systems introduces design considerations
into single-machine system architectures [7], [8], [9], [10], [11]
that has similarities to distributed computing [12] and federated
systems [13], [14]. These design considerations are driven by
the following challenges: (a.i) expensive data transfer to and
from the device memory, (a.ii) different memory types per
compute platform, and (a.iii) strict limitations regarding the
device memory capacity. Consequently, heterogeneous systems
demand special locality-aware approaches able to support
column-based placement of certain data stored in a relation [7],
[10], and tailored strategies for data placement to avoid degen-
eration of query performance by cache thrashing and other
side-effects during query processing [15], [16]. Database sys-
tems supporting Hybrid Transactional/Analytical Processing
workloads (HTAP) [5] also demand special design considera-
tions. HTAP database systems, such as HyPer [1], Peloton [2],

Relation R

a1
a2
a3

a4

b1
b2
b3

b4

c1
c2
c3

c4

d1
d2
d3

d4

e1
e2
e3

e4

Layout 1 for R
(weak flexible)

a1
a2
a3

a4

b1
b2
b3

b4

c1
c2
c3

c4

d1
d2
d3

d4

e1
e2
e3

e4

Layout 2 for R
(strong flexible)

a1
a2
a3

a4

b1
b2
b3

b4

c1
c2
c3

c4

d1
d2
d3

d4

e1
e2
e3

e4

Fragment (Thin)

Tuplet

Sub-Relation

Tuple

Schema

B CA B C D E A B C D ED EA

a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4NSM-Fixed

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4DSM-Fixed

Linearization

Fragment
(Fat)

d1 d2 d3 d4DSM-Emulated e1 e2 e3 e4

DirectLinearization

a1 b1 c1 a2 b2 c3 NSM-Emulated

Linearization

SubG. A B C D

Group

Special

OLAPOLTP

ANALYTICAL
WORKLOADS

OLTP
Optimized

OLAP
Optimized

TRANSACTIONAL
WORKLOADS

Main Processor
Only

Co-Processor
Only

Physical Record Layout
Re-Organization

Compute Device
Re-Assignment

HTAP
Optimized

Co-Processor
Accelerated

Fig. 1. Physical record layout re-organization and compute device re-
assignment in database systems that manage HTAP workloads efficiently.

and SAP HANA [17], address particular challenges implied by
the hybridization of both analytical and transactional workload
processing into one system. These challenges are: (b.i) different
data access patterns implied by different workload types,
(b.ii), continuous physical optimization in consideration of
contradicting optimization goals, and (b.iii) efficient processing
of both workload types without interferences between long-
running ad-hoc analytic queries and massive short-living write-
intensive transactional queries. Consequently, HTAP-workload
systems demand special concepts for physical storage layout
handling [18] including the capability to adapt to changes
in the workload during runtime [2], [3], [19] and advanced
techniques to detach analytic query execution from mission-
critical transactional data [1], [20].

A storage engine is highly tailored to challenges that
a database system faces and is fundamental for the entire
system. In this paper we argue that currently proposed design
decisions to face these challenges (a.i – iii & b.i – iii) might
be complementary to each other, especially when considered
from the perspective of a storage engine. We proceed with
our paper as follows: We first provide background to the field
of physical record organization including our experimental
findings (Section II). We then contribute the following to
bridge the gap between the design solutions from both fields:

• A novel storage engine design taxonomy (Section III).
• A survey and classification of state-of-the-art systems

from both fields (Sections IV-A and IV-B).
• An identification of characteristics for HTAP work-

loads on CPU / GPU systems (Section IV-C).

Figure 3.1: Physical record layout re-organization and compute device re-assignment
in database systems that manage HTAP workloads efficiently.

We illustrate this complexity in (cf. Figure 3.1); an optimal H2TAP storage
engine has to be adaptive towards transactional workloads and analytical
workloads such that, depending actual mix between both workload types, the
storage engine has to adapt towards OLTP or OLAP optimized storage by
physically reorganizing the records storage layout from row-wise storage to
columnar storage and vice versa. Likewise, the mix in the workload and actual
performed queries influence the decision where partitions of the dataset is
stored. Namely, parts of the dataset will be stored exclusively at the device
while others will be stored exclusively at the host and some will be stored at
both locations. As workloads are not static, each decision has to re-evaluated
and and corrected whenever needed.

Heterogeneous systems research introduces design considerations into single-
machine system architectures driven by data transfer costs, heterogeneous
memory types, and memory-specific capacity constraints. H2TAP database sys-
tems address particular challenges arising from the hybridization of analytical
and transactional workload processing in one system, such as different data

41

access patterns implied by different workload types, continuous physical opti-
mization under conflicting goals, and interactions between long-running ad hoc
analytical queries and short-lived write-intensive transactional queries. This
results in special requirements for handling the physical storage layout, which
include online adaptation to workload changes and advanced techniques for de-
coupling the execution of analytical queries from mission-critical transactional
data.

A storage engine is highly tailored to the challenges of a database system and
is fundamental to the overall system. Therefore, the first research challenge in
investigating an optimal H2TAP in a storage engine is to examine the extent to
which the currently proposed design meets the requirements. This chapter is
about this investigation by means of an survey.

On the one hand, database systems need to combine simultaneous support for
analytical and transactional processing [KN11, APM16, GKP+10, RDHF12].
Merging both processing types into one single system promises a larger
business value by minimizing analytic latency and data synchronization ef-
fort [PFRE14]. On the other hand, database systems must make an optimal use
of a wide range of heterogeneous processor types, such as Graphics Processing
Units (GPUs), Multiple Integrated Cores (MICs), or Field Programmable Gate
Arrays (FPGAs).

The research on heterogeneous systems introduces design considerations
into single-machine system architectures [Bre14, BS13, BHS+14b, HLY+09,
PBS15] that have similarities to distributed computing [BSB+01] and federated
systems [SL90, PH15]. These design considerations are driven by the following
challenges:

(a.i) expensive data transfer to and from the device memory

(a.ii) different memory types per compute platform, and

(a.iii) strict limitations regarding the device memory capacity

Consequently, heterogeneous systems demand special locality-aware approaches
able to support column-based placement of certain data stored in a rela-
tion [Bre14, HLY+09], and tailored strategies for data placement to avoid
degeneration of query performance by cache thrashing and other side-effects
during query processing [CSWL16, BFT16]. Database systems supporting
Hybrid Transactional/Analytical Processing workloads (HTAP) [PFRE14] also
demand special design considerations.

HTAP database systems, such as HyPer [KN11], Peloton [APM16], and SAP
HANA [FCP+12] address particular challenges implied by the hybridization of
both analytical and transactional workload processing into one system. These
challenges are:

(b.i) different data access patterns implied by different workload types

(b.ii) continuous physical optimization in consideration of contradicting opti-
mization goals, and

42 3. A Storage Engines Perspective on Hybrid Workloads

(b.iii) efficient processing of both workload types without interferences be-
tween long-running ad-hoc analytic queries and massive short-living write-
intensive transactional queries

Consequently, HTAP-workload systems demand special concepts for physical
storage layout handling [CK85] including the capability to adapt to changes
in the workload during runtime [APM16, GKP+10, AIA14] and advanced tech-
niques to detach analytic query execution from mission-critical transactional
data [KN11, NMK15].

A storage engine is highly tailored to challenges that a database system faces
and is fundamental for the entire system.

In this dissertation we argue that currently proposed design decisions to face
these challenges (a.i – iii & b.i – iii) might be complementary to each other,
especially when considered from the perspective of a storage engine.

We proceed as follows: we first provide background to the field of physical
record organization including experimental findings (Section 3.1). We then
contribute the following to bridge the gap between the design solutions from
both fields:

• A novel storage engine design taxonomy (Section 3.2).

• A survey and classification of state-of-the-art systems from both fields
(Section 3.3.1 and Section 3.3.2).

• An identification of characteristics for HTAP workloads on CPU / GPU
systems (Section 3.4).

While several approaches exist for supporting HTAP workloads in CPU DBMSs
and for using GPUs as database co-processors, we have found that they are
being treated as independent from each other. There are no uniform concepts
that allow to compare the advanced design choices tailoring storage engines
for both types of approaches. We end with the summary in Section 3.4.

3.1 Motivation

The efficient management of HTAP workloads in one single system is chal-
lenging from a technical perspective, since the contained processing types
favor different physical optimization. These physical optimizations (such as
the storage model to choose, or the threading policy to apply) often contradict
each other. As a consequence, determining the one distinct best solution can
sometimes be not expected. This multi-objective optimization problem becomes
even harder when multiple CPUs and multiple GPUs are employed; questions
regarding the best platform to execute a certain task, or on synergy effects
during processing arise naturally. Despite great challenges in this area, HTAP

3.1. Motivation 43

0M

2500M

5000M

7500M

10000M

5M 15M 25M 35M 45M 55M 65M
#records in item table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

]

sum all prices in items table
[transfer costs to device excluded]

500M

1000M

1500M

2000M

5M 15M 25M 35M 45M 55M 65M

#records in item table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

] sum all prices in items table

0M

50M

100M

150M

10M 20M 30M 40M 50M 60M
#records in item table

sum prices of 150 items

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

]

0M

0.03M

0.06M

0.09M

0.12M

5M 25M 45M 65M 85M
#records in customer table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

] materialize 150 customers

500M

1000M

1500M

2000M

5M 15M 25M 35M 45M 55M 65M
#records in item table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

] sum all prices in items table

500M

1000M

1500M

2000M

5M 15M 25M 35M 45M 55M 65M
#records in item table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

] sum all prices in items table

row-store / host & multi-threaded

column-store / host & multi-threaded column-store / host & single-threaded

row-store / host & single-threadedcolumn-store / device

Figure 3.2: Different attribute- and record-centric operations executed on the same
tables of the TCP-C bechmark dataset. None of the solutions is optimal for HTAP
workloads w.r.t. the storage layout, the threading policy or the data placement. The
consequence is a space of choices that must be considered by the storage- and execu-
tion engine.

44 3. A Storage Engines Perspective on Hybrid Workloads

database systems on heterogeneous compute platforms promise great business
value.

For a better understanding, we first introduce essential background on storage
models to cover challenges regarding physical record layouts. Afterwards, we
present a quantitative evaluation showing performance effects of contradicting
optimizations (storage model, threading policy, and compute platform) within
HTAP database systems on heterogeneous compute platforms.

3.1.1 Classic Physical Record Organization for OLTP&OLAP

Database systems that implement the relational model (e.g., Ingres [SHWK76]
or System R/DB2 [ABC+76, HJ84] to name the earliest) are based on a phys-
ical manifestation of the concept of relations as suggested by Codd [Cod70].
However, due to the 2-dimensional concept of a relation, the content has to
be serialized to a format that can be stored in a linear stream of memory.
The serialization of a relation encompasses the serialization of meta data and
records. In fact, the way in which a relation is serialized and accessed deter-
mines the CPU cache utilization; as a result, serialization and access patterns
are of special importance for optimizing query performance in hybrid-workload
systems [ADH02].

The data in a relation can be serialized following an N -ary storage model1

(NSM) [RG00] or a Decomposed storage model (DSM) [CK85]. In NSM, data
is formatted as a sequence of records, i.e., all fields of a record rx are stored
sequentially before the process is repeated with the successor rx+1. NSM is
the foundation of row-oriented storage engines. In contrast in DSM, data is
formatted as a sequence of columns, i.e., all fields of a certain column cx are
stored in a sequence, before this process is repeated with the next column
cx+1. DSM is the foundation of column-oriented storage engines. Data inside
a relation R can be formatted following a certain physical record layout, i.e.,
NSM or DSM. The physical record layout satisfies the question on how data is
stored. Another question is, where the data is stored, e.g., on main-memory or
on hard drive. Whether NSM or DSM is the more suitable format to store data
in R depends on how the data in R is accessed rather than where it is actually
stored [APM16].

Historically, NSM was the first format employed for (transactional) relational
databases, because the main application areas for database systems (e.g.,
communication, finance, travel, manufacturing, and process control [GR92])
had a record-centric data access pattern: each read / update operation in a
transaction accesses a small subset of the records of a relation, and it also
accesses a large subset of fields per record. For a better understanding,
consider the following query Q1:

Q1 : SELECT ∗ FROM R WHERE pk = c;

1The concept of NSM is also termed slotted pages in the literature.

3.1. Motivation 45

The query Q1 asks for all fields of all records in a relation R whose field
pk equals a certain constant value c. Assuming the attribute pk is a (non-
compound) primary key, the database system can efficiently identify exactly
one record without scanning the entire relation. Once the record is found,
all fields are materialized for the result. This extreme case is an example of
a record-centric data access pattern. NSM combined with the Volcano-style
processing model suits well for this access pattern in case the costs for function
calls can be hidden by data access costs. More specifically, NSM works well for
disk-based systems, but has limited CPU data cache efficiency for main-memory
systems [Gra94, PFG+13].

In contrast, DSM is utilized for database systems which are issued with an
attribute-centric data access pattern: operations access a large subset of
relation’s records, and a small to tiny subset of fields per record. For a better
understanding, consider the following query Q2:

Q2 : SELECT sum(a) FROM R;

The query Q2 asks for the sum of all record values regarding the attribute a of
a relation R. Typically, the database system runs an aggregation by accessing
all records in R considering exactly one attribute (i.e., all values for a). This
extreme case is an example of an attribute-centric data access pattern. DSM is
typically employed in analytic processing systems where mostly aggregations
and groupings are executed on read-only data, while benefiting from late
materialization and improved compression rates [AMH08]. DSM combined
with a Bulk -style processing model is a good match for analytic processing in
main-memory databases due to improved CPU data cache efficiency [PFG+13,
KPB92].

3.1.2 Contradicting Optimization Goals within HTAP Work-
loads

Despite some common beliefs, Plattner et al. showed in 2009 that update-
intensive tasks of transaction processing can be efficiently executed in DSM-
powered main-memory database systems [Pla09]. Today, it is known that
neither DSM nor NSM is always the best choice [APM16, GKP+10, AIA14,
PFG+13]. The reason for this is in the contradicting access pattern of HTAP
workloads. The chosen physical record layout has a direct impact on the query
execution performance, since the format affects which parts of the data are
co-located and loaded in advance by hardware data prefetchers. If data is
misplaced, the penalty is (i) a cache miss that requires to load the desired data
first from main memory to higher cache hierarchies, and (ii) an unnecessary
loading of additional data into the cache that might force an eviction of useful
data [ADHW99]. This does not only apply to CPU caches, but also to the
GPU’s counterparts. Since GPU cache sizes are far more limited and graphics
cards offer on-chip local caches in addition, data placement must be especially
considered for GPU-based systems [HLY+09].

46 3. A Storage Engines Perspective on Hybrid Workloads

To emphasize the impact of (a) different physical storage layouts, (b) different
compute platforms, and (c) different threading policies on the performance of
(1) attribute-centric- and (2) record-centric queries, we share some findings
resulting from the latest experiments2. We run both materialization and sum-
ming on records stored in the customer- resp. item table of the popular TCP-C
benchmark, and consider record-centric resp. attribute-centric data access
pattern. In the setting, a customer record has a size of 96 bytes for 21 fields,
and an item record has a size of 20 bytes for 4 fields + 8 bytes for the price
field. We assume that the entire database can be kept in main memory. We vary
the storage model, threading policy and compute platform. Operator execution
follows the bulk-style processing model with late materialization. For the host
platform, in case of multi-threaded execution, we fix to 8 threads with block-
wise partitioning of the input data (i.e., each thread operates on one exclusive
and subsequent list of input positions where each position refers to a certain
tuplet in the corresponding input table). In case of single-threaded execution,
there is no thread management involved at all. Thus, single-threaded execution
runs sequentially on the main thread. On the device platform, we executed
an optimized parallel reduction kernel3 to calculate the sum of price fields.
We configured the kernel to run with at least 1024 blocks (each having 512
threads). The final reduction was performed with 1 block and 1024 threads on
the device, too. Although required to compute the answers to the test queries,
we exclude the effort for join processing in the reports since these costs are
orthogonal to our purposes. More in detail, we consider costs starting right
after the output (i.e., sorted position lists) of the last directly preceding join
operator is available.

In Figure 3.2, we depict the results from executing the experiments on com-
modity hardware4. The physical storage layout, the threading policy and the
compute platform all affect the query performance; and there is no clear winner:
(i) on a tiny number of records (i.e., OLTP-style queries), sequential execution
outperforms multi-threaded execution since thread-management costs domi-
nate, (ii) for record-centric operations, the NSM format outperforms the DSM
format since NSM is more cache friendly here, (iii) for attribute-centric opera-
tions (OLAP-style), the DSM format outperforms the NSM with an argument
similar as for (ii), and (iv) once the price-column is stored in device memory, a
GPU outperforms a CPU (both with columnar storage), since a GPU exposes
massive parallelism and higher throughput.

2Source code is public available: https://github.com/PantheonDBMS see Pantheon-
Research/Public/Storage-Engine/20170000D00HTAP/

3The kernel based on a great tutorial by Mark Harris (chief technologist for GPU computing
software at NVIDIA), see https://github.com/parallel-forall.

4x86_64 host w/ Intel Core i7-6700HQ CPU2.60GHz, 4 cores on single socket, L1/L2/L3
cache size: 32K/256K/6144K. 2x 8GB SODIMM synchronous main memory, running Ubuntu
16.04.1 LTS, host-compiler: clang++ 3.8 w/ O3 enabled; device: Cuda 8.0, capability 5.0, 4044
MBytes global memory, 5 multiproc. w/ 128 Cores/MP, L2: 2MB, max 1024 threads/block,
no shared memory w/ host, compiler nvcc 8.0.44 w/ O3 enabled targeting 5.0 virtual GPU
architecture

https://github.com/PantheonDBMS
https://github.com/parallel-forall

3.2. Terminology and Definitions 47

We outline two challenges for both employed compute platforms for HTAP
workloads: physical storage layout on the host, and under-utilization of the
device.

Physical Storage Layout To overcome some limitations of contradicting ac-
cess patterns by bridging between DSM and NSM for CPU-platforms, a storage
model called Partially Decomposed Storage Model (PDSM) was proposed in
2010 [GKP+10]. In PDSM, a relation is (disjointly) partitioned into a set of
sub-relations by using vertical partitioning [ADHS01]. PDSM is implemented
within the HYRISE storage engine to achieve good performance for mixed-
workloads. However, pure-PDSM aims to use bulk-style processing of partitions
for improving data-cache efficiency compared to NSM.

Under Utilization As shown by Arulraj et al. in 2016, PDSM is less efficient
than DSM for several cases [APM16] on the host. Although, on the device, DSM
is also a reasonable choice to layout the storage, one must consider that the
GPU must always be kept busy to avoid under-utilization in face of its massive
parallelism capabilities. Although He et al. suggested a bulk-processing model
for transactions without user interaction (cf., [HY11]), it is currently unclear
whether a fallback to the host platform is reasonable for general-purpose
transaction processing. Note, that we did not include a NSM-variant for the
device, since computations on the graphics card favor a columnar storage
for analytics to minimize data transfer costs as already pointed out by recent
research [Bre14]. An investigation of NSM for transactional workloads is
delivered in Chapter 5, and low-latency transactional processing is investigated
in Chapter 6.

3.2 Terminology and Definitions

The engineering of database systems for HTAP workloads is challenging since
optimizations aiming at one type of workload might be detrimental to another
workload type (e.g., applying compression can speed up analytics but slows
down transaction processing [LMF+16]).

While the definition of a flexible storage model (FSM, [APM16]) is sufficient to
understand that an FSM format is somewhere between the NSM and the DSM
approach; we argue it is too general for building a taxonomy of existing storage
engines. Consequently, we propose a series of more fine-grained concepts. In
concrete, we advance a system to consider the capability of HTAP-workload
storage engines regarding their layout and fragment management.

3.2.1 Layouts and Fragments

To enable a uniform classification, we suggest both concepts, layouts and
fragments, as a generalization from a magnitude of terms presented in the

48 3. A Storage Engines Perspective on Hybrid Workloads

SubG. A B C

D

Group

Special

OLAPOLTP

Relation R

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

e2

e3

e4

Layout 1 for R (weak flexible)

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

e1

e2

e3

e4

Layout 2 for R (strong flexible)

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

e1

e2

e4

Fragment (Thin)

Tuplet

Sub-RelationSchema

A B C D E A B C DD E

a1

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4

Linearization d1 d2 d3 d4DSM-Emulated e1 e2 e3 e4

DirectLinearization

NSM-Emulated

Linearization

Fragment
(Fat)

Relation R

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

e1

e2

e3

e4

TupletTuple

Schema

A B C D E

Linearization

Linearization

Fragment
(Fat)

NSM-Fixed

DSM-Fixed

Tuple

B CA E

e1 a1

e3

a2 b2 c2 a3 b3 c3

b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4

b3 c3a3

NSM-Fixed

DSM-Fixed

Fig. 3. Terminology used in this paper. A relation R can have multiple
layouts each describing R in terms of several fragments (thin or fat). Pure-
vertically partitioned layouts are called sub-relations. A tuple fragment in a
fragment is called tuplet. Depending on the fragment type, the linearization
type varies for NSM and DSM.

detailed introduction of properties to classify storage engines
based on the concepts of layouts and fragments:

Layout handling. If a storage engine limits a relation
R to have exactly one layout, then R has a single layout.
Otherwise R is multi-layout. Storage engines can emulate a
multi-layout property for a relation R by holding relations
R1, R2, ..., Rk under the same name, but relations in R have
pair-wise different fragments (e.g., different storage models, or
data locations) following a data replication strategy.

Layout flexibility. A storage engine is inflexible if it
supports only one fragment per layout. Otherwise the storage
engine is called flexible. A flexible storage engine is weak
if all layouts apply the same partitioning technique to define
fragments (either horizontal or vertical fragmentation). A weak
storage engine always satisfies that its fragments are either
in a vertical fragmentation or in a horizontal fragmentation.
A flexible storage engine is strong if it supports layouts
that combine vertical and horizontal partitioning to define
fragments. If the definition of a fragment has side-effects to
adjacent fragments (e.g., forcing a certain partitioning) in the
context of a strong flexible layout, or if the order of the
partitioning is pre-defined, then the layout flexibility is called
constrained. Otherwise it is called unconstrained.

Layout adaptability. During runtime, a flexible storage
engine might react to changes in the workload and adapt
fragments of a certain layout. If a storage engine supports this
dynamic re-organization of layouts, the storage engine’s layout
adaptability is responsive. Otherwise (or in case the storage
engine is inflexible), it is called static.

Data location. Tuplets are stored on a certain storage
medium, such as main-memory, device-memory, or flash drive.
If all tuplets are stored exclusively in the main memory,
then the fragment’s data locality is called host-memory-only,
conversely it is device-memory-only (or secondary-memory-
only) if all tuplets are not stored in the main memory (e.g.,
they are stored exclusively in a compute platform’s memory, or

on disk). If the data location is host-memory-only or device-
memory-only, the data locality is centralized. If the storage
engine supports data locations that are neither host-memory-
only nor device-memory-only, the data location is called mixed
and the data locality is distributed.

Fragment linearization properties. A fragment of a rela-
tion can be fat or thin. A fragment is fat iff it contains at least
two tuplets and at least two attributes in its schema. Since a
fat fragment is two-dimensional, it must be linearized in order
to be stored into one-dimensional memory. Linearization is
sequentially arranging tuplets by either the NSM or DSM for-
mat. If a storage engine supports fat fragments but is restricted
to either NSM or DSM, then the linearization is NSM-fixed or
DSM-fixed. If the storage engine supports NSM or DSM for fat
fragments, the linearization is variable. A fragment is thin iff it
is not fat. Since a thin fragment is one-dimensional it does not
require linearization. In this case, the linearization property is
called direct. Flexible storage engines can emulate NSM-fixed
or DSM-fixed linearization, by either horizontal or vertical
fragmentation of a layout into thin-only fragments, and then
applying direct linearization. This technique is called NSM-
emulated or DSM-emulated. If this emulation does not cover
the entire schema of the relation (i.e., some fragments remain
fat), this technique is called variable DSM-fixed partially NSM-
emulated if remaining fat fragments are DSM-fixed linearized
or variable NSM-fixed partially DSM-emulated if remaining
fat fragments are NSM-fixed linearized.

Please note, the difference between linearization of a fat
fragment with DSM, and linearization of n thin fragments with
DSM-emulated: the first stores all per-column fields of tuplets
in one subsequent block of memory, while the latter stores
column fields of tuplets in n different memory blocks (one
per column). The latter appears for concepts where columns
are equivalent to multiple distinct vectors, while the former
appears for concepts where columns are stored in one single
vector. The same applies for NSM resp. NSM-emulated.

Fragment scheme. In multi-layout relations, there are
more fragments than are actually required to cover the tuples
of a relation. A replication-based approach holds copies of
tuplets (e.g., with different storage model formats) that cannot
be referenced between fragments of multiple layouts (e.g.,
when the format definition of the data storage model is con-
tradictory). A delegation-based approach restricts the access
of certain regions from certain layouts, since some tuplets are
exclusively stored in certain layouts. As a consequence, there
is no data redundancy between layouts for non-shared data
regions. However, storage engines using a delegation-based
approach must manage delegation policies to avoid undefined
behavior.

In the following Section IV, we employ our proposed
taxonomy, to provide an account on storage engines.

IV. SURVEY AND CLASSIFICATION

Several promising storage engines have been proposed in
the last decades. In this section we survey some storage engines
(Section IV-A) and database systems (Section IV-B) to classify
them regarding the properties that we suggest in Section III.
We provide a summary on our classification in Table I. In

Figure 3.3: Terminology used. A relation R can have multiple layouts each describing
R in terms of several fragments (thin or fat). Pure-vertically partitioned layouts are
called sub-relations. A tuple fragment in a fragment is called tuplet. Depending on the
fragment type, the linearization type varies for NSM and DSM.

literature (e.g., cf. "column group" in [AIA14] and "container" in [GKP+10]).
We define a relation similar to common understanding with the following exten-
sions: relations can have multiple alternative layouts; a layout is a complete
relation divided into a set of possibly overlapping fragments. A fragment spans
a "gapless" region of data in a relation. The per-tuple portion that falls inside a
given fragment is called a tuplet. A sub-relation is a fragment of a relation R
where all layouts in R are exclusively managed by vertical fragmentation.

We present a visualization of a terminology in Figure 3.3. The following three
terms are fundamental:

Layout A database relation R can have multiple layouts. Each layout is a
cover of a relation, has its own schema that is identical to the one of R, and
contains the same tuples as R, i.e., a layout spans the entire relation on both
row and column dimensions.

Fragment A layout is built on a non-empty set of fragments. A fragment is a
structure that describes a specific area of the layout in both row and column
dimensions. Each fragment contains the area-specific data parts for records
contained, and stores the area-specific schema. The data stored in the area of
the fragment is formatted according to a certain storage model.

3.2. Terminology and Definitions 49

Layout Layout Layout Data Fragment Fragment Processor Workload Date /
handling flexibility adaptability location linearization scheme support support Paper

PAX single inflex. static Host + Disc centr. fat, DSM-fixed - CPU HTAP 2002 [25]
FRAC. MIRRORS built-in multi inflex. static Host + Disc distr. fat, NSM+DSM-fixed replication CPU HTAP 2002 [36]
HYRISE single weak flex. respons. Host + Host centr. fat, variable - CPU HTAP 2010 [3]
ES2 built-in mult. strong flex. respons. Host. + distr. fat, DSM-fixed delegated CPU HTAP 2011 [37]
GPUTX single weak flex. static Dev. + Dev. centr. thin, DSM-emulated - GPU OLTP 2011 [35]
H2O single weak flex. respons. Host + Host centr. v. NSM-fixed p. DSM-emul. - CPU HTAP 2014 [19]
HYPER single strong flex. respons. Host + Host centr. thin, DSM-emulated - CPU HTAP 2015 [38]
COGADB built-in multi weak flex. static Mixed + distr. thin, DSM-emulated replication CPU / GPU OLAP 2016 [16]
L-STORE single strong flex. respons. Host + Host centr. DSM-emulated delegated CPU HTAP 2016 [39]
PELOTON DBMS built-in mult. strong flex. respons. Host + Host centr. fat, variable delegated CPU HTAP 2016 [2]

TABLE I. SUMMARY OF SURVEY ORDERED BY DATE (HOST = HOST MEMORY, DEV = DEVICE MEMORY).

St
or

ag
e

En
gi

ne

Layout
Handling

Layout
Flexibility

Layout
Adaptability

Data
Location

Fragment
Linearization

Fragment
Scheme

Built-In

Emulated
Inflexible

Flexible
Weak

Strong
Constrained

Unconstrained
Static

Target

Host-Memory-Only

Device-Memory-Only

Mixed

Locality
Centralized

Distributed

Emulated
Linearization

NSM-Fixed Partially
DSM-Emulated

Replication-Based

Delegation-Based

Thin
Fragments

Fat
Fragments

Responsive

Multi Layout

Single Layout

NSM-Fixed

DSM-Fixed

Direct
Linearization

Variable

NSM

DSM

Variable

DSM-Fixed Partially
NSM-Emulated

Fig. 4. Taxonomy on classification properties of storage engines.

Section IV-C we provide a wrap-up of our findings w.r.t. hybrid
workload management in CPU / GPU database systems.

A. Storage Engines

Next, we survey notable storage engines proposed by early
research (e.g., PAX) and more recent research (e.g., ES2).

1) PAX: With the PAX storage model [25], Ailamaki et
al. proposed a page-level decomposition storage model in the
context of disk-based database systems that try to get the
best of both storage models DSM and NSM. Conceptually,
a relation has one layout that is horizontally split in n fat
fragments where n is determined by the page size. Each fat
fragment is afterwards linearized using a DSM-fixed approach.
Therefore, PAX is a single-layout storage approach based on
horizontal fat fragments using DSM-fixed linearization. PAX
has a static layout adaptability since neither the fragmentation
strategy nor the linearization technique can be changed. PAX
was designed for disk-based systems powered by a database
buffer manager. Consequently, the primary storage is the hard
disk drive. However, the working set is kept in main-memory
and PAX was evaluated on a single machine. Although both
of these properties are not inherently required for PAX, the
original concept relates to a host-only data location with

centralized data locality on the secondary storage.

2) Fractured Mirrors: An early approach from 2002 to
manage conflicting linearizations models (i.e., NSM vs DSM)
in HTAP workloads for disk-based database system is the
replication-based inflexible multi-layout fractured mirrors ap-
proach by Rösch et al. [36]: the idea is to have two logical
copies of a relation with each possessing its own storage model
rather than having two physical copies of the relation on two
disks. In fractured mirrors, a relation has two layouts, with
one fat fragment each that spans the entire schema of the
relation, and which is linearized using the NSM (or DSM)
format. In detail, fractured mirrors hold a number of NSM-
styled pages and n additional DSM-styled pages where n is
the number of attributes in the schema of the relation. Thus, the
relation is physically replicated at page level. Fractured mirrors
considers the data skew on multiple disks while guaranteeing
data mirroring in case of physical failures of a single disk. With
fractured mirrors, the pages of both fragments are distributed
on disks such that each disk holds a copy of the relation
but both fragments are equally represented on all disks. Thus,
fractured mirrors uses an NSM-fixed/DSM-fixed technique.

3) HYRISE: In 2010, Grund et al. proposed a weak
flexible storage engine in the context of host-only data with
centralized storage [3]. A relation in HYRISE is laid out by
n sub-relations which are called containers. Each container in
HYRISE is formatted as a list of continuous memory blocks.
A sub-relation can vary regarding the number of attributes the
sub-relation schema contains. In addition, each sub-relation
can be formatted using NSM or DSM. Since HYRISE manages
fat fragments, it can apply NSM or DSM linearization for
tuplets. HYRISE supports both linearization techniques for all
fragment types, and variable linearization on fat fragments.
With the aim of improving co-location of data and cache
efficiency for HTAP workloads, HYRISE supports an automatic
re-adapting of per-sub-partition widths. Therefore, the storage
engine in HYRISE is responsive to workload changes. How-
ever, HYRISE follows a single layout approach since a relation
has a certain layout at a time.

4) ES2: The system EPIC is an elastic power-aware cloud
platform for data-intensive applications in the context of dis-
tributed computing. The motivation behind this platform is to
enable efficient management of HTAP workloads for cloud
computing. One notable property of EPIC is its intentional
use of the relational data model instead of the dominating
key-value data model for transactional cloud platforms. This
design decision is driven by the requirements for analytic

Figure 3.4: Taxonomy on classification properties of storage engines.

Tuplet A tuplet is a tuple in R that is projected to the fragment’s schema, i.e.,
a tuplet belongs to a fragment and contains the area-specific data parts of the
corresponding tuple.

In Figure 3.4, we depict an overview of the taxonomy that we define using the
terminology. We proceed with a more detailed introduction of properties to
classify storage engines based on the concepts of layouts and fragments:

3.2.2 Layout Handling

In the following, we define terms to which the reader may refer to Figure 3.3
for a better orientation in the big picture.

If a storage engine limits a relation R to have exactly one layout, then R has a
single layout. Otherwise R is multi-layout. Storage engines can emulate a multi-
layout property for a relation R by holding relations R1, R2, ..., Rk under the
same name, but relations in R have pair-wise different fragments (e.g., different
storage models, or data locations) following a data replication strategy.

3.2.3 Layout Flexibility

A storage engine is inflexible if it supports only one fragment per layout. Oth-
erwise the storage engine is called flexible. A flexible storage engine is weak if
all layouts apply the same partitioning technique to define fragments (either
horizontal or vertical fragmentation). A weak storage engine always satisfies

50 3. A Storage Engines Perspective on Hybrid Workloads

that its fragments are either in a vertical fragmentation or in a horizontal
fragmentation. A flexible storage engine is strong if it supports layouts that
combine vertical and horizontal partitioning to define fragments. If the def-
inition of a fragment has side-effects to adjacent fragments (e.g., forcing a
certain partitioning) in the context of a strong flexible layout, or if the order of
the partitioning is pre-defined, then the layout flexibility is called constrained.
Otherwise it is called unconstrained.

3.2.4 Layout Adaptability

During runtime, a flexible storage engine might react to changes in the work-
load and adapt fragments of a certain layout. If a storage engine supports this
dynamic re-organization of layouts, the storage engine’s layout adaptability is
responsive. Otherwise (or in case the storage engine is inflexible), it is called
static.

3.2.5 Data Location

Tuplets are stored on a certain storage medium, such as main-memory, device-
memory, or flash drive. If all tuplets are stored exclusively in the main memory,
then the fragment’s data locality is called host-memory-only, conversely it is
device-memory-only (or secondary-memory-only) if all tuplets are not stored
in the main memory (e.g., they are stored exclusively in a compute platform’s
memory, or on disk). If the data location is host-memory-only or device-memory-
only, the data locality is centralized. If the storage engine supports data
locations that are neither host-memory-only nor device-memory-only, the data
location is called mixed and the data locality is distributed.

3.2.6 Fragment Linearization

A fragment of a relation can be fat or thin. A fragment is fat if it contains at least
two tuplets and at least two attributes in its schema. Since a fat fragment is two-
dimensional, it must be linearized in order to be stored into one-dimensional
memory. Linearization is sequentially arranging tuplets by either the NSM
or DSM format. If a storage engine supports fat fragments but is restricted
to either NSM or DSM, then the linearization is NSM-fixed or DSM-fixed. If
the storage engine supports NSM or DSM for fat fragments, the linearization
is variable. A fragment is thin if it is not fat. Since a thin fragment is one-
dimensional it does not require linearization. In this case, the linearization
property is called direct. Flexible storage engines can emulate NSM-fixed or
DSM-fixed linearization, by either horizontal or vertical fragmentation of a
layout into thin-only fragments, and then applying direct linearization. This
technique is called NSM-emulated or DSM-emulated. If this emulation does not

3.3. Survey and Classification 51

cover the entire schema of the relation, this technique is called variable DSM-
fixed partially NSM-emulated. This is the case if some fragments remain fat,
for instance. If remaining fat fragments are DSM-fixed linearized or variable
NSM-fixed are partially DSM-emulated, then the remaining fat fragments are
called NSM-fixed linearized.

Please note, the difference between linearization of a fat fragment with DSM,
and linearization of n thin fragments with DSM-emulated: the first stores all
per-column fields of tuplets in one subsequent block of memory, while the
latter stores column fields of tuplets in n different memory blocks (one per
column). The latter appears for concepts where columns are equivalent to
multiple distinct vectors, while the former appears for concepts where columns
are stored in one single vector. The same applies for NSM resp. NSM-emulated.

3.2.7 Fragment scheme

In multi-layout relations, there are more fragments than are actually required
to cover the tuples of a relation. A replication-based approach holds copies of
tuplets (e.g., with different storage model formats) that cannot be referenced
between fragments of multiple layouts (e.g., when the format definition of the
data storage model is contradictory). A delegation-based approach restricts
the access of certain regions from certain layouts, since some tuplets are
exclusively stored in certain layouts. As a consequence, there is no data
redundancy between layouts for non-shared data regions. However, storage
engines using a delegation-based approach must manage delegation policies to
avoid undefined behavior.

In the following Section 3.3, we employ the proposed taxonomy, to provide an
account on storage engines.

3.3 Survey and Classification

Several promising storage engines have been proposed in the last decades.
In this section, we survey some storage engines (Section 3.3.1) and database
systems (Section 3.3.2) to classify them regarding the properties that we
suggest in Section 3.2. We provide a summary on the classification in Table 3.1.
In Section 3.4, we provide a wrap-up of the findings w.r.t. hybrid workload
management in CPU / GPU database systems.

3.3.1 Storage Engines

Next, we survey notable storage engines proposed by early research (e.g.,
PAX) and more recent research (e.g., ES2). The selection criteria to filter those
storage engines out of the set of all proposed storage engines was defined in

52 3. A Storage Engines Perspective on Hybrid Workloads

Name Layout Layout Layout Data
handling flexibility adaptability location

1 PAX single inflex. static Host + Disc centr.
2 Frac. Mirrors built-in multi inflex. static Host + Disc distr.
3 HYRISE single weak flex. respons. Host + Host centr.
4 ES2 built-in mult. strong flex. respons. Host. + distr.
5 GPUTx single weak flex. static Dev. + Dev. centr.
6 H2O single weak flex. respons. Host + Host centr.
7 HyPer single strong flex. respons. Host + Host centr.
8 CoGaDB built-in multi weak flex. static Mixed + distr.
9 L-Store single strong flex. respons. Host + Host centr.

10 Peloton DBMS built-in mult. strong flex. respons. Host + Host centr.

Table 3.1: Summary of survey (Host = host memory, Dev = device memory). Contin-
ued in Table 3.2.

#
Fragment Fragment Processor Workload Date /

linearization scheme support support Paper

1 fat, DSM-fixed - CPU HTAP 2002 [ADH02]
2 fat, NSM+DSM-fixed replication CPU HTAP 2002 [RDS03]
3 fat, variable - CPU HTAP 2010 [GKP+10]
4 fat, DSM-fixed delegated CPU HTAP 2011 [Cao+11]
5 thin, DSM-emulated - GPU OLTP 2011 [HY11]
6 v. NSM-fixed p. DSM-emul. - CPU HTAP 2014 [AIA14]
7 thin, DSM-emulated - CPU HTAP 2015 [FKN12]
8 thin, DSM-emulated replication CPU / GPU OLAP 2016 [BFT16]
9 DSM-emulated delegated CPU HTAP 2016 [SBBC16]
10 fat, variable delegated CPU HTAP 2016 [APM16]

Table 3.2: Summary of survey ordered by date (Host = host memory, Dev = device
memory). Continuation of Table 3.1.

3.3. Survey and Classification 53

such a way to provide a good overview on the current state. To find established
systems, the citation number and influence to other work was considered based
on the first publication. As establishment requires some time, those established
systems were proposed in less recent papers. However, to also cover latest
developments, the selection criteria includes recently published work that
relates to the topic (e.g., found in proceedings of the VLDB). Clearly, for more
recent work, the citation number was less important than the publication
location.

PAX

With the PAX storage model [ADH02], Ailamaki et al. proposed a page-level
decomposition storage model in the context of disk-based database systems
that try to get the best of both storage models DSM and NSM. Conceptually, a
relation has one layout that is horizontally split in n fat fragments where n is
determined by the page size. Each fat fragment is afterwards linearized using
a DSM-fixed approach. Therefore, PAX is a single-layout storage approach
based on horizontal fat fragments using DSM-fixed linearization. PAX has
a static layout adaptability since neither the fragmentation strategy nor the
linearization technique can be changed. PAX was designed for disk-based
systems powered by a database buffer manager. Consequently, the primary
storage is the hard disk drive. However, the working set is kept in main-memory
and PAX was evaluated on a single machine. Although both of these properties
are not inherently required for PAX, the original concept relates to a host-only
data location with centralized data locality on the secondary storage.

Fractured Mirrors

An early approach from 2003 to manage conflicting linearization models (i.e.,
NSM vs DSM) in HTAP workloads for disk-based database system is the
replication-based inflexible multi-layout fractured mirrors approach by Rösch
et al. [RDS03]: the idea is to have two logical copies of a relation with each
possessing its own storage model rather than having two physical copies of the
relation on two disks. In fractured mirrors, a relation has two layouts, with one
fat fragment each that spans the entire schema of the relation, and which is
linearized using the NSM (or DSM) format. In detail, fractured mirrors hold
a number of NSM-styled pages and n additional DSM-styled pages where n
is the number of attributes in the schema of the relation. Thus, the relation
is physically replicated at page level. Fractured mirrors considers the data
skew on multiple disks while guaranteeing data mirroring in case of physical
failures of a single disk. With fractured mirrors, the pages of both fragments
are distributed on disks such that each disk holds a copy of the relation but
both fragments are equally represented on all disks. Thus, fractured mirrors
uses an NSM-fixed/DSM-fixed technique.

54 3. A Storage Engines Perspective on Hybrid Workloads

HYRISE

In 2010, Grund et al. proposed a weak flexible storage engine in the context
of host-only data with centralized storage [GKP+10]. A relation in Hyrise is
laid out by n sub-relations which are called containers. Each container in
Hyrise is formatted as a list of continuous memory blocks. A sub-relation
can vary regarding the number of attributes the sub-relation schema contains.
In addition, each sub-relation can be formatted using NSM or DSM. Since
Hyrise manages fat fragments, it can apply NSM or DSM linearization for
tuplets. Hyrise supports both linearization techniques for all fragment types,
and variable linearization on fat fragments. With the aim of improving co-
location of data and cache efficiency for HTAP workloads, Hyrise supports
an automatic re-adapting of per-sub-partition widths. Therefore, the storage
engine in Hyrise is responsive to workload changes. However, Hyrise follows a
single layout approach since a relation has a certain layout at a time.

ES2

The system epiC is an elastic power-aware cloud platform for data-intensive
applications in the context of distributed computing. The motivation behind
this platform is to enable efficient management of HTAP workloads for cloud
computing. One notable property of epiC is its intentional use of the relational
data model instead of the dominating key-value data model for transactional
cloud platforms. This design decision is driven by the requirements for analytic
processing (as part of HTAP processing) in the cloud. In 2011, Cao et al. pro-
vided insights into epiC’s elastic storage engine, called ES2, that is designed for
large cluster of shared-nothing commodity machines [Cao+11]. ES2 supports
relations to be fragmented via both vertical and horizontal partitioning. Frag-
ment re-adaption is continuously executed based on query workload traces. The
fragmentation strategy is built-in and consists of two steps. First (but optional),
if columns are frequently accessed together, then these columns are moved
into one new physical sub-relation. This strategy allows to hide less-frequently
accessed columns, which improves cache-efficiency resp. reduces I/O costs for
attribute-centric data access. Second, each such sub-relation is automatically
split into further fragments (called partitions) by horizontal partitioning. The
latter step allows to minimize the number of workers that access multiple
compute nodes by placing certain partitions intentionally at a certain node.
Record-centric data access is managed with distributed secondary indexes.
Thus, epiC is powered by a constrained strong flexible storage engine. Since
ES2 distributes both indexes and partitions to nodes in the cluster, it exploits
a delegation-based fragment scheme. However, for load balancing and fault
tolerance, data can also be replicated. The backbone for data storage in ES2

is a slightly modified Hadoop distributed file system (DFS) that is used as a
raw-byte device to which PAX-formatted tuplets are written. Hence, the storage
engine of epiC exposes a distributed location of data that is stored on the
host’s compute platform memory or disk, and which inherits the fragmentation
linearization property of PAX.

3.3. Survey and Classification 55

H2O

With H2O, Alagiannis et al. present a weak flexible storage engine that is
capable of managing DSM and NSM for a single relation, responding to changes
in the workload. Relations in H2O are organized by n sub-relations created
using a horizontal (i.e., weak-flexible) partitioning. Each fragment is per
default a fat fragment linearized using NSM-fixed. However, if the number of
attributes of a sub-relation is set to one, the fragment becomes a thin fragment
that is directly linearized. In fact, if a relation with m attributes is split into m
sub-relations, the DSM storage is emulated. Therefore, H2O uses a variable
NSM-fixed partially DSM-emulated linearization. Layouts in H2O are responsive
to changes in the workload during runtime by lazily applying a new layout
after evaluating alternative layouts from a pool. However, since H2O does
neither support overlapping partitions nor multiple layouts for a single relation
at a fixed time, H2O is a single layout approach. As originally proposed by
Alagiannis et al., H2O is a storage engine for data stored in centralized host-only
memory.

3.3.2 Database Systems

Next, we survey systems focusing on host/device memory. We applied the same
selection strategy as described in Section 3.3.1.

GPUTx A single transaction is a small and simple task that might underutilize
the parallelism available in modern graphics cards. With GPUTx [HY11], He et
al. propose an in-memory relational database prototype for transaction work-
load processing on graphics cards that addresses this issue by bulk-processing
of transactions. GPUTx is powered by a storage engine that is tailored to the
characteristics of graphics cards, e.g., the transfer costs from host to device
memory and vice versa. A relation in GPUTx is organized by n thin fragment
sub-relations. Since GPUTx is a proof-of-concept of GPU-based transaction
processing, its weak-flexible storage manager does not consider multiple lay-
outs. Since the storage engine of GPUTx addresses a sub-relation approach
only, it cannot change the layout of a relation. Thus, the layout adaptability of
GPUTx is static. GPUTx manages a result pool in host-memory that retrieves
copies from the device-memory. Since the use of host-memory is required to
deliver processing results to users but relations are stored and processed in
device-memory, GPUTx uses a secondary-only data location.

GDB GDB [HLY+09] is one of the earliest in-memory relational query co-
processing system. It results from work by He et al. on relational operator
execution in graphic cards. The core contribution behind GDB is a set of
primitives (i.e., map, scatter, gather, split, sort, reduce, filter, and prefix-scan)
which are optimized for the local memory of the graphic cards, and a pioneer-
ing query plan optimization approach in context of heterogeneous database

56 3. A Storage Engines Perspective on Hybrid Workloads

systems. More complex (relational) operators in GDB are built by composing
these primitive operators, and thus benefit from the optimization in their primi-
tives. The space for parallel query execution plan optimization is reduced by a
tailored two-phase optimization strategy. GDB contains a strong read-optimized
execution engine for OLAP queries. From a storage perspective, relations ins
GDB are organized following the DSM approach exclusively. The outcome of
the investigation behind GDB is that query execution using GPUs promises
competitive or superior performance compared to the CPU-counterpart.

Ocelot In heterogeneous database systems it is critical to explicitly tune
operator code to available hardware to get the best out of all available com-
pute platforms. This is error-prone and expensive with respect to system
development and maintenance. Heimel et al. suggests to delegate opera-
tor code tuning to frameworks that compile code written in an specialized
platform-independent language to targeted platforms, and suggested Ocelot
as a proof-of-concept [HSP+13]. Ocelot is an extension to MonetDB that fo-
cuses on hardware-oblivious operator implementations by using OpenCL as a
framework for compilation. The replacement of hardware-sensitive operators
in MonetDB by hardware-oblivious operators in Ocelot promises performance
gains when considering graphics cards for execution plan generation, and do
not harm the query execution performance of MonetDB for CPU-only plans.

HyPer The key motivation behind the engineering of HyPer was to build an
HTAP-workload database system with a competitive performance compared to
dedicated systems specialized for a single workload type [KN11]. The storage
engine of HyPer was re-newed in 2012 by Funke et al. to support combined
horizontal and vertical partitioning, i.e., contributing a flexible storage en-
gine [FKN12]. In HyPer, a relation is physically organized by a hierarchy of
partitions, chunks and vectors. A partition in HyPer is a sub-relation, i.e.,
HyPer applies first vertical partitioning to a relation. A resulting sub-relation
is further split into horizontal (inner) fragments (called chunks). Therefore,
HyPer applies a constrained strong flexible layout to relations, since a relation
is compound of multiple fragments having side-effects to each other. One such
side-effect is the dictation of boundaries of chunks. However, a chunk in a
sub-relation is organized as a set of vectors. Each vector represents exactly
one attribute of the sub-relation’s schema. Thus, a vector in HyPer is a thin
fragment. Since the entire relation is organized that way, there are no fat
fragments left. Consequently, HyPer applies a DSM-emulated fragment lin-
earization approach. To the best of our knowledge, HyPer applies dynamic
re-organization of fragments in the layout of relations but does not manage
non-emulated multiple layouts. Hence, HyPer is powered by a single-layout
storage engine. In addition, HyPer’s storage engine is responsive to changes in
an HTAP workload [FKN12].

HANA HANA is an in-memory relational database system which supports
analytic processes and transaction workloads, and part of an out-of-the-box

3.3. Survey and Classification 57

scalable appliance platform developed by SAP. Internally, HANA contains of mul-
tiple sub-systems enabling a distributed data processing with a wide spectrum
for application [FCP+12]. Besides relational querying capabilities, HANA ex-
poses a built-in property-graph-based querying facilities to end-users [RPBL13].
From a storage model perspective, HANA supports both NSM and DSM in
combination for a single relation by using a vertical partition approach.

CoGaDB With CoGaDB, Breß et al. proposed a cross-device CPU / GPU database
system for analytic processing, featuring a weak flexible storage engine which
is similar to GPUTx [Bre14]. In contrast to GPUTx, CoGaDB addresses the
problem of query plan generation in heterogeneous architectures following
a hardware-oblivious paradigm. CoGaDB features a self-adapting query opti-
mizer (HyPE) that learns cost models and balances the workload between all
compute devices [BS13]. Since data movement to and from device memory is a
notable bottleneck, CoGaDB allows thin fragment sub-relations of a relation to
be kept on host-memory, device-memory, or on both memory locations using
a replication-based approach. As a result, CoGaDB’s storage engine supports
mixed data locations with distributed data locality. CoGaDB follows an "all
or nothing" approach for moving a thin fragment (i.e., the i-th column of a
relation) from host to device memory: either there is enough space for the
column in the device memory, or not. If there is enough space, the column
is placed in the device memory. Otherwise a fallback operation is scheduled
that leaves the column in host memory. If the column fits into device memory,
CoGaDB applies several strategies to handle side-effects (e.g., cache trashing
or heap contention) during query processing on graphics cards [BFT16]. In
its current version, CoGaDB’s storage engine exposes multiple layouts on a
relation but applies exclusively vertical fragmentation to a set of columns.

L-Store In early 2016, Sadoghi et al. present the main-memory database
system L-Store that was designed to manage HTAP workloads with the capa-
bility of historic querying [SBBC16]. The underlying strong flexible layout
responsive storage engine features demand-driven changes of the physical
storage layout of tuples, optimizing either for write or for read operations. In
L-Store, a relation is encoded by three components: a set of base pages, a set
of tail pages and a page dictionary. Base and tail pages are the primary data
container for tuple fields. A pair of base and tail pages form a single attribute
column of a relation. Both together, the base and tail pages in such a pair,
contain all field data for the corresponding attribute for all contained tuples.
Thus, L-Store manages a relation by a set of sub-relations where each attribute
in the relation’s schema corresponds to a single vertical fragment. Since the
mapping between attribute and vertical fragment cannot be changed, L-Store
exposes a single layout architecture. However, each fragment is further split
individually into two parts: the upper read-only (and compressed) base page
part and the lower append-only tail page part. An attribute field of a tuple is
a reference to a value in the corresponding base page part of the relation to
which the tuple belongs, rather than a concrete value. This design enables a

58 3. A Storage Engines Perspective on Hybrid Workloads

fine-grained control of attribute values. When the value of a field for a certain
tuple (called base record) is modified, a new tuple (called tail record) is ap-
pended to the relation. This tail record shares the same references to base page
values as its out-dated counterpart (i.e., its base record) with one exception:
the modified field. The modified field points to a newly added value in the tail
page part. The book-keeping between pages and records is in the responsibility
of the page dictionary. The page dictionary also hides the information from
its clients whether a certain record is made of base or tail pages. L-Store
applies DSM-emulated fragment linearization to satisfy attribute-centric query
performance requirements. For record-centric queries, L-Store requires to
dereference values that are spread between multiple fragments. This might
cause additional cache misses in direct comparison to records that are format-
ted using plain NSM. However, the deep integration of historic data handling
is a notable feature of the L-Store storage engine.

Peloton Arulraj et al. suggest a multi-layout storage engine with a tile-based
approach. Their proposal is implemented in the Peloton database [APM16]. In
a tile-based architecture, a relation is represented in terms of tile groups. A
tile group is a horizontal fragment. Each fragment in a tile group is further
vertically fragmented into (inner) fragments called logical tiles. Similar to
HyPer, this design is a constrained strong flexible layout approach with the
same argument as for HyPer. The difference to HyPer is the order of vertical
resp. horizontal fragmentation at the logical-tile level. However, in the tile-
based architecture, logical tiles contain references to values stored in several
physical tiles. The authors argue for this concept, which they call layout
transparency (LT). LT enables to abstract from tuplets in a logical tile. This
means, fragment linearization is done in a physical tile rather than in a logical
one. A physical tile is a fat fragment incorporating tuplets from several layouts
from different relations. Tuplets in physical tiles can be physically formatted
using NSM or DSM. The tile-based architecture exposes a variable fragment
linearization. Unfortunately, the authors do not explicitly state how data in
logical tiles is actually linearized. However, their presented storage engine
was evaluated in Peloton which is a main-memory-focused system. Thus, their
approach is primary-only centralized regarding the data location. The tile-
based architecture exposes a delegation-based fragment scheme, i.e., tuplets
between several layouts of several relations can be shared due to logical tiles
abstraction and sharing of tuplet values in terms of physical tiles.

3.4. Summary 59

3.4 Summary

In this chapter, we examined in-depth a selection of state-of-the-art storage
engines (Section 3.3.1) and database systems (Section 3.3.2) that address trans-
actional (e.g., GPUTx), or analytical workloads (e.g, CoGaDB), or a combination
of both workload types (e.g., HyPer) on data stored on host- (e.g., Peloton), or
on device (GPUTx)- memory, or on both memory locations (e.g., CoGaDB). We
summarize findings in Table 3.1 and Table 3.2. To outline similarities and dif-
ferences, we used a unified terminology presented in Section 3.2 that enables
a clear comparison on a conceptual level of the research in the field.

Based on in-depth examination of storage engines, we can conclude that none of
today’s database systems are ready to process HTAP workloads employing both
CPU and GPU. This holds on both directions: latest research on flexible storage
approaches w.r.t. HTAP-workloads in main-memory fails to consider graphics
cards as storage medium (and GPUs as processing unit). Conversely, none
of today’s GPU-powered database systems combine analytic- and transaction
processing with HTAP workload processing. This distinction is reflected in
the design and capabilities of storage engines for these systems. Clearly,
none of the HTAP-workload main-memory database systems are aware of
characteristics of graphics cards; especially they cannot consider operator or
data placement to graphic cards for query processing. Likewise, no CPU / GPU
database system has a storage engine capable to fulfill the needs of HTAP-
workload processing (e.g., layout flexibility, or more advanced concurrency
control).

To contribute bridging this gap, we next present a suggestion for a reference
storage engine design:

1. At least constrained strong flexible layout support

2. Layout responsive to changes in workloads

3. Mixed data location and distributed data locality

4. Fragmentation linearization that covers NSM and DSM

5. Built-in multi layout handling for relations

6. Fragment scheme supporting delegation

This presented design incorporates the latest research from both domains. We
consider these to be necessary features of a competitive system.

Chapter 4

Memory Management in GPU/CPU
Systems

The following chapter is an extended version of

Iya Arefyeva, David Broneske, Gabriel Campero Durand, and Marcus Pin-
necke, and Gunter Saake. Memory Management Strategies in CPU/GPU
Database Systems: A Survey. In International Conference: Beyond
Databases, Architectures and Structures. Springer, Cham., (pp. 128-142),
2018

62 4. Memory Management in GPU/CPU Systems

Introduction

In the previous chapter, we examined a selection of state-of-the-art storage
engines, and concluded that none of today’s database systems are ready to
process HTAP workloads employing both CPU and GPU. Based on the insight
that graphics cards are understudied as storage medium, we explore memory
management strategies for GPU/CPU systems in this chapter.

In-memory database systems first were proposed in 1980s [DKO+84], and
nowadays are becoming more and more popular, as RAM sizes grow and prices
are dropping. The main copy of the data in these systems, in contrast to
traditional disk-based database systems, is stored in main memory and can
be directly accessed by the processor. Such design enables these systems to
achieve significant performance improvements due to higher memory access
speed. This is especially important in high-throughput applications which
require fast response time.

Another emerging trend, that has gained a lot of attention of researchers in re-
cent times, is the usage of co-processors (e.g. GPUs) in database management
systems. Utilization of co-processor spans a range of system-related tasks, such
as query optimization or query execution. In fact, co-processors are applied
to accelerate both OLAP [HLY+09] [BS10b] [BC12] [HSP+13] [Mos13] [YLZ13]
[Bre14] [PMK14] [Sit16] and OLTP [HY11] [ABP+17]. Furthermore, there is
ongoing co-processor acceleration research [AKPA17] [PBDS17] for the combi-
nation of these both processing types, called hybrid transactional/analytical
processing (HTAP).

However, GPU-accelerated computing involves a significant challenge: the
memory size of a GPU is limited to several gigabytes and is often smaller than
the data to process, while the main memory nowadays can consist of hundreds
of gigabytes. Storage of the whole data on the GPU can be very beneficial,
since it eliminates overheads introduced by transferring the data to the GPU
and back. Unfortunately, today’s device memory capacity is far too limited to
hold real-world databases completely. Even high-end GPUs like Nvidia Titan
Xp and Nvidia Tesla V100, released in 2017, have 12 GB and 16 GB of memory
correspondingly, which does not even come close to the amount of RAM that
can be installed on a server machine. Hence, there is the need for strategies
considering the fact that the database can only be partially moved to the GPU.

Usually, there is no shared memory between a CPU and a GPU, since their
memory spaces are physically separated. The data has to be transferred from
the host to the device memory over the PCI-E bus, whose bandwidth is much
smaller than the GPU memory bandwidth. This problem, however, is getting
less severe as bandwidths are getting higher. For instance, PCI-E 4.0, available
since 2017, provides a bandwidth of 32 GB/s which is two times higher than the
bandwidth of PCI-E 3.0 (16 GB/s) that is likely installed on current machines.
PCI-E 5.0, which is planned to be released in 2019, is expected to further
double the bandwidth, reaching 64 GB/s. Clearly, PCI-E 6.0 is on the horizon
reducing the transferred bottleneck by even more increased bandwidth. In the

4.1. Background 63

long run, we are optimistic that it is only a matter of time until both capacity
limitations and transfer bandwidth problems degenerate to insignificance due
to advantages in technological development. However, unless these issues are
removed, both must be considered for memory management in a heterogeneous
database system consisting of both CPU and GPU.

In the last decade, the research community suggested a variety of solutions
to face these issues, e.g. splitting data into chunks or storing it in pinned
host memory. In this chapter, we survey the state of the art in GPU memory
management, providing insights into how different approaches attempt to
approximate an ideal GPU memory management model, that should be able
to i) allow for GPU memory oversubscription, ii) utilize the GPU efficiently by
overlapping transfers and computations, hence minimizing the idle time of the
GPU iii) avoid unnecessary transfers via the PCI-E bus and iv) keep the data
coherent.

The remainder of the chapter is structured as follows. Section 4.1 provides
some information about GPUs’ architecture and execution model, that is neces-
sary for understanding the rest of this chapter. The existing basic approaches
for GPU memory management are described in Section 4.2 along with their
advantages, disadvantages, and details of their implementations in different
systems. Section 4.3 compares the approaches and discusses how their proper-
ties help to face different challenges. Finally, Section 4.4 concludes the chapter
by summarizing the described techniques.

4.1 Background

In this section, we provide background to GPU memory types (Section 4.1.1),
SIMD-fashioned thread execution (Section 4.1.2), and bring both together to
summarize the programming and execution models of GPUs (Section 4.1.3).

4.1.1 GPU Memory Types

Each thread, or work item, has its own registers and local memory that is
visible only to this thread. Threads are grouped into thread blocks or work
groups, where each thread block has its own shared memory that is visible to
all threads within a block and can be used for communication between threads.
Blocks themselves are grouped into a grid. In contrast to the other memory
types, global, constant, and texture memories are shared across all thread
blocks. The number of threads per block and blocks per grid is defined by the
programmer.

The right choice of memory types can have a significant impact on the per-
formance and increase the speed of memory operations. However, the choice
between memory types has smaller impact on the problem of limited GPU mem-
ory for co-processing. Therefore, in the techniques’ description in Section 4.2
we assume that global memory is used, unless specified otherwise.

64 4. Memory Management in GPU/CPU Systems

4.1.2 SIMD-fashioned Thread Execution

GPU threads are executed in warps - batches of 32 threads each - which fetch
data from memory together. To optimize executing behavior by exploiting spa-
tial locality of memory accesses, threads within a warp should access sequential
blocks of memory. This way, reads from global memory are performed as few
transactions as possible. This access behavior is called coalesced memory
access. Moreover, to avoid a loss in performance, all threads in a warp should
follow the same path in case of if-else statements.

To sum up, CPUs are designed to perform a few complex tasks at a time, and
GPUs are good at performing one small task on many units of data. The latter is
referred to as data parallelism - the case when the same operation is performed
by threads on different units of data. OLAP queries are usually well suited
for the GPU processing style, since they require applying the same operation
to a lot of fields. For instance, ranking users visiting a website, grouped by
their residence, requires reading fields in every tuple of a table that stores the
visitors’ data. OLTP, however, runs many small and different tasks (e.g., small
insert, update, and delete operations), therefore usage of GPUs for OLTP might
be challenging. Additionally, OLTP queries, unlike OLAP ones, change the data,
and thus a good synchronization mechanism is required.

4.1.3 Programming and Execution Models of GPUs

A program executed on a GPU (device) is called a kernel, it performs operations
on one element of the data and forms a basic unit of parallelism. A kernel
is invocated by a CPU (host), but cannot be controlled by the CPU after the
invocation and cannot communicate with other kernels that are executed on
the GPU. In case of query processing, a data element can be represented by one
value of an attribute, by a tuple (in row-wise storage), a column (in column-wise
storage), or by a whole table. Obviously, the latter does not allow to exploit the
GPU efficiently, because it leads to a set of operations being performed by one
thread on a very large chunk of data.

A GPU needs to communicate with the CPU through the PCI-Express (PCI-E)
bus, whose bandwidth is much lower than the bandwidth of the GPU memory.
This difference limits the performance by causing a bandwidth bottleneck, and
often [GH11] data transfer takes much more time than processing of this data.

The data to process is either sent to the GPU prior to the kernel execution,
or the GPU directly accesses pinned CPU memory during the execution. In
general, there are two memory management models: programmer-managed
GPU memory and pinned host memory [KLJK14]. Programmer-managed GPU
memory consists of the following steps:

1. Allocating memory blocks of GPU, that are big enough to contain the input
and output data.

4.2. GPU Memory Management 65

2. Transferring the data to GPU over the PCI-E bus.

3. Calling kernels that perform operations on the data.

4. After the execution is finished, transferring the output back to the host.

The memory blocks, allocated on the GPU, should be small enough to fit into
the device memory. In case the size of the data is larger than the GPU memory,
the data should be split into several blocks, that are small enough to fit into
memory.

Usage of pinned memory allows GPU to directly access the data in the main
memory, without the need to transfer all the data to the device prior to kernel
execution. Transfers to GPU are overlapped with the execution and performed
on-demand and implicitly, therefore the data size is limited only by the main
memory size. The two resulting memory management models are explained in
details in the next section.

The most popular frameworks for GPU programming are CUDA and OpenCL.
OpenCL (Open Computing Language) is an open standard for parallel pro-
gramming of heterogeneous systems and is supported by several platforms,
including Nvidia, AMD and Intel. CUDA is a parallel computing platform and
programming model which supports only Nvidia GPUs.

4.2 GPU Memory Management

As mentioned in the previous section, approaches used to manage GPU memory
can broadly be classified into the divide-and-conquer approach (Section 4.2.1)
and usage of pinned CPU memory (Section 4.2.2). Unified Virtual Addressing
(Section 4.2.3) and Unified Memory (Section 4.2.4) extend these approaches by
simplifying their usage and, in case of Unified Memory, making data transfers
transparent to the user. This section describes these approaches and discusses
their benefits and drawbacks.

4.2.1 Divide-and-Conquer (D&C)

The divide-and-conquer approach is used in systems like GPUQP [HLY+09] and
MultiQx-GPU [WZY+14] to manage GPU memory.

When a system is issued with a query (e.g., a selection), the data is split into
multiple chunks, which are sent to the GPU and processed there separately.
Once a chunk is fully transferred to the GPU, the kernel is started for this chunk.
After the kernel execution is finished for all the data elements, the result for
the processed chunk is copied back from the GPU global memory to the main
memory and is stored there until the results for all the chunks are returned.
This process is repeated for each of the chunks, and the memory, taken by

66 4. Memory Management in GPU/CPU Systems

previous chunks and their results, is either overwritten or freed beforehand
in order to make enough space in the GPU memory for the new chunks. The
process ends when the execution is finished for all the chunks. All the partial
results are then merged in the main memory, e.g. the union of the results is
performed.

Divide-and-conquer approaches can be divided into serial and asynchronous
processing. In serial processing a data chunk is transferred to the GPU, a query
is executed over this data, and the result is transferred back to the CPU. Then,
the next chunk is transferred and processed. Figure 4.1 illustrates the process
of transferring one data chunk and performing operations on it. As can be seen,
when processing occurs only after the whole chunk is transferred to the GPU, a
big amount of time is spent waiting for transfers, while the GPU remains idle.

Asynchronous processing, as shown in Figure 4.2, overlaps data transfers
with execution, so that data transfers occur when the kernel is executed. To
understand this overlapping capability, one must understand the term compute
capability. Compute capability is metric by Nvidia to give a statement on the
software/hardware feature set of a particular graphic card. The higher the
number of this metric is, the more advance the graphic card is, and, thus, the
more capabilities like transfer/execution overlapping is available.

Overlapping is possible on devices with compute capability ≥ 1.2, and devices
with compute capability ≥ 2.0 support bidirectional (host-to-device transfers
and device-to-host) simultaneous transfers occurring concurrently with compu-
tations 1.

Execution

Transfer

Figure 4.1: Serial processing; the second chunk is transferred only after the result of
the processing of the first chunk is returned.

Execution

Transfer

Figure 4.2: Asynchronous processing; the transfer of a chunk is overlapped with the
processing of the previous chunk.

The degree of overlap and the achieved gain in performance depend on many
factors, including the complexity of the kernel, chunk sizes and the GPU used for
computations. The biggest gain in performance can be achieved for workloads,

1OpenCL Best Practices Guide. Online at https://www.cs.cmu.edu/afs/cs/academic/class/
15668-s11/www/cudadoc/OpenCL_Best_Practices_Guide.pdf

4.2. GPU Memory Management 67

where equal amount of time is spent for data transfer and data processing. In
some cases [BC12], asynchronous processing of data is reported to be not much
faster than serial transfers, however, in other cases [WZH09] [SSM14] a better
performance is achieved, when transfers and executions occur concurrently. In
fact, even in the worst scenario, when no overlap at all occurs, the performance
would be the same as if the chunks were transferred and processed serially.
Therefore, the rule of thumb is to process the data asynchronously, as in the
worst case there would simply be no speedup compared to the serial processing.

Benefits and Drawbacks

Although divide-and-conquer is a simple and straightforward approach, that
allows to process the data resident in the fast GPU memory, it has several
drawbacks.

First of all, the size of a chunk should be big enough to utilize GPUs efficiently,
but small enough to not cause a memory overflow. Selecting the right chunk
size or adjusting the current size considering the amount of available GPU
memory might be a difficult problem. Second, since the GPU works with a
copy of the data rather than with the original data stored in the main memory,
explicit synchronization is required when the data is changed.

Usage in DBMS

Ideally, the data should be split in a way that allows to utilize the GPU efficiently,
without keeping the GPU idle or producing unnecessary intermediate results.
Some systems [WZY+14] simply divide the data into equally sized chunks, that
are small enough to fit into the GPU memory, transfer them to the GPU, process
the data and transfer the result back to the host, where all the partial results
are merged later.

GPUQP [HLY+09] divides an operator into multiple independent suboperators,
the amount of memory used by a suboperator executing on GPU is limited by
the amount of available GPU memory. After the splitting, suboperators are
executed either on CPU or on GPU, and the results are merged on the CPU.

In MultiQx-GPU [WZY+14] a table is partitioned into data chunks that are then
passed from one operator to another. HippogriffDB [LTL+16] processes chunks
asynchronously and, like MultiQx-GPU, passes them between operators.

Chen et al. [CQD+13] use a job scheduler to calculate the maximum feasible
data size for the GPU and adjusts it to optimize the usage of GPU memory.
Initially, the data size is small enough to not lead to memory overflow, and it
is increased in order to utilize the GPU efficiently. Before an operation is run
on GPU, the job scheduler checks whether it can overflow the GPU memory
and, if so, keeps the operation blocked until enough memory is available. Since
blocking decreases performance due to underutilization of the GPU, the size of
the data is rolled back to the previous value to avoid further overflows.

68 4. Memory Management in GPU/CPU Systems

Overlapping Transfers and Executions in CUDA and OpenCL

In CUDA, to overlap kernel executions with data transfers, several streams
should be created using the cudaStream_t type. Then, the three following
steps are performed iteratively, where the number of iterations equals the
number of streams:

1. The cudaMemcpyAsync function is used to copy a data chunk to the device.

2. A kernel is launched.

3. The data is copied back to the host using the cudaMemcpyAsync function.

These steps can also be performed in three separate cycles, i.e. first all the
N chunks are copied to the device, then the kernel is launched N times, and
finally the chunks are copied back to the device. The performance of the two
options might differ and depends on the utilized GPU. If the GPU has only
one copy engine, the first option might have the same performance as the
serial processing, because tasks are issued in the order, that does not allow
to achieve any overlap. Two copy engines allow to perform host-to-device and
device-to-host transfers at the same time, which leads to a high degree of
overlap. For devices with compute capability 3.5 both options lead to the same
performance 2.

The number of streams does not need to be too large. Shirabata et al. [SSM14]
use three CUDA streams in order to efficiently overlap data transfers to the
device, kernel execution, and transfers back to the host. Wu et al. [WZH09]
report, that the best performance is achieved while using two streams, and
increasing their number does not provide any additional gain in performance.

In OpenCL asynchronous processing is achieved by creating several command
queues. The main steps, when two command queues are used, are as follows:

1. The first chunk is transferred to the GPU using the clEnqueueWriteBuffer
function for the first command queue.

2. A kernel for the first chunk is launched.

3. The second chunk is sent to the GPU using the clEnqueueWriteBuffer
function for the second command queue.

4. The kernel for the second chunk is launched.

5. The first chunk is copied back to the host using the clEnqueueReadBuffer
function.

2How to overlap data transfers in CUDA C/C++. Online at
https://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/

4.2. GPU Memory Management 69

6. The second chunk is copied back to the host using the clEnqueueReadBuffer
function.

To ensure, that commands are performed in the right order (e.g. the kernel is
not launcher before the data is transferred), either clFlush or events need to
be used.

4.2.2 Mapped Memory (MM)

By default, memory allocated on CPU is pageable, i.e., it can be swapped out
to the disk. GPU cannot access the data directly from pageable host memory,
which means that first a temporary page-locked (or pinned) host array must
be allocated, and the data should be copied to this array. Then the data is
transferred from the pinned array to the device memory.

When mapped memory is used, a portion of main memory is mapped onto GPU,
and this memory is then declared as pinned (i.e. guaranteed to be at a certain
location). A kernel then can directly access the pinned data in the main memory,
however, data transfers are still performed implicitly and are automatically
overlapped with kernel execution. The accessed data is transferred directly
to local memory of threads, as shown on Figure 4.3, without using the GPU’s
global memory as an intermediate step.

By default, no guarantee of coherence is provided, e.g. the host can access
the content of the pinned memory, while the device processes it. This can be
beneficial when read-only operations are performed either by the CPU, the
GPU or by both devices, because no device has to wait until the other device
finishes the execution. However, it is necessary to ensure coherence when both
the CPU and the GPU change the data stored in the pinned memory.

Execution

GPU registers /
local memory

GPU global memory

main memory

Figure 4.3: Mapped memory; the data goes directly from the main memory to the
GPU’s local memory during the execution.

When a system receives a query, the kernel is simply run for all the data, as if
it was small enough for the GPU memory. The result can either be transferred
to a block of pinned memory or, if enough GPU memory is available, be stored
directly on the GPU and transferred to the main memory, when the execution
is finished.

70 4. Memory Management in GPU/CPU Systems

Benefits and Drawbacks

Despite the benefits of mapped memory, its usage does not always speed up
the execution. Allocation and deallocation of pinned memory is more expensive
than simply copying the data, therefore usage of mapped memory might not be
beneficial for a small amount of data. Additionally, transferring the data over
the PCI-E bus takes more time than reading the data from the GPU’s global
memory. Therefore, usage of mapped memory is not recommended when host
memory is accessed repeatedly [NSLS14].

One must note that allocating pinned memory reduces the amount of physical
memory available to the system, which might have negative impact on the
performance.

Mapped memory is used in the systems described in [BC12] and [YLZ13],
and is reported [BC12] to be faster than the divide-and-conquer approach.
Additionally, [YLZ13] states, that usage of mapped memory leads to higher
transfer bandwidth compared to the usage of pageable memory, because data
is directly transferred using GPU DMA engine without the overhead of being
copied to a pinned buffer first.

Considering the properties of mapped memory, one can conclude, that its usage
is beneficial in cases, when the data is big enough, and a small portion of it
is accessed by the GPU without a lot of repetitions. If a lot of computations
need to be performed on the data, it is better to move it explicitly to the GPU
memory.

Usage in DBMS

Due to the GPU processing style, the best performance can be achieved if the
data in the main memory accessed by GPU is coalesced. To make writing the
result of the execution back to mapped memory coalesced as well, Bakkum and
Chakradhar [BC12] use a two-step procedure:

1. The atomicAdd operation (an atomic operation, that is ensured to write a
value to the given location without any interference from other threads)
is used to give each thread of a block an area in shared memory, where it
will write the result. The number of rows that should be written to the
result block is counted, and a block of global memory is allocated for the
result of this thread block.

2. Each thread writes to the area assigned to it. The data is ensured to be
written to global memory by using the threadfence function and counting
the writes. When an area, allocated for a thread block, is filled with the
output data, each thread copies the data from this area to the mapped
memory.

4.2. GPU Memory Management 71

CPU GPU

0x0000 0xFFFF

Figure 4.4: Unified Virtual Addressing: shared address space for CPU and GPU

4.2.3 Unified Virtual Addressing (UVA)

Unified Virtual Addressing (UVA) is supported by CUDA starting from the
version 4.0 and requires a Fermi-class GPU with compute capability 2.0 or
higher. This technique is used in Caldera [AKPA17] - a database engine for
HTAP. UVA allows to have identical host and device pointers for pinned host
memory (Figure 4.4), so that the pointers can be accessed from the GPU no
matter where the data really resides.

The location of the data is determined from the value of a pointer, therefore
explicitly requesting the device pointer with cudaHostGetDevicePointer is no
longer necessary. Copies from one device to another can be performed without
using the host (CPU) as an intermediate stage, data stored on one GPU can
directly be accessed by a different GPU. The CPU, however, still can not access
the data that resides on a GPU.

Benefits and Drawbacks

UVA, in general, has the same benefits and drawbacks as mapped memory. The
speed of memory accesses in UVA depends on where the data resides: in the
GPU or the main memory. Therefore, it would be beneficial to store the most
frequently accessed data in the GPU memory.

4.2.4 Unified Memory (UM)

CUDA 6.0 introduces Unified Memory (UM), which is supported starting with
the Kepler GPU architecture and requires compute capability 3.0 or higher.
UM further simplifies programming by automatically managing device memory
allocations and data transfers. The concept of UM is shown in Figure 4.5.
UM allows to access the memory of both CPU and GPU using a single pointer
and, unlike UVA, initially allocates managed memory on GPU and automati-
cally migrates the allocated data between GPU and CPU. By default, the size
of transferred pages are the same as the OS page size (4KB) [NSLS14]. A
programmer, however, is still able to manage memory allocations and data
transfers explicitly.

72 4. Memory Management in GPU/CPU Systems

To keep the data coherent, the host and the device are not allowed to operate
on the same memory at the same time. As long as the GPU is executing
a kernel, the CPU cannot access the managed memory, and an explicit call
of any of the functions, that guarantee that the execution is finished (e.g.
cudaDeviceSynchronize), is required.

CPU GPU

Unified memory

Figure 4.5: Unified Memory; the data migrates to the device that accesses it.

Besides migrating the data, UM eliminates the necessity to create deep copies
of structures, that contain pointers, before passing them to the GPU. Addi-
tionally, UM makes it possible to share linked lists (lists, where each element
contains a pointer to the next and/or previous element) between CPU and GPU,
whereas, when pageable memory is used, passing a linked list to GPU requires
complex operations.

Benefits and Drawbacks

A big disadvantage of UM used with CUDA 6.0 and Kepler architecture is that is
does not allow to oversubscribe the GPU memory: the maximum amount of the
memory, that can be allocated, is limited to the smallest of the available device
memories. CUDA 8.0 and the Pascal architecture eliminates this limitation,
allowing to use the entire system memory.

UM simplifies memory management and provides the benefit of UVA: one single
pointer to the data. Memory accesses in UM are faster than in case of UVA
or mapped memory, because the data resides on the device that processes
it. However, overlapping transfers and executions has to be enabled by the
programmer by using several streams.

Although UM makes programming easier, it does not always lead to a significant
performance improvement [NSLS14], and, in some cases [LZCH14], is greatly
outperformed by a non-UM approach, where the data is transferred to the GPU
prior to the execution.

4.2.5 Other Solutions

Some systems use the fallback strategy: if the data is too big for the GPU, it
is processed on the CPU instead. CoGaDB [Bre14] stores table’s columns on
the GPU, but operators also require additional memory for their results and

4.3. Bringing It All Together 73

temporary data. In case of memory overflow, CoGaDB first removes cached
data from GPU and then, if the available memory is still insufficient, aborts
the operator and processes the data on CPU. Clearly, aborting an operator is
expensive, and there are two alternatives: pre-allocate enough memory for
the operator or wait until enough GPU memory is available. The first option,
however, might allocate more memory than the operator actually needs, and
therefore unnecessarily reduce the amount of the available GPU memory. The
second option might involve significant waiting time, or the required amount of
memory might never become available.

Some other systems [HSP+13] [Mos13] store only some data on the GPU, e.g.
the most frequently or the most recently accessed columns. TripleID [CCHG15]
minimizes the GPU memory usage by storing identifiers instead of elements
themselves and avoiding storage of redundant data.

Another option is to compress the data [Sit16]. Although even the compressed
data might still be too large for the GPU memory, compression allows for faster
data transfers [LTL+16].

4.3 Bringing It All Together

Table 4.1 on page 75 contains a comparison of main characteristics of the
divide-and-conquer approach, mapped memory, UVA and UM. When selecting
a technique that would allow to achieve the best performance in a given case,
it is important to consider the following:

Data location

The main copy of the data can either reside in main memory, in the GPU
memory, or be shared between both devices.

For the divide-and-conquer approach and mapped memory the data initially
resides in main memory. In case of the divide-and-conquer approach it is fully
transferred to the GPU for processing, while usage of mapped memory allows
to transfer the data only when it is accessed. In UVA the data can be stored in
both the main memory and the GPU memory, in UM the data is transferred to
and becomes resident on the device that accesses it.

Asynchronous processing

Data chunks can be processed either sequentially or asynchronously. The divide-
and-conquer approach allows to overlap data transfers and kernel executions,
with mapped memory and UVA (when the data is in the main memory) it
happens automatically. UM does not provide an overlap by default, but allows
it to be implemented by a programmer.

74 4. Memory Management in GPU/CPU Systems

Explicit allocations and transfers

Generally, only the divide-and-conquer approach requires explicit memory
allocations and data transfers, e.g. the size of a data chunk should be defined
and enough memory for it should be allocated on the GPU.

Synchronization

When the data is sent to the GPU for processing, and the GPU changes the
data, it is necessary to also apply these changes to the data that resides in
main memory.

Unlike other approaches, which work with only one copy of the data, the
divide-and-conquer approach requires synchronization.

Explicit coherence maintenance

The situation, when the CPU and the GPU work with the same data at the same
time should be avoided, because it might lead to one of the devices processing
data that is no longer valid.

The divide-and-conquer approach sends a copy of the data to the GPU, thus
this data cannot be changed by the CPU. UM blocks access to the data from
the CPU, while a kernel is being executed. Mapped memory and UVA require
the programmer to manually ensure the data coherence.

Unnecessary data transfers

Sometimes only a small part of a table is accessed by a kernel, which removes
the need to transfer all the data to the GPU.

While with mapped memory, UVA and UM the accessed data is transferred
on-demand, the divide-and-conquer approach might suffer from transferring a
lot of data that is never accessed and therefore not needed.

Unified address space

UVA and UM allow the GPU to access the data using one single pointer inde-
pendently of the data’s physical location. The divide-and-conquer approach
and mapped memory do not provide such benefit.

4.3. Bringing It All Together 75

D&C MM UVA UM

1 main memory main memory both migrating
2 overlapped overlapped overlapped distinct
3 required not required not required not required
4 required not required not required not required
5 not required required required not required
6 not avoided avoided avoided avoided
7 distinct distinct unified unified
8 fast slow location depending fast
9 not allowed allowed not allowed allowed (CUDA 8+)

Table 4.1: Comparison of the approaches. 1 = Data location, 2 = Transfers/executions,
3 = Explicit allocations/transfers, 4 = Synchronization, 5 = Coherence maintenance, 6
= Unnecessary data transfers, 7 = address space, Memory accesses speed, Memory
oversubscription, D& C = divide-and-conquer, MM = mapped memory, UVA = Unified
Virtual Addressing, UM = Unified Memory

Speed of memory accesses

The location of the data determines how quickly this data can be accessed by a
thread: when the data resides in the fast GPU memory, the speed of memory
accesses is much higher, than if it needs to travel through PCI-E bus first.

The divide-and-conquer approach and UM use the fast GPU memory, since the
data accessed by the GPU is located in the GPU memory. Mapped memory
requires the data to be transferred over the PCI-E bus every time it is accessed,
which makes the access speed slow. In UVA the speed depends on the physical
location of the data.

Memory Oversubscription

Allocating more memory than physically available without running into out-of-
memory error situations, such as memory overflow, is a convenience method
in nowadays programming. This act behind this method is called memory
oversubscription.

In case of mapped memory, no memory overflow can occur, since the data is
transferred only when accessed by a thread. UM, starting from CUDA 8.0,
allows to oversubscribe the GPU memory. Usage of the divide-and-conquer
approach and UVA (for the data in the GPU memory) requires to be aware of
the GPU memory size and adjust the data size accordingly.

76 4. Memory Management in GPU/CPU Systems

4.4 Summary

As one might see, no technique for GPU memory management is the ultimately
best, and the choice of the right one for a particular application should be
influenced by multiple factors, e.g. the pattern and the type of access to the
data.

The divide-and-conquer approach is well suited for situations, when a table
either is not changed by the GPU (OLAP case) or is handled by the GPU
exclusively, else a synchronization mechanism would be necessary. However, it
requires explicit memory management.

Mapped memory is good for situations, when the data is big, each data element
is accessed only once and the accesses are coalesced. A lot of repeated and/or
uncoalesced accesses lead to a performance drop. The same applies to UVA,
when the GPU is working with data that is located in the main memory.

UM significantly simplifies the programming by removing the need to transfer
the data and maintain coherence explicitly. From the simplicity perspective,
UM surpasses other approaches. However, the performance might suffer in
cases, where the same data is accessed often by both the CPU and the GPU.

Chapter 5

Column vs. Row Stores for
CPU/GPU Database Systems

The following chapter is an extended version of

Iya Arefyeva, David Broneske, Marcus Pinnecke, Mudit Bhatnagar, and
Gunter Saake. Column vs. Row Stores for Data Manipulation in Hardware
Oblivious CPU/GPU Database Systems. In Workshop on Grundlagen von
Datenbanken. (pp. 24-29)., 2017

78 5. Column vs. Row Stores for CPU/GPU Database Systems

Introduction

Based on the insight that graphics cards are understudied as storage medium
for HTAP workloads more earlier in this dissertation, we focused on memory
management strategies considering graphic cards as storage medium in the
previous chapter. In conclusion, we argued that different strategies work best,
and that a selection of the best strategy is context-dependent, e.g., driven by
the data access pattern requirements. However, besides the pure memory
management in terms of using the graphic card as a storage medium, the data
layout has also to be considered as well. This chapter is about investigating
columnar and row-wise storage for graphic cards as storage medium for HTAP-
powered CPU/GPU database systems.

In the literature, there is a big debate about the best storage model for main-
memory online transaction processing (OLTP) [BHS+14b, PBDS17]. The most
well-known solution is a delta store [SFL+12] that is optimized for insertions
relying on a row-wise storage of inserted tuples. In fact, since inserts and
deletes work on all attributes of the tuple, a row-wise storage structure is best
suited for these operations. In contrast, updates that involve a smaller number
of attributes could perform better with a column-wise storage.

Considering the usage of co-processors (e.g., GPUs), several researchers [BS10b,
Bre14, HLY+09, HY11] argue for employing a column-wise storage as well, be-
cause a column store

• allows coalesced memory access, which is especially important for GPUs
• has a better compression rate, allowing for more data to be stored in the

limited device memory
• can reduce the amount of data to be transferred if only a subset of the

columns is needed

However, the main field of application for co-processors is online analytical
processing (OLAP)1. As a result, it is still unclear what the break-even points
between a row-wise and a column-wise storage for co-processor-accelerated
OLTP are.

In this chapter, we investigate the favored storage model for inserts, updates,
and projections on the TPC-C benchmark for a CPU/GPU system implemented
in OpenCL. This builds the basis for further research to state whether column
or row stores should be used for co-processor-accelerated OLTP. In particular,
we contribute:

• a description of data structures for a column or row store for co-processor
acceleration (Section 5.1.1)

• implementation details of OLTP operators in OpenCL (Section 5.1.2)
• a first proof-of-concept by evaluating the framework for inserts, updates,

and projections (Section 5.2)

We end this chapter with a conclusion and future extensions in Section 5.3.

1Although GPUTx is an OLTP-centric system using also a column store, there is no evidence
whether a row store would hinder transaction processing.

5.1. Storage Model Implementation 79

5.1 Storage Model Implementation

In this section, we present the design choices that were taken to implement a
column and row store. To this end, we first introduce the data structures that
represent the column and row store. Second, we describe how to implement
inserts, updates and projections in a row and column store using OpenCL.

5.1.1 Data structures

In a row store implementation all values of a tuple are stored next to each
other in a contiguous block of memory, followed by the next tuple’s values. One
implementation of the row store which enables efficient data access is to store
the data in an array of type char. The length of each attribute’s value is fixed
and set to the maximum allowed length for this attribute. Therefore, all values
of an attribute, regardless of their actual sizes, occupy equal number of bytes.
To access an attribute of a tuple, an array of offsets containing the position
of each attribute within a tuple has to be passed to the operator. In this way,
the operators’ implementation is independent of the table schema. Thus, the
complete table is represented as a char array of size N ∗ size_of_a_tuple, where
N is the number of entries.

In a column store, all the values of a column are stored together in one block
of memory. To implement this in C++, each column can be represented as a
vector containing all the values from the column, thus, each column’s values
are stored in a contiguous block of memory. Then the complete table can be
represented as an instance of a structure that contains all the vectors.

5.1.2 Operator implementation in OpenCL

OpenCL (Open Computing Language) is an open standard for parallel hetero-
geneous computing, that can be used with CPUs, GPUs and other devices from
different vendors.

We implemented three operators using OpenCL: insert, update and projection
as these operators can be considered as the basic transactional operators.

The insert operator will add a new records with values for all fields to a table.
In context of transactional workloads, the number of records inserted to a table
on a regular basis is typically quite small compared to the number of records
already stored in the table. Clearly, this is in contrast to the analytical scenario
in which bulk insertions are more frequent.

The update operator will modify some field value of some records that satisfies
the update criteria. In contrast to analytical workloads where an update may
affect the majority of stored records, the update operation in transactional
workloads typically affect the minority of stored records.

80 5. Column vs. Row Stores for CPU/GPU Database Systems

Finally, the projection operator selects a subset of field values available in
query result set to minimize data amount that has to be transferred from the
database system to its client. From a technical perspective, projections favor
columnar storage as field values that are not of interest can be just ignored. In
a columnar storage system, the projection can be almost a zero-cost operation.
This is in contrast to row-wise storage systems where projection to a subset of
fields in an actual piece of work as the values have to be actively copied out of
the record into the destination representation of that record.

In sum, for HTAP both, columnar and row-wise storage, is reasonable when
the workload at hand is more analytical resp. more transactional centric. For
graphic cards, however, it is less known how row-wise storage compares to
columnar storage when focusing on transactional centric HTAP workloads.
Hence, we evaluate on both record layout type for transactional access pattern
to gain more insights.

The basic methodology behind the implementation of all three operators is
the same with changes in input and output data, as well as the operations
performed on the data.

• Insert. The input data of the insert operator consists of a table with T
entries, where T is the number of tuples to be inserted. For the output
table the same amount of memory is allocated as for the input table. The
operator copies fields from the input table to the corresponding fields in
the output table.

• Update. The input data consists of the initial table and a list of positions
that should be updated. Attributes that have numeric type, are increased
by 10; text fields get rewritten and replaced by the same data. The
operator returns the updated table.

• Projection. As input, this operator accepts the initial table and the list
of positions of rows, that should be returned, the output data consists of
K entries, where K is the number of queries. The operator materializes
the attributes of the selected tuples according to their position and writes
them to the output data.

In the implementation, the kernels (programs executed on OpenCL devices)
for the row store are different from the kernels for the column store, since we
use different data structures to represent the tables. For the column store,
we implemented a separate kernel for each attribute type. In the row store
there is only one kernel that is responsible for performing operations on all the
attributes.

Row Store Functions In the listing depicted in Figure 5.1, we show the
functions that we used to access single fields or to store data, from inside the
row store kernels. The array offsets contains the position of each attribute’s
value in a tuple, where the first element of the array is always 0 and the last

5.2. Evaluation 81

1 global char *read_value(global char *data, int tuple_position, int field, global int
offsets[], int num_of_attributes) {

2 int tuple_size = offsets[num_of_attributes];
3 global char *offset = data + tuple_position * tuple_size;
4 offset += offsets[field];
5 return offset;
6 }
7
8 global void write_value(global char *data, int tuple_position, char *value, int field,

global int offsets[], int num_of_attributes) {
9 int tuple_size = offsets[num_of_attributes];

10 global char *offset = data + tuple_position * tuple_size;
11 offset += offsets[field];
12 memcpy(offset, value, (offsets[field+1] − offsets[field]));
13 }

Figure 5.1: Functions to access or write a value, given its position

element represents the size of one tuple in bytes. Therefore, the size of this
array equals number_of_attributes + 1 and can be used to get a tuple’s size
(lines 2, 9) and to compute the size of an attribute (line 12).

The function read_value is used to get a pointer to an element. The pointer
to the tuple that contains this element is computed by adding one tuple’s size
multiplied by the tuple’s position (the number of the row) to the pointer to
the first element of the whole table (line 3). Then the offset for the required
attribute is added to this pointer (line 4).

In the function write_value the element’s position is computed in exactly the
same way. After this step, the new value is written to this position by copying2

the number of bytes that the value’s type takes (line 12).

The whole operator implementation is using the global_ID in order to determine
the position of the value that has to be manipulated. Afterwards, the functions
read_value and write_value are used to perform data manipulation at the
specified positions according to the three operators.

Column Store Functions The column store implementation is straight-forward.
For each attribute type, there is a kernel that retrieves its global_ID. The
global_ID is then used to determine the array position of the data to be manip-
ulated or retrieved.

5.2 Evaluation

The evaluation investigates how the number of tuples affects the query execu-
tion on both, the device and the host, for both columnar and row-wise storage
including and excluding data transfer costs (Section 5.2.1 resp. Section 5.2.2)

2The OpenCL language does not provide the function memcpy, thus, it has to be implemented
manually and added to the kernel.

82 5. Column vs. Row Stores for CPU/GPU Database Systems

as well as the number of tuples affects the query execution time when only a
fraction of different columns are required (Section 5.2.3). The latter considers
the update and projection operator, while the former includes insert operators
by exchange of the projection operator. We chose this design as insertions
of tuples always require all fields, while updates and projections are typically
operate on a small subset of fields.

From an expectation point of view on the storage layout, inserts are expected
to perform better for row-wise storage. The argument is that they are an
append-operation without the need of decomposition as in columnar storage.
In contrast, update and projection operations are expected to favor columnar
storage the wider a the table is and the less columns are included in the
operation. The argument is that no additional work is needed to select the
column subset in a columnar storage layout as this is an active work for row-
wise storage. From an expectation point of view on the data location, the host
is expected to be favored when only a small amount of tuples is of interest. The
argument is that the communication overhead with the graphic card becomes
more an issue the less compute power is needed to complete the operation. For
instance, updating a single field in a single record can be such cheap on the
host that data movement from the graphic card into the main memory for the
same is just additional work that does not payoff. Clearly, it is less clear what
the outcome is when both, the storage layout and the data location, interferes
with each other, and whether there are break-even points driven by the table
size and column selection number that change the dominating combination of
storage layout and the data location for particular operations. The investigation
focus exactly on both points of interest: interferes and affect of data size with
the options of different storage layouts and data locations.

The operators were evaluated on the CUSTOMER table from the TPC-C bench-
mark [TPPC] with changes in sizes of some of the text fields. The table’s entries
consist of 21 attributes, 5 of them are integer numbers, 4 are floating point
numbers and 12 attributes are text variables of different length. Both integer
and floating point numbers are occupying 4 bytes, the full size of one tuple is
203 bytes. For the experiments we used 30000 entries and the execution time
for all the experiments was averaged over 20 runs.

We executed the operators on CPU and GPU using OpenCL for both device
executions and we measured the execution time in milliseconds for different
number of queries and the following combinations: (i) CPU and row store, (ii)
CPU and column store, (iii) GPU and row store, and (iv) GPU and column store.

In the evaluation, we used a machine with the following configurations: CPU:
Intel(R) Core(TM) i5-2500 @3.30 GHz with a NVIDIA GeForce GT 640 GPU and
OpenCL 1.2.

5.2. Evaluation 83

1k 2.5k 5k 7.5k 10k 12.5k 15k
0

10

20

Number of Inserted Tuples

R
e
sp

o
n

se
T

im
e

in
m

s

CPU & Row Store CPU & Column Store

GPU & Row Store GPU & Column Store

Figure 5.2: Execution time for insert operator (incl. transfer time)

1k 5k 10k 20k 30k 40k 50k 60k 70k 80k

5

10

15

Number of Tuples

R
e
sp

o
n

se
T

im
e

in
m

s

CPU & Row Store CPU & Column Store

GPU & Row Store GPU & Column Store

Figure 5.3: Execution time for update operator (incl. transfer time)

1k 5k 10k 20k 30k 40k 50k 60k 70k 80k

0

50

100

Number of Tuples

R
e
sp

o
n

se
T

im
e

in
m

s

CPU & Row Store CPU & Column Store

GPU & Row Store GPU & Column Store

Figure 5.4: Execution time for projection operator (incl. transfer time)

84 5. Column vs. Row Stores for CPU/GPU Database Systems

1k 2.5k 5k 7.5k 10k

0

2

4

6

8

Number of Tuples

R
e
sp

o
n

se
T

im
e

in
m

s

CPU & Row Store CPU & Column Store

GPU & Row Store GPU & Column Store

Figure 5.5: Execution time for insert operator (excl. transfer time)

5.2.1 Execution Time (Including Transfer Time)

In Figure 5.2-Figure 5.4, we show the execution time for the insert, update
and projection operators respectively including the time for data transfer3, but
excluding the time taken for generating the data and compiling the kernels.

One can note from the figures that for the operators insert and projection
(Figure 5.2 and Figure 5.4) the CPU shows the best performance on high
numbers of queries independent of the storage model. However, the row store
performs better than the column store for inserts and projections on the CPU.
In contrast, the more data we insert or project, the more is the row store
outperformed by the column store on the GPU. Only for small batch sizes
(around few thousands of tuples), a row store storage is beneficial for the GPU.
In fact, CPU on a row store is on average 1.5 times faster than the second-best
combination (CPU on column store) and almost five times faster than the worst
performing combination (GPU on row store).

For the update operator (Figure 5.3), a column store (on both CPU and GPU)
outperforms a row store when the number of queries exceeds 25000, however,
for 1000 - 25000 queries CPU on row store is faster than the other combinations.
CPU and column store processes the data in average 1.5 times faster than GPU
and column store. The poor performance of the row store on a big number of
update queries is due to the data structure: numeric values are stored in the
array of type char, so changing these values and writing them back to the array
requires two type conversions for each value.

5.2.2 Execution Time (Excluding Transfer Time)

Figure 5.5-Figure 5.7 shows the time for executing the kernels only.

The general picture stays the same except for the following changes. For the
insert operator (Figure 5.5), CPU on row store is still 1.5 times faster than

3For GPU, we measured the time for transferring the data from CPU memory to GPU memory;
for CPU it’s the time for copying the data inside RAM.

5.2. Evaluation 85

1k 2.5k 5k 7.5k 10k
0

0.5

1

Number of Tuples

R
e
sp

o
n

se
T

im
e

in
m

s

CPU & Row Store CPU & Column Store

GPU & Row Store GPU & Column Store

Figure 5.6: Execution time for update operator (excl. transfer time)

CPU on column store, but for the project operator (Figure 5.7) row store gets
outperformed by column store.

In contrast to the execution time including the transfer time, for the update
operator (Figure 5.6) GPU on column store performs 1.4 times better than CPU.

Overall, the time to transfer the data to the device has an impact on the break-
even points that mark when a column-store operator is outperformed by a
row-store operator. However, for the evaluated operators, the transfer time is
not an exclusive criteria for using either of the storage models.

1k 5k 10k 15k 20k

0

10

20

Number of Tuples

R
e
sp

o
n

se
T

im
e

in
m

s

CPU & Row Store CPU & Column Store

GPU & Row Store GPU & Column Store

Figure 5.7: Execution time for projection operator (excl. transfer time)

5.2.3 Execution Time for Different Table Column Fractions

The execution time (including the transfer time) for different fractions of
the table’s columns was measured for the update and projection operations,
launching 50000 and 5000 queries respectively (Figure 5.8 and Figure 5.9),
since in real world applications it is rarely needed to update or return the
values for all the attributes.

For the update operator, column store has the best performance independent
from the number of attributes that are updated. However, for the projection

86 5. Column vs. Row Stores for CPU/GPU Database Systems

operator the picture is different. When all attributes are selected, CPU and row
store performs better than CPU and column store, the same can be observed
for GPU. With a decreasing number of attributes, it changes to the opposite:
column store shows better performance, because only the columns that need
to be returned are transferred. In case of row store, the whole table still needs
to be transferred, although only some attributes are processed.

0 20 40 60 80 100
0

5

10

15

Percentage of used Columns

R
e
sp

o
n

se
T

im
e

in
m

s

CPU & Row Store CPU & Column Store

GPU & Row Store GPU & Column Store

Figure 5.8: Execution time for
update operator for different fractions
of the table’s columns

0 20 40 60 80 100

0

5

10

Percentage of used Columns

R
e
sp

o
n

se
T

im
e

in
m

s
CPU & Row Store CPU & Column Store

GPU & Row Store GPU & Column Store

Figure 5.9: Execution time for
projection operator for different fractions
of the table’s columns

5.2.4 Evaluation Conclusion

To summarize the evaluation, we found three interesting facts:

1. Small batch sizes are good for a row store operator on the GPU.

2. For bigger batch sizes, row store operators fall behind the performance
of a column store implementation. This is due to a better coalescing when
parallelizing a column store operator on the GPU compared to a row store
operator, because it has to handle attributes of different sizes.

3. Transfer times only play a vital role for operators that work on a subset
of attributes. Hence, the best storage model for insert operators is
independent of the transfer time but only depends on the best coalescing
for the current implementation.

Still, the current implementation makes some assumptions that may hinder
the performance of the row store on the GPU. Especially inserts could be
implemented to allow for better coalescing. Currently, inserts work on the gran-
ularity of attributes (i.e., float values, integer values and even arrays of chars),
which inherently leads to changing offsets for the compute units on neighboring
values. As a consequence, the insert operator should be implemented to work
on a char granularity. Furthermore, the impact of code optimizations, such as
SIMD or loop unrolling, should be further explored [BBS15].

5.2. Evaluation 87

The selection of CPU and GPU for the experiments defines the point, at which
one combination is outperformed by a different one. However, the impact of
the hardware is expected to become less significant with increasing number of
queries.

88 5. Column vs. Row Stores for CPU/GPU Database Systems

5.3 Summary

Due to the different device properties and application scenarios, the best
storage model to be used can vary. In this chapter, we investigate the break-
even points for inserts, updates and projections in a hybrid CPU/GPU system.

Given the data structures and operator implementations in this chapter, the
results suggest that CPU performs best with a row store and GPU with a column
store for inserts and projections.

For update operations, a column store seems to be the best storage model for
both devices. However, the implementation still leaves some tuning opportuni-
ties for the row store open which could boost its performance beyond the one
of the column store on the GPU. This opportunity is left open for future work.

Chapter 6

Low-Latency GPU Transactions:
Dream or Reality?

The following chapter is an extended version of

Iya Arefyeva, Gabriel Campero Durand, Marcus Pinnecke, David Broneske,
and Gunter Saake. Low-Latency Transaction Execution on Graphics Pro-
cessors: Dream or Reality?. In International Workshop on Accelerating
Analytics and Data Management Systems Using Modern Processor and
Storage Architectures at VLDB, (pp. 16-21), 2018

90 6. Low-Latency GPU Transactions: Dream or Reality?

Introduction

In the previous chapters, we observed an understudy of graphic cards as
storage medium for HTAP workloads and closed this gap with investigations
on memory management strategies, and columnar and row-wise storage for
graphic cards as storage medium for HTAP-powered CPU/GPU database sys-
tems. We concluded that both, the choice for one particular memory man-
agement strategy as well as the choice for the best storage layout, is context-
depended. Factors such as the memory access pattern of the device and
data transfer costs impact this choice. Overall, for insert and projection op-
erations, the host favors row-wise storage while the device favors columnar
storage, though. For update operations, columnar storage seems to be favored
independent of the kind of device at hand.

To complete the investigation for HTAP workloads on hybrid CPU/GPU database
systems, we will focus on the pure-transaction performance of CPUs and GPUs
for both, columnar and row-wise storage, using the Yahoo! Cloud Serving
Benchmark in this chapter. Especially, we are interested on the affect of small
batches versus large batches of data shipped to resp. received from the device
in comparison to the same on the host. Small batches allow to carry out query
result set with a low processing latency. Low latency is typically an optimization
goal in transaction processing. In contrast, big batches are beneficial for the
device but lead to a higher latency, which is to be avoided. The question to be
answered in this chapter is about whether there is a reasonable break-even
point on data/query placement considering requirements on the latency to
carry out result sets on concurrent running transactional queries.

In recent years GPUs have transitioned from high-end memory-restricted spe-
cialized devices, to omnipresent co-processors, amiable to support general
programming even on mobile devices. Such developments have received atten-
tion of the database community, leading to the creation of several systems like
GPUTx, Ocelot, CoGaDB and Caldera [HY11, HSP+13, Bre14, AKPA17].

Save for GPUTx, most systems proposed assume that OLTP, with workloads
consisting of high volumes of short transactions, cannot be supported effi-
ciently with GPUs. This assumption is even hard-coded into designs of systems,
potentially reducing the role that GPUs can have in the systems. Such choice
can be specially a loss for systems supporting hybrid transactional analytical
processing (HTAP): if the workload switches to OLTP mostly, GPUs might be
underutilized, leading to unsatisfactory distribution of the processing.

Contributions: The core contributions of this chapter, in seeking to answer the
research question can be listed as follows:

• We develop a prototype of a GPU accelerated OLTP system, capable
of supporting row-wise and column-wise operations, with concurrency
control and support for reads with bounded staleness.

• We evaluate the impact of configurations on pure reads and update-only
workloads, showing specifically the large role that batch sizes play in the
execution and wait times on GPUs.

6.1. Design Decisions 91

• We complement a study with an evaluation of reads with different stale-
ness characteristics. We observe that system-level bounded staleness can
increase the throughput on GPUs, to even better extents than when hav-
ing no concurrency control at all. This observation suggests that studies
in supporting requests with bounded staleness for GPU OLTP could be
beneficial.

• We conclude by summarizing what we consider to be the essential design
challenge for OLTP on GPUs, proposing conditions for addressing it, which
could be considered in building GPU-accelerated DBMSs.

This chapter is structured as follows: In Section 6.1, we describe the implemen-
tation. The evaluation is included in Section 6.2, with a study on the impact of
layouts, batch sizes and choice of devices for pure reads and writes workloads.
Next, we consider the impact of different concurrency control configurations,
including strong reads (i.e., a read request guaranteed to see all data com-
mitted up until the start of the request), no control and reads with bounded
staleness. We conclude this work in Section 6.2.

6.1 Design Decisions

This section provides brief description of the storage engine and of the bench-
mark used for evaluation.

6.1.1 Framework Design

The storage engine is implemented in C++, because this language allows to
efficiently perform memory manipulations, and also makes it possible to use
the standard OpenCL API directly, without the overhead of using third-party
APIs.

The data in the engine can be stored either row-wise (in one contiguous array
of type char) or column-wise (in N such arrays, where N is the number of at-
tributes), and either CPU or GPU can be selected for its processing. One kernel
operates one element at a time, for instance, reading 10 tuples requires run-
ning the kernel 10*N times. In the tests, we assume single-sited transactions
only.

In case the GPU is used, enough space for the table is allocated in the device
memory, and the table is stored there entirely, without storing an additional
copy in the RAM. Only the necessary data (e.g., indices and new values) are
transferred to the GPU during the processing of workloads. A list of keys and
their corresponding rows is maintained by the CPU.

Client requests are handled in a single thread. Whenever a client sends a
new request, both the client and the request are saved and stored until the
server collects enough requests of a given operator to process a batch. The

92 6. Low-Latency GPU Transactions: Dream or Reality?

assignation of request-to-batch is ordered such that there are no conflicts per
key (i.e., we adopt a form of conflictless task-scheduling). In case there are
no new messages for more than a threshold (in the experiments, we decided
on a threshold of 100 milliseconds), all the collected requests are processed,
because otherwise such cases would deteriorate results.

6.1.2 Yahoo! Cloud Serving Benchmark (YCSB)

For creating reasonable client requests, we use the Yahoo! Cloud Serving
Benchmark (YCSB) [CST+10]. It comes with several predefined workloads
consisting of different proportions of insert, read, update, delete and short
scan operations, and allows to implement new workloads. Workloads allow
to define the number of records in the table, the proportion and the types
of executed operations, and the distribution of requests across the records
(Zipfian, uniform or latest). A record in YCSB consists of a key and a set of
fields that contain random characters.

Each client sends one request to the server, waits for the reply, and then is able
to send the next request. Therefore, several clients are required to process
workloads in parallel, for instance, it is necessary to create N clients in order
to execute operations in batches of size N .

6.2 Evaluation

The following results were obtained by using an Intel Xeon E5-2630 CPU and
an Nvidia Tesla K40c GPU. The operating system we use is CentOS 7.1 with
kernel version 3.10.0, the OpenCL version is 1.2.

All the workloads access a table with 10k entries, where each row consists of
10 attributes of equal size (100 bytes each). The minimum and maximum batch
sizes are set to 50 and 500 correspondingly. The maximum throughput in this
system, measured by performing no operations on the server, was 71k op/s for
a pure read workload and 130k op/s for an update-only workload.

6.2.1 Pure Reads and Updates

To assess the efficiency of GPUs on short read only and write only operations, we
ran two separate workloads. The first workload contains 100k read operations,
each requesting all the fields of a row, which results in accessing 1M fields
in total. The second workload performs 1M update operations, which change
only one field of a row. Both workloads access the entries following a Zipfian
distribution.

6.2. Evaluation 93

50 100150200250300350400450500
0

5,000

10,000

15,000

batch size

la
te

n
cy

(m
s)

(a) collecting batches + execution

50 100150200250300350400450500
0

5,000

10,000

15,000

batch size

la
te

n
cy

(m
s)

(b) execution time only

50 100150200250300350400450500

10,000

20,000

30,000

batch size

th
ro

u
g

h
p

u
t

(o
p

/s
)

(c) collecting batches + execution

CPU & row store CPU & column store GPU & row store GPU & column store

Figure 6.1: Latency (in ms) and throughput (op/s) for read-only workload.

50 100150200250300350400450500
0

50,000

1 · 105

batch size

la
te

n
cy

(m
s)

(a) collecting batches + execution

50 100150200250300350400450500

0

20,000

40,000

60,000

80,000

batch size

la
te

n
cy

(m
s)

(b) execution time only

50 100150200250300350400450500

10,000

20,000

30,000

40,000

batch size

th
ro

u
g

h
p

u
t

(o
p

/s
)

(c) collecting batches + execution

CPU & row store CPU & column store GPU & row store GPU & column store

Figure 6.2: Latency (in ms) and throughput (op/s) for update-only workload.

It can be seen that for workloads consisting only of these operations (Fig-
ure 6.1(a)-(c)), the combination of CPU and row store provides the best perfor-
mance, while GPU with column store is consistently the slowest.

Small batches prove to be more beneficial than larger ones even for GPUs,
although the pure processing time (i.e., time for executing the operations only,
excluding batch collection) decreases with increasing batch size (Figure 6.1(c)
and Figure 6.2(c)).

At small batches, though there is almost no overhead in waiting to collect a
batch, the execution on GPUs is inefficient, leading to higher latencies. At
larger batches, the execution latency is reduced, at the cost of an increased
waiting time. Considering the impact on latency, we observe that fast response
per request plays a more important role in determining the total latency than
does small processing time.

6.2.2 Concurrency Control

When operations are executed in batches, they might interfere with one another,
and correct results are not guaranteed by default. The following three situations
can occur:

94 6. Low-Latency GPU Transactions: Dream or Reality?

• Read after write An update operation U is received before a read
operation R, but R is executed first. This leads to R returning old data.

• Write after read A read operation R is received before an update
operation U , but is executed after U updates the data. As a result, R
returns the data that is newer than the requested data.

• Write after write Both operations U1 and U2 update the data, and U2

is received after U1. There is a chance that U1 updates the data after U2,
replacing the new value by the old one.

In order to provide a transactional context, for every new operation we check
whether the accessed row has already been accessed by a collected, but not yet
executed request. In case the operation interferes with any of the previously
received operations, we execute the whole batch that contains the previous one.
For instance, if after receiving a new update operation U, we detect that the
requested row is accessed by a previously collected read operation R, all the
read operations are executed. Accordingly, we support a basic transactional
scheme that does not manage, in the current implementation, transaction
failures and rollbacks.

Additionally, in order to analyze, how allowing stale reads would affect the per-
formance, we removed concurrency control for read operations, and let them
be executed with a staleness bound of 10 milliseconds (i.e., read operations
might not see the writes of operations more recent than 10 milliseconds).

For this evaluation, we employed a workload containing 100 k operations, 50%
of them being read and the other 50% being update operations. 80% of the
operations access entries from the hot set, which consists of the last 20%
of entries. Figure 6.3-Figure 6.6 show the throughput for each of the four
combinations of devices and storage models in the study.

50 100 150 200 250 300 350 400 450 500

2,000

4,000

6,000

batch size

th
ro

u
g

h
p

u
t

(o
p

/s
)

w/o concurrency control with concurrency control

stale reads

Figure 6.3: Throughput (op/s) for mixed
read and update workload, CPU &
row store.

50 100 150 200 250 300 350 400 450 500

2,000

4,000

6,000

batch size

th
ro

u
g

h
p

u
t

(o
p

/s
)

w/o concurrency control with concurrency control

stale reads

Figure 6.4: Throughput (op/s) for mixed
read and update workload, CPU & column
store.

Enabling concurrency control increased the throughput for the CPU, since
it often leads to immediate execution of small batches and hence shorter

6.2. Evaluation 95

50 100 150 200 250 300 350 400 450 500

1,000

2,000

3,000

batch size

th
ro

u
g

h
p

u
t

(o
p

/s
)

w/o concurrency control with concurrency control

stale reads

Figure 6.5: Throughput (op/s) for
mixed read and update workload,
GPU & row store.

50 100 150 200 250 300 350 400 450 500

1,000

2,000

3,000

batch size

th
ro

u
g

h
p

u
t

(o
p

/s
)

w/o concurrency control with concurrency control

stale reads

Figure 6.6: Throughput (op/s) for mixed
read and update workload, GPU & column
store.

response times. However, despite the improvements in the waiting time, the
GPU’s performance is decreased, since the processing of very small batches
does not allow to utilize the GPU efficiently, and the increase in the execution
time exceeds the time gained by faster responses.

Allowing stale reads is beneficial for all the combinations except for GPU with
column store, because read operations are executed without the long waiting
time caused by incomplete batches, and hence operations proceed in small
batches that increase the already high execution time of the operations on
column stores. One might note that for this workload big batches are more
beneficial than small ones. Unlike in the pure read and update workloads,
the server rarely manages to collect full batches, and thus waits before the
execution to make sure that there are no more requests coming. This waiting
time is more harmful for small batches, because the server has to wait more
often. This issue could be resolved by adjusting the waiting time spent by the
server before executing everything it has collected.

96 6. Low-Latency GPU Transactions: Dream or Reality?

6.2.3 Discussion and Summary

In this work, we evaluated the performance of CPUs and GPUs with two storage
models (row and column store) using the Yahoo! Cloud Serving Benchmark of
OLTP operations.

CPU and row store outperforms other combinations in both reads and updates,
followed by CPU and column store and GPU and row store. GPU with column
store seems to provide the worst performance. The difference between the
combinations gets less noticeable with increasing batch sizes, because most of
the time is taken by handling clients and collecting the batches.

While for the CPU small batches are always more beneficial than big ones,
for the GPU the fast response time does not always compensate for the high
execution time. One might see that batch size 100 leads to lower latency
(Figure 6.1(a) and Figure 6.2(a)) and higher throughput (Figure 6.1(c) and
Figure 6.2(c)) than batch size 50, because the GPU is utilized more efficiently,
although it takes more time to collect these batches.

Enabling concurrency control (i.e. serving only strong reads) is beneficial for
the CPU, since it allows to process smaller batches and reply to clients quicker.
Stale reads further improve the performance, because they reduce the waiting
time in case of incomplete batches.

For the GPU processing of smaller batches only decreases the throughput due
to the huge loss in the execution speed. However, for GPU with row store
allowing stale reads provides better performance than no concurrency control
at all.

We can conclude from the experimental results that transaction execution on
GPUs is challenging, since one of these two situations always occur:

1. Small batches are processed in order to send results to clients quicker,
but processing a small number of elements does not allow to utilize GPUs
efficiently.

2. Operations are executed in big batches, which are beneficial for GPUs,
but it takes too long to collect these batches and then reply to all the
clients.

It is important to note, that in the experiments the entire table was permanently
stored on the GPU, thus the performance was evaluated not in the worst case
scenario. Transferring the data to the GPU for processing would add an
additional overhead, making the usage of the GPU even less efficient. This
makes GPUs in their current state not as well-suited for transaction execution
as CPUs.

However, we should also note that we evaluate a fairly simple transactional
context which lacks rollbacks of transactions, and hence realistic overheads
are not considered, which could further tilt the balance against GPUs.

6.2. Evaluation 97

In spite of these observations, we argue that OLTP can still be supported with
GPUs, provided one of the two following conditions:

1. There is a moderate request arrival rate but it is possible for each request
to be broken down to a sufficient amount of parallel operations. One pos-
sible case where this occurs could be in comparing vector representations
of attributes in tuples (e.g., when fields are represented in a latent vector
space, like the case of word embeddings).

2. There is a very high arrival rate of requests, producing little-to-no wait
time for forming a large batch of fine-grained operations.

Adding to these conditions, we also observe that the opportunity for reads
with bounded staleness is important to boost the efficiency of GPUs. We note
that stale reads could either be supported at either system or query level (i.e.,
when each query defines its own staleness bounds, as proposed for SQL by
Guo et al. [GLRG04], and as provided for scaling out in systems like Google
Spanner [BBB+17], and the Asynchronous Parallel Table Replication (ATR)
feature of SAP HANA [LMK+17]). When co-processor systems adopt such
configurations, precise measures for staleness and timeliness (e.g. freshness
rate and absolute freshness), in order to enable performance comparisons,
should be included in evaluations.

Following the current early observations, in the next stage of research, we
will compare the approach for GPU OLTP support with those proposed in the
literature and we will further develop a prototype to handle more complex
OLTP workloads; as we seek to evaluate potential scenarios and designs that
could match the characteristics required for GPUs to work efficiently for OLTP,
making GPUs more participative citizens of co-processor accelerated HTAP
databases.

Chapter 7

The One-Size-Fits-Most H2TAP
Data Store: GridTables

The following chapter is an extended version of

Marcus Pinnecke, Gabriel Campero Durand, David Broneske, Roman
Zoun, and Gunter Saake. GridTables: A One-Size-Fits-Most H2TAP Data
Store. In Datenbank-Spektrum, 20. Jg., Nr. 1, (pp. 43-56), 2020

100 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

Introduction

Heterogeneous Hybrid Transactional Analytical Processing (H2TAP) database
systems have been developed to match the requirements for low latency analy-
sis of real-time operational data. Due to technical challenges, these systems
are hard to design, non-trivial to engineer, and complex to administrate. Cur-
rent research has proposed excellent solutions to many of those challenges
in isolation - a unified engine enabling to optimize performance by combining
these solutions is still missing. In this dissertation, we suggest a highly flexible
and adaptive data structure (called GridTable) to physically organize sparse
but structured records in the context of H2TAP. For this, we focus on the design
of an efficient highly-flexible storage layout that is built from scratch for mixed
query workloads. The key challenges we address are: (1) partial storage in
different memory locations, and (2) the ability to optimize for mixed OLTP/O-
LAP access patterns. To guarantee safe and well-specified data definition or
manipulation, as well as fast querying with no compromises on performance,
we propose two dedicated access paths to the storage.

In this chapter, we explore the architecture and internals of GridTables showing
design goals, concepts and trade-offs. We close this chapter with open research
questions and challenges that must be addressed in order to take advantage of
the flexibility of the solution.

7.1 Research Efforts

In the last decade, the database research community has focused on challenges
for data management and system design implied by the ongoing needs to
manage and analyze web-scale, frequently changing, diverse datasets. One
key challenge is to minimize the latency between operational and analytical
systems [KN11, PFRE14, ÖTT17]. For Hybrid Transactional Analytical Pro-
cessing (HTAP) systems, new architectures were proposed that enable low
latency analysis on real-time operational data. A good overview about this
topic can be found in a recent survey by Özcan et al. [ÖTT17]. A key enabling
factor for HTAP systems is modern hardware: modern hardware promises
novel ways for data processing of relational [BBR+13, HY11] and non-relational
data [MTA09, PBS15], as well as benefits for several database system compo-
nents, such as query optimization [HKM15, MBS15]. Appuswamy et al. even
suggested to use the term H2TAP whenever hybridization of workloads is com-
bined with heterogeneity of hardware [AKPA17], effectively emphasizing the
role of modern hardware.

In previous work [PBDS17], we questioned whether current database systems
on modern hardware are really future-proof and ready for H2TAP workloads.
We concluded the existence of missing synergy effects in the state-of-the-art
since existing solutions are examined in isolation which leaves optimization
potential unexplored and unexploited, such as unsatisfactorily support of row-
wise storage for co-processors, adaptive indexing across multiple devices,

7.2. A Unified Physical Relational Format 101

or an excellent online re-organization for H2TAP workloads for cross-device
databases as already studied in depth for CPU-only database systems.

In addition to that, it is not yet clear how to combine novel research sugges-
tions in a unified system, and how such suggestions may affect or benefit from
each other. In particular, the research community shows opportunities and
challenges of modern hardware in database systems in isolation, among them
the need for analysis of novel adaptive data layouts and data structures for op-
erational and analytical systems [AKPA17, ABP+17, APM16, SBBC16, KJB21],
novel processing, storage and federation approaches on non-relational data
models [BKH+17, DPBS17, PDZ+19, PH15, SS17], benefits and drawbacks of
porting to new compute platforms [BLB+18, BKSS19, KH17, ZWY+17], oppor-
tunities and limitations of GPUs and other co-processors as building blocks for
storage and querying purposes [ABD+18, BBR+13, KH17], novel proposals for
main memory databases on modern hardware [ALT+14, BKF+18, GMS92, PS18,
SWK+18], and adaptive optimization, and first attempts towards self-managing
database systems [CN07, KBC+17, NR18, PAA+17].

7.2 A Unified Physical Relational Format

In this dissertation, we aim for a novel storage engine design, called GridStore
that manages relations with a data structure that we name GridTables, in
order to face the challenges of H2TAP on multiple devices by enabling the
combination of established solutions so far considered in isolation. Relations in
GridTables are flexibly partitioned into a set of self-contained, and placement-
aware containers, called grids. Each grid by its own is able to perform local
optimizations regarding schema re-ordering, to avoid cache thrashing for wide
records (cf. [BYT+17] for OLAP-only), and record organization to optimize the
data access path and minimize data redundancy (cf. [AMH08]).

A GridTable implements a flexible and adaptive record layout (cf. [AIA14,
APM16, GKP+10, SBBC16]) to allow zero-cost null-value suppression, to enable
the combination of logically distant record fields into physical dense blocks,
and to perform global layout adaption. In contrast to existing partitioning
capabilities in enterprise systems, a relation can therefore be partitioned to any
combination of vertical and horizontal (logical) fragments with a granularity
from the table level to tuple-field values, if desired.

GridTables enable a fine-grained physical optimization of a single database
by transitioning between a transactional storage, an analytical storage, and
a mixed storage based on the actual usage. Transitions respect user-specific
data model definitions and constraints, and are executed via local and global
optimizations on the GridTable. Analytical query performance is improved by
(implicit) denormalization (similar to a WideTable, [LP14]), and transactional
query performance is improved by (implicit) normalization.

102 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

We begin with an overview picture, showing a feature summary of the data
store (Section 7.2.1). We then continue with sections containing the following
contributions:

• Requirement Analysis. We state requirements for a storage engine match-
ing a One-Size-Fits-Most design for competing access patterns and opti-
mization goals, co-processor support and self-tuning (Section 7.3).

• Flexible Data Storage. We propose a stacked architecture for highly-
flexible partitioning, multiple storage formats and placement options
(Section 7.6).

• Design Space Exploration. We discuss most representative aspects in a
flexible storage for H2TAP: data storage and querying (Section 7.6.6).

• Open Challenges. With GridTables, we broaden the canvas for (au-
tonomous) optimization, and explore optimization problems that we seek
to address with a proposal, such as table partitioning and baseline heuris-
tics (Section 7.8).

We end this chapter by a conclusion (Section 7.9).

7.2.1 Overview and Concept

The ultimate vision behind GridTables is to create a storage engine for H2TAP
database systems that fully supports both multi-core CPUs and many-core
GPUs without making any cutbacks in terms of data freshness, isolation, and
transactional consistency.

In this chapter, we focus on the storage engine and on storage-engine core
operations (i.e., scans and materialization) rather than on operations that fall
into the domain of the query engine (and thus, are more coupled with the
co-processor-aware aspects of this design).

7.2.2 Hybrid Processing on Modern Hardware

In this section, we establish the need for an H2TAP store on modern hardware,
based on a motivating experiment. Next, we summarize key requirements
for such a system. We conclude the section by outlining essential features of
GridTables.

A dedicated H2TAP system design is motivated by the observation that both
operational and analytical access patterns inside a single (hybrid) workload
imply different and (sometimes) contradicting optimizations, such as for phys-
ical record organization [APM16, GKP+10], hot/cold data classification and
handling [LMF+16], or the choice to run entire queries in parallel (i.e., inter-
query parallelism) vs to run particular parts of a single query in parallel (i.e.,
intra-query parallelism) [PBDS17].

In the following, we briefly summarize the experiments performed in Chapter 3
shown in Figure 3.2 on Page 43.

7.3. Data Store Requirements 103

7.2.3 Motivation Experiment

In the host-based experiments, we examined the effect of physical table layouts
(i.e., row-store/column-store), the query parallelism policy used on the query
throughput for varying access patterns, and an increasing number of tuples
stored in a table. As a dataset, we used the customer and lineitem tables of
the popular TPC-C benchmark. In detail, we issued (scan) queries computing
the sum of a randomly chosen attribute (i.e., attribute-centric queries) in the
lineitem table for all tuples and some (n = 150) tuples, and queries materializing
all fields of some (m = 150) tuples (i.e., record-centric queries) in the customer
table.

Insights

We concluded that there is no clear winner configuration: the physical stor-
age layout and the query parallelism policy affect the query performance.
For instance, due to thread-management costs, single-threaded execution is
beneficial for record-centric queries as long as the number of tuples to be
materialized is small. At a (system-specific) threshold on this number of tuples
for the same query, changing the parallelism policy to a data-parallel execution
strategy is more reasonable. Likewise, to optimize for an attribute-centric
query, a columnar record layout (DSM) would be more fitting.

Consequences

In case of a mix of both query types, neither column-store nor row-store is
always the best choice and it is not trivial to determine which to chose -
especially if the workload changes over time. Both storage layout and query
parallelism policies are sometimes tightly coupled in their optima for a specific
case - but for the hybrid case, unfortunately all possible combinations of access
pattern and query parallelism policy might be relevant.

7.3 Data Store Requirements

One cannot expect a One-Size-Fits-All design solving every problem in the
domain of H2TAP in an optimal way, as shown by Athanassoulis in 2016 for
optimizations involing read times, update cost, and memory requirements at
once [AKM+16]. As a consequence, we suggest a One-Size-Fits-Most design
under the following requirements:

7.3.1 Transactional Access Patterns

Best for Pure Transactional Access Patterns. Records must be quickly acces-
sible to point queries over their primary key values. Therefore, the storage

104 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

engine must support record-centric access. Read/write operations for a single
tuple must be cache efficient. When issued with transactional workloads and
multiple requests, the storage engine should not spend valuable CPU time in
management of concurrency.

7.3.2 Analytical Access Patterns

Best for Pure Analytical Access Patterns. The storage engine must support
analytical queries on massive amounts of (denormalized) data without compro-
mising the complexity of these analytical tasks. Therefore, the storage engine
must support efficient range-queries in a column-centric manner.

7.3.3 Physical Adaptiveness

Physical Adaptiveness for H2TAP. When the system is issued with both trans-
actional and analytical queries, the query performance should match a pure
transactional system when the queries are transactional-major, and should
match a pure analytical system when the queries are analytical-major. Ev-
erything between those two extremes should be smoothly interpolated. The
performance penalty for accessing operational data for long-running analytical
purposes should be minimized.

7.3.4 Co-Processor Data Placement

Co-Processor Acceleration & Data Placement. For compute-intensive analytical
tasks, the engine should be able to use NUMA-styled co-processors, such as
GPUs or FPGAs. In case that data is too large to be stored in the device
memory of such a co-processor, the storage engine should use the co-processor
on a dataset portion which fits into the device memory, and for which the
largest performance gain can be expected. In fact, dismissing the use of the
co-processor (e.g., by rolling back to CPU) should not be triggered by the data
set size.

7.3.5 Autonomous Optimization Knobs

Knobs for Autonomous Optimization. The requirements mentioned above lead
to a huge optimization space with an enormous amount of possible configura-
tions. It can be expected that straight-forward user empowerment will leave
optimization potential unused. Therefore, the storage engine must expose tun-
ing knobs and informative statistics such that an external self-driving system
component could instrument the storage engine to iteratively configure itself
towards the most promising context-aware configuration.

7.4. Technical Considerations 105

Book-Keep.

Table Index

Grid Space

Inverted Indexes

RID Cover Cache

Data Fragment

(i) GridTable (ii) Grid

Physical Schema

Book-Keeping

Op1 Op2 Opn…

Fragment Structure

(iii) Data Fragment

A1 A2 … AnRID

t0

t1

t2

…

tm

(i) GridTable (logical view)

g0

g0

g1

(null)

g2 g4

g3

g5

Data Fragment

Grid

GridTable

(Host/Device Memory)

Tuple Level

Table Level

(iv) Attribute Fetch

A1 A2 … AnRID

t0

t1
t2

…

tm

(v) Row Fetch

A1 A2 … AnRID

t0

t1
t2
…

tm

Tuplet Level

Raw Data Level

Indirection Level Component Definition &
Manipulation Querying

Two-Path Data Access in GridTables

Table
Index

A2 g0 g2 g3

t1 g1 g5

…
…

…

#(A1)
#(t0)
#(t2)

#(A2)
#(t1)

A1 g0 g1

t0 g0 g5 t2 g1 g2 g4 g5

(ii) Table Index (simplified) (iii) Grid Space (simplified)

Data Fragments
Grid

Space

…

(Host Memory)

(Device Memory)

(…)

g5

(i) Flexible Partions (ii) Per-Grid Format

A1 A2 … An

(null)

A1 A2 … An

…

(null)

(iii) Per-Grid Storage

A1 A2 … An

Host
Memory

Host
Memory

D
ev

ic
e

M
em

or
y

H
os

t
M

em
or

y

(null)

…

(iv) Data Packing

A1 A2 … An

(null)

g0

g0

g1

g2

g3

(v) Schema-Reordering

A1 A2 … An

(null)

…

A5 A1
… …

A1

… …

A3

(compressed)

Global and Grid-Local Row Identifier

Ai-1RID

tj
tj+1

tj+2

tj+3

tj+4
tj+5
…

ga

gb
…

…

Ai Ai+1… …

…
…

……

……

……

Grid ga (Column-Store)

LRID
Data aj,i aj+1,i aj+1,i aj+1,i+1

0 1 2 3

Grid gb (Row-Store)

LRID
Data aj+4,i-1 aj+4,i aj+4,i+1

0 1 2 3

… …

aj+5,i-1
…
…

Schema

g0

g1

g2

An

A3 An

A2

Figure 7.1: Stacked architecture at a glance: indirection levels and components as
well as two-way access path to raw data stored in host or device memory.

7.4 Technical Considerations

In addition to the requirements mentioned above, there are a series of technical
challenges and needs for H2TAP systems on modern hardware.

Recently, Appuswamy et al. pointed to multi-socket multi-core platforms that
require careful design for global shared memory, cache coherence and mas-
sive parallelism, coining the term H2TAP as a new architecture built for this
purpose [AKPA17].

To address Requirement 1 and 2, we suggest a highly flexible partition scheme.
To avoid large intermediate results mentioned in Requirement 2, we suggest to
use a vectorized iteration model [BZN05]. Requirement 3 can be addressed by
online re-evaluation of a chosen layout triggered by changes in the workload
(similar to [GKP+10, MAH+18] and others): we are currently exploring AI
techniques, more precisely Deep Reinforcement Learning, with the purpose
of developing a general solution for data reorganization that is able to lever-
age experience in establishing the expected long-term value of re-layouting
alternatives [DPP+18]. Data placement for co-processors (Requirement 4) is
addressed by a suitable choice for data fragments along with their strategy (this
will be further discussed in Section 7.7.6). Finally, Requirement 5 is addressed
by exposition of runtime configurations, such as layout operations inside the
storage engine (i.e., the GridStore).

In Figure 7.1, we show the stacked architecture of the proposal, GridTables.
Each indirection level is bundled with a particular set of level-specific functions
that we explore more in detail in Section 7.7.8.

The three conceptual main components are GridTables, grids, and data frag-
ments. From top to bottom: a GridTable is a data structure that manages multi-
ple layouts for a relation. Each of these layouts is a combination of vertical and
horizontal partitioning where a particular partition has no partitioning-related
side-effects to adjacent partitions. A grid is a component that realizes one

106 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

particular partition including its own physical schema, or indexes. Each grid
consists of exactly one data fragment which is a plain storage implementation
(such as column store or row store) for relational data that accesses host or
device memory directly.

To avoid undesired effects by wrongly chosen partitions (such as splitting an
OLTP-related tuple into two parts by vertical partitioning), the responsible
decision process must consider a range of constraints, e.g., implied by the
workload, or by service level agreements with the client. We explore related
problems more in detail in Section 7.8, and study a solution option for a decision
process that relies on reinforcement learning to improve from experience while
seeking to avoiding execution overheads from online partitioning algorithms,
in dedicated papers [DPP+18, DPP+19].

Data access in complex structures (e.g., in GridTables) is a trade-off design
space. On the one hand, a clear conceptual access path is needed that abstracts
from low-level details and which solves important design-related requirements,
such as reusability and understandability. In this path, safe operations and
usability rather than high performance access are the goals. On the other hand,
such properties come often with the cost of additional call overhead that is
unacceptable for aggregation-heavy operations as typical for analytical queries
over huge amounts of columnar data. For these requirements, safe operation
and usability play a minor role. Therefore, a GridTable exposes two ways to
access raw data, one for definition and manipulation (a safe path) and one for
querying purposes (a fast but no so safe path).

7.5 Definition and Manipulation

The definition and manipulation path adopts a carefully designed abstraction
API that is engineered with the goal of a well-defined, reliable, and secure path
to the data. The primary purpose of the definition and manipulation path is
data loading.

Conceptually, this path abstracts from low-level raw data management over the
following indirection levels: (i) the table level consists of logic that affects the
table as a whole (such as snapshotting in-memory tables to secondary storage
at specific intervals). The table level accesses (ii) the tuple level, which is about
management of entire records that may fall into several grids (i.e., fall into
several tuplets). This level is for reading and writing entire tuples without the
need to care about how the physical organization actually looks like. The tuple
level accesses (iii) the tuplet level, which abstracts from low-level operations
such as seeking to particular positions in a raw byte array in DRAM. This level
is used to update or read individual fields in the boundaries of a grid. Finally,
each grid translates the calls from the tuplet level into low-level operations
that are highly affected by the actual storage strategy at hand, the (iv) raw
data level. The raw data level computes the number of bytes and the position
inside the raw data that must be read/written when a particular record field is
read/written via the tuplet level.

7.6. A Stacked Architecture Concept 107

Book-Keep.

Table Index

Grid Space

Inverted Indexes

RID Cover Cache

Data Fragment

(i) GridTable (ii) Grid

Physical Schema

Book-Keeping

Op1 Op2 Opn…

Fragment Structure

(iii) Data Fragment

A1 A2 … AnRID

t0

t1

t2

…

tm

(i) GridTable (logical view)

g0

g0

g1

(null)

g2 g4

g3

g5

Data Fragment

Grid

GridTable

(Host/Device Memory)

Tuple Level

Table Level

Attribute Fetch

A1 A2 … AnRID

t0

t1
t2

…

tm

Row Fetch

A1 A2 … AnRID

t0

t1
t2
…

tm

Tuplet Level

Raw Data Level

Indirection Level Component Definition &
Manipulation Querying

Two-Path Data Access in GridTables

Table
Index

A2 g0 g2 g3

t1 g1 g5

…
…

…

#(A1)
#(t0)
#(t2)

#(A2)
#(t1)

A1 g0 g1

t0 g0 g5 t2 g1 g2 g4 g5

(ii) Table Index (simplified) (iii) Grid Space (simplified)

Data Fragments
Grid

Space

…

(Host Memory)

(Device Memory)

(…)

g5

(i) Flexible Partions (ii) Per-Grid Format

A1 A2 … An

(null)

A1 A2 … An

…

(null)

(iii) Per-Grid Storage

A1 A2 … An

Host
Memory

Host
Memory

D
ev

ic
e

M
em

or
y

H
os

t
M

em
or

y

(null)

…

(iv) Data Packing

A1 A2 … An

(null)

g0

g0

g1

g2

g3

(v) Schema-Reordering

A1 A2 … An

(null)

…

A2 A1

A2

An

(compressed)

Global and Grid-Local Row Identifier

Ai-1RID

tj
tj+1

tj+2

tj+3

tj+4
tj+5
…

ga

gb
…

…

Ai Ai+1… …

…
…

……

……

……

Grid ga (Column-Store)

LRID
Data aj,i aj+1,i aj+1,i aj+1,i+1

0 1 2 3

Grid gb (Row-Store)

LRID
Data aj+4,i-1 aj+4,i aj+4,i+1

0 1 2 3

… …

aj+5,i-1
…
…

Schema

g0

g1

g2

A3

An A3

A1

…

…

Figure 7.2: Feature summary of GridTables. Flexible partitions (i), per-grid formats
(ii), per-grid storage (iii), data packing (iv), and schema-reordering (v).

By design, we use the definition and manipulation path for generic data load,
diagnostics and debugging purposes.

7.6 A Stacked Architecture Concept

To address the requirements stated in Section 7.3, we provide the following
features for GridTables (see Figure 7.2) that are, to the point of this writing,
instrumented by the client rather than by the system itself:

1. Flexible Partitions that allow highly-flexible intra-tuple data formats

2. Per-Grid Formats, to format tuplets column-wise or row-wise

3. Per-Grid Storage enabling the storage of tuplets in host or device memory

4. Data Packing, enabling the storage of logically distant fields in a physically
contiguous manner, and

5. Schema-Reordering, re-ordering per-grid fields for data cache efficiency

In the following, we explore details on these features.

7.6.1 Flexible Partitions

Having a particular order on, or dependencies between partitions w.r.t. their
definition is common for existing partitioning schemes [PBDS17], which leads
to unreachable configurations in the optimization space. The feature of flexible
partitions in a GridTable enables to partition a table in an arbitrary manner
by freely defining (non-overlapping) regions in a table. In other words, the
partition scheme in a GridTable does not force to partition horizontally and then
vertically first (or vice versa), but allows to define partition regions independent
from other existing partitions.

Removing such dependencies and order restrictions from the partitioning
scheme enables a higher degree in flexibility, which in turn promises more

108 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

fine-grained matches of data layout and data placement for the workload on
particular regions of a table, which will lead to a better performance if the
right configuration in the now broader optimization space is used.

Clearly, having freely floating partitions is not only more flexible but also
more complex from both a description and optimization perspective. To limit
that complexity, we restrict a GridTable to not have overlapping regions. An
overlapping region may be understood as a particular portion of data that
is redundantly stored on different locations and formatted differently due to
different and contradicting access patterns at the same time. We assume that
having exactly contradicting access patterns on a significant amount of data
where there is no trend to one side of an access pattern type, is a special case
for real-world workloads. Therefore, we made the design decision to disallow
overlapping regions in order to prune the optimization space that must be
explored. Extensions to the solution could consider replication, in future work.

Special to note is the encoding of large null -regions for sparse datasets in
a GridTable: if there is no grid defined for a particular subset of row and
columns, then this region is interpreted as containing null -values only. This
tiny definition allows us to zero-out huge regions of null -data without reserving
any memory for their encoding additionally.

As pointed out by Lemke et al. during their investigation of compression tech-
niques for columnar business intelligence solutions, optimization tasks involv-
ing reordering of elements to maximize the desired effect require heuristics to
be practical computable within a reasonable time [LSF09]. The authors defined
a process consisting of four stages (analysis, candidate determination, heuristic
evaluation, and per-candidate application), where four different strategies for
range sorting under different assumptions are used. Similar to the problems
described by Lemke et al. determining the best partition for a GridTable is an
NP-complete problem and cannot be optimally solved in reasonable time. We
explore this and related problems in detail in Section 7.8.

7.6.2 Grid Formats

Per-grid formats enable each partition to organize contained record portions
with complete independence from other partitions. Currently, we support
uncompressed in-memory column stores and row stores, as well as a binary-
search based index. Conceptually further specialized storage strategies can be
added, such as compressed column stores for SSDs, or even specialized grid
implementations for HDDs or long-term storage devices, such as tapes.

7.6.3 Grid Storage

Per-grid storage enables each partition to be stored on a dedicated memory
kind, if required, making the GridTable an abstract container that splits and
delegates queries into grids and collects results from these grids to construct

7.6. A Stacked Architecture Concept 109

the final reply. We currently support main-memory (host memory) based
partitions and partitions that are stored in the co-processors device memory.
Along with the flexible partition feature, per-grid formats allow to emulate in a
fine-grained manner any major storage layout presented in the literature so
far. For instance, HYRISE [GKP+10] can be simulated with vertical partitioning
only where each partition is either a column store or row store.

However, we are not limited by these types: abstraction enables to store data
on other memory locations that we have not yet explored, such as on SSDs or
remote machines.

7.6.4 Data Packing

Data packing is a distinct feature in GridTables that allows to physically cluster
records that are logically spread across the table. With data packing, we are
able to move continuous physical memory blocks to co-processors (such as
a GPUs) instead of managing several distinct memory blocks only because a
user-defined structure forces us to do so. Additionally, we use data packing
to decrease the memory requirements implied by organizing the GridTable
structure itself: we pack data from two into one grid if both grids have the
same storage location and record format, effectively reducing the number of
grids that must be managed by the GridTable. Further, data packing promises
to efficiently manage cold data in the long run: after analysis a GridTable may
pack cold records into one grid and perform (heavy-weight) compression on
this grid, or evict the grid data to SSD disks.

7.6.5 Schema Reordering

Schema-reordering is a feature built for row-store-major GridTables that involve
a huge amount of attributes similar to WideTables but optimized for point-
queries rather than range-queries. Having a best-matching ordered attribute
schema for row-store records is needed for OLTP queries to optimize execution
speed of queries that access a set of fields of a single record (such as the
projection operator does). The reasons for an increased execution speed with a
reasonable schema order is that a higher data locality of record fields that are
accessed together is more cache efficient, and therefore, faster.

Schema-reordering is a per-grid capability to physically rearrange fields of
records stored in that partition. The motivation behind this feature is to
minimize CPU cache misses for point-queries on same records over a large
subset of the records attribute set. A careful re-ordering of record fields in
this case promises a higher probability to have the next field already stored
in cache: when the majority of queries to that particular grid touches n out
of m attributes, these n attributes are moved to the front per-record. Then,
seeking between records with providing pre-fetching hints to the CPU raise the
probability to have all the next n attributes already in the cache for settings in
which each single records size exceeds the cache line size.

110 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

7.6.6 Storage Organization

In this section, we focus on engineering and design challenges regarding the
GridTable data structure itself. After establishing the problem statement in
Section 7.6.7, we continue with the solutions in the following sections.

7.6.7 Problem Statement

The purpose of GridTables is to satisfy requirements as established in Sec-
tion 7.3. Namely, the support of data storage strategies optimized for analytical
and transactional data access patterns along with a smooth transition between
both to optimize for hybrid access patterns. Additionally, the storage engine
must be ready for co-processors like GPU or FPGAs, and must expose knobs
for autonomous optimization.

In Section 7.6, we depict features for which we argue that they address these
requirements. For instance, flexible partitions enable fine-grained and muta-
ble modifications on data placement and data storage strategy that can be
driven by access patterns. Zero-cost null -value encoding, data packing and
schema-reordering allow to optimize WideTable-like GridTables that result from
denormalization in order to optimize analytical query runtime (cf. [LP14]).

The challenge is to support these features in order to satisfy requirements in
one unified data structure that is both (self-)manageable and reasonable regard-
ing its structural complexity. We classified the storage-related challenges into
two groups, (1) the challenge to efficiently organize and maintain a GridTable
and (2) the challenge to support unified data definition and manipulation oper-
ations in face of highly flexible partitions.

The problem of self-driven re-evaluation of a layout during runtime, a prob-
lem that we call GridFormation, is not in the scope of this dissertation. For
interested readers, we refer to other work that explores and investigates Grid-
Formation in a first proposal with reinforcement learning [DPP+18, DPP+19].

7.7 Building Blocks

In the following, we present the building blocks of the GridTable data structure.

7.7.1 GridTable

In this section, we give a detailed description of the ingredients of the GridTable
data structure and how these components relate to each other.

A GridTable is a type of data store for a relation R with schemaR that segments
R into non-overlapping regions which can be arbitrarily arranged.

7.7. Building Blocks 111

Book-Keep.

Table Index

Grid Space

Inverted Indexes

RID Cover Cache

Data Fragment

(i) GridTable (ii) Grid

Physical Schema

Book-Keeping

Op1 Op2 Opn…

Fragment Structure

(iii) Data Fragment

A1 A2 … AnRID

t0

t1

t2

…

tm

(i) GridTable (logical view)

g0

g0

g1

(null)

g2 g4

g3

g5

Data Fragment

Grid

GridTable

(Host/Device Memory)

Tuple Level

Table Level

Attribute Fetch

A1 A2 … AnRID

t0

t1
t2

…

tm

Row Fetch

A1 A2 … AnRID

t0

t1
t2
…

tm

Tuplet Level

Raw Data Level

Indirection Level Component Definition &
Manipulation Querying

Two-Path Data Access in GridTables

Table
Index

A2 g0 g2 g3

t1 g1 g5

…
…

…

#(A1)
#(t0)
#(t2)

#(A2)
#(t1)

A1 g0 g1

t0 g0 g5 t2 g1 g2 g4 g5

(ii) Table Index (simplified) (iii) Grid Space (simplified)

Data Fragments
Grid

Space

…

(Host Memory)

(Device Memory)

(…)

g5

(i) Flexible Partions (ii) Per-Grid Format

A1 A2 … An

(null)

A1 A2 … An

…

(null)

(iii) Per-Grid Storage

A1 A2 … An

Host
Memory

Host
Memory

D
ev

ic
e

M
em

or
y

H
os

t
M

em
or

y

(null)

…

(iv) Data Packing

A1 A2 … An

(null)

g0

g0

g1

g2

g3

(v) Schema-Reordering

A1 A2 … An

(null)

…

A5 A1
… …

A1

… …

A3

(compressed)

Global and Grid-Local Row Identifier

Ai-1RID

tj
tj+1

tj+2

tj+3

tj+4
tj+5
…

ga

gb
…

…

Ai Ai+1… …

…
…

……

……

……

Grid ga (Column-Store)

LRID
Data aj,i aj+1,i aj+1,i aj+1,i+1

0 1 2 3

Grid gb (Row-Store)

LRID
Data aj+4,i-1 aj+4,i aj+4,i+1

0 1 2 3

… …

aj+5,i-1
…
…

Schema

g0

g1

g2

An

A3 An

A2

Figure 7.3: Views on GridTable storage, table index, and organization.

7.7.2 Regions

A region is defined by two intervals: tuple cover and attribute cover, a tuple
cover defines which tuples are contained by their row identifiers1 (RID), and
an attribute cover defines which subset of R falls into a particular region.

Unlike other partition schemes, GridTables allow to define regions in a non-
restrictive way: neither is a particular partitioning order enforced (such as
division into sub-relations first) nor is it enforced that all regions are described.
Regions can be of one out of two kinds, either zero-outed or managed.

7.7.3 Zero Regions

A zero-outed region is a single region interpreted as a (huge) block of null -
values. This kind is not described by a grid, i.e., the absence of a grid for a
particular region defines that region as a block of null -only values. We visualize
zero-outed regions with the label (null) in Figure 7.3 (i). It’s worth to note here,
that lossless compression techniques, like run-length encoding, are orthogonal
to zeroing-out regions, although such techniques may be used to implement
that functionally alternatively.

7.7.4 Managed Regions

A managed region is a single region interpreted as a block of data (not neces-
sarily non-null data), that is owned by a grid.

For instance the region owned by grid g5 covers the attribute An, spanning all
tuples in Figure 7.3 (i). Multiple regions can be owned by a single grid as long
as these regions result from composition of vertical and horizontal partitioning
of that grid. For a better understanding, see g0 in Figure 7.3 (i). The grid g0
owns tuples t0 and tm for all attributes (with the exception of attribute An).
It is important to note that g0 is logically split into two parts (the regions)
but physically g0 is one unit (which is the basis for the technique we call data
packing).

1A RID is a unique value referencing an entire row in a GridTable. However, the data type of
these identifiers is implementation-dependent and not in focus of this concept.

112 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

7.7.5 Core Components

Any GridTable consists of the logical schema R of R, its table index (TI), a
Grid Space, and data for book-keeping purposes. The logical schema, that
implies no order on attributes, is used to describe R according to its definition
in the database. It is used in conjunction with the table index that manages
regions in order to locate and instrument (e.g., call particular functions on)
grids. Grids are owned by the (memory-resident) Grid Space data structure.
The Grid Space (see Figure 7.3 (iii)) is a dictionary data structure responsible
for grid management, and especially the translation between references to
grids and their implied strategies that are part of their data fragment.

As the TI in conjunction with the Grid Space act as both an organizing structure
and abstraction layer, a decoupling of low-level grid-related details (such as data
placement) and implementation-independent management (such as merging of
grids) is feasible. One key point here is that the TI allows to poll information
and statistics for particular grids and is able to revise a particular data-to-grid
mapping having access to the repository of grid implementations. In productive
deployments, re-partitioning must not be manual. It raises a set of research
challenges for structures as flexible as GridTables, e.g., when to merge grids,
when to undo such a merge considering implications of the online execution of
these operations, or how to effectively refine a chosen partitioning after data
ingestion that may have a fixed partitioning policy (such as import all data as
a single table-wide row grid). We explore these questions in more detail in
Section 7.8, for which techniques such as database cracking [IKM+07b] might
be a good starting point.

Reference translation is a mission-critical operation typically invoked multiple
times when multiple regions are touched during queries. Therefore, we suggest
to implement a dictionary inside the Grid Space with a data structure that has
constant access time (in fact, we use a plain array for that purpose). Book-
keeping data ranges from memory usage, read-/write statistics, and capacity
information that are used by the GridTable in order to perform diagnostics, to
apply optimization tailored to the read-/write patterns (e.g., transformation
to other data fragment types), or for resource management (e.g., freeing up
allocated but unused space when space limits are reached).

7.7.6 Placement Abstraction

In the following, we present placement abstractions in GridTables, Data Frag-
ments (Section 7.7.6) and Strategy Abstraction (Section 7.7.6).

Data Fragments.

Each grid manages its contained tuplets physically in a data container, called
data fragment.

7.7. Building Blocks 113

A data fragment maps the logical schema that partially falls into the region
covered by the grid to a physical schema. In addition to the logical schema,
a physical schema defines the definitive order of attributes per record. This
mapping between logical schema at the table level on the one hand, and the
physical schema at the data fragment level on the other hand, allows us to
apply a fine-grained schema-reordering. Schema-reordering is the capability
to physically rearrange tuple fields without interference to the logical schema
or other regions in the table that are not managed by the grid at hand. The
ultimate benefit of schema-reordering is that it enables adaptability towards
request-driven physical order of fields to improve the processors data cache
efficiency. More in detail, schema-reordering promises a better cache utilization
by smartly ordering fields for record-centric queries on row-wise stored data
when a single record exceeds the data cache line size.

In addition to the physical schema, a data fragment maintains a set of book-
keeping data structures, and (abstract) operations Op1, Op2, ..., Opn for its strat-
egy stored in the fragment structure.

For the purpose of this dissertation, we do not expand on the book-keeping
component other than stating that it is mainly about statistics on data access
for re-partitioning, and data histograms for query optimization. However, the
Op1, Op2, ..., Opn along with the fragment structure are used to provide each
data fragment with a specific querying strategy.

A (row) identifier is a unique unsigned integer that refers to a record (tuple
or tuplet) in a GridTable. We use the term identifier instead of the term
tuple identifier to avoid confusion with the semantics of a tuple identifier
in disk-based systems, and to have a common naming for both tuple and
tuplets references since they share the same concept of reference. However,
in GridTables there are two kinds of identifiers, global and local. A global
identifier identifies a single tuple in the scope of a GridTable while a grid-local
identifier identifies a single tuplet in the scope of a grid.

As a rule of thumb, we move snapshots of transactional data in a read-only
manner to the co-processor that is used for analytics exclusively (similar to
work done by Breß et al. [BBR+13]). In case of an error condition, such as
out-of-memory, we store the data in the host memory as a fallback option
(cf. [ABD+18]). However, the initial data placement, as to the date of this
writing, is user-defined, i.e., the decision where to store a particular datum is
described by the client and not decided by the system, yet (see Section 7.8).

Clearly, the more fine-gained a relation becomes, the higher the cost for
book-keeping this information, and the more effort during processing. Hence,
the actual partition choice must be bound given some user limits on space
consumption and the partitioning impact on query processing performance. We
take a deeper look at these challenges in Section 7.8.

114 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

Strategy Abstraction

To be extensible towards novel strategies, we intentionally draw the abstraction
layer of strategies and data fragments over abstract functions.

Abstract functions fall into the following categories:

1. Raw Operations.

2. Cursor-Based Operations.

3. Indirection-Level Bridging.

Each (query-related) function in (1) operates on a bulk of tuplets to minimize the
per-tuplet function-call overhead. Non-query-related operations in (2) involve
moving fields cursors and tuplet cursors, per-field reading and writing for the
definition and manipulation path (see Section 7.7.7). Query-related operations
in (3) are basically used for invocation of full-scan operations and point-query
operations over a set of tuplets for the query path.

7.7.7 Definition and Manipulation Path

This section is about the definition and manipulation path in GridTables. This
path is intended for generic data load, diagnostics and debugging purposes. Di-
rectly speaking, querying is done via the query path. This completely bypasses
the definition and manipulation path to get rid of the complexity involved with
that indirection. For a disk-based system where accessing secondary storage
dominates this indirection costs, one can speculate to utilize the definition and
manipulation path also for query processing - especially since the query path
cannot be implemented for that system kind without major changes. Consid-
ering the data definition and manipulation path for disk-based querying is an
interesting but yet unexplored application of GridTables which is out of the
scope of this dissertation.

From a main-memory storage engine perspective, the definition and manip-
ulation path is required and used exactly for the purpose it was designed
for: correct definition and manipulation of data stored in an environment that
does not guarantee physical order of elements nor shared memory between
elements.

7.7.8 Level-Specific Operations.

In Section 7.6, we provided a high-level view on the stacked architecture for
GridTables, visualized in Figure 7.1. In this section, we show level-specific
functions to operate on components in that architecture, and to navigate from
one layer to another.

7.8. Open Challenges 115

1. Table Level (TL). A GridTable exposes operations to insert, update, remove,
and query records abstracting from the table partition. Any request to
insert, to update, or to remove tuples is delegated to those grids that own
the specific region that should be altered.

2. Tuple Level (TPL). Similar to typical tuple-based processing of tuple-at-a-
time models, a tuple cursor is opened at table level and used to iterate
through all tuples stored in the table. This iteration potentially involves
jumping from one grid to another. The logic for these jump operations is
transparent to the caller such that the tuple level is abstracted away from
the partitioning structure below the tuple level.

3. Tuplet Level (TTL). A tuple is already broken down into several tuplets that
fall into several grids. A single grid owns portions of several (physical)
tuples that may span several regions in the GridTable. A tuplet is a
conceptual abstraction from lower-level stored fields to get rid of low-
level data management, i.e., each tuplet consists of a fixed set of fields that
can be randomly accessed independent on their actual physical storage.
Tuplet fields may be spread across multiple locations but the tuplet level
exposes a unified way to read and write these fields creating the illusion
of a dense object.

4. Raw Data Level (RDL). Records are actually physically stored and queried
highly dependent on the strategy at hand. The raw data level is responsi-
ble for two actions: (1) to provide the functionality defined at the tuplet
level in order to hide from low level details (e.g., seeking to a certain
memory address), and (2) to provide one or more late-materialization scan
flavors to efficiently restrict the GridTables content given a user-defined
predicate.

We explicitly note here, that some major aspects (such as efficient primary key
uniqueness checks, recovery and failover, concurrency issues and transaction
control, or cache coherence and latency management for data on co-processors)
are not discussed or only slightly touched in this dissertation. The reason for
this is a strong focus on the table data structure in isolation, such that we have
to defer this required discussion to future work.

7.8 Open Challenges

At the point of this writing, GridTables are a novel concept to enable a unified
storage engine in the huge design space of an H2TAP database system.

The core question is how to instrument GridTables capabilities in a way that
the system itself smartly and autonomously tunes multiple knobs at once to
calibrate itself to the best possible performance in one instant in time.

116 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

In order to answer the question about self-driven instruction of partitioning
schemes as flexible as GridTables, we formulate the following eight open re-
search challenges that can be researched in isolation, which are, therefore,
given here without any particular order.

7.8.1 Record Organization Problem

Given a GridTable R, a set Q of n queries on R and a cost function f that
determines the costs to access fields in R in order to answer the query set Q.

The problem is to find a layout L(R) such that f is minimal for all queries
in Q at once.

This problem cannot be solved efficiently in its optimal version in a feasi-
ble amount of time. However, a good solution to this problem enables to
autonomously determine a suitable layout for one particular time span in which
Q is issued (cf. [AIA14, APM16, GKP+10] for work towards this direction).

7.8.2 Data Placement Problem

Given a GridTable R, an update-ratio α, a workload by a set Q of queries having
a portion of α update operations contained, a cost function fQ that determines
the costs of accessing fields in R for Q, and a cost function fup that determines
the costs for updates on the device memory.

The problem is to find a layout L(R) for R such that fQ is minimal for all
queries in Q at once, and that minimizes the fup for those data fragments that
are stored in the device memory for varying α.

Data Fragments can be placed in a device memory (e.g., the co-processors
device memory) and processed by that device. The structure of GridTable
enables a fine-grained data placement of tuplets in the device, e.g., multiple
parts of a single column, disjunct regions of multiple columns, or particular
blocks of data.

In case of a read-only workload (α ≡ 0), the data placement problem is the
Record Organization Problem. In case of any non-read-only workload (α > 0),
selecting the device as storage- and processing-place for some data only yields
higher performance if the cost penalty for update propagation to the device
is low. Whether this penalty is low or not (even for write-only workloads with
α ≡ 1), depends whether the selected data is target of updates in Q or not.

7.8. Open Challenges 117

A reasonable solution to the problem is to minimize the surface of data in
R stored in the device that is updated by Q but to maximize the surface of
data in R not modified by Q stored in the device to increase the processing
performance.

7.8.3 Transition Cost Problem

Given a GridTable R, and a layout L0(R) for R that is a solution of the Record
Organization Problem for one particular time instant t0, and two time instants
t1, t2 with t2 > t1 > t0.

The problem is to determine (or forecast) layouts L1(R) and L2(R) as a so-
lution of the Record Organization Problem for t1 resp. t2, to compute the
transition costs c0→1 for a transition from L0(R) to L1(R), c0→2 for a transition
L0(R) to L2(R), and c1→2 for a transition L1(R) to L2(R), and to decide at a time
instant t∗ ∈ (t0, t2] whether to change from L0(R) to L1(R), or to change from
L0(R) to L2(R) considering c0→1, c0→2, and c1→2, or to perform no change at all.

In simpler words, this online problem describes the decision act with which
the system performs a change in the layout towards a more suitable layout.
The interesting challenge in this problem is that the optimal layout changes
over time (due to changes in the workload), and that the benefit of a transition
might be hidden by the costs it implies. These costs may contain time consider-
ations for copying and re-formatting actions of data in memory, costs for data
movement operations between devices, and more.

Roughly speaking, staying too long on one particular layout or being too slow
in layout adaption leaves performance opportunities untouched. At the same
time, too aggressive changes will lead to sub-optimal performance compared
to moderate or to slow changes due to transition costs.

A suitable solution to this problem must balance the trade-off such that more
suitable layouts are adapted as fast as possible, while - at the same time - the
number of sub-optimal performance runs (due to transition costs) must be
minimized.

7.8.4 Read Set Labeling Problem

Given a workloadW consisting of N queries with a particular ratio α of trans-
actional and analytical operations where α is unknown to the system.

The problem is to find and optimally classify regions in the read set W (i.e., the

118 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

fields accessed for reads or writes) in order to mark them as attribute-centric
or row-centric operation regions.

Obviously, this is not a trivial problem efficiently to solve in an optimal way
since PARTITION is already NP-complete. However, having this classification
promising a good hint for a layout optimizer which then immediately is able to
compare current regions in a GridTable matching the regions in the read set.

7.8.5 Wide-Partitioning Problem

Given m tables R = { R1, R2,...,Rn}, and a series of m read/write queries
Q1, Q2, ..., Qm on these n tables with ratio r, a cost function fQ that deter-
mines the costs to access fields in R to answer Q, a cost function fσ that
determines the costs to access fields for a rewritten (scan) query σ for Q on
R11R21...1Rn, a cost function f1 that determines the costs to construct a
WideTable R∗ = (R11R21...1Rn), and a cost function mQ(X) that determine
maintenance costs to update table X if Q manipulates data in X.

The problem is to find i0 ∈ {1, 2, ...,m} such that

f1(R) +
m∑
i=i0

fσi(R
∗) +mσi(R

∗) <
m∑
i=i0

fQi
(R) +mσi(R)

(if such an i0 exists)

Informally, the problem is to determine a particular threshold i0 in time dur-
ing processing of Q1, Q2, ..., Qm for which it is cheaper to take the effort in
constructing R∗ once, and then continue with WideTable scans compared to
straightforward execution Qi0+1, ..., Qm (by also considering update costs after
that threshold).

As shown by Bian et al. in their work on Wide Tables, rewriting a query Q on
R to σ on R∗ yields excellent performance improvements for pure analytical
processing [BYT+17]. In context of H2TAP this technique therefore promises an
excellent performance gain for the analytical part of queries. However, naive
adaptions of WideTables is likewise a bottleneck due to memory limitations to
hold the denormalized table R∗. Additionally, since H2TAP inherently implies
additional data writes, update costs of R∗ compared to (potentially normalized)
tables in R must be taken into account. Finally, H2TAP systems are online
systems rather than pure analytical offline systems. Therefore, a solution i0
once found, is immediately target for being re-evaluated once time passes m.
Perhaps, a decomposition of R∗ back into R will be the better option then.

7.8. Open Challenges 119

7.8.6 Attribute Ordering Problem

Given a grid G in a layout L(R) of a GridTable R, and m sets of queries
Q1, Q2, . . . , Qm for G at time t1, t2, . . . , tm (t1 < t2 < · · · < tm), a function fmiss
that determines the number of (processor data-) cache-misses for a query set
Q in G given a fixed (physical) order of tuplet fields in G defined by the order
of attributes A1, A2, . . . , An in the schema of G.

The problem is to find a sequence of permutations
(σ(A1), σ(A2), . . . , σ(An))i for i = 1, 2, . . . ,m to physically re-order tuplet fields
in G such that fmiss is minimal for t1, t2, . . . , tm with (σ(A1), σ(A2), . . . , σ(An))k is
used at time tk for query set Qk (1 ≤ k ≤ m).

The interesting aspect of this problem is that queries in a query set Q are
neither required to read/write a particular subset of tuplets in G, of tuplet
fields or of fields in common in a particular order. Consequently, this problem
ranges from trivial configurations (such as entire Q reads all tuplets fields of
all tuplets in natural order) to contradicting configurations (such as the first
half of Q reads all tuplet fields of all tuplets in natural order, while the second
half of Q does the same but in inverse natural order).

Finding an optimal solution σ(A1), σ(A2), . . . , σ(An) for a given Q is challenging,
especially for an online sequence of queries as given in the problem statement.

7.8.7 Null-Region Maximization Problem

Let R be a a sparse GridTable, L(R) a layout for R, Q a set of queries, f a
cost function that determines the costs for accessing fields in R, and ε a small
threshold from the domain of costs.

The problem is to re-order tuplets in R and to re-order attributes in the schema
of each grid in L(R) such that for the new layout L∗(R) holds: L∗(R) maximizes
the regions that contains null-only values (e.g., by minimizing the number of
null-only regions), and the costs for Q using f in L(R) are the same as the costs
for L∗(R)± ε.

A region in a GridTable R that completely covers a null -value block of data, does
not require additional space for encoding these null -values (cf. Section 7.7).
This potentially saves space in very sparse data sets. Given the way how regions
and grids are managed in a GridTable, the most memory efficient configuration
is a small number of regions that are null -value data data only, but each of
these regions cover a maximum number of values.

120 7. The One-Size-Fits-Most H2TAP Data Store: GridTables

7.8.8 Compression Problem

Given a layout L(R) of a GridTable R with k grids G1, G2, ...Gk, a set C of n com-
pression techniques C = {c1, c2, ..., cn}, a set Q of queries Q = {Q1, Q2, ..., Qm}
with a query performance of p, and a user-defined lower bound τ < p that sets
the least acceptable query performance.

The problem is to determine a candidate set X ⊆ C and j = 1, ..., k permutation
πj : {1, 2, ..., n} → {1, 2, ..., n} such that for each i ∈ {1, 2, ..., k} the per-grid
compression (ciπ(n) ◦ · · · ◦ ciπ(2) ◦ ciπ(1))(Gi) minimizes the space requirements for
the entire layout L(R) while the query performance for Q must not drop below
the threshold τ .

In the challenging aspect of this problem is not only the determination of
the i = 1, ..., k permutations πi to determine the order in which a particular set
of compression techniques are applied one after the another to compress a
particular grid, which by its own is a computational expensive problem, but
that this decision must run for k grid concurrently while there is a (potential)
variety of access pattern in Q and queries in Q must not access all grids in
L(R) equally. In sum, a unified architecture promises the best of all worlds. For
instance, the synergy of the compression problem and the attribute ordering
problem promises a better solution than both in isolation (cf. [LSF09]). To fulfill
the promise of a truly unified architecture, we state open research challenges
that must be continuously solved at once during runtime, which is a challenging
task.

7.9. Summary 121

7.9 Summary

In this chapter, we propose a novel concept to manage records for H2TAP
database systems, called GridTables.

We showed how mixed workloads affect the query performance. Then, we
stated requirements for an H2TAP store, and showed a proposal of a stacked
architecture built on a set of well-engineered indirection levels for secure, safe
and well-defined data access in face of arbitrary data placement and formatting.

Based on the concept for a One-Size-Fits-Most architecture, we explored a
list of formally defined open research challenges that focus on automatic
instrumentation of GridTable features:

1. Read Set Labeling to label workload parts as analytical resp. transactional

2. Record Organization to find layout for table to optimize for read set

3. Wide-Partitioning to decide on (de-)normalize action for infinite horizon

4. Data Placement to find optimal placement of data

5. Attribute Ordering to find optimal order of attributes

6. Null Maximization to find maximum regions for null -data

7. Transition Costs to approximate data moving & partitioning action costs

8. Compression to compress grids individually while not sacrificing perfor-
mance

To fulfill the promise of best performances, we motivated for further investiga-
tion these eight open research challenges for storage structures as flexible as
GridTables.

Chapter 8

Related Work

The follow chapter ensembles related work to GPU as co-processors (Sec-
tion 8.1), and adaptive stores (Section 8.2).

8.1 GPUs as Co-Processor

The state of the art, as of 2014, in GPU-accelerated relational systems is
surveyed by Breß et al. [BHS+14b]. He et al. present GPUTx, a relational
GPU-accelerated transaction processing system [HY11]. Stored-procedures
aggregated to a single kernel (instead of primitive operators) and the adoption
of transactions (via either partition-based or k-set-based lock-free protocols)
form the basis of GPUTx. The approach of a k-set transactional protocol (where
operations are given the freedom to execute as long as their dependencies are
kept) is similar to the design, proposed in this dissertation, for concurrency
control (Section 6.2.2), however, unlike GPUTx, we prototype a query engine
running fine-grained operators, instead of more complex transactions.

Ocelot, as developed by Heimel et al., is a hardware-oblivious version of a
GPU-accelerated database [HSP+13], stemming from its implementation in
OpenCL. Ocelot acts as an extension to MonetDB, offering new operators to the
MonetDB query engine. We share with Ocelot the implementation in OpenCL,
we diverge, however, since Ocelot does not consider batch-wise concurrency
control (i.e., it inherits the optimistic concurrency control from MonetDB) and
focuses on OLAP operations. Similarly, CoGaDB [Bre14] is focused on OLAP
operations and on the problem of operator placement, aspects that are not
specific to the current study in this dissertation.

Mega-KV by Zang et al., is a co-processor accelerated key-value store [ZWY+15]
with the GPU hosting a portion of the data (hashes for keys), and the CPU-
memory holding the rest. Authors propose a priority scheduling for collected
batches of operators. Priorities match the expected arrival rate, with reads
ranking higher than write operations. In this dissertation, we adopt a similar
batching of requests, but have not considered prioritization.

124 8. Related Work

More recently, Appaswamy et al. proposed Caldera, a system for heterogeneous
transactional and analytical processing using GPU acceleration [AKPA17]. As
a task distribution approach Caldera uses delegation, with data-to-core assig-
nations, threads-to-transaction mappings, and threads managing concurrency
control via explicit message passing. In their system GPUs serve as processors
for OLAP workloads, given their massive parallelism; however no consideration
is given on the potential of GPUs to serve OLTP operations.

Consequently, we find little to no research on the specifics of operator-based
(instead of procedure-based) batched execution for OLTP in GPU-accelerated
relational systems, justifying the interest in filling a specific research gap which
could help in expanding the role of GPUs in DBMSs.

Considering analytical processing, most of the systems stick to a column-wise
storage of data. These systems include GDB by He et al. [HLY+09], CoGaDB
by Breß et al. [Bre14], Ocelot by Heimel et al. [HSP+13]. While GDB relies on
processing the queries on the GPU side only, CoGaDB and recent extensions
to Ocelot allow the system to process operators either on the GPU or the
CPU [BHS+14a].

To the best of our knowledge, there is only GPUTx as a system working on
OLTP processing using GPU acceleration [HY11]. GPUTx uses a column store,
because they argue for a better coalescing of memory access. However, they
miss an extensive evaluation in this direction. Hence, the goal is to propose
data structures and operator implementations to compare column and row
stores for OLTP data manipulation in order to find a suitable storage model for
this workload.

GPUs have also been adopted in the development of non-relational systems.
Medusa is a runtime for optimal graph-processing on GPUs [ZH14]. For effi-
ciency authors adopt a graph layout that matches the requirement for coalesced
accesses in GPUs. However Medusa is mostly for OLAP processing and does
not consider concurrency control for writes.

8.2 Adaptive Stores

The field of adaptive data stores is a hot research topic with a series of
novel approaches, such as the popular database cracking [GHI+14, HIKY12,
IKM07a, IKM+07b], its variations and analysis [IPC15, SDL18, SJD16, SJD13],
advanced partitioning [JD11, OKA+17, SKD15] or adaptive resp. holistic index-
ing [ASDR14, SD15, PIM15]. Latest research is done on navigation through
the entire data structure design space, and systems adapting to workload and
hardware by using machine learning [IDQ+19, IZH+18, DPP+19], or Just-In-
Time data structures as proposed by Kennedy et al. [KZ15]. On the other side
of the spectrum, there are also advanced techniques operating on fixed data
layouts, such as PAX [ADH02] or Fractured Mirrors [RDS03].

An academic database system that pioneers a notable amount of H2TAP fea-
tures for the relational model is HyPer [KN11]. Originally motivated by the

8.2. Adaptive Stores 125

challenge to engineering an H2TAP system with competitive performance to
pure operational and pure analytical systems by using the UNIX’s fork system
call, its storage engine nowadays supports combined horizontal and vertical
partitioning including advanced compression of cold data [LMF+16]. However,
this is in contrast to the partition technique in GridTables: while HyPer forces
vertical partitioning to a relation first, in the approach of this dissertation, it is
up to the system whether to start first with horizontal partitioning, or vertical
partitioning instead.

A young system is L-Store, a main-memory H2TAP database system that sup-
ports historic queries [SBBC16]. L-Store is powered by a storage engine that
performs physical reformatting of tuples on-demand. For this, the primary data
container incorporates multiple base pages and tail pages that are used to form
an actual tuple. A relation is managed by sub-relations such that each attribute
of a table is mapped to one vertical fragment. Although GridStore does not
support time-travel (historic) queries in the sense of L-Store, the flexibility of
GridStore allows to mimic partitioning to pure-vertical fragments.

Another direction is taken for the development of the database system Pelo-
ton [APM16]: its storage engine is built from ground up to support a novel
tile-based architecture that manages tables in terms of tile groups. Each such
group is a horizontal fragment which may be further vertically partitioned
into (inner) partitions called logical tiles. The partition schema of Peloton is
more restrictive than the one we present in this dissertation, but shares impor-
tant ideas such as the autonomous self-adaption of the layout depending on
workload optimization. One special feature of Peloton is its ability to forecast
changes in the workload and to trigger adaption proactively [MAH+18]. At
this point of this writing, GridTables do not support the orthogonal feature of
forecasting, or adopting learned optimization models, but we are researching
in this direction [DPP+18].

An adaptive storage engine veteran is HYRISE [GKP+10], which organizes a
relation by n sub-relations, called containers. Each container holds a certain
amount of attributes: when a container incorporates exactly one attribute, the
sub-relation becomes de facto a columnar format. HYRISE allows both formats
for records columnar and row-wise. This storage engine automatically changes
the number of attributes particular containers own in order to improve cache
efficiency in face of changing workloads. Similar, the H2O [AIA14] storage
engine manages both, columnar and row-wise formatted partitions for a single
table following a strict horizontal partitioning similar to HYRISE. H2O applies
changes in that the partitioning is done in a lazy fashion when compared to
HYRISE by applying a new partitioning schema after careful evaluation in
the background. GridTables and both, HYRISE and H2O share the required
idea of autonomous adaption of partitions without manual tuning by a human
administrator. However, the space of potential partitions for a single table in
GridTables is far larger compared to these approaches since GridTables allows
for an arbitrary order of horizontal and vertical partitioning.

Chapter 9

Wrap-Up

In this chapter, Chapter 9, we provide a summary on the content delivered
in this dissertation in Section 9.1, state a final conclusion in Section 9.2, and
outline potential future work in Section 9.3.

9.1 Summary

Heterogeneous Hybrid Transactional Analytical Processing (H2TAP) database
systems have been developed to match the requirements for low latency analy-
sis of real-time operational data. Due to technical challenges, these systems
are hard to architect, non-trivial to engineer, and complex to administrate.

In this dissertation, we explore the architecture and internals of GridTables
showing design goals, concepts and trade-offs. We close the final chapter with
open research questions and challenges that must be addressed in order to
take advantage of the flexibility of the solution towards the promise of a fully
fledged H2TAP database system.

Overall, we covered the following:

Fundamentals and Need for Heterogeneous Computing
We explore reasons for parallel computing, multi-threading and integration of
co-processors in data-intensive systems, and showed attempts to exploit these
for high-throughput transaction processing. Starting with historical insights,
we explained that nowadays high-performance is only reached by explicitly
exploiting particular hardware capabilities and programming models. Then,
we introduced the concept of data-parallelism and its application in graphic
cards. Finally, we explained background work on high-throughput transactions
on graphic cards by He et al.

A Storage Engines Perspective on Hybrid Workloads
Employing special-purpose processors (e.g., GPUs) in database systems has
been studied throughout the last decade. Research on heterogeneous database
systems that use both general- and special-purpose processors has addressed

128 9. Wrap-Up

either transaction- or analytic processing, but not the combination of them.
Support for hybrid transaction- and analytic processing (HTAP) has been stud-
ied exclusively for CPU-only systems. In this dissertation, we ask the question
whether current systems are ready for HTAP workload management with
cooperating general- and special-purpose processors. For this, we take the
perspective of the backbone of database systems: the storage engine. We
propose a unified terminology and a comprehensive taxonomy to compare state-
of-the-art engines from both domains. We show similarities and differences, and
determine a necessary set of features for engines supporting HTAP workload
on CPUs and GPUs. Answering the research question in this dissertation, our
findings yield a resolute: not yet.

Memory Management Strategies for CPU/GPU Systems
GPU-accelerated in-memory database systems have gained a lot of popularity
over the last several years. However, GPUs have limited memory capacity, and
the data to process might not fit into the GPU memory entirely and cause a
memory overflow. Fortunately, this problem has many possible solutions, like
splitting the data and processing each portion separately, or storing the data in
the main memory and transferring it to the GPU on demand. This dissertation
provides a survey of four main techniques for managing GPU memory and their
applications for query processing in cross-device powered database systems.

Column vs. Row Stores for CPU/GPU Database Systems
Finding the right storage model (i.e., row-wise or column-wise storage) is an
important task for a database system, because each storage model has its best
supported application. Moreover, if we consider the usage of a co-processor
(e.g., a GPU), another dimension opens up that influences the selection of the
storage model. In fact, factors such as favored memory access pattern of the
device and data transfer costs play a vital role in a hybrid CPU/GPU system,
influencing the optimal storage model. Since there is currently no evaluation
of when to use a column or row store for data manipulation (i.e., we look at
insert/update/project operators) in a hybrid CPU/GPU system, we present a
framework in OpenCL that we use to investigate the break-even points that
determine when to use which storage model.

Low-Latency GPU Transactions: Dream or Reality?
In this dissertation, we take a close look into the role of GPUs for executing
OLTP workloads, with a focus on CRUD operator-based processing, as opposed
to more complex OLTP transactions. To this end, we develop a prototype
system supporting GPU and CPU variants of DSM and NSM processing, with
a delegation-based approach that uses a single-thread scheduler to manage
concurrency control, enabling reads with guaranteed bounded staleness. We
evaluate a prototype using workloads from the Yahoo! cloud serving bench-
mark. We report the impact of layout choices, batching configuration and
concurrency control designs. Through the study, we are able to pinpoint that
the contradicting needs in GPU processing for small batches to reduce waiting
time, but large batches to reduce execution time, is the essential challenge for

9.2. Conclusion 129

OLTP on these processors, affecting all design choices we study. Hence, we
propose two preconditions for supporting OLTP with GPUs, aiming to guide
researchers in finding scenarios for extending the applicability of GPUs in
supporting data management tasks.

The One-Size-Fits-Most H2TAP Data Store: GridTables
The final chapter of this thesis is about a proposal called GridTable. Current
research has proposed excellent solutions to many of those challenges in isola-
tion - a unified engine enabling to optimize performance by combining these
solutions is still missing. In this dissertation, we suggest a highly flexible and
adaptive data structure, the GridTable, to physically organize sparse but struc-
tured records in the context of H2TAP. For this, we focus on the design of an
efficient highly-flexible storage layout that is built from scratch for mixed query
workloads. The key challenges we address are: (1) partial storage in different
memory locations, and (2) the ability to optimize for mixed OLTP-/OLAP access
patterns. To guarantee safe and well-specified data definition or manipulation,
as well as fast querying with no compromises on performance, we propose two
dedicated access paths to the storage.

9.2 Conclusion

The goal of this dissertation was to provide insights into concepts, feasibility
and effects of H2TAP to elaborate costs of an optimal solution at storage engine
level. To achieved this, by taking the perspective of a storage engine and
surveyed state of the art storage layout. We found limited support for the
H2TAP especially for transaction-optimized data stored on graphic cards.

Since graphic cards do not favor task parallelism as first class citizen but row-
wise storage is beneficial for low-latency transaction processing, we studied
row-wise storage compared to traditional columnar storage in graphic cards,
and questioned whether low-latency transaction processing is reasonable to
execute on graphic cards. We found that the storage optimizer would likely
choose a row-wise storage layout for pure insert operations and would change
to columnar storage for update operations only if the number of tuples being
updated at once is high enough, around 30k and more. We concluded that for a
typical transactional use case, the optimizer would Consequently fallback to
host-based storage in a row-wise storage layout rather than considering the
graphic card.

In addition to the work of He et al., we simulated an integrated graphic card
by excluding the transfer times, and confirmed that a device-based columnar
storage might be chosen by an optimizer if enough, i.e., 5k and more, tuples
are inserted at once. For a typical transactional use case below regular 5k
tuple batches to insert, the optimizer would still choose the host rather than
the device with a rule to choose row-wise storage for batches of less than 2.5k
tuples at once. In sum, we concluded that if the optimizer is able to chose
between row-wise storage and columnar storage and can chose to either use

130 9. Wrap-Up

host or device storage on a common base, then it seems that the host is favored
location with a trend to row-wise storage for a typical transactional workload.
Clearly, the conclusions might not hold if other implementation-dependent
artifacts interact in the process.

To finalize the pre-condition investigation, we studied the feasibility of low-
latency transaction processing on dedicated graphic cards. Similar to He et
al., we allowed to collect transactions in batches. The device counterpart
with columnar storage could be chosen when high-throughput is the intended
optimization goal and the device is maximal utilized for read-only databases.
However, latency should be optimized, the storage optimizer would likely
choose again to keep the database in host memory and choose a row-wise
storage instead. Similar is to be observed if the database is write-only by
updates. In sum, smaller batch sizes are needed to minimize the per-transaction
latency but larger batches are favorable when graphic cards are intended to
be used. Clearly, for specific and rather typical use-cases there might be an
exception to this observation, though.

To consider memory limitations of graphic cards, we summarized four main
strategies to manage memory in GPU/CPU database systems. We found that
typically only one of these approaches is used, and argued for the possibility to
use multiple approaches instead to take advantage of the best fitting approach
given a particular situation.

To elaborate the costs for a fuly-fledge H2TAP that is optimal on storage engine
level, we suggested a concept for a flexible and unified storage engine, the
GridTables.

We showed an implementation concept and showed potentials for optimization.
Finally we stated several isolated optimization problems. Overall, It is fair to
say that a non-biased storage optimizer would likely chose the host rather than
the device as the best database location for a typical low-latency transactional
workload. Thus, the device is reasonable chosen for analytical operations on
read-only datasets. Therefore, a fully fledged H2TAP system will likely perform
snapshotting the database (partially) to the graphic card for analytics and
potentially use columnar storage.

For the operational dataset on host side, a fully fledged H2TAP system will
likely need a fine-grained storage engine that allow to freely modify particular
regions of a table to columnar resp. row-wise storage depending on the current
workload (i.e., perform fine-grained partition), apply partial data compression,
or null optimization to name a few. The storage engine proposal of this disser-
tation supports these fine-grained optimization that enable optimal solutions
for a particular workload. However, this runtime performance benefit comes
by the cost of hard optimization problems that must be solved at once when no
optimization potential should left untouched.

Although we believe it is up to the market to decide on the best approach at the
end, and that the presented optimization problems are reasonable to be studied
in isolation and in combination to some degree, we think that optimizing all

9.3. Future Work 131

these issues at once in a single system is not to be favored for a variety of
reasons, such as system complexity or computation costs to solve all these
optimization problems. As a final statement, we come to the conclusion that
H2TAP remains a promising ideal that remains as a motivating idea rather than
as an reasonable implementable architecture that is competitive to specialized
solutions.

9.3 Future Work

The possibilities and opportunities within the optimization space of GridTables
allow to pick a use-case specific combination of optimization. As we mentioned,
each of these optimization are hard to compute in isolation and in combination
likely to be too complex for simple cost models. With the trending methods of
machine learning and deep learning, selections of these optimization options
are reasonable to study, since we believe in the synergy effects of isolated
optimization when put together. To make this more concrete, we outline one
possible future work within the mindset of GridTables.

For instance, the combination of compression and partitioning. Since GridTa-
bles allow to freely define regions to be compressed, it is up to a decision
component to chose which partitions (or particular regions) of the data are
worth to be compressed. For this, data access must be tracked in order to
determine partitions that are cold and not used. If a particular region is cold
depends on the access. Once a decision was made to select a region and to
compress it, this decision might need to be undone if it is worth the effort.
Whether it is worth the effort is not trivial to decide as a single read on a
compressed region is not good performing but marginal in the overall workload
or even acceptably for multiple reads if memory consumption is more important
for a particular amount of time. Clearly, no human administrator can optimize
this by hand.

Hence, future work might analysis a fitting region and partition scheme, as we
proposed along with a college during our work on GridFormation [DPP+18].
Potentially, a two stage compression is a good starting point, which selects
regions that are semi-cold for lightweight compression and regions that are
cold by heavyweight compression. Its worth to note that identification of such
semi-cold/cold fields inside records is easy to do by just book-keeping access
information on each fields. However, it is far from trivial to find reasonable
regions once a non-uniform access pattern on fields on records occur. As the
region identification can vary over time and, depending on user goals, some
decisions to compress or decompress regions are workload-dependent, learning
from experiences promise to learn what are most likely cold and semi-cold
regions and to forecast how this will evolve over time.

The decision to transform a region to semi-cold or cold or modify the compression-
level from heavy-weight to lightweight to uncompressed, is an interesting
subject as the costs for data compression/decompression and transformation

132 9. Wrap-Up

compared to the gain in speed in combination to the typical intention to mini-
mize memory space, is not trivial. Each such decision must consider the past,
the present and potentially the future. As it is desired to have stable strategy
rather than alternating decisions all the time, a strategy must be well evaluated
and robust against exceptions in the access pattern. At the same time, the
strategy must be flexible enough to react to enough modification in the access
pattern to perceive a permanent change in the workload, effectively leading to
a change in the decision. As undoing a decision produces costs and a wrong
decision produces costs, forecasting is reasonable to do to hide the costs before
the action is required by the workload. Simulation strategies and forecasting
seems a promising field to study here as costs can be produced at low-traffic
times (e.g., over night), if it assumed that they pay of in the near future.

Bibliography

[ABA+13] Daniel Abadi, Peter Boncz, Stavros Harizopoulos Amiato, Stratos
Idreos, and Samuel Madden. The Design and Implementation of
Modern Column-Oriented Database Systems. Now Hanover, Mass.,
2013. (cited on Page 3)

[ABC+76] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran,
J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones,
J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson.
System R: Relational Approach to Database Management. TODS,
1(2):97–137, June 1976. (cited on Page 44)

[ABD+18] Iya Arefyeva, David Broneske, Gabriel Campero Durand, Marcus
Pinnecke, and Gunter Saake. Memory Management Strategies
in CPU/GPU Database Systems: A Survey. In BDAS, 2018, 2018.
(cited on Page 101 and 113)

[ABH09] Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos. Column-
Oriented Database Systems. Proceedings of the VLDB Endowment,
2(2):1664–1665, 2009. (cited on Page 1)

[ABP+17] Iya Arefyeva, David Broneske, Marcus Pinnecke, Mudit Bhatnagar,
and Gunter Saake. Column vs. Row Stores for Data Manipulation in
Hardware Oblivious CPU/GPU Database Systems. In GvDB, pages
24–29. CEUR-WS, 2017. (cited on Page 21, 25, 62, and 101)

[ADH02] Anastassia Ailamaki, David J DeWitt, and Mark D Hill. Data Page
Layouts for Relational Databases on Deep Memory Hierarchies.
The VLDB Journal—The International Journal on Very Large Data
Bases, 11(3):198–215, 2002. (cited on Page 44, 52, 53, and 124)

[ADHS01] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios
Skounakis. Weaving Relations for Cache Performance. PVLDB,
pages 169–180, 2001. (cited on Page 47)

[ADHW99] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and David A
Wood. DBMSs on a Modern Processor: Where Does Time Go?
PVLDB, pages 266–277, 1999. (cited on Page 45)

[ADP+18] Iya Arefyeva, Gabriel Campero Durand, Marcus Pinnecke, David
Broneske, and Gunter Saake. Low-Latency Transaction Execution

134 Bibliography

on Graphics Processors: Dream or Reality? Ninth International
Workshop on Accelerating Analytics and Data Management Sys-
tems Using Modern Processor and Storage Architectures (ADMS),
aug 2018. (cited on Page 25)

[AIA14] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. H2O: A
Hands-Free Adaptive Store. In SIGMOD, pages 1103–1114. ACM,
2014. (cited on Page 42, 45, 48, 52, 101, 116, and 125)

[AKM+16] Manos Athanassoulis, Michael Kester, Lukas Maas, Radu Stoica,
Stratos Idreos, Anastassia Ailamaki, and Mark Callaghan. Design-
ing Access Methods: The RUM Conjecture. In International Con-
ference on Extending Database Technology (EDBT), 2016. (cited

on Page 103)

[AKPA17] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anas-
tasia Ailamaki. The Case For Heterogeneous HTAP. CIDR, 2017.
(cited on Page 2, 62, 71, 90, 100, 101, 105, and 124)

[ALT+14] Anastasia Ailamaki, Erietta Liarou, Pinar Tözün, Danica Porobic,
and Iraklis Psaroudakis. How to Stop Under-Utilization and Love
Multicores. in: SIGMOD, pp. 1530–1533, 2014, 2014. (cited on

Page 101)

[AMH08] Daniel J Abadi, Samuel R Madden, and Nabil Hachem. Column-
Stores vs. Row-Stores: How Different are they Really? In SIGMOD,
pages 967–980. ACM, 2008. (cited on Page 45 and 101)

[APM16] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. Bridging the
Archipelago between Row-Stores and Column-Stores for Hybrid
Workloads. In SIGMOD, volume 19, pages 57–63, 2016. (cited on

Page 40, 41, 42, 44, 45, 47, 52, 58, 101, 102, 116, and 125)

[ASDR14] Victor Alvarez, Felix Martin Schuhknecht, Jens Dittrich, and Stefan
Richter. Main Memory Adaptive Indexing for Multi-Core Systems.
In Proceedings of the Tenth International Workshop on Data Man-
agement on New Hardware, page 3. ACM, 2014. (cited on Page 18,

20, and 124)

[Adl95] Richard M Adler. Distributed Coordination Models for Clien-
t/Server Computing. Computer, 28(4):14–22, 1995. (cited on

Page 19)

[BBB+17] David F Bacon, Nathan Bales, Nico Bruno, Brian F Cooper, Adam
Dickinson, Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind
Joshi, Eugene Kogan, et al. Spanner: Becoming a SQL System.
In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 331–343. ACM, 2017. (cited on Page 97)

Bibliography 135

[BBHS14] David Broneske, Sebastian Breß, Max Heimel, and Gunter Saake.
Toward Hardware-Sensitive Database Operations. In EDBT, pages
229–234, 2014. (cited on Page 2 and 31)

[BBR+13] S Breß, F Beier, H Rauhe, K.-U. Sattler, E Schallehn, and G Saake.
Efficient Co-Processor Utilization in Database Query Processing.
in: Information Systems, pp. 1084–1096, 2013, 2013. (cited on

Page 22, 100, 101, and 113)

[BBS15] David Broneske, Sebastian Breß, and Gunter Saake. Database Scan
Variants on Modern CPUs: A Performance Study. In In Memory
Data Management and Analysis, pages 97–111. Springer, 2015.
(cited on Page 86)

[BC12] Peter Bakkum and Srimat Chakradhar. Efficient Data Management
for GPU Databases. Technical report, High Performance Comput-
ing on Graphics Processing Units, 2012. (cited on Page 21, 62, 67,

and 70)

[BFT16] Sebastian Breß, Henning Funke, and Jens Teubner. Robust Query
Processing in Co-Processor-Accelerated Databases. In SIGMOD,
pages 1891–1906. ACM, 2016. (cited on Page 22, 41, 52, and 57)

[BHS+14a] Sebastian Breß, Max Heimel, Michael Saecker, Bastian Kocher,
Volker Markl, and Gunter Saake. Ocelot/HyPE: Optimized Data
Processing on Heterogeneous Hardware. PVLDB, 7(13):1609–1612,
2014. (cited on Page 22 and 124)

[BHS+14b] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bella-
treche, and Gunter Saake. GPU-Accelerated Database Systems:
Survey and Open Challenges. TLDKS, 15:1–35, 2014. (cited on

Page 2, 3, 41, 78, and 123)

[BKF+18] Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch,
Tilmann Rabl, and Volker Markl. Generating Custom Code for
Efficient Query Execution on Heterogeneous Processors. The
VLDB Journal—The International Journal on Very Large Data Bases,
27(6):797–822, 2018. (cited on Page 101)

[BKH+17] Radim Bača, Michal Krátký, Irena Holubová, Martin Nečaský,
Tomáš Skopal, Martin Svoboda, and Sherif Sakr. Structural XML
Query Processing. in: ACM, pp. 64–108, 2017. (cited on Page 101)

[BKSS19] David Broneske, Veit Köppen, Gunter Saake, and Martin Schäler.
Efficient Evaluation of Multi-Column Selection Predicates in Main-
Memory. in: TKDE, pp. 1296–1311, 2019, 2019. (cited on Page 101)

[BLB+18] Andreas Becher, BG Lekshmi, David Broneske, Tobias Drewes, Bala
Gurumurthy, Klaus Meyer-Wegener, Thilo Pionteck, Gunter Saake,
Jürgen Teich, and Stefan Wildermann. Integration of FPGAs in

136 Bibliography

Database Management Systems: Challenges and Opportunities.
Datenbank-Spektrum, 18(3):145–156, 2018. (cited on Page 2, 3,

and 101)

[BMC19] Jacques Bughin, James Manyika, and Tanguy Catlin. Twenty-Five
Years of Digitization: Ten Insights Into How to Play it Right. Boston:
McKinsey Global Institute, 2019. (cited on Page 15)

[BS10b] Peter Bakkum and Kevin Skadron. Accelerating SQL Database
Operations on a GPU with CUDA. In GPGPU Workshop, pages
94–103. ACM, 2010. (cited on Page 22, 62, and 78)

[BS13] Sebastian Breß and Gunter Saake. Why it is Time for a HyPE: A
Hybrid Query Processing Engine for Efficient GPU Coprocessing
in DBMS. VLDB PhD Workshop, 6(12):1398–1403, 2013. (cited on

Page 41 and 57)

[BSB+01] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Bölöni,
Muthucumaru Maheswaran, Albert I Reuther, James P Robertson,
Mitchell D Theys, Bin Yao, Debra Hensgen, et al. A Comparison of
Eleven Static Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems. Journal of
Parallel and Distributed computing, 61(6):810–837, 2001. (cited

on Page 41)

[BYT+17] Haoqiong Bian, Ying Yan, Wenbo Tao, Liang Jeff Chen, Yueguo
Chen, Xiaoyong Du, and Thomas Moscibroda. Big Wide Table
Layout Optimization based on Column Ordering and Duplication.
in: ACM, pp. 299–314, 2017, 2017. (cited on Page 101 and 118)

[BZN05] Peter Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. in: CIDR, pp. 225–237, 2005.
(cited on Page 105)

[Bre14] Sebastian Breß. The Design and Implementation of CoGaDB: A
Column-oriented GPU-Accelerated DBMS. Datenbank-Spektrum,
14(3):199–209, 2014. (cited on Page 21, 30, 41, 47, 57, 62, 72, 78, 90,

123, and 124)

[CCHG15] Chantana Chantrapornchai, Chidchanok Choksuchat, Michael
Haidl, and Sergei Gorlatch. TripleID: A Low-Overhead Repre-
sentation and Querying Using GPU for Large RDFs. In Beyond
Databases, Architectures and Structures. Advanced Technolo-
gies for Data Mining and Knowledge Discovery, pages 400–415.
Springer, 2015. (cited on Page 73)

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data
Warehousing and OLAP Technology. ACM Sigmod record, 26(1):65–
74, 1997. (cited on Page 1)

Bibliography 137

[CK85] George P Copeland and Setrag N Khoshafian. A Decomposition
Storage Model. Acm Sigmod Record, 14(4):268–279, 1985. (cited

on Page 1, 42, and 44)

[CMG14] John Cheng, Ty McKercher, and Max Grossman. Professional CUDA
C Programming. Wrox Press Ltd., GBR, 1st edition, 2014. (cited

on Page 2, 11, 21, 22, 25, 28, 29, and 30)

[CN07] Surajit Chaudhuri and Vivek Narasayya. Self-Tuning Database
Systems: a Decade of Progress. In VLDB, pp. 3–14, 2007. (cited on

Page 101)

[CQD+13] Yi Chen, Zhi Qiao, Spencer Davis, Hai Jiang, and Kuan-Ching
Li. Pipelined Multi-Gpu MapReduce for Big-Data Processing. In
Computer and Information Science, pages 231–246. Springer, 2013.
(cited on Page 67)

[CST+10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrish-
nan, and Russell Sears. Benchmarking Cloud Serving Systems
with YCSB. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 143–154. ACM, 2010. (cited on Page 92)

[CSWL16] G. Chen, X. Shen, B. Wu, and D. Li. Optimizing Data Placement on
GPU Memory: A Portable Approach. IEEE TC, PP(99):1–1, 2016.
(cited on Page 41)

[CXL+19] Jieyang Chen, Nan Xiong, Xin Liang, Dingwen Tao, Sihuan Li, Kaim-
ing Ouyang, Kai Zhao, Nathan DeBardeleben, Qiang Guan, and
Zizhong Chen. TSM2: Optimizing Tall-And-Skinny Matrix-Matrix
Multiplication on GPUs. In Proceedings of the ACM International
Conference on Supercomputing, pages 106–116, 2019. (cited on

Page 26)

[Cao+11] Yu Cao et al. ES2: A Cloud Data Storage System for Supporting
Both OLTP and OLAP. In ICDE, pages 291–302. IEEE, 2011. (cited

on Page 52 and 54)

[Chr14] George Chrysos. Intel Xeon Phi™ coprocessor-the architecture.
Intel Whitepaper, 176:43, 2014. (cited on Page 2)

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data
Banks. Commun. ACM, 13(6):377–387, June 1970. (cited on Page 1

and 44)

[CRL+20] Felipe Castro-Medina, Lisbeth Rodríguez-Mazahua, Asdrúbal
López-Chau, Jair Cervantes, Giner Alor-Hernández, and Isaac
Machorro-Cano Application of Dynamic Fragmentation Methods
in Multimedia Databases: A Review. Entropy, 22(12):1352, 2020.
(cited on Page 3)

138 Bibliography

[DB99] Vivek De and Shekhar Borkar. Technology and Design Challenges
for Low Power and High Performance. In Proceedings of the 1999
international symposium on Low power electronics and design,
pages 163–168, 1999. (cited on Page 15)

[DGN03] Cynthia Dwork, Andrew Goldberg, and Moni Naor. On Memory-
Bound Functions for Fighting Spam. In Annual International Cryp-
tology Conference, pages 426–444. Springer, 2003. (cited on

Page 26)

[DKO+84] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro,
Michael R. Stonebraker, and David A. Wood. Implementation Tech-
niques for Main Memory Database Systems. In SIGMOD, vol-
ume 14, pages 1–8. ACM, 1984. (cited on Page 62)

[DPBS17] Gabriel Campero Durand, Marcus Pinnecke, David Broneske,
and Gunter Saake. Backlogs and Interval Timestamps: Building
Blocks for Supporting Temporal Queries in Graph Databases. In
EDBT/ICDT, 2017. (cited on Page 101)

[DPP+18] Gabriel Campero Durand, Marcus Pinnecke, Rufat Piriyev, Mah-
moud Mohsen, David Broneske, Gunter Saake, Maya Sekeran,
Fabian Rodriguez, and Laxmi Balami. GridFormation: Towards
Self-Driven Online Data Partitioning using Reinforcement Learning.
In aiDM Workshop, p. 1, 2018, 2018. (cited on Page 105, 106, 110, 125,

and 131)

[DPP+19] Gabriel Campero Durand, Rufat Piriyev, Marcus Pinnecke, David
Broneske, Balasubramanian Gurumurthy, and Gunter Saake. Auto-
mated Vertical Partitioning with Deep Reinforcement Learning. In
European Conference on Advances in Databases and Information
Systems, pages 126–134. Springer, 2019. (cited on Page 106, 110,

and 124)

[DS13] Jonathan Dees and Peter Sanders. Efficient Many-Core Query
Execution in Main Memory Column-Stores. In ICDE, pages 350–
361. IEEE, 2013. (cited on Page 21)

[Eic87] Margaret H Eich. A Classification and Comparison of Main Memory
Database Recovery Techniques. In 1987 IEEE Third International
Conference on Data Engineering, pages 332–339. IEEE, 1987.
(cited on Page 1)

[FCP+12] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd,
Stefan Sigg, and Wolfgang Lehner. SAP HANA Database: Data
Management for Modern Business Applications. SIGMOD Rec.,
40(4):45–51, 2012. (cited on Page 41 and 57)

Bibliography 139

[FKM+14] Florian Funke, Alfons Kemper, Tobias Mühlbauer, Thomas Neu-
mann, and Viktor Leis. HyPer Beyond Software: Exploiting Mod-
ern Hardware for Main-Memory Database Systems. Datenbank-
Spektrum, 14(3):173–181, 2014. (cited on Page 3)

[FKN12] Florian Funke, Alfons Kemper, and Thomas Neumann. Compacting
Transactional Data in Hybrid OLTP&OLAP Databases. PVLDB,
5(11):1424–1435, July 2012. (cited on Page 52 and 56)

[GB19] Pralhad Gavali and J Saira Banu. Deep Convolutional Neural Net-
work for Image Classification on CUDA Platform. In Deep Learning
and Parallel Computing Environment for Bioengineering Systems,
pages 99–122. Elsevier, 2019. (cited on Page 22)

[GDG11] Nico Grund, Evgenij Derzapf, and Michael Guthe. Instant Level-of-
Detail. In VMV, pages 293–299, 2011. (cited on Page 22)

[GGPY89] Patrick P Gelsinger, Paolo A Gargini, Gerhard H Parker, and
Albert YC Yu. Microprocessors Circa 2000. IEEE Spectrum,
26(10):43–47, 1989. (cited on Page 15)

[GH11] Chris Gregg and Kim Hazelwood. Where is the Data? Why you
Cannot Debate CPU vs. GPU Performance Without the Answer. In
ISPASS, pages 134–144. IEEE, 2011. (cited on Page 64)

[GHI+14] Goetz Graefe, Felix Halim, Stratos Idreos, Harumi Kuno, Stefan
Manegold, and Bernhard Seeger. Transactional Support for Adap-
tive Indexing. The VLDB Journal, 23(2):303–328, 2014. (cited on

Page 124)

[GKP+10] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier,
Philippe Cudre-Mauroux, and Samuel Madden. HYRISE: a Main
Memory Hybrid Storage Engine. in: VLDB, pp. 105–116, 2010.
(cited on Page 40, 41, 42, 45, 47, 48, 52, 54, 101, 102, 105, 109, 116, and 125)

[GLRG04] Hongfei Guo, Perake Larson, Raghu Ramakrishnan, and Jonathan
Goldstein. Relaxed Currency and Consistency: How to Say Good
Enough in SQL. In Proceedings of the 2004 ACM SIGMOD interna-
tional conference on Management of data, pages 815–826. ACM,
2004. (cited on Page 97)

[GMS92] H. Garcia-Molina and K. Salem. Main Memory Database Systems:
An Overview. in: IEEE Trans. on Knowl. and Data Eng., pp. 509–
516, 1992. (cited on Page 101)

[GR92] Jim Gray and Andreas Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition, 1992. (cited on Page 44)

[Gel01] Patrick P Gelsinger. Microprocessors for the New Millennium:
Challenges, Opportunities, and New Frontiers. In 2001 IEEE

140 Bibliography

International Solid-State Circuits Conference. Digest of Technical
Papers. ISSCC (Cat. No. 01CH37177), pages 22–25. IEEE, 2001.
(cited on Page 14)

[Gra94] G. Graefe. Volcano – An Extensible and Parallel Query Evaluation
System. TODS, 6(1):120–135, February 1994. (cited on Page 45)

[HIKY12] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland HC
Yap. Stochastic Database Cracking: Towards Robust Adaptive
Indexing in Main-Memory Column-Stores. Proceedings of the
VLDB Endowment, 5(6):502–513, 2012. (cited on Page 124)

[HJ84] D. J. Haderle and R. D. Jackson. IBM Database 2 Overview. IBM
Syst. J., 23(2):112–125, June 1984. (cited on Page 44)

[HKM15] Max Heimel, Martin Kiefer, and Volker Markl. Self-tuning, GPU-
accelerated Kernel Density Models for Multidimensional Selectivity
Estimation. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1477–1492. ACM, 2015.
(cited on Page 100)

[HLY+09] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K Govindaraju,
Qiong Luo, and Pedro V Sander. Relational Query Coprocessing
On Graphics Processors. TODS, 34(4):21, 2009. (cited on Page 41,

45, 55, 62, 65, 67, 78, and 124)

[HM12] Max Heimel and Volker Markl. A First Step Towards GPU-Assisted
Query Optimization. ADMS at VLDB, 2012:33–44, 2012. (cited on

Page 31)

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008. (cited on Page 11, 17, 18, and 19)

[HSP+13] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold,
and Volker Markl. Hardware-Oblivious Parallelism for In-Memory
Column-Stores. VLDB, 6(9):709–720, 2013. (cited on Page 12, 56, 62,

73, 90, 123, and 124)

[HY11] Bingsheng He and Jeffrey Xu Yu. High-Throughput Transaction
Executions on Graphics Processors. Proceedings of the VLDB
Endowment, 4(5):314–325, 2011. (cited on Page xii, 2, 11, 19, 21, 31,

32, 33, 34, 35, 36, 37, 47, 52, 55, 62, 78, 90, 100, 123, and 124)

[Har17] Mark Harris. An Even Easier Introduction to CUDA. Nvidia blog
post, accessed, 11:27, 2017. (cited on Page 30)

[IDQ+19] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie
Hilgard, Andrew Ross, James Lennon, Varun Jain, Harshita Gupta,
David Li, et al. Design Continuums and the Path Toward Self-
Designing Key-Value Stores that Know and Learn. In CIDR, 2019.
(cited on Page 124)

Bibliography 141

[IKM+07b] Stratos Idreos, Martin L Kersten, Stefan Manegold, et al. Database
Cracking. In CIDR, volume 7, pages 68–78, 2007. (cited on Page 112

and 124)

[IKM07a] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Updating
a Cracked Database. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’07,
pages 413–424, 2007. (cited on Page 124)

[IPC15] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri.
Overview of Data Exploration Techniques. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of
Data, pages 277–281. ACM, 2015. (cited on Page 124)

[IZH+18] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S
Kester, and Demi Guo. The Data Calculator: Data Structure Design
and Cost Synthesis from First Principles and Learned Cost Models.
In Proceedings of the 2018 International Conference on Manage-
ment of Data, pages 535–550. ACM, 2018. (cited on Page 124)

[JD11] Alekh Jindal and Jens Dittrich. Relax and let the Database do
the Partitioning Online. In International Workshop on Business
Intelligence for the Real-Time Enterprise, pages 65–80. Springer,
2011. (cited on Page 124)

[KBC+17] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis
Polyzotis. The Case for Learned Index Structures. in: CoRR, pp.
489–504, 2017. (cited on Page 101)

[KE13] Alfons Kemper and André Eickler. Datenbanksysteme. Oldenbourg
Wissenschaftsv, 2013. (cited on Page 1)

[KH17] Tomas Karnagel and Dirk Habich. Heterogeneous Placement Opti-
mization for Database Query Processing. in: it-Information Tech-
nology, pp. 117–123, 2017. (cited on Page 101)

[KHL17] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. Adaptive
work placement for query processing on heterogeneous computing
resources. Proceedings of the VLDB Endowment, 10(7):733–744,
2017. (cited on Page 31)

[KJB21] Donghe Kang, Ruochen Jiang, and Spyros Blanas. Jigsaw: A Data
Storage and Query Processing Engine for Irregular Table Parti-
tioning. In Proceedings of the 2021 International Conference on
Management of Data, pages 898–911, 2021. (cited on Page 101)

[KKG+11] Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish,
David Schwalb, Jatin Chhugani, Hasso Plattner, Pradeep Dubey,
and Alexander Zeier. Fast Updates on Read-Optimized Databases

142 Bibliography

Using Multi-Core CPUs. Proc. VLDB Endow., 5(1):61–72, Septem-
ber 2011. (cited on Page 18)

[KKN+08] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan PC Jones, Samuel Mad-
den, Michael Stonebraker, Yang Zhang, et al. H-Store: A High-
Performance, Distributed Main Memory Transaction Processing
System. Proceedings of the VLDB Endowment, 1(2):1496–1499,
2008. (cited on Page 37)

[KLJK14] Youngsok Kim, Jaewon Lee, Jae-Eon Jo, and Jangwoo Kim.
GPUdmm: A High-Performance and Memory-Oblivious GPU Ar-
chitecture Using Dynamic Memory Management. In HPCA, pages
546–557. IEEE, 2014. (cited on Page 64)

[KN11] Alfons Kemper and Thomas Neumann. HyPer: A Hybrid
OLTP&OLAP Main Memory Database System based on Virtual
Memory Snapshots. In ICDE, pp. 195–206, 2011. (cited on Page 1,

40, 41, 42, 56, 100, and 124)

[KPB92] Martin L. Kersten, Sander Plomp, and Carel A. van den Berg. Ob-
ject Storage Management in Goblin. In M. Tamer Özsu, Umeshwar
Dayal, and Patrick Valduriez, editors, IWDOM, pages 100–116.
Morgan Kaufmann, 1992. (cited on Page 45)

[KZ15] Oliver Kennedy and Lukasz Ziarek. Just-In-Time Data Structures.
In CIDR, 2015. (cited on Page 124)

[LBKN14] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann.
Morsel-Driven Parallelism: A NUMA-Aware Query Evaluation
Framework for the Many-Core Age. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data,
pages 743–754, 2014. (cited on Page 2, 12, and 21)

[LHZ+21] Zhuan Liu, Ruichen Han, Yansong Zhang, Yueguo Chen, and
Yu Zhang. Database Star-Join Optimization for Multicore CPU
and GPU Platforms. Journal of Computer Applications, 41(3):611,
2021. (cited on Page 18 and 20)

[LMF+16] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A Boncz,
Thomas Neumann, and Alfons Kemper. Data Blocks: Hybrid OLTP
and OLAP on Compressed Storage using both Vectorization and
Compilation. In ACM SIGMOD, pp. 311–326, 2016. (cited on Page 47,

102, and 125)

[LMK+17] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim,
Sang Kyun Cha, and Wook-Shin Han. Parallel Replication Across
Formats in SAP HANA for Scaling Out Mixed OLTP/OLAP Work-
loads. Proceedings of the VLDB Endowment, 10(12):1598–1609,
2017. (cited on Page 97)

Bibliography 143

[LP14] Yinan Li and Jignesh M Patel. Widetable: An Accelerator for
Analytical Data Processing. in: VLDB, pp. 907–918, 2014. (cited

on Page 101 and 110)

[LSF09] Christian Lemke, Kai-Uwe Sattler, and Franz Färber. Kompression-
stechniken für spaltenorientierte BI-Accelerator-Lösungen. Daten-
banksysteme in Business, Technologie und Web (BTW)–13. Fach-
tagung des GI-Fachbereichs" Datenbanken und Informationssys-
teme"(DBIS), 2009. (cited on Page 108 and 120)

[LTL+16] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou,
and Steven Swanson. HippogriffDB: Balancing I/O and GPU Band-
width in Big Data Analytics. Proceedings of the VLDB Endowment,
9(14):1647–1658, 2016. (cited on Page 67 and 73)

[LZCH14] Raphael Landaverde, Tiansheng Zhang, Ayse K Coskun, and Martin
Herbordt. An Investigation of Unified Memory Access Performance
in CUDA. In HPEC, pages 1–6. IEEE, 2014. (cited on Page 72)

[Laz93] Edward D Lazowska. Recent Trends in Experimental Operating
Systems Research. In Proceedings of the twelfth annual ACM
symposium on Principles of distributed computing, pages 13–19,
1993. (cited on Page 14)

[MAH+18] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, An-
drew Pavlo, and Geoffrey J. Gordon. Query-based Workload Fore-
casting for Self-Driving Database Management Systems. In ACM
SIGMOD, pp. 631–645, 2018. (cited on Page 105 and 125)

[MAR+19] Karthik Vadambacheri Manian, AA Ammar, Amit Ruhela, C-H Chu,
Hari Subramoni, and Dhabaleswar K Panda. Characterizing Cuda
Unified Memory (um)-Aware Mpi Designs on Modern GPU Archi-
tectures. In Proceedings of the 12th Workshop on General Purpose
Processing Using GPUs, pages 43–52, 2019. (cited on Page 3)

[MBK00] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Opti-
mizing Database Architecture for the New Bottleneck: Memory
Access. The VLDB Journal, 9(3):231–246, December 2000. (cited

on Page 2)

[MBS15] Andreas Meister, Sebastian Breß, and Gunter Saake. Toward
gpu-accelerated database optimization. Datenbank-Spektrum,
15(2):131–140, 2015. (cited on Page 12, 31, and 100)

[MMNL16] Michael Mara, Morgan McGuire, Derek Nowrouzezahrai, and
David P Luebke. Deep G-Buffers for Stable Global Illumination
Approximation. In High Performance Graphics, pages 87–98, 2016.
(cited on Page 22)

144 Bibliography

[MS16] Andreas Meister and Gunter Saake. Challenges for a GPU-
Accelerated Dynamic Programming Approach for Join-Order Opti-
mization. In Proc. GI-Workshop GvDB, pages 86–81, 2016. (cited

on Page 3)

[MTA09] Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on
Wires: a Query Compiler for FPGAs. Proceedings of the VLDB
Endowment, 2(1):229–240, 2009. (cited on Page 100)

[Mei15] Andreas Meister. GPU-Accelerated Join-Order Optimization. In The
VLDB PhD workshop, PVLDB, volume 176, page 1, 2015. (cited on

Page 22)

[Mos13] Todd Mostak. An Overview of MapD (Massively Parallel Database).
Technical report, MIT, 2013. (cited on Page 62 and 73)

[NMK15] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast
Serializable Multi-Version Concurrency Control for Main-Memory
Database Systems. In SIGMOD, pages 677–689. ACM, 2015. (cited

on Page 42)

[NR18] Thomas Neumann and Bernhard Radke. Adaptive Optimization of
Very Large Join Queries. In Proceedings of the 2018 International
Conference on Management of Data, pages 677–692. ACM, 2018.
(cited on Page 101)

[NSLS14] Dan Negrut, Radu Serban, Ang Li, and Andrew Seidl. Unified
Memory in CUDA 6: A Brief Overview and Related Data Access.
Technical Report TR-2014-09, University of Wisconsin-Madison,
2014. (cited on Page 70, 71, and 72)

[OKA+17] Matthaios Olma, Manos Karpathiotakis, Ioannis Alagiannis, Manos
Athanassoulis, and Anastasia Ailamaki. Slalom: Coasting through
Raw Data via Adaptive Partitioning and Indexing. Proceedings of
the VLDB Endowment, 10(10):1106–1117, 2017. (cited on Page 124)

[OSC+14] Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G
Spampinato, and Markus Püschel. Applying the Roofline Model. In
2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 76–85. IEEE, 2014. (cited

on Page 25 and 26)

[PAA+17] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin,
Lin Ma, Prashanth Menon, Todd Mowry, Matthew Perron, Ian Quah,
Siddharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken,
Ziqi Wang, Yingjun Wu, Ran Xian, and Tieying Zhang. Self-Driving
Database Management Systems. In CIDR, 2017. (cited on Page 101)

Bibliography 145

[PBDS17] Marcus Pinnecke, David Broneske, Gabriel Campero Durand, and
Gunter Saake. Are Databases Fit for Hybrid Workloads on GPUs?
A Storage Engine’s Perspective. In ICDE, pages 1599–1606. IEEE,
2017. (cited on Page 62, 78, 100, 102, and 107)

[PBS15] Marcus Pinnecke, David Broneske, and Gunter Saake. Toward GPU
Accelerated Data Stream Processing. In GvDB, pages 78–83. GI,
2015. (cited on Page 31, 41, and 100)

[PDZ+19] Marcus Pinnecke, Gabriel Campero Durand, Roman Zoun, David
Broneske, and Gunter Saake. Protobase: It’s About Time for
Backend/Database Co-Design. BTW 2019, 2019. (cited on Page 101)

[PFG+13] Holger Pirk, Florian Funke, Martin Grund, Thomas Neumann, Ulf
Leser, Stefan Manegold, Alfons Kemper, and Martin Kersten. CPU
and Cache Efficient Management of Memory-Resident Databases.
In ICDE, pages 14–25. IEEE Computer Society, 2013. (cited on

Page 45)

[PFRE14] M Pezzini, D Feinberg, N Rayner, and R Edjlali. Hybrid Transac-
tion/Analytical Processing will foster Opportunities for Dramatic
Business innovation. Gartner, 2014, 2014. (cited on Page 2, 40, 41,

and 100)

[PH15] Marcus Pinnecke and Bastian Hoßbach. Query Optimization in Het-
erogenous Event Processing Federations. Datenbank-Spektrum,
15(3):193–202, 2015. (cited on Page 41 and 101)

[PIM15] Eleni Petraki, Stratos Idreos, and Stefan Manegold. Holistic Index-
ing in Main-Memory Column-Stores. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data,
pages 1153–1166. ACM, 2015. (cited on Page 124)

[PMK14] Holger Pirk, Stefan Manegold, and Martin Kersten. Waste not. . .
Efficient Co-Processing of Relational Data. In ICDE, pages 508–519.
IEEE, 2014. (cited on Page 62)

[PPA+09] Tim HJM Peeters, Vesna Prckovska, Markus van Almsick, Anna Vi-
lanova, and Bart M ter Haar Romeny. Fast and Sleek Glyph Render-
ing for Interactive HARDI Data Exploration. In 2009 IEEE Pacific
Visualization Symposium, pages 153–160. IEEE, 2009. (cited on

Page 22)

[PS18] Constantin Pohl and Kai-Uwe Sattler. Joins in a Heterogeneous
Memory Hierarchy: Exploiting High-Bandwidth Memory. In Pro-
ceedings of the 14th International Workshop on Data Management
on New Hardware, page 8. ACM, 2018. (cited on Page 101)

146 Bibliography

[Pla09] Hasso Plattner. A Common Database Approach for OLTP and OLAP
Using an In-Memory Column Database. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’09, page 1–2, New York, NY, USA, 2009. Association for
Computing Machinery. (cited on Page 1 and 45)

[RDHF12] Philipp Rösch, Lars Dannecker, Gregor Hackenbroich, and Franz
Färber. A Storage Advisor for Hybrid-Store Databases. PVLDB,
5(12):1748–1758, 2012. (cited on Page 40 and 41)

[RDS03] Ravishankar Ramamurthy, David J DeWitt, and Qi Su. A Case for
Fractured Mirrors. The VLDB Journal, 12:89–101, 2003. (cited on

Page 52, 53, and 124)

[RG00] Raghu Ramakrishnan and Johannes Gehrke. Database Manage-
ment Systems. McGraw-Hill, 2000. (cited on Page 44)

[RPBL13] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolf-
gang Lehner. The Graph Story of the SAP HANA Database. In
Proceedings of BTW 2013, pages 403–420, 2013. (cited on Page 57)

[RRB+08] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S.
Stone, David B. Kirk, and Wen-mei W. Hwu. Optimization Principles
and Application Performance Evaluation of a Multithreaded GPU
Using CUDA. In SIGPLAN PPoPP, pages 73–82. ACM, 2008. (cited

on Page 20)

[RT19] Naseem Rao and Safdar Tanweer. Performance Analysis of Health-
care data and its Implementation on NVIDIA GPU using CUDA-C.
Journal of Drug Delivery and Therapeutics, 9(1-s):361–363, 2019.
(cited on Page 22)

[SBBC16] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhat-
tacharjee, and Mustafa Canim. L-Store: A Real-Time OLTP and
OLAP System. in: CoRR, pp. 540–551, 2016, 2016. (cited on Page 52,

57, 101, and 125)

[SBÇ+07] Michael Stonebraker, Chuck Bear, Uğur Çetintemel, Mitch Cher-
niack, Tingjian Ge, Nabil Hachem, Stavros Harizopoulos, John
Lifter, Jennie Rogers, and Stan Zdonik. One Size Fits All? Part 2:
Benchmarking Results. In CIDR, 2007. (cited on Page 12)

[SC05] Michael Stonebraker and Ugur Cetintemel. "One Size Fits All": An
Idea Whose Time Has Come and Gone. In ICDE, pages 2–11. IEEE
Computer Society, 2005. (cited on Page 12)

[SD15] Stefan Schuh and Jens Dittrich. AIR: Adaptive Index Replacement
in Hadoop. In 2015 31st IEEE International Conference on Data En-
gineering Workshops, pages 22–29. IEEE, 2015. (cited on Page 124)

Bibliography 147

[SDL18] Felix Martin Schuhknecht, Jens Dittrich, and Laurent Linden. Adap-
tive Adaptive Indexing. In 2018 IEEE 34th International Confer-
ence on Data Engineering (ICDE), pages 665–676. IEEE, 2018.
(cited on Page 124)

[SFL+12] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha,
Thomas Peh, and Christof Bornhövd. Efficient Transaction Process-
ing in SAP HANA Database: The End of a Column Store Myth. In
SIGMOD, pages 731–742, 2012. (cited on Page 78)

[SHWK76] Michael Stonebraker, Gerald Held, Eugene Wong, and Peter Kreps.
The Design and Implementation of INGRES. ACM Trans. Database
Syst., 1(3):189–222, September 1976. (cited on Page 44)

[SJD13] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. The
Uncracked Pieces in Database Cracking. Proceedings of the VLDB
Endowment, 7(2):97–108, 2013. (cited on Page 124)

[SJD16] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. An
Experimental Evaluation and Analysis of Database Cracking. The
VLDB Journal—The International Journal on Very Large Data Bases,
25(1):27–52, 2016. (cited on Page 124)

[SKD15] Felix Martin Schuhknecht, Pankaj Khanchandani, and Jens Dittrich.
On the Surprising Difficulty of Simple Things: the Case of Radix
Partitioning. Proceedings of the VLDB Endowment, 8(9):934–937,
2015. (cited on Page 124)

[SKNT19] Kai-Uwe Sattler, Alfons Kemper, Thomas Neumann, and Jens Teub-
ner. DFG Priority Program SPP 2037: Scalable Data Management
for Future Hardware. BTW 2019–Workshopband, 2019. (cited on

Page 2)

[SL90] Amit P Sheth and James A Larson. Federated Database Sys-
tems for Managing Distributed, Heterogeneous, and Autonomous
Databases. ACM Computing Surveys (CSUR), 22(3):183–236, 1990.
(cited on Page 41)

[SLW+14] Junchen Shen, Yanlin Luo, Xingce Wang, Zhongke Wu, and
Mingquan Zhou. GPU-Based Realtime Hand Gesture Interaction
and Rendering for Volume Datasets using Leap Motion. In 2014 In-
ternational Conference on Cyberworlds, pages 85–92. IEEE, 2014.
(cited on Page 22)

[SMA+07] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros
Harizopoulos, Nabil Hachem, and Pat Helland. The End of an
Architectural Era: (It’s Time for a Complete Rewrite). PVLDB,
pages 1150–1160, 2007. (cited on Page 12)

148 Bibliography

[SN09] David Strippgen and Kai Nagel. Using Common Graphics Hard-
ware for Multi-Agent Traffic Simulation with CUDA. In Proceedings
of the 2nd International Conference on Simulation Tools and Tech-
niques, pages 1–8, 2009. (cited on Page 22)

[SS17] Marc Seidemann and Bernhard Seeger. ChronicleDB: A High-
Performance Event Store. In EDBT, 2017. (cited on Page 101)

[SSH19] Gunter Saake, Kai-Uwe Sattler, and Andreas Heuer. Datenbanken.
Implementierungstechniken. MITP-Verlags GmbH & Co. KG, 2019.
(cited on Page 1)

[SSM14] Koichi Shirahata, Hitoshi Sato, and Satoshi Matsuoka. Out-Of-
Core GPU Memory Management for MapReduce-Based Large-
Scale Graph Processing. In CLUSTER, pages 221–229. IEEE, 2014.
(cited on Page 67 and 68)

[SSOG93] Jaspal Subhlok, James M Stichnoth, David R O’hallaron, and
Thomas Gross. Exploiting Task and Data Parallelism on a Multi-
computer. In Proceedings of the fourth ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 13–22,
1993. (cited on Page 19)

[SWK+18] Vasily Sartakov, Nico Weichbrodt, Sebastian Krieter, Thomas Leich,
and Rudiger Kapitza. STANlite–a Database Engine for Secure
Data Processing at Rack-Scale Level. In 2018 IEEE International
Conference on Cloud Engineering (IC2E), pages 23–33. IEEE, 2018.
(cited on Page 101)

[Sit16] Evangelia Sitaridi. GPU-Acceleration of In-Memory Data Analytics.
PhD thesis, Columbia University, 2016. (cited on Page 21, 62, and 73)

[Sut05] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobb’s Journal, 30(3):202–210, 2005.
(cited on Page 14, 15, 16, and 20)

[TCH16] Ha-Nguyen Tran, Erik Cambria, and Amir Hussain. Towards GPU-
Based Common-Sense Reasoning: Using Fast Subgraph Matching.
Cognitive Computation, 8(6):1074–1086, 2016. (cited on Page 31)

[TDB10] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards
Dense Linear Algebra for Hybrid GPU Accelerated Manycore Sys-
tems. Parallel Computing, 36(5-6):232–240, 2010. (cited on Page 31)

[TE91] Masahide TAKADA and Tadayoshi ENOMOTO. Reviews and
Prospects of SRAM Technology. IEICE Transactions on Electronics,
74(4):827–838, 1991. (cited on Page 15)

Bibliography 149

[TPPC] Transaction Processing Performance Council. TPC-C Benchmark
Revision 5.11. online at http://www.tpc.org/tpcc/. (cited on Page 82)

[Trz04] Zbigniew Trzcionkowski. AmigaOS–Internal Structure of Operating
System. 2004. (cited on Page 14)

[VTC+17] Quoc Duy Vo, Jaya Thomas, Shinyoung Cho, Pradipta De, Bong Jun
Choi, and Lee Sael. Next Generation Business Intelligence and
Analytics: a Survey. arXiv preprint arXiv:1704.03402, 2017. (cited

on Page 3)

[WZH09] Ren Wu, Bin Zhang, and Meichun Hsu. GPU-Accelerated Large
Scale Analytics. Technical Report HPL- 2009-38, HP Laboratories,
2009. (cited on Page 67 and 68)

[WZY+14] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xi-
aoning Ding, and Xiaodong Zhang. Concurrent Analytical Query
Processing With GPUs. Proceedings of the VLDB Endowment,
7(11):1011–1022, 2014. (cited on Page 65 and 67)

[YBF+20] Gingfung Yeung, Damian Borowiec, Adrian Friday, Richard Harper,
and Peter Garraghan. Towards GPU Utilization Prediction for
Cloud Deep Learning. In 12th {USENIX} Workshop on Hot Topics
in Cloud Computing (HotCloud 20), 2020. (cited on Page 31)

[YLZ13] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. The Yin and Yang
of Processing Data Warehousing Queries on GPU Devices. VLDB,
6(10):817–828, 2013. (cited on Page 62 and 70)

[ZCO+15] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Mei-
hui Zhang. In-Memory Big Data Management and Processing: A
Survey. IEEE Transactions on Knowledge and Data Engineering,
27(7):1920–1948, 2015. (cited on Page 3)

[ZH13] Jianlong Zhong and Bingsheng He. Towards GPU-Accelerated
Large-Scale Graph Processing in the Cloud. In 2013 IEEE 5th
International Conference on Cloud Computing Technology and
Science, volume 1, pages 9–16. IEEE, 2013. (cited on Page 31)

[ZH14] Jianlong Zhong and Bingsheng He. Medusa: Simplified Graph
Processing on GPUs. IEEE Transactions on Parallel and Distributed
Systems, 25(6):1543–1552, 2014. (cited on Page 124)

[ZHHL13] Shuhao Zhang, Jiong He, Bingsheng He, and Mian Lu. Om-
nidb: Towards Portable and Efficient Query Processing on Parallel
CPU/GPU Architectures. Proceedings of the VLDB Endowment,
6(12):1374–1377, 2013. (cited on Page 12)

[ZP13] Tomás Zegard and Glaucio H Paulino. Toward GPU Accelerated
Topology Optimization on Unstructured Meshes. Structural and

150 Bibliography

multidisciplinary optimization, 48(3):473–485, 2013. (cited on

Page 31)

[ZWY+15] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and
Xiaodong Zhang. Mega-KV: a Case for GPUs to Maximize the
Throughput of In-Memory Key-Value Stores. Proceedings of the
VLDB Endowment, 8(11):1226–1237, 2015. (cited on Page 25 and 123)

[ZWY+17] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Li, Xiaodong
Zhang, Bingsheng He, Jiayu Hu, and Bei Hua. A Distributed In-
Memory Key-Value Store System on Heterogeneous CPU-GPU
Cluster. in: VLDB, pp. 729–750, 2017. (cited on Page 101)

[ÖTT17] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. Hybrid Transac-
tional/Analytical Processing: A Survey. In Proceedings of the 2017
ACM International Conference on Management of Data, pages
1771–1775, 2017. (cited on Page 3 and 100)

Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel ange-
fertigt habe; verwendete fremde und eigene Quellen sind als solche kenntlich
gemacht. Insbesondere habe ich nicht die Hilfe eines kommerziellen Promo-
tionsberaters in Anspruch genommen. Dritte haben von mir weder unmittelbar
noch mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammen-
hang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfer-
tigter Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und
Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung
durch die Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher
weder im Inland noch im Ausland in gleicher oder ähnlicher Form als Disserta-
tion eingereicht und ist als Ganzes auch noch nicht veröffentlicht.

Ferner erkläre ich hiermit, dass ich keine früheren Promotionsgesuche ein-
gereicht habe und nicht wegen einer Straftat verurteilt worden zu sein, die
Wissenschaftsbezug hat. Ebenso bestätige ich hiermit, dass ich die Promotion-
sordnung der Fakultät für Informatik gelesen habe und anerkenne.

Magdeburg, den 15. Februar 2022

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The H2TAP Promise
	1.2 Research Challenges
	1.2.1 Mixed Workloads Storage Engineering
	1.2.2 Low-Latency GPU Transactions
	1.2.3 A Flexible and Unified Storage Engine

	1.3 Contributions
	1.3.1 Mixed Workloads Storage Engineering
	1.3.2 Low-Latency GPU Transactions
	1.3.3 A Flexible and Unified Storage Engine
	1.3.4 Publications

	1.4 Outline

	2 Fundamentals and Needs for Heterogeneous Computing
	2.1 Introduction
	2.2 On The Demand for Parallel Computing
	2.2.1 Running Example
	2.2.2 Single-Core Architectures
	2.2.3 Multi-Core Architectures

	2.3 Fundamentals of GPGPU Programming
	2.3.1 Graphic Cards as a Computation Power House
	2.3.2 General Purpose Computation on GPUs
	2.3.3 Program and Data Flow Overview
	2.3.4 Performance Boundaries
	2.3.5 CPU and GPU Design in Comparison
	2.3.6 CUDA Thread Management in a Nutshell

	2.4 High-Throughput GPU Transactions
	2.4.1 Major Challenge in a Nutshell
	2.4.2 The Bulk Execution Model
	2.4.3 Transaction Execution
	2.4.4 T-Dependency Graph Analysis

	2.5 Summary

	3 A Storage Engines Perspective on Hybrid Workloads
	3.1 Motivation
	3.1.1 Classic Physical Record Organization for OLTP&OLAP
	3.1.2 Contradicting Optimization Goals within HTAP Workloads

	3.2 Terminology and Definitions
	3.2.1 Layouts and Fragments
	3.2.2 Layout Handling
	3.2.3 Layout Flexibility
	3.2.4 Layout Adaptability
	3.2.5 Data Location
	3.2.6 Fragment Linearization
	3.2.7 Fragment scheme

	3.3 Survey and Classification
	3.3.1 Storage Engines
	3.3.2 Database Systems

	3.4 Summary

	4 Memory Management in GPU/CPU Systems
	4.1 Background
	4.1.1 GPU Memory Types
	4.1.2 SIMD-fashioned Thread Execution
	4.1.3 Programming and Execution Models of GPUs

	4.2 GPU Memory Management
	4.2.1 Divide-and-Conquer (D&C)
	4.2.2 Mapped Memory (MM)
	4.2.3 Unified Virtual Addressing (UVA)
	4.2.4 Unified Memory (UM)
	4.2.5 Other Solutions

	4.3 Bringing It All Together
	4.4 Summary

	5 Column vs. Row Stores for CPU/GPU Database Systems
	5.1 Storage Model Implementation
	5.1.1 Data structures
	5.1.2 Operator implementation in OpenCL

	5.2 Evaluation
	5.2.1 Execution Time (Including Transfer Time)
	5.2.2 Execution Time (Excluding Transfer Time)
	5.2.3 Execution Time for Different Table Column Fractions
	5.2.4 Evaluation Conclusion

	5.3 Summary

	6 Low-Latency GPU Transactions: Dream or Reality?
	6.1 Design Decisions
	6.1.1 Framework Design
	6.1.2 Yahoo! Cloud Serving Benchmark (YCSB)

	6.2 Evaluation
	6.2.1 Pure Reads and Updates
	6.2.2 Concurrency Control
	6.2.3 Discussion and Summary

	7 The One-Size-Fits-Most H2TAP Data Store: GridTables
	7.1 Research Efforts
	7.2 A Unified Physical Relational Format
	7.2.1 Overview and Concept
	7.2.2 Hybrid Processing on Modern Hardware
	7.2.3 Motivation Experiment

	7.3 Data Store Requirements
	7.3.1 Transactional Access Patterns
	7.3.2 Analytical Access Patterns
	7.3.3 Physical Adaptiveness
	7.3.4 Co-Processor Data Placement
	7.3.5 Autonomous Optimization Knobs

	7.4 Technical Considerations
	7.5 Definition and Manipulation
	7.6 A Stacked Architecture Concept
	7.6.1 Flexible Partitions
	7.6.2 Grid Formats
	7.6.3 Grid Storage
	7.6.4 Data Packing
	7.6.5 Schema Reordering
	7.6.6 Storage Organization
	7.6.7 Problem Statement

	7.7 Building Blocks
	7.7.1 GridTable
	7.7.2 Regions
	7.7.3 Zero Regions
	7.7.4 Managed Regions
	7.7.5 Core Components
	7.7.6 Placement Abstraction
	7.7.7 Definition and Manipulation Path
	7.7.8 Level-Specific Operations.

	7.8 Open Challenges
	7.8.1 Record Organization Problem
	7.8.2 Data Placement Problem
	7.8.3 Transition Cost Problem
	7.8.4 Read Set Labeling Problem
	7.8.5 Wide-Partitioning Problem
	7.8.6 Attribute Ordering Problem
	7.8.7 Null-Region Maximization Problem
	7.8.8 Compression Problem

	7.9 Summary

	8 Related Work
	8.1 GPUs as Co-Processor
	8.2 Adaptive Stores

	9 Wrap-Up
	9.1 Summary
	9.2 Conclusion
	9.3 Future Work

	Bibliography

