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unperturbed Fokker-Planck operator
Fokker-Planck operator of periodic perturbation
adjoint Fokker-Planck operator

mass

complex valued amplitudes of the system response
probability density

Floquet modes
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transition probability density

power

integrated power of the delta-like peak at the frequency /=2
total power of the modulation signal in the absence of noise
integrated power of d-peaks of the n-th frequency component
electric charge

electric charge of nonlinear capacitance Cr

Kramer’s rate

ohmic resistance

output spectral density

spectral density of noise
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time
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voltage drop over Cy
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voltage drop over R
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Chapter One

Introduction

1.1 The Phenomenon of the Stochastic Resonance

For the last two decades the phenomenon of the stochastic resonance has undoubtedly served
for a boom in nonlinear sciences. Since its introduction in the early 80s merely as a theoretical
assumption in the modelling of the recurrence cycles of the Earth’s ice ages, it has been
attracting an increasing attention from diverse fields of science such as climatology,
chemistry, biophysics and physiology, laser physics, solid-state physics, neuroscience,
ferromagnetism, superconductivity and even social sciences, being successfully explored
theoretically as well as experimentally.

The reason for this growing interest lies unquestionably in the unique nature of the
phenomenon. It has been shown in numerous investigations that the action of noise, usually
believed to be an unwelcome obstacle feature in most investigations, can nevertheless act as a
positive element. In nonlinear systems the influence of noise can under certain conditions lead
to the appearance of the ordered functioning regimes through the formation of regular signal
structures, increase of coherence degree, signal-to-noise ratio enhancement, etc. therefore
improving the overall system performance rather than hampering it.

The term “stochastic resonance” characterises new group of effects, whereby this rather
paradoxical concept of the enhancement of the order degree of the system by means of
random noise is realised [44].

As it is pointed out in [34], there are three following basic requirements for the onset of

stochastic resonance, namely: a) a nonlinear system with energetic activation barrier or any



form of threshold, b) a weak coherent input signal and c) a source of random noise coupled to
the coherent input or embedded in the system. The main characteristic property of the system
demonstrating stochastic resonance behaviour is the increased sensitivity to even vanishingly
small perturbations. Granted these features, the response of the system subjected to the feeble
external coherent input signal and noise undergoes a resonance-like dependence as a function
of noise intensity due to the establishment of global statistic synchronisation between the
stochastic processes governed by noise and coherent input, which in its turn results in the
maximum enhancement of the coherent component of the system response at some optimum
noise level.

Owing to the principal generality of the above mentioned requirements, stochastic resonance
might be thought of as a distinctive feature of nonlinear systems rather independent on their
physical nature, whereby the characteristic system time scales can be controlled through the
use of noise.

Over the last twenty years since its discovery, the effect of stochastic resonance has been
studied in numerous theoretical and experimental investigations. After the appearance of the
first publications by Benzi [1,2] and Nicolis [3], several theoretical approaches have been
developed for the description of stochastic resonance in various dynamical regimes. Since the
list of publications on stochastic resonance is exponentially growing, as it is reflected, for
instance, in the permanently updated bibliography maintained in the database by Gammaitoni
[54], it is scarcely possible to provide a complete digest of all latest areas of study and
applications of the stochastic resonance. The core contributions to the understanding of the
phenomenon have been made by McNamara and Wiesenfeld [5,7,34], Gammaitoni et
al.[11,12,22,34], Jung and Hinggi [13,15,34] and others. The theoretical predictions have
been supported by numerous digital [13,14,34] and analogue simulations [34,44], amongst
others, the first successful demonstration of the stochastic resonance in Schmitt trigger circuit.
Up to date stochastic resonance has been observed in a wide variety of experiments as well,
including laser systems, semiconductors, ferromagnetic systems, neurophysiological living
systems etc., and there seems to be no end in sight [54].

In spite of the impressing number of works devoted to the experimental investigation of
stochastic resonance in divergent systems, the ferroelectrics as a class of materials have not
yet been reported to provide the experimental evidence for this effect. Simple consideration of
the general properties of ferroelectricity, as given briefly for example in [25], leads to the
straightforward conclusion that ferroelectrics in fact may well serve as a bright example of the
stochastic resonance phenomenon, owing, first of all, to their peculiar nature. As it is known,
at the temperature below the Curie point, i.e., in ferroelectric phase, the ferroelectrics have
two (or more) metastable states characterised by different direction of spontaneous
polarisation, which are separated by a potential barrier. Being imposed simultaneously to the
action of noise and weak (in general, periodic) external signal not sufficient to cause the
reversal of polarisation, such a system obviously meets the above mentioned general

conditions for stochastic resonance as a fundamental phenomenon, especially when taking
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into account the extreme sensitivity of ferroelectric materials to the small perturbations in the
vicinity of phase transition. Therefore the appearance of typical resonance-like behaviour of
the system response on the noise intensity can be expected.

The idea of obtaining the experimental evidence of stochastic resonance in ferroelectrics is
quite tempting. On one hand, the ferroelectrics such as TGS, chosen in the present work to
conduct the investigations, claim to represent a comfort model system to study stochastic
resonance due to several practical advantages. Apart from easy sample preparation, relative
simplicity and convenience of experimental conditions (the existence of reversible
spontaneous polarisation at ambient temperatures), which allow to avoid unnecessary
measurement complications, profound experimental and theoretical knowledge of material
properties has been gained since ferroelectric TGS has been long serving as a model material
in the study of ferroelectrics.

On the other hand, despite numerous investigations in the successful history of
ferroelectricity, there are various problems not likely to be solved in the framework of
conventional theoretical and experimental methods, even when it comes to comparatively
uncomplicated crystal structures, (just to mention a few, domain structure behaviour during
polarisation reversal, phase transitions etc.). As a new effect for this class of materials,
produced directly by alteration of ferroelectric domain structure, stochastic resonance

represents a fresh and promising approach for the study of ferroelectrics.

1.2 The Purpose of the Study

Taking into account the above presented considerations, the first task of the present study is to
establish experimentally the effect of stochastic resonance in ferroelectric TGS crystal. As a
next step it should be proved whether the theoretical conceptions as developed in the
framework of generic model for continuos bistable systems can be considered valid when
realising stochastic resonance in actual experiment with ferroelectric TGS crystal. The
theoretical predictions concerning general effect properties are to be checked experimentally.
In order to do this, the stochastic resonance behaviour should be studied over the wide range
of experimental parameters. To provide thorough characterisation of the stochastic resonance

in ferroelectric TGS crystal, the plan presented below is followed in the course of study:
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Experimental set-up design.

The measurement set-up which makes possible the experimental realisation of stochastic

resonance in the course of investigations is described in Chapter 2. The experimental

techniques are introduced together with the definition of actual stochastic resonance

observables and ways of their estimation in the experiment.

Presentation of theoretical conceptions for stochastic resonance.

In Chapter 3 the theoretical considerations concerning stochastic resonance are given. The
effect basics and its main characteristics are introduced briefly on the basis of a generic
two-state model. The accurate description of the effect applicable in general to the case of
ferroelectrics is provided within the framework of the Floquet approach for continuos
bistable systems after Jung and Hénggi [13] and Gammaitoni et al. [34]. Brief explanation
of the main properties of ferroelectrics which are responsible for the onset of stochastic

resonance is sketched in Section 3.

Experimental study of stochastic resonance in ferroelectric TGS.

The experimental results obtained in the study of stochastic resonance in TGS crystal are
presented in Chapter 4. The validity of theoretical predictions raised in the modelling of
stochastic resonance behaviour in continuos bistable system is proved experimentally for
the case of a ferroelectric TGS crystal serving as a system to observe the effect. The
characterisation of stochastic resonance in actual experiment is provided over the wide
range of measurement parameters such as frequency and amplitude of the external
modulation signal and temperature of the ferroelectric sample. The specific features of
stochastic resonance have been registered, which were not observed in other experimental

systems.



Chapter Two

The Experimental Set-up

This chapter describes the nonlinear system used in the experimental study of stochastic
resonance in ferroelectric TGS crystal.

First, the electric circuit serving as a core element of the experimental set-up is presented. As
a next step the general principles of signal characterisation used in the investigation of the
stochastic resonance are outlined. This is followed by the introduction of the stochastic
resonance measures involved in the actual experiments and methods of their estimation.
Finally the description of the measurement set-up developed for the study of the effect over
the wide range of experimental parameters is provided specifying available measurement

configurations and regimes.

2.1 The Electric Circuit

The electric circuit described below is configured to satisfy basic requirements of stochastic
resonance under conditions of real experiment. Ferroelectric crystal chilled below Curie point
possesses double-well potential that corresponds to the two metastable states with opposite
polarisation direction. Since stochastic resonance is confirmed to be a fundamental
phenomenon i.e. independent of the nature of the system where it is observed, when exposed
to the sum of weak periodic modulation and noise, the presented experimental system should
manifest corresponding output signal enhancement as a function of noise. On one hand, the
proposed experimental set-up admits the possibility to verify experimentally the general

theoretical predictions derived for stochastic resonance behaviour. On the other hand, because
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the phenomenon of stochastic resonance in ferroelectric crystal is produced by the
polarisation switching at the frequency of the weak periodic modulation established at an
appropriate noise level, it provides the opportunity to investigate the behaviour of ferroelectric
material within this complicated stochastic process as well as peculiarities of the stochastic

resonance itself defined by the properties of ferroelectrics.

2.1.1 Experimental Realisation

The circuit involved in the course of measurement is a well-known Sawyer-Tower bridge
which is usually used to register ferroelectric hysteresis. This circuit shown schematically on
Figure 2.1 includes following parts: non-linear ferroelectric capacitance Cr , linear
capacitance Cy and linear ohmic resistance R. The non-linear capacitance Cr is represented in
our experiment by ferroelectric TGS crystal plate with electrodes. The ferroelectric axis of the
crystal is oriented along the thickness and is normal to the electrode surfaces. Therefore the

sample can be considered as bar-shaped condenser filled with ferroelectric dielectric material.

A

Ug
Ferroelectric
Axis
Cr Electrodes
Ferroelectric
C, Sample

Figure 2.1 Experimental circuit
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Applying the periodic voltage of appropriate amplitude to the circuit one produces
polarisation switching of ferroelectric. This process can be registered by recording hysteresis
loops which accompany repolarisation.

The voltage applied to the circuit is split into the sum of voltage drops over every circuit

component and can be written as:
Us=Uc, +Ucy +U;. (2.1)

Choosing the capacitance Cp much larger than Cr and thus maintaining the relation

R << << (2.2)

assures that most of the driving voltage drops over the ferroelectric capacitance Cr. Because
of the serial junction of capacitors Cy and Cr the charges of both capacitors are equal Q=0 .

Therefore the voltage drop over C yields:

U, C,=U.C,, (2.3)
Or

U =<r 24

“ = (2.4)

p_<r (2.5)

. (2.6)

where d stands for sample thickness, one retrieves well known hysteresis loop.
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2.2 Methods of Signal Characterisation

In the investigations of stochastic resonance the behaviour of system output signal in the
dependence of noise intensity is studied. Most of different experimental techniques are based
on the measurements of power spectrum and time series of system output [13, 34]. Before the
introduction of the stochastic resonance measures used in the course of investigations, the
basic principles concerning signal characterisation in time and frequency range are outlined
below.

The arbitrary signal can be represented as either function of time x(z) or frequency X(w).
According to Fourier theorem, time-dependent signal x(z) can be represented in the following

form:

x(t)= i _].;X(a)) exp(iot)dw, 2.7)
where X(w) is defined as follows

X(w)= _T x(t)exp(—iot)dt . (2.8)

Here X(w) stands for so called Fourier transform of x(#) and according to definition (2.7),
represents time evolution of signal x(z) in the form of superposition of oscillations
X(w)exp(ian) over the wide frequency range. In general case the Fourier transform of real

function x(2) is a complex function
X (@) =|X (@) explip). (2.9)

where |X(w)| stands for the amplitude and ¢ for the phase of the signal with frequency @. The
representation of the amplitude and phase of the signal in dependence on the frequency is
named Fourier-spectrum of the signal. If the square of the signal amplitude is registered, the
spectrum becomes so called power spectrum.

If the signal under investigation is periodic in time, i.e. x(?)=x(¢+7), its Fourier transform

reads
> L2
x()= Y ¢ exp(zk7t), (2.10)
k=—0

where ¢, are corresponding Fourier coefficients defined as follows
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T
¢, = %jx(z) exp(—ik 27” t)dt . (2.11)

0

Therefore, the periodic signal with frequency w=27/T can be represented as a superposition of
periodic signals with frequencies @y = 27k/T. The corresponding power spectrum consists of

discrete 8-like peaks centred at frequencies ."

2.3 Stochastic Resonance Measures

Next the stochastic resonance observables measured in the experiments are introduced. The
signal measured over capacitance Cy is considered to be the output signal of the system. As it
has been shown above the voltage drop over this linear capacitor is proportional to the
polarisation of ferroelectric sample, therefore registering the power spectrum and time series
of this signal provides the opportunity for direct observation of the processes taking place in

the ferroelectric during the onset of stochastic resonance.

2.3.1 Spectral Amplification

The spectral amplification is one of the most prominent characteristics used to demonstrate
the effect of the amplification of the periodic component of the output signal at the variation
of the noise intensity at the system input. In the present work the spectral amplification is
defined as a ratio between the power Pg stored the first harmonic measured at a given noise

strength D and power P, of first harmonic measured in the absence of noise.
n=—. (2.12)

Here both Ps and P, are supposed to be measured in linear units (i.e., watts). In actual
measurement the absolute peak values in power spectrum are first registered in logarithmic
dBm scale and then evaluated according to the definition of absolute peak value given by the
following relation (here and further on the indexes “dBm” and “W” correspond to the

logarithmic and linear scale respectively):

' Note that in real system there’s always some noise present, therefore power spectrum of periodic signal is
presented by 3-peaks at frequency harmonics distributed over broadband noise.
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Pjgg" =101lg PA—V;S ) (2.13)
ImW

Since the measurements are performed at some given noise intensity added to the system
input, there is always noise power contributions to the value of first harmonic peak of the
power spectrum, which must be extracted to get the true value of the periodic component of
the output power spectrum.

All of the estimates used are sketched on Figure 2.2 for reader’s convenience. Splitting the
absolute peak value Ps.y of the first harmonic measured at some noise power Py into the sum

of the noise power and pure periodic component:

P,dBm 4

A P S+N

1, Hz

Figure 2.2 Estimation of stochastic resonance measures from power spectrum
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Py =P +Py, (2.14)

where noise power is calculated analogously to (2.13), i.e.,

PP =101g i , (2.15)
ImW

m

the relative peak value Prgr is determined as follows (see Figure 2.2)

(2.16)

w
N

w w
ri =it - <10 B

Following some unsophisticated estimations the correction formula for the pure periodic
signal power Ps can be extracted:

Py
P! :P;KN[l—lo 0 ] (2.17)

Therefore, knowing the absolute value of first harmonic peak, noise power at a signal
frequency and relative peak value one can estimate the corrected value of signal power and
calculate the spectral amplification according to the formula (2.12).

2.3.2 Signal-to-Noise Ratio

Another frequently used characteristic of stochastic resonance is signal-to-noise ratio (SNR),
which is an alternative measure of signal enhancement. Traditionally, this ratio is defined as a

ratio between the power of periodic signal and the noise power at a signal frequency, i.e.

w
sne=Ls (2.18)

w
N

In terms of power spectrum measured in dBm-scale, signal-to-noise ratio corresponds to the
value of relative peak at a signal frequency, provided the total power of noise and signal Psn,
which is actually measured in experiment, is replaced by the corrected power of pure periodic
signal Ps. It is worth to mention that since one has to deal with logarithmic dBm-scale, the

difference of 20dB between first harmonic peak and noise background leads to the fact, that
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power of periodic component exceeds that of the noise in 100 times. Therefore, if the periodic
output is high enough, the estimated power of pure periodic signal differs from the total
measured output power of noise and periodic signal in some vanishingly small percentage.
Hence the corrections on noise power contribution may become practically neglectable and
credible results can be reached by measuring directly the level of first harmonic peak and
corresponding relative peak value to obtain the spectral amplification and signal-to-noise ratio

values.

2.4 Experimental Set-up

The stochastic resonance behaviour in the proposed experimental system is undeniably
governed by a number of experimental parameters. First of all, as the process of stochastic
resonance onset is related directly to the polarisation switching of the sample included in the
circuit, the choice of the ferroelectric material will affect the whole range of the appropriate
measurement parameters. In this work the study of stochastic resonance is restricted to TGS
crystals. It is known that the process of ferroelectric switching is a nonequilibrium process
strongly influenced by the properties of the actual ferroelectric crystal under investigation,
such as defects, their interaction with domain walls, etc., which are determined by the history
of the crystal and its geometry. In this sense the choice of TGS crystal as a ferroelectric
material to study stochastic resonance is quite evident, alone for two following reasons. Since
the TGS crystal has been long serving the role of model ferroelectric in a number of various
investigations, the volume of knowledge obtained for its different properties is rather
sufficient and covers practically all thinkable parameters of the experiment and crystal itself
over an impressing diversity of combinations. This “excessiveness” of experimental data is to
some degree provoked by the fact that TGS is quite convenient (but nevertheless not simple!)
ferroelectric material to explore, having one axis of polarisation and Curie point within the
ambient temperature range.

Apart from the properties of the system determined by the ferroelectric sample and its
geometry, the stochastic resonance behaviour is affected by the following experimental

parameters provided by the electric circuit itself:

e Circuit parameters, such as capacitance Cy and resistance R. While holding the relation
(2.2) true during the course of investigations, these parameters may require adjustment as,
for instance, the frequency of periodic driving signal is set to high or low values thus

affecting the reactive resistance of both capacitors.
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e Parameters of the external driving signal Ug, such as frequency, amplitude and form of

oscillations.

e The temperature of the ferroelectric sample which determines the parameters of the
ferroelectric sample such as spontaneous polarisation, dielectric permittivity, etc. by
affecting the form and height of potential barrier separating two stationary states with the
opposite polarisation directions (below Curie point). In the vicinity of the phase transition
the ferroelectric material becomes extremely sensitive to even vanishingly small external
perturbations. This sensitivity together with increasing nonlinearity of the ferroelectric

may lead to the considerable changes in the system behaviour.

Periodic
Modulation

_|_
v
l > Us cU, xE

Spectrum Analyser

Ug, «P

NOISE

Figure 2.3 Experimental plug-in
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Pondering on the above said speculations, it is straightforward that the experimental set-up
should be constructed to so as to allow to perform measurements of stochastic resonance
observables over most wide parameter range available, while keeping along high data
acquisition reliability.

To extract the experimental data the Sawyer-Tower circuit driven by the sum of periodic
signal and noise is linked via additional connection to the measurement circuit as shown on
Figure 2.3. This connection allows to measure the voltage over ferroelectric capacitor Cr ,
which is proportional to the strength of the electric field £ between the electrodes and the
voltage over linear capacitor C, proportional to the instant value of polarisation of
ferroelectric sample. The complete scheme of experimental set-up is presented on Figure 2.4.
As it can be seen, the considerable flexibility is provided within the set-up design achieved
through the implementation of two switch units HP3488A. Using this feature it is possible to
perform various series of investigations which refer to different aspects of ferroelectricity.
The set-up allows to conduct measurements on dielectric properties of ferroelectric sample,
ferroelectric hysteresis, chaotic behaviour (by adding the coil and thus transforming the
Sawyer-Tower bridge into nonlinear resonance RLC-circuit), etc. without rebuilding the set-
up design, which enhances the reliability of the measurements.

The periodic driving signal is applied to the circuit from function generator HP3325B. Its
features allow to vary with high accuracy the frequency of the output signal in the range from
1 uHz to 20.999 MHz and the amplitude from 0.3 mVgys to 3.5 Vrms along with the form of
carrier signal. The arbitrary function Generator HP33120A is used in the investigation of
stochastic resonance as a source of broadband noise. With the amplitude of noise signal being
variable from 6.09 mVgyms to 1.217 Vrus, it has a cut-off frequency of /= 10 MHz and
therefore can be referred to as a white noise source since most of the frequencies used in the
course of measurements lie below 100 kHz. After adding up the periodic driving signal and
noise the summary input signal is amplified approximately by the factor of 10 with the
amplifier. Due to very low internal impedance of Z ~ 20hm of the amplifier, the amplitude of
the driving signal is considered to be independent from current flow in the circuit. The input
signal value is monitored by digital voltmeter RFT G-1006.500.

To characterise the output signal measured over the capacitance Cy which is proportional to
the polarisation of ferroelectric sample in terms of power spectrum over the wide frequency
range, the Spectrum- and Network Analyser Wandel-Goltermann SNA-2 is used. The power
and amplitude spectrum as well as the phase of the signal can be directly registered. To
exclude possible input overload with signals of high amplitudes, two attenuators with
damping factors of —20dB and —40 dB are provided.
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Figure 2.4  Scheme of experimental set-up

Simultaneously with power spectrum measurement, the time series reflecting the temporal
evolution of the studied signal can be registered by two channel digital oscilloscope Nicolet
Pro 30 with 12 Bit resolution and sample rate of tymp = 100 ns. Apart from time series
observation it is possible to display directly the input signals of both channels versus each
other thus providing for example, the opportunity to inspect hysteresis loops occurring during
the repolarisation of ferroelectric. The possibility of averaging the input signals over many
sampling cycles available as signal acquisition option becomes very useful in the
investigations of stochastic resonance. It allows to perform experimentally the procedure of
averaging of the output signal over the ensemble of noise realisations which, as it will be
shown below, is core starting point in theoretical modelling [7,34,44,]. Since in the study of
stochastic resonance one has to analyse by definition the statistical properties of the signal, the

averaging, along with the high-and low-frequency filtering facilitates the extraction of
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periodic component of the output signal and thus the registration of synchronisation
phenomenon taking place during stochastic resonance. The LCR-meter HP 4263 A which is
plugged over the ferroelectric sample allows for quick characterisation of the dielectric
properties of the material.

The ferroelectric sample is located in the thermostat. The measurement of the temperature is
realised by registering the voltage over Ni-NiCr thermoelement with digital PREMA 4000
voltmeter. Correct scaling of the measured values is provided with the help of zero-point cell
Zeref 1360. The regulation of temperature is achieved using the built-in heating line driven by
the power source HP 6634A. The different regimes of temperature change as well as
temperature stabilisation are accomplished with the help of software developed under
LABWindows™ [46]. Stabilisation of the temperature, being of great importance especially
for the measurements in the vicinity of the phase transition of the ferroelectric is provided
with accuracy not less than 4@=0.01 K. Apart from temperature monitoring and regulation,
the software package admits the possibility to control via IEC-Bus all the measurement
equipment included in the experimental set-up. Due to flexibility of the program and set-up
design, it is possible to perform complicated measurement regimes involving simultaneous
use of different measurement devices at either continuous or discrete pre-set variation of
external experimental parameters. Data acquisition features included in the software provide
direct instant recording of the experimental measures followed by conversion procedures

required for further data processing.



Chapter Three

Theoretical Description of Stochastic Resonance

In the current chapter the theoretical conceptions describing the phenomenon of stochastic
resonance are presented. As it has been already mentioned in Introduction, stochastic
resonance is a well established fundamental phenomenon occurring in nonlinear systems
where characteristic time scales determining the system behaviour can be varied by means of
noise. The basic requirements for the onset of this effect are general enough to expect the
appearance of the typical resonance-like dependence of the system response on the noise
intensity in a large diversity of systems in spite of their different physical nature and
corresponding underlying mechanisms.

Therefore the accurate theoretical description of the general stochastic resonance properties
provided for a particular class of systems yields relevant theoretical predictions which can be
proved in concrete experimental realisation using the universal features of the system under
investigation, responsible for the stochastic resonance behaviour. As it will be demonstrated
below, such an approach is successfully applicable in the actual study of the effect in
ferroelectrics although there is no special theory derivations developed particularly for this
class of systems.

The chapter is structured as follows. First, to facilitate the understanding of the underlying
physical principles of stochastic resonance and give some historical overview, the effect

basics are introduced starting with the brief description of curious initial consideration of the
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problem of Earth’s periodic climate change, which originated the conception of stochastic
resonance. Following the introduction of main characteristics of the effect, the theory of
stochastic resonance for the class of continuos bistable systems is given in Sections 3.3 and
3.4. Most theoretical estimations and conclusions, including results of simulations are
presented after the works of Jung and Hénggi [13], Gammaitoni et.al. [34] and V. Anishenko
et. al. [44] where the stochastic resonance behaviour is modelled with Fokker-Planck
equation. The theoretical results derived within this approach cover wide range of parameter
variation and thus allow for a possibility to prove the obtained predictions in real experiment
(see Chapter 4). In addition, the basic properties of ferroelectric TGS are presented. It is
shown that due to the peculiarities of the material, the system with ferroelectric crystal as a
core element meets the above outlined requirements for the onset of stochastic resonance and
therefore qualifies at least qualitatively for an experimental study. Brief consideration of some
possible distinctive features of the stochastic resonance in ferroelectrics, which are
determined primarily by the nature of the material and may not be observed in other

experimental systems is given as a concluding remark.

3.1 Effect Basics

The term ,,stochastic resonance* describes the group of effects observed in nonlinear systems,
whereby the response of the system to the weak external signal is remarkably amplified by the
increase of noise intensity in the system. As a result, integral system characteristics such as
signal-to-noise ratio, spectral amplification, etc. undergo pronounced maximum as a function
of noise intensity at some optimal noise level’.

Originally this term was introduced independently by Benzi and co-workers[1,2] and Nicolis
[3] in attempt to explain the peculiar phenomenon of periodic recurrence in Earth ice ages. It
is known from the results of statistical analysis of continental ice volume variations over 10°
years that the sequence of glaciation times has an average periodicity of approximately 10°
years. The only comparable astronomical time scale of Earth dynamics known up to date is
the modulation period of Earth’s orbital eccentricity caused by planetary gravitational
perturbations, which in their turn result in the variations of the solar energy influx, on the
Earth’s surface, so called solar constant. As these variations attain vanishingly small values of
approximately 0.1%, the question arises if the climate sensitivity to such small external

periodic perturbations can be amplified, which would lead to periodic climate change.

2 Exact definition of stochastic resonance measures see below Section 3.2. Famous analogue simulation of the
effect in Schmitt trigger circuit, [34] can serve here as a typical example. It has been proved that when the circuit
is imposed simultaneously to the external noise source and weak periodic signal at the input, the signal-to-noise
ratio at the trigger output first increases with the increase of the noise, then reaches the maximum and then
decreases again. Thus periodic component of the output signal attains its maximum value at a certain noise
intensity.
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In the proposed model the global climate is characterised by the position of particle moving in
double-well potential. The corresponding potential minima represent ice ages with low
temperatures and normal climate cycles respectively. The potential is subject to small periodic
forcing which reflects the modulations of the eccentricity of Earth orbit. Usual short-term
climate fluctuations such as the annual variance of solar radiation are implemented through
Gaussian white noise. As it has been proved by numerical simulations, by varying the noise
intensity in such a system, the interplay of stochastic fluctuations and weak periodic
modulation could result in synchronised switching between warm and cold climate thus
leading to significant enhancement of the response of the Earth’s climate to small
perturbations caused by modulations of orbital eccentricity of the Earth [34].

For nearly a decade then the effect of stochastic resonance was left to oblivion, owing not at
last to the principal difficulty of precise computations at the time. The renaissance it
experiences ever since has eventually resulted in different theoretical approaches treating the
problem. The concept of stochastic resonance has been extended to include various
mechanisms. The theoretical description has been developed for excitable and threshold
systems, quantum stochastic resonance, systems with deterministic chaos and many more.
Despite the vast diversity of systems exhibiting stochastic resonance behaviour, where
stochastic resonance is undeniably governed by the forces of sometimes completely different
nature, to grasp the idea of the onset of this intuitively contradictable phenomenon, the
following principle picture of physical mechanisms that give rise to stochastic resonance will
suffice. Qualitatively the effect basics could be explained in a consideration of the motion of
over-damped particle in symmetric double-well potential subject to both noise source and

. g .3
periodic driving’.

3.1.1 System with Double-well Potential

The motion of the over-damped particle in double-well potential coupled to the source of noise and periodic
driving is described with the following simple equation:

©(t)=—V'(x) + A, cos(Qt + @) + £(t), 3.1)

where V' (x) represents a double well potential given in the dimensionless form by

3 Which is the initial model proposed by Benzi [1,2] in the consideration of periodical change of Earth’s climate.
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1 1
Vix)=——x"+—x". 3.2
(x) 5 1 (3.2)

The potential V' (x) is bistable with its minima located at +x,,, where x, =1, as shown on
Figure 3.1 which illustrates schematically the process responsible for the onset of stochastic
resonance. The height of the potential barrier between the two minima is AV = .

The zero-mean Gaussian white noise &(¢) with intensity D is defined by its auto-correlation

function
(£()E(0)) =2D6(1). (3.3)

In the absence of periodical driving the particle fluctuates around one of its local stable states.
The probability for the particle to “hop” between the potential wells is defined through noise-

dependent Kramer’s rate

re = \/%7; exp(— Al;/j (3.4)

Weak periodic forcing of amplitude A,, which alone is insufficient to make particle switching

between the potential wells, leads to the periodic modulation of the potential and,
consequently, to that of the probability for the particle to switch. The potential wells are tilted
asymmetrically up and down thus periodically raising and lowering the potential barriers as it
is shown on Figure 3.1. The noise-induced hopping can become then statistically
synchronised with periodic driving. If the averaged waiting time between two interwell

hopping events, which is given by

T, (D) 1 (3.5)

Iy

becomes comparable with the half of the period T, of periodic driving, the system attains the
maximum probability to switch, as the Kramer’s rate is also varied with the same period, then
the synchronisation takes place thus providing simple time scale matching condition for

stochastic resonance:
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Figure 3.1  Brief illustration of the stochastic resonance mechanism
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T

T =2

(3.6)

In this sense, the phenomenon of stochastic resonance can be in general interpreted as a
statistical synchronisation between noise-induced hopping events and weak periodic driving,

achieved by the noise variation.

3.1.2 System Response

As a result of the synchronisation establishment, the periodic component of the system
response gets amplified at some optimal noise level. To illustrate this behaviour

mathematically the expression for time-dependent system response, (i.e., the solution of
equation (3.1)) could be obtained by computing the mean value <x(t)>. Averaging the

stochastic process x(z) with initial conditions x, =x(¢,) over the ensemble of noise
realisations the mean value <x(t)\x0,t0> is calculated, which in asymptotic limit 7, — oo

becomes periodic function of time, i.e.,<x(t)>A s :<x(t+TQ )>A s with To=27/Q2. For small

amplitudes of the periodic modulation the system response can be written as follows:
(x(1)) =X cos(Qut - §), (3.7)

where X represents noise-dependent amplitude of the periodic component of the system

response and could be given by the following approximate expression:

A0<)C2>0 ZI’K
D[4+

%(D) = (3.8)

Here <x2> , stands for D-dependent variance of the stationary unperturbed system at 4, =0.

[5, 34]. Figure 3.2 illustrates typical behaviour of the amplitude of the periodic component of
the system response in dependence of noise intensity, obtained in our measurement. Two
other dependencies, namely signal-to-noise ratio and spectral amplification are intended to
provide an essential picture of the behaviour of these stochastic resonance characteristics

introduced below in Section 3.2.
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Stochastic Resonance Observables vs. Noise Level
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Figure 3.2  Typical behaviour of the system response characteristics

As it can be seen, the periodic response of the system subject to both weak periodic
modulation and noise can be manipulated by varying the noise intensity at the system input,
since the amplitude of the periodic component x depends non-monotonically on the noise
strength D. At the increase of the noise the amplitude X first increases, reaches the maximum
at some optimal noise intensity D, and decreases again thus demonstrating classical
stochastic resonance effect. In the view of the above presented physical picture of stochastic
resonance as a phenomenon of the system output enhancement established through
synchronisation of noise-induced hopping with periodic driving, the value D, attains
following physical meaning. The noise intensity D defines the probability for the system to
switch from one potential well into another which is expressed by the noise dependent

switching rate of the unperturbed system given by Kramer’s rate r, (see equation (3.4)).
Starting with low noise intensity D << D, the switching events occur very rarely thus

making the periodic component of the system output hardly visible since the system

behaviour is bounded to the intrawell motion within one potential well.
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Figure 3.3.  Onset of synchronisation at the increase of the noise intensity

As the noise is increased, the random switching rate can be tuned by D =D, so as to fulfil

the time matching condition (3.6). At this point the synchronisation between noise induced
switching and weak periodic modulation takes place as the probability for the system to
switch reaches its maximum (and particle reaches the ,,best™ opportunity to switch during half
period of modulation that tilts the potential ). The output signal becomes tightly locked with
the periodic input (See Figure.3.3). At the further increase of the noise the break of

synchronisation sets in for the noise intensities D >> D _, for the system manages to switch

many times during each half of the period of the external modulation. This process is
illustrated on Figure 3.3, where the time series of the output signal is shown for the increased

value of the noise intensity D.

3.2 Stochastic Resonance Characteristics

Undoubtedly the choice of relevant quantifiers depends on the properties of the system under
investigation. Since experimental studies of stochastic resonance cover rather wide range of
systems of completely different nature from electronic circuits to neurophysiological
applications, there are several distinct methods to characterise the effect. Detailed description

of stochastic resonance characteristics used in real experiments and simulations can be found,
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for instance, in [34]. We will restrict ourselves to the measures based on the power spectrum
for reason of their relevance in relation to our investigations.

3.2.1 Spectral Amplification

According to [13] the spectral amplification is introduced on the basis of the amplitude of

periodic component of the output signal as follows. The integrated power P, of the delta-like

peak at an external modulation frequency f=#(2 of the output power spectrum is

P, = ix*(D). (3.9)
The total power of the modulation signal in the absence of noise is

P, = 1A . (3.10)

The spectral amplification is defined as a ratio between P, and P, :

p [Fo]
n_&_{Ao}. (3.11)

3.2.2 Signal-to-Noise Ratio

As mentioned in introduction, stochastic resonance is manifested by an enhancement of weak
periodic signals by means of noise. Therefore the study of this effect can be considered as a
problem of weak signal extraction from broadband background noise. The corresponding
measure widely adopted in radiophysics and electronics is called signal-to-noise ratio (SNR).
Here we define the SNR after the papers [13,34] as follows. The output spectral density S(w)
of the system driven by noise and periodic modulation is represented by superposition of

background noise spectral density S, (@) and a number of delta-like spikes centred at
o, =12n+1)Q, with n = 0,#1,#2... . Considering only first harmonic, for small amplitudes of

the external modulation signal the power spectral density of the system output can be
separated into two terms, the periodic component with amplitude x (D) given by expression

(3.8) and noisy background S, (@ ):
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S(w) = %fz(D)[a(w—Q) +8 (0 +Q)]+ 8, (@). (3.12)

The signal-to-noise ratio measured at the frequency of the periodic modulation is defined by

. Q+Aw
lim ["S(@)do
SNR = 242=0 5 GEQ) . (3.13)
N

The factor 2 reflects the symmetry of power spectral density S(w) = S(-@). Writing down the

approximate power of background noise S, (@) for the double-well system with relaxation

rate 2r, in the form

4r, <x2>
Sy (@) = . 3.14
one can obtain the signal-to-noise ratio using equation (3.8)
2
Ay (x
SNR:mK[ °<D>°] . (3.15)

According to the expressions for stochastic resonance observables obtained within this
approximation, both of them display resonance-like behaviour as a functions of noise
intensity. As it will be shown later, the behaviour of signal-to-noise ratio observed in real
experiments diverges while developing also a local minimum at low noise levels and therefore
expression (3.15) appeals for more detailed consideration. It should be pointed out that at the
noise variation, the values of noise intensities that maximise spectral amplification and signal-

to-noise ratio do not coincide.
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3.3 Stochastic Resonance in Continuous Bistable System

The simplest consideration of stochastic resonance provided in Section 3.1 in the framework
of two-state approximation while facilitating the understanding of the effect basics, does not
though yield appropriate picture of all effect properties because the system dynamics is
reduced only to the switching between two metastable states. The adequate description of the
stochastic resonance features is provided within Fokker-Planck approach developed for wide

class of continuous bistable systems.

3.3.1 Fokker-Planck Description

As a starting point the motion of overdamped Brownian particle of mass m and viscous

frictiony in bistable potential V(x) is considered. The particle is subject to the source of

Gaussian white noise &(r) with zero average and autocorrelation function
<§(t)§(s)> =Do(t —s) and intensity D at a temperature @ and external periodic perturbation,
which is characterised by an amplitude 4, and frequency (2. The initial phase of periodic

forcing is assumed to be equally distributed between 0 and 27 . The system behaviour is

described by the Langevin equation ([34]):

mx =—myx —V'(x)+mA, cos(Qt + @)+ 2yDm&(t) . (3.16)

The statistically equivalent description of this stochastic process is provided by the two-

dimensional Fokker-Planck equation for corresponding probability density p(x,v = x,t; )

2

9 vt ==Lt Lt f(x) = 4, cos@t + )]+ - L p(evitip). (.17)
ot ox ov ov

where f(x)=-V'(x)/m. Equation (3.16) can be simplified for the high values of friction

coefficient ¥ (overdamped particle) by eliminating the velocity variable. For the system with

bistable quartic double-well potential

a , b ,
Vix)=——x"+— 3.18
(x) R (3.18)
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with a>0, b>0, f{x) reads as f(x) = (ax — bx’)/ m . Re-scaling the variables as follows

~ - -4 - D -
F=2X F=a G=b, p=P -7, (3.19)
x y ax, ax: a

where £ x, =+/a/b denotes the minima of V(x), the Langevin equation can be written in the

following form
X=x—x"+ A, cos(Qt + @) +V2DE(1). (3.20)

Here and further on all caps are omitted for convenience. Corresponding Fokker-Planck

equation for the probability density reads as follows

2
9 oty =1= L= + 4, cos@t + )]+ DL prtip). (3.21)
ot ox ox

By introducing Fokker-Planck operators L, in the form of

2

B )
Lo=—§(x—x3)+Dax—2, (3.22)

which describes the unperturbed dynamics in the re-scaled double well potential
V(x)=-x>/2+x" /4 with barrier height AV =1 and L,, as

L,.(t)=—A4,cos(Qt + @) 9 (3.23)
: ox
for periodic perturbation, the Fokker-Planck equation can be re-written in the operator form
0
o, P10 = LOp(s, L) =[Ly + Lo, 0lp(r1,0). (3.24)

This equation has a periodic drift term in time with the period To=27/¢2. The Fokker-Planck
operator in equation (3.24) is invariant for discrete time transitions ¢—¢+7 , yielding
Lt)=L(t+To).
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3.3.2 Floquet Approach

Applying Floquet theorem [34,44], the solutions of the equations (3.21), (3.24) can be found
in form of so-called Floquet solutions, as functions of the following type

p(X,t,(o):exp(—,ut)pﬂ(X,t,(p), (325)

where X(#) defines the state vector in multidimensional space X(#)=(x(¢);x(¢);... ), p 1is

Floquet eigenvalue and p, are the periodic Floquet modes
p,(X.t;0)=p, (X,t+T4;9). (3.26)

The periodic Floquet modes {p ﬂ} are the eigenfunctions of the Floquet operator

[L(t) - %}p# (X,t,0)=—up (X, ;). (3.27)

Introducing the Floquet modes of the adjoint operator L (2)
* a * %
L (t)_E p,(X.50)=-up (X,t;0), (3.28)

where the sets {p ﬂ} and {p#} are bi-orthogonal and fulfil the following normalisation

condition

Ty

1 .
— [dfdxp, (X.60)p, (X.6:0)=5,,, (3.29)
Q0

one can yield spectral representation of the equations (3.27), (3.28) for the time
inhomogeneous transition probability P(X, ¢ | Y, s) density, which for #>s can be written as

follows

P(X,t|Y,9)=) p, (X.;0)p, (Y,s;0)exp[—u, (t—)]=P(X,t+T,|Y,s+T,). (3.30)
n=0
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For large times 7=t - s, s— -co probability P(X, #|Y, s) approaches unique asymptotic
periodic solution p.(X,t,; @) (see eq.(3.25)) of equation (3.21):

P (X.t;0)=p,(X,1;0), (3.31)

which can be expanded into Fourier series, 1.e.:

puXotip)= S a, (X)explim(C + )] (3.32)

m=—o0

At the next step the corresponding averaged mean values <X (t)> can be evaluated, which

are also periodic in time and therefore allow for the representation in the form of Fourier

series:

(X)), = iMn exp[in(Q + @)]. (3.33)

n=—0

The last expression presents one of the main conclusions of the Floquet theory for the motion
of the periodically perturbed Brownian motion. The amplitude of the periodic component of
the system response is expressed as a sum of complex-valued amplitudes M,=M, (€2 Ay),
which are nonlinear functions of the modulation amplitude 4y, modulation frequency (2 and
the noise intensity.

3.3.3 Expressions for Stochastic Resonance Characteristics

For the purposes of quantitative analysis both measures of stochastic resonance as introduced

in Section 3.2 can be expressed using the above mentioned amplitudes of periodic response.

3.3.3.1 Expression for Spectral Amplification

The integrated power of d-peaks of the n-th frequency component of the output spectral

density can be expressed in terms of |M,| ([34]):
P, =4zM,|". (3.34)

If the total power contained in the modulation signal at the system input is given by
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P, =7A;, (3.35)

then the spectral amplification 7 at the input signal frequency @ = (2 can be written as

follows:

B (MY
N4, Q)= _4£ y ] . (3.36)

3.3.3.2 Expression for Signal-to-Noise Ratio

Another characteristic of stochastic resonance frequently used in theoretical investigations,
signal-to-noise ratio (SNR) can be also defined through averaged amplitude of the system

response.

_ 4 M| (3.37)
Sy(Q) '

where S, (Q)1s the power of noise measured at the modulation frequency.

3.3.4 Results of Simulations

To characterise the behaviour of spectral amplification coefficient 7 in dependence of system
parameters, the course of simulations of stochastic resonance in symmetric double-well
potential has been performed in [13] in the framework of Floquet approach as presented
briefly above. Here we reproduce main results of these numerical simulations after [34].
Figure 3.4 shows the spectral amplification 7 evaluated for three different frequencies as a
function of noise intensity. It can be seen that for high frequency (2 the dependence is rather
flat and there is practically no power amplification present. At the decrease of the frequency
of modulation signal, the maximal value of spectral amplification grows. The position of the
maximum shifts towards lower noise intensity values. While obtaining the evident
enhancement of the amplitude-frequency characteristic of the system in low frequency range,
it is not possible though to get resonance behaviour of spectral amplification coefficient in
dependence of increased frequency at a fixed noise intensity D. Generally, the spectral

amplification in this case shows the behaviour of monotonically decreasing function.
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Figure.3.4  Results of the numerical simulations: dependences of spectral amplification for
different frequencies (2 of modulation signal (after [13, 34])

0.0 0.2 0.4 0.6 0.8 1.0
D

Figure 3.5  Results of numerical simulations: dependences of spectral amplification for
different amplitudes A of the modulation signal. LRT stands for “linear
response theory” approximation (after [13, 34])
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The dependence of spectral amplification on noise intensity for several amplitudes of
modulation signal is presented on Figure 3.5. Here it should be pointed out that on decreasing
the amplitude, the location of amplification maximum drifts towards higher noise intensities.

With the increase of the amplitude the maximum of the spectral amplification decreases.

3.4 Intrawell Motion Contribution

To characterise adequately the behaviour of signal-to-noise ratio one must undertake a
somewhat refined analysis. Returning to the approximate expression for signal-to-noise ratio
given by equation (3.15), it can be seen that by scanning the noise intensity, the signal-to-
noise ratio undergoes a simple resonance-like dependence with a single maximum reached at

some optimum noise strength D . Such a behaviour does not though correspond completely

to the results of real experiments [10,34,44]. The main distinctive feature observed in these
investigations is that the signal-to-noise ratio develops a local minimum at low noise values,
as it can be seen for example, from Figure 3.2. At the further increase of the noise it reaches
the maximum and then decreases again. To provide adequate description of signal-to-noise
ratio behaviour, the influence of the intrawell motion which at low noise levels determines in
general the system dynamics must be taken into account. To overcome this gap between
experiment and theory, the contribution of interwell dynamics in weak noise limit is

introduced [34,44] in the framework of linear response theory.

3.4.1 Linear Response Approximation

According to linear response theory, the system response (x(?)) to weak external perturbation

A@t) = Aocos(Qt) in asymptotic limit for large times is given by integral expression [44]:

(x(0)), =(x(1)), + T y(t—1,)4,cosQudr (3.38)

where <x(t)> , 1s the stationary average of the unperturbed process at A(2)=0 . The function y(2)

is called the response function. For stationary systems in equilibrium the response function
can be expressed through the autocorrelation function of unperturbed system using the
fluctuation theorem [34,44]
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d
=2 k0, (3.39)

where H(t) denotes Heaviside step function responsible for the occasional character of

response. The approximate expression for correlation function K'*(¢) is obtained by

expanding it over the eigenvalues 4, of the Fokker-Planck operator in (3.24). This yields the

following equation for the response function:

2 (6) = H(1) 28,2 exp(~4,1). (3.40)

Expantion coefficients g, are calculated by averaging corresponding eigenfunctions and of the
unperturbed Fokker-Plank operator [34]

On performing the Fourier transform of (%)

7 (o) =T;((z')exp(—ian')dz', (3.41)
0
the spectral representation of response function is derived:

#(@) = 7@ +iz (@)= 2 ﬂgm) . (3.42)

Using equations (3.40) and (3.38), the expression for the linear response approximation of the system response is

obtained:

4, & [ & o j
(@(0) = (x(0), = 0)y =5 248 76+ T | (3:43)
Combining this expression with equation (3.38) yields
(8e()) = 4|y ()| cos( - ¢), (3.44)
with phase shift ¢ given by
Z "(m}
= ) 3.45
@ arctan{ Q) (3.45)
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Both stochastic resonance observables can then be represented through the response function.

On comparing the equations (3.33) and (3.44) it follows that the spectral amplitude |M 1| can

be written as
AO
M, |= > 2 (Q) (3.46)

and therefore the expression for spectral amplification in terms of response function yields
[44]

2Am |’ ,
n[%] o) 347

Analogously, the linear response theory gives for signal-to-noise ratio

_ 4rlM | _ ;)| 2(Q)
Sy(€) Sy(@

SNR (3.48)

It should be pointed out that within linear response approximation the noise strength is
assumed weak. To describe the bistable dynamics of the system one must take into
consideration both characteristic time scales that rule the system behaviour. These time scales
are the escape time out of one metastable state into another that corresponds to the interwell
dynamics and time that characterises the relaxation within local stable state, i.e., intrawell
dynamics. Within the simplest approximation the intrawell motion at small noise strength is
characterised by the smallest non-vanishing eigenvalue of unperturbed Fokker-Planck

operator Lo

V2 1
A =2r. =—exp| ——— |. 3.49

The approximate expressions for the correlation function and spectral density of the

unperturbed system can be written as follows:

K° (r,D)= <x2>0 exp(—A,7) (3.50)
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(), 22l e

2 1 :
2+ 7w’ exp(j

Sy(w)= (3.51)

A+
2D

To take into account the local interwell dynamics the additional exponential term should be
included in the expression for correlation function (3.50), which would describe fast
fluctuations within one potential well. Hence the correlation function will describe both

interwell and intrawell dynamics:
K? (z,D)=-g, exp(-4, 1)+ —g, exp(—ar), (3.52)

where a is estimated as a second derivation of given potential and for the case of double-well

potential is a=2. The expression for power density yields:

24,8 208,

Sy(@)= P+’ a’+o’

(3.53)

The coefficients g; and g, are defined from correlation function and its derivative at 7=0 and

read

g =(x*), -2 (3.54)

22,(x7), (), =)
27 /lm+050Jr 2,0 -a - (3:53)

m

Using the expression for correlation function the estimation for susceptibility taking into

account the intrawell dynamics can be written as follows

A 2
Z(a)):%[ . & n a8, J_ia)( 2,8 n g, J (3.56)

A +o’ o+’ A+t a’+o’
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Knowing the susceptibility of the system and power spectral density of the unperturbed
system, the expressions for spectral amplification and signal-to-noise ratio can be found
according to equations (3.47) and (3.48) [44]:

(g,4,) (az +QZ)+ (g,af (ﬂfn +Qz)+ 2g,g,00, (a/lm +Qz)
D*(a® +Q* |22 +Q7)

n(Q,D) = : (3.57)

4 (g,1,) (az +Q? )+ (g,a) (/1,2,, +Q? )+ 2g,g,00, (axlm + QZ)

SNR = 2D? g, (a2 + Qz)+ gza(/lfn + Qz)

(3.58)

The dependence of spectral amplification for several different frequencies of periodic
modulation is presented on Figure 3.6 (after [44]). Here the dots correspond to the estimations
of amplification coefficient performed without taking into account the intrawell dynamics.
Yet using linear response theory does not yield qualitative difference in the behaviour of
spectral amplification with the results of Floquet approach described above. On comparing
Figures 3.4, 3.5 and 3.6 it can be assumed that both approaches show good agreement in the
region of high amplification values.

On the contrary, the signal-to-noise ratio displays distinct features which are not reflected
within general theory of stochastic resonance in double-well potential. The results illustrating
the behaviour of signal-to-noise ratio for different frequencies of modulation signal as
obtained within linear response approximation are shown on Figure 3.7 (after [44]). As it is
seen, for low frequencies the signal-to-noise ratio at the increase of the noise first develops a
local minimum. This point corresponds to the moment where stochastic resonance is
“triggered”, as the corresponding dependence of spectral amplification starts to grow at
approximately the same noise level (compare Figures 3.6. and 3.7). The initial decrease of
signal-to noise ratio is contributed by the local intrawell motion. It is clear that for low noise
values, the barrier crossing events happen very rarely, hence the system dynamics is limited to
the motion within single well. At the further increase of the noise, signal-to-noise ratio
increases, reaches its maximum and then slowly falls off. The observed behaviour is in the
agreement with experimental results for SNR measured in a variety of different systems
where stochastic resonance is studied. With the increase of the frequency the local extrema of

signal-to-noise ratio dependence disappear and it becomes a monotonically decreasing
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function. The noise intensities that maximise spectral amplification and signal-to-noise ratio
do not coincide for the whole frequency range as was already mentioned when introducing
corresponding approximate expressions for these characteristics. For low frequencies, the
maximum of signal-to-noise ratio is achieved at the noise intensity of approximately D=1/8.

Upon neglecting the intrawell contribution, i.e., setting in the formulas (3.54, 3.55) g,=0, one
immediately recovers the expression for signal-to-noise ratio obtained within two-state

approximation (3.15):

SNR = 7, (ﬁ] . (3.59)
D

3.5 Concluding Remarks

3.5.1 Ferroelectric TGS Crystal as a System Displaying Stochastic
Resonance

Triglycine sulphate (CH,NH,COOH);H,SO4 (TGS) is a well known one-axis ferroelectric
crystal with the second type of phase transition that represents one of the model materials in
the physics of ferroelectrics. The ferroelectric phase transition at @=49 °C is accompanied by
the typical anomalous behaviour of dielectric constant which delivers a sharp value peak at
the transition temperature. The temperature dependence of the spontaneous polarisation of
TGS is a monotonically decaying function reaching zero value in Curie point [49,51]. At the
temperatures below 49 °C TGS crystal has ferroelectric phase characterised by the two stable
states with opposite direction of spontaneous polarisation separated by the energetic potential
barrier. Upon applying the electric field of the value exceeding the coercive field of the
crystal at a given temperature, the process of the polarisation reversal takes place which is
manifested by the typical loop of the ferroelectric hysteresis. While not pursuing the idea of
the presentation of all the characteristic ferroelectric properties of TGS, thorough information
on which has been gained in the long-run of successful studies, we intend to outline some
points important for the stated purpose of study.

As it follows from the Landau’s phenomenological theory of phase transitions, below the
Curie temperature the thermodynamic potential of the one-axis ferroelectric with second type
of phase transition has typical form of double-well potential as shown on Figure 3.1 and in
the vicinity of the curie point can therefore be approximated by the expression (3.2). Clearly,
a ferroelectric such as TGS, when imposed to the combined action of external noise and
generally periodic modulation, meets the basic requirements for the onset of the stochastic

resonance presented in Introduction: a) a nonlinear system with energetic activation barrier or
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any form of threshold, b) a weak coherent input signal and c) a source of random noise
coupled to the coherent input or embedded in the system.

It is reasonable to assume that once established, stochastic resonance in ferroelectric TGS
should be produced by the corresponding behaviour of the spontaneous polarisation, i.e.,
switching of polarisation direction in coherence with the weak external modulation achieved

at some optimal level of noise intensity.

3.5.2 Frequency Scaling

Here we would like to attract reader’s attention to a minor but very important detail. As it is
explicitly assumed in expression (3.19), the frequency of external modulation among other
experimental parameters is scaled against the parameter a of potential barrier V(x) (see eq.
(3.18)).Introduced formally in the course of theoretical description of stochastic resonance for
a mere computational convenience, this feature in our opinion appeals for more detailed
consideration.

As it follows from the proposed scaling property, the frequency of external periodical
modulation can be equally varied, from the mathematical point of view, by either direct
variation of the frequency of periodic signal, or by changing the height of potential barrier
separating two stable states. Since in the present study one has to deal with ferroelectric
material, in the last case such a variation can be achieved by the change of the temperature of
the ferroelectric, which defines this parameter value.

Having said this, it is straightforward that the expected behaviour of the stochastic resonance
observables, displayed at the variation of the frequency of external modulation signal and the
temperature of the ferroelectric should be qualitatively similar. Since the behaviour of both
signal-to-noise ratio and spectral amplification in dependence on the temperature of the
sample will be determined primarily by the temperature dependencies of spontaneous
polarisation and dielectric constant, one can expect the following. At lower temperatures it
will take higher signals and noise intensities to obtain the effect of the signal amplification.
With the increase of the temperature as the system approaches the phase transition point, the
maximum system response should decrease and its position move toward lower noise values,
which follows from the decay of the spontaneous polarisation with temperature at the

simultaneous drastic growth of the sensitivity of the system in the vicinity of phase transition.



Chapter Four

Experimental Results

In order to accomplish the purposes of study as outlined in the Introduction, the series of
measurements on the stochastic resonance behaviour in ferroelectric TGS have been
conducted. Current chapter presents the results of this experimental investigation. The chapter
is organised as follows. First the measurement results concerning the establishment of the
stochastic resonance in the system with ferroelectric crystal are presented. The
characterisation of the effect performed for the wide range of system parameters such as
frequency and amplitude of the modulation signal, temperature of the ferroelectric sample etc.
is given in several sections. Each section is followed by the discussion of the observed
stochastic resonance behaviour and its peculiarities produced by the physical properties of the

system under investigation in particular.

4.1 Signatures of Stochastic Resonance

To establish stochastic resonance in the system with ferroelectric crystal, the parameter space
of the system has been scanned. Granted the basic requirements for the onset of the effect are
realised experimentally with the help of measurement set-up, one can seek for the appearance
of characteristic signatures of the effect, such as synchronisation between the weak
modulation signal and noisy system output and typical resonance behaviour of the stochastic

resonance measures, €.g., spectral amplification and signal-to-noise ratio.
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4.1.1 Synchronisation and Signal Enhancement

As a first step of the current study, the principal possibility of establishing the effect of
stochastic resonance has been provided experimentally. In order to meet the above specified
general conditions necessary for the onset of the effect, the main system parameters were set
as follows before the measurement start.

The ferroelectric sample was stabilised at the temperature of @=(31840.01) K well below
phase transition point. Periodic (sine) modulation signal plugged at the system input was set
to frequency /=10 kHz and voltage Us=2V rums that corresponds approximately to one third of
coercive field strength of TGS crystal at given temperature, thus producing no polarisation
reversal caused by pure periodic signal. In terms of stochastic resonance requirements it
addresses the issue of potential barrier modulated by weak periodic forcing not sufficient to
produce deterministic particle switching across the barrier.

To demonstrate the processes taking place in the system during the measurement cycle, time
series and power spectra of the electric charge flow registered over capacitor Cy, were
measured at the increase of the amplitude of the external noise signal coupled with the
periodic modulation from D=0 Vrys up to 1/ Vrus and its subsequent decrease back down to
zero value.

The evolution of time series and power spectra as presented in Figures 4.1.1 and 4.1.2 for the
full cycle of noise variation, allows one to inspect closely the appearance of stochastic
resonance in the system under investigation. Let us take a detailed look at the procedure of
this measurement performed as follows. At the first step pure sinusoidal signal had been
applied to the sample after stabilising the temperature.

Corresponding power spectra and time series are presented in first row of Figure 4.1.1. It is
clearly seen from the time series that system output is periodical with very low amplitude
which indicates that in the absence of noise pure periodic driving is insufficient to cause any
polarisation switching in TGS sample at this temperature. Power spectrum contains only first
harmonic of driving frequency, with its peak level located approximately 40 dB above the
noise. At a next step, the external noise with the amplitude of D=1Vgrys was added to the
system input. While the output signal remains nearly the same at this point, the average noise
value in the corresponding power spectrum (second row of Figure 4.1.1) grows for about /0
dB, resulting in the decrease of the relative peak value of the first harmonic of system

response.
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Figure 4.1.1 Time series and power spectrum of the system response measured at the

increase of the noise intensity at the system input
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The further increase of the input noise value leads to the drastic growth of both output signal
and noise. At the noise level of 2.5 Vrus the output signal becomes tightly locked with
periodic modulation signal shown with the dot line (see Figure 4.1.1, third row). This means
that the synchronisation between the input periodic modulation signal and system output takes
place as a result of interplay between noise and periodic modulation resulting in a process of
»energy pumping® from broad band noise into the peak at signal frequency. The periodic
component of the output signal reaches its maximum as manifested by the absolute peak value
of about —5 dBm with the relative peak approaching practically the initial value of 40 dB.
Further increase of the noise leads to the break of synchronisation and consequently to the
decrease of the periodic component contribution in the system output. Time series become
increasingly noisy followed by continuos decrease of the first harmonic of the power
spectrum of system response at growing noise level. At the middle point of measurement
cycle which corresponds to the highest noise strength of 7/ Vgrus, periodic component of the
system output becomes hardly visible indicating a drop of about 20 dB below the maximum
peak value in power spectrum. Time series represent only noisy signal with no periodicity
detectable (see last row of Figure 4.1.1).

After reaching this point, the complete procedure was performed backwards following the
same steps of noise variation as for the rate and value of change. The evolution of power
spectra and time series is shown on Figure 4.1.2. As it follows from the comparative analysis
of Figures.4.1.1 and 4.1.2, the process run at the decrease of the noise remains quite similar if
not the same down to the values of noise approximately equal to those which cause
maximisation of signal output during first half-cycle, i.e., in this case D=2.5 Vrus. The signal
evolves from low peak values and noisy time series at // Vgyms of external noise into the
synchronisation region at 2.5 Vrys (see 3rd row of Figure.4.1.2). On the further decrease of
the noise though, the signal passes the synchronisation area without loosing the
synchronisation down to quite low values of external noise (approx. / Vrus), as it can be seen
from the second row of Figure 4.1.2. Output power spectrum contains up to the 5™ harmonic.
This sustaining synchronisation is accompanied by the growth of signal output value at
simultaneous decrease of the output noise delivering much higher 1* harmonic peak values on
the back run. After removing the noise from the system input, the power spectrum and time
series of the output signal recover initial values obtained at the start of the measurement.

As it follows from the observed behaviour, at the variation of the noise intensity at the system
output, the phenomenon of the statistical synchronisation between the noisy output and input
periodic modulation takes place at some “optimal” noise level, which results in the
enhancement of the periodic component of the output signal. Such a behaviour is the typical
signature of stochastic resonance. The degree of signal optimisation appears to be dependent

on the direction of noise variation.
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4.1.2 Behaviour of Spectral Amplification

To characterise the process of the onset of stochastic resonance quantitatively the
dependencies of spectral amplification and signal-to-noise ratio on the external noise value as
introduced in Chapter 3, have been calculated directly from power spectra. Both dependencies
reflect very clearly the effect of the amplification of the periodic component of the output
signal as a result of synchronisation establishment and consequent “energy pumping” from
broad band noise into periodic component of the system output, demonstrating resonance-like

behaviour in dependence of external noise intensity by increase as well as by decrease of the

noise.
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Figure 4.2  Spectral amplification vs. noise intensity measured at the increase and

decrease of the noise

The dependence of spectral amplification on the noise intensity level for both directions of the
noise variation is shown on Figure 4.2. The dependence displays typical resonance-like

behaviour. Comparing the dependence trajectory obtained at the increase of the noise with the
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results of the measurement run for the first half of noise variation cycle (Figure 4.1.1) allows
one to establish the following facts. Starting with low noise value, the spectral amplification
retains low values around / due to low value of periodic component of the output signal. It is
reflected in power spectrum as well, as the peak value of the first harmonic, which defines the
value of spectral amplification (see exact definition in Chapter 3), remains practically
unchanged at the level of P=-35 dBm".

As the system steps into stochastic resonance region, where the statistical synchronisation
between periodic modulation signal and external noise takes place, as it is reflected in time
series of the output signal, this synchronisation leads to the increase of the first harmonic peak
value and subsequently to the increase of the spectral amplification. When the stochastic
system output becomes tightly locked with the weak modulation signal (shown with red dot
line in the third row of Figure 4.1.1), and the periodic component of the power spectrum
achieves the maximum value by the noise intensity of 2.5 Vrums, the spectral amplification
attains its maximum as well. At further increase of the noise intensity, the spectral
amplification decreases along with the break of the statistical synchronisation process which
is accompanied by the decrease of the first harmonic peak value. As it can be seen, the
resonant-like dependence of the spectral amplification on the noise value is produced by the
establishment and subsequent break of the synchronisation.

The behaviour of the spectral amplification during second half cycle of noise variation
diverges from that obtained at the increase of the noise intensity. In the present system a
peculiarity of the stochastic resonance has been discovered which, to our best knowledge, has
been neither described theoretically nor observed experimentally yet in other systems.

As it is shown in Figure 4.2, on the decrease of the noise the spectral amplification values
undergo a hysteresis, (in general case, as it will be shown later in this chapter, on both scales).
While the values of the spectral amplification for both directions of noise variation coincide
for the most points on the right shoulder of the dependence, the maximum value of spectral
amplification achieved at the decrease of the noise is greater for about 35%. On further
decrease of the noise the registered values remain also considerably higher at all measurement
steps. As the noise level is driven back to zero value, the final value of spectral amplification
equals the initial one.

4.1.3 Behaviour of Signal-to-Noise Ratio

Figure 4.3 presents the dependence of signal-to-noise ratio in the cycle of noise variation. It is
worth to mention that though in most applications the values of both characteristics in use,

1.e., signal-to-noise ratio and spectral amplification are calculated on the base of the power

4 Note that the increase of the noise intensity level does not impact noticeably the value of spectral amplification
as the relative peak value keeps exceeding 20 dB! These small deviations have been neglected for the sake of
convenience in the chosen scale.
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spectra of the output signal, they nevertheless display quite a different behaviour in the
stochastic resonance region. They are responsible for the characterisation of different
stochastic resonance features and complete each other. As value of spectral amplification is
defined, generally speaking, by the absolute peak value of the first harmonic, the signal-to-
noise ratio reflects the behaviour of the relative peak value during the cycle of noise variation.
The dependence of signal-to-noise ratio allows to inspect the behaviour of the system in the
weak noise limit, which is not reflected in the dependence of spectral amplification. In the
absence of external noise signal-to-noise ratio displays high value due to the very low

intensity of internal noise of the system compared to the output signal peak level.
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Figure 4.3  Signal-to-noise ratio vs. noise intensity measured at the increase and decrease

of the noise

At the increase of the noise, the dependence of signal-to-noise ratio on the contrary to that of
spectral amplification develops a minimum at a noise level of D=1.5 Vrms. This happens due
to the fact that though external noise of low intensity applied to the system increases yet the
noise level of the output signal but is not sufficient to make system switch between its two

metastable states. The system dynamics is thus limited to the intrawell motion around
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potential minima, and the periodic component of the output signal remains low being
determined mostly by the value of weak periodic modulation signal at the input. (Compare
with 1st and 2nd rows of Figure 4.1.1). This behaviour of signal-to-noise ratio establishes
close agreement with the results of theoretical predictions and numerical simulations of the
motion of overdamped particle in symmetric quartic double well potential performed in
[13,44]. As it has been mentioned in Chapter 3, taking into consideration the interplay of the
interwell and intrawell dynamics in the weak noise limit, the results of computation display
minimum of the signal-to-noise ratio caused by the contribution of the fluctuations of particle
around potential minima, being though not accompanied by the remarkable hopping of the
particle between the wells. As the signal-to-noise ratio reaches its minimum, the
synchronisation sets in followed by the growth of the periodic component of the system
response as manifested in the dependence of spectral amplification and stochastic resonance is
“triggered.” On the further increase of the noise the dependence of signal-to-noise ratio
develops a maximum as well, achieved by the noise amplitude of D=2Vgus

It is important to mention that in the actual experiment the values of noise amplitude, which
maximise spectral amplification and signal-to-noise ratio do not coincide, as it has been
pointed out in [13,34].

Further increase of the noise leads to the decrease of signal-to-noise ratio value, as the
periodic component of the output signal and subsequently the relative peak value of first
harmonic becomes more and more suppressed by the growing noise level. (see Figure.4.1.1).
The periodic component of the system response almost vanishes. During the cycle of noise
decrease from high values, the signal-to-noise ratio exhibits a hysteretic behaviour as well. In
comparison to the spectral amplification dependence, the hysteresis appearing for opposite
directions of noise variation is obviously more pronounced for signal-to noise ratio. As it has
been described above, on the decrease of the noise the synchronisation, once recovered, is
sustained down to very low noise values. Passing the point where signal-to-noise ratio is
maximised by the noise intensity of D=2Vrys on the noise increase, the ratio grows
furthermore and attains its maximum by the D=1Vgrys. This is caused by the crossover
between the decrease rates of the first harmonic and noise values in the power spectrum. As
the first harmonic value reduces, the noise level falls down even faster. This results in an
enormous growth of the signal-to-noise ratio (note that in our system we register the power
spectrum in dBm scale, therefore the relative peak value of the first harmonic when
recalculated in linear scale achieves very high values). Reducing the noise to the zero value,

one reaches the initial value of signal-to-noise ratio.



57

4.1.4 Discussion

The analysis of the results obtained in the course of measurement leads to the following
conclusions. Subject to weak periodic modulation signal and external noise, the investigated
system displays peculiar behaviour. Upon the continuos increase of the noise at the system
input, the statistical synchronisation between the weak input modulation signal and noisy
output of the system sets in, accompanied by the enhancement of the periodic component of
the system response at some appropriate noise level. This behaviour is reflected in the
dependencies of spectral amplification and signal-to-noise ratio, which quantitatively
characterise the optimisation of the periodic component of the system output in dependence of
the noise value. Both measures display resonance-like trajectories as a function of the noise
intensity at the system input.

All the above said peculiarities of the system behaviour point out to the “resonant” character
of the system response in dependence on noise intensity in the system. Therefore one can
conclude that the effect of stochastic resonance is observed experimentally in the system
under investigation, represented by its typical signatures.

In the given experimental configuration, the nonlinear system responsible for the onset of
stochastic resonance is represented by the ferroelectric TGS crystal in the ferroelectric phase
(below Curie point). Therefore one can assume that the model consideration of the particle in
double-well potential corresponds in this particular case to the two metastable states with
opposite polarisation direction separated by a potential barrier. The synchronised hopping
over the potential barrier is realised as a process of formation and motion of domain walls
accompanied by the (partial) polarisation reversal. As it was already mentioned above in
Chapter 2, the experimental circuit is configured so as to make the voltage drop across Cy,
which is actually measured, proportional to the polarisation of ferroelectric TGS. Therefore
the evolution of the corresponding time series and power spectra reflect directly the behaviour
of the domain structure of the sample.

As the synchronisation between the weak periodic input and noisy output that leads to the
enhancement of the periodic component of the system response takes place upon the noise
variation at the system input, the ferroelectric sample obviously undergoes the process of
polarisation reversal manifested by the large time series signal (third row of Figure 4.1.1).
This is also confirmed by the form of power spectrum which contains higher harmonics as in
the case of polarisation switching caused by strong electric fields. As one can judge from the
time series and power spectrum, at this point the system response becomes not only fully
synchronised with the periodic input but appears to be to the great extend periodic itself.
Therefore one can assume that the effect of stochastic resonance in ferroelectric TGS is
manifested by the process of polarisation reversal with the frequency of the weak periodic
modulation, produced by the interplay between noise and periodicity. This assumption is also
confirmed by the fact that it was not possible to establish any signature of stochastic

resonance in the paraelectric phase of TGS where no polarisation reversal exists.
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The character of the obtained dependencies of spectral amplification and signal-to-noise ratio
confirm the results of theoretical simulations and experimental investigations. The
dependence of signal-to noise ratio displays local minimum caused by the increased level of
the noise in the system which is not yet sufficient to produce the synchronised hopping over
potential barrier (i.e. polarisation switching with the frequency of periodic modulation) thus
limiting the system dynamics to the intrawell motion. The values of noise that maximise
spectral amplification and signal-to-noise ratio do not coincide, which is also in agreement
with theoretical predictions. The observed behaviour of both measures confirms the
fundamental character of the effect of stochastic resonance and generality of the
corresponding theoretical considerations which appear to be valid for the concrete system

under investigation.

4.2 Characterisation of Stochastic Resonance

In order to perform characterisation of stochastic resonance the behaviour of signal-to-noise
ratio and spectral amplification has been investigated in dependence of frequency and
amplitude of the modulation signal. Obtained results are compared with numerical
simulations developed in the framework of Fokker-Planck approach for the description of

stochastic resonance presented in Chapter 3.

4.2.1 Frequency Dependences

As the next step in characterisation of stochastic resonance in ferroelectric TGS, the system
behaviour in dependence on the value of the frequency of modulation signal has been studied.
The other two system parameters responsible for system output, namely temperature of the
sample and modulation signal amplitude were kept constant during the measurement. The
ferroelectric TGS sample was stabilised at the temperature ®=45 °C. Periodic modulation
voltage was adjusted to V'=0.2 Vgrums, to ensure that there was no polarisation switching
produced by modulation signal alone. Then the noise variation from zero up to the highest
value allowed by the measurement equipment was performed for each chosen frequency. As
the energy of the noise added to the system inevitably transfers into the heat thus affecting the
temperature of the sample and consequently, the height of the potential barrier between two
metastable states of polarisation, to keep this parameter constant the measurement was
performed rather slowly, giving system at each registered point the time to get into
equilibrium at stabilised temperature. The chosen frequencies while covering wide frequency

range, correspond to the areas where TGS sample is characterised by mobile domain
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structure. For the purity of experiment each frequency value was proved so as not to coincide
with resonant frequencies of the measurement circuit.

Figure 4.4 presents the results of the spectral amplification measurement for four frequencies
of the modulation signal f=2, 10, 50 and I MHz. As it can be seen, by increasing the
frequency, the maximum value of spectral amplification decreases and shifts toward greater
values of noise. This behaviour confirms experimentally the results of simulations made in
attempt to describe the stochastic resonance behaviour in dependence of modulation
frequency of the input signal for the overdamped particle in double well potential, as

presented in Chapter 3.
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Figure 4.4  Dependence of spectral amplification on the noise intensity measured for four
different frequencies of the modulation signal =2 kHz, 10kHz, 50 kHz, IMHz.

Qualitatively, the observed behaviour can be understood as follows. As the growth of
ferroelectric domains (i.e., hopping particles in generic model) is bounded to the finite times
of nucleation process, with increasing frequency, fewer and fewer domains manage to switch

in coherence with modulation signal, which leads to the decrease of the output signal power in
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comparison to low frequency regime. The probability to switch during half period of the
modulation is increased by the increase of the noise intensity that in its turn increases the
transition rate, shifting the maximum of the system response to the higher values of noise. On
the high noise level, the probability for the domain being switched in the anti-phase direction
during the period of modulation is increased, which results also in the decline of the signal
output. Therefore, one can think of stochastic resonance at high frequencies as a kind of
compromise established between two competing processes.

The signal-to-noise ratio has also been measured for the given frequencies. The results are
presented on Figure 4.5. Exploring the dependencies, one can establish the following facts.
For the low noise values for all presented frequencies the signal-to-noise ratio displays a local
minimum, which is contributed by the intrawell dynamics of the system. With the increase of
the modulation frequency, the relative value of the local maximum in the signal-to noise ratio

dependence diminishes, and the dependence trajectory approaches that of the monotonically
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Figure 4.5  Dependence of signal-to-noise ratio on the noise intensity measured for four
different frequencies of the modulation signal =2 kHz, 10kHz, 50 kHz, IMHz.
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decreasing function. Due to slow decline of the signal-to-noise ratio values, it is possible to
assume that there is no significant frequency dependence of the position of maximum value of
signal-to-noise ratio on the noise intensity.

The observed features of stochastic resonance observable proved to be in good qualitative
agreement with the results of theoretical investigations for the stochastic resonance behaviour

for different frequencies, as presented in Chapter 3, Section 3.3.

4.2.2 Discussion

The obtained results show good qualitative agreement with theoretical predictions considering
behaviour of stochastic resonance quantifiers in dependence on the frequency of external
modulation signal. Comparing the experimental dependences with the results of numerical
simulations, presented in Sections 3.3.4 and 3.4 (see Figures 3.4-3.7) of Chapter 3 one can
see that the following characteristic properties of the frequency dependence of stochastic
resonance have been reproduced successfully in actual experiment.

Upon displaying the obvious enhancement of the amplitude-frequency characteristic of the
system at the low frequencies both experimental dependencies of spectral amplification and
signal-to-noise ratio follow the simulated behaviour of stochastic resonance and confirm
theoretical conclusions which underline low-frequency character of the effect. The
dependencies of signal-to noise ratio display a local minimum at the weak noise intensities in
the whole investigated frequency range, produced apparently by the motion of domain walls
not yet leading to the polarisation switching, which is reflected in theoretical predictions by
extending the consideration of the system dynamics with the contribution of intrawell motion.
The resonance-like behaviour of the system response in terms of either spectral amplification
and signal-to-noise ratio though divergent for the different frequencies of the measurement
has not however been observed at the direct variation of the frequency of modulation signal
during the measurement, while keeping other experimental parameters (including noise
intensity) constant. It confirms the fact outlined in several works [13,34,42] that stochastic
resonance does not represent the case of classical (bona-fide) resonance whereby the
enhancement of system response is achieved by locking the natural frequency (or its
harmonics) of the system, as it may seem from somewhat misleading terminology. As it
follows also from the corresponding results of numerical simulations, the system response

shows monotonic decay at the increase of the modulation frequency.
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4.2.3 Amplitude Dependences

To investigate the behaviour of the system in dependence on the modulation amplitude value,
series of measurements have been performed, varying the amplitude in wide range. The main
task of this study was first, to provide as complete characterisation of stochastic resonance in
ferroelectric sample as possible by covering wide range of experimental parameters.
Secondly, to prove whether theoretical predictions and simulations, performed as a rule for a
much simpler system, such as overdamped particle moving in double well potential, can still
be considered as valid when it comes to real experiment, where the actual system behaviour is
much more complicated. In the course of measurements, the following procedure was
performed for each chosen value of modulation amplitude. Granted that the ferroelectric
crystal does not yet achieve polarisation switching area if subject to any amplitude value from
the proposed parameter variation range in the absence of noise, the full cycle of noise
variation has been conducted for each modulation amplitude. The frequency of modulation
signal was kept constant at f=/0 kHz. The ferroelectric sample was stabilised at the
temperature of @=45 °C. Figures 4.6.1 and 4.6.2 present the dependencies of spectral
amplification for the increase and decrease of the noise respectively. As it can be seen, by
increasing the noise, the maximum of the spectral amplification increases, and shifts towards
lower noise intensities with the increase of the modulation amplitude. The same behaviour is
displayed for the decrease of the noise as well. For both directions of noise variation, the
character of the dependences gives fair agreement with the results of simulations obtained in
the framework of theoretical description (compare with Figures 3.4-3.7, Chapter 3). The
difference between simulated and experimentally observed dependences is due to the slightly
divergent definition of spectral amplification we used in the course of investigation. Having in
mind that no absolute signal amplification can be extracted as a result of stochastic resonance
as it is reported in the literature ([41]), we scale the power of the first harmonic of the system
response over the response amplitude measured in the absence of noise (See Section 2.2,
Chapter 2). Such a definition while remaining adequate since the response amplitude in the
unperturbed system is proportional to the input amplitude nevertheless leads to the divergent
spectral amplification behaviour, as in the actual measurement we practically register scaled
response amplitude, which clearly reaches greater values at higher amplitudes of the input

modulation (see Figure 3.5, Chapter 3)°.

> Note also that in the presented simulation input amplitudes have values less than 1.
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Figure 4.6.1 Dependences of spectral amplification measured for different amplitudes of the

modulation signal at the increase of the noise intensity

The observed behaviour is intuitively clear. By varying the amplitude of the modulation
signal, one changes the energy flow into the system and therefore the probability value of the
barrier crossing. At high amplitudes, it is easier for ferroelectric domains to switch in
coherence with external modulation, provided the necessary dose of noise is added to the
sample. For decreased amplitude of periodic modulation the response of the system is
expected to decrease, as it is confirmed by our measurements, because the switching will
involve less domains. The lower the amplitude, the fewer domains are reversible due to
domains pinning. Furthermore, it inevitably takes then greater values of noise to provide the
system with the energy sufficient to produce switching as a result of interplay between noise
and coherent signal. Here we would like to draw reader’s attention to the point, that our
measurements confirm clearly the fact that stochastic resonance is a threshold effect. The
value of threshold is set, of course by the system parameters and can be changed. The greater
the amplitude of the periodic modulation, the less is the noise intensity, at which system
reaches the point where stochastic resonance is ,triggered”, provided the frequency of

external modulation and temperature of the sample are kept constant.
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Figure 4.6.2 Dependences of spectral amplification measured for different amplitudes of the

modulation signal at the decrease of the noise intensity

This fact is reflected, for instance, in Figure 4.6.1, as for higher amplitudes of modulation the
spectral amplification starts to increase at the lower noise intensities.

The dependence of signal-to-noise ratio demonstrates the similar behaviour as shown on
Figures 4.7.1 and 4.7.2. By the increase of the noise we observe the local minimum, which, as
it has been already mentioned above, appears for low noise level where no polarisation
switching is possible. The maximum value of signal-to-noise ratio grows with the increase of
the value of amplitude of modulation signal and is established at lower noise level. The
difference of initial values of signal-to-noise ratio follows straightforward from the definition
of this characteristic as given in Chapter 2, according to which the calculations have been
performed. It is obvious that higher initial value of modulation signal (in the absence of noise)
leads to the greater relative peak value of the first harmonic which is responsible for signal-to
noise ratio value, while the noise variation is the same for all given amplitudes. By the
decrease of the noise the dependence of spectral-to-noise ratio displays only maximum

achieved by low noise values.
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Figure 4.7.1 Dependences of signal-to-noise ratio measured for different amplitudes of the

modulation signal at the increase of the noise intensity

For all values of the modulation amplitude, both dependencies of spectral amplification and
signal-to-noise ratio show clear hysteretic behaviour in dependence on the direction of noise
variation. For spectral amplification dependence the difference between the values obtained at
the increase and decrease of the noise grows proportionally to the amplitude of the
modulation. The gap between the maximal registered values of spectral amplification on the
noise intensity scale increases as well. This hysteretic behaviour is more pronounced for the
dependence of signal-to-noise ratio. At the decrease of the noise the local minimum of
spectral-to noise ratio disappears and maximum is attained for much lower noise intensity.

It should be pointed out that the noise intensity values that maximise spectral amplification
and signal-to-noise ratio respectively do not coincide for neither increase or decrease of the

noise.
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Figure 4.7.2 Dependences of signal-to-noise ratio measured for different amplitudes of the

modulation signal at the decrease of the noise intensity

4.2.4 Discussion

The behaviour of spectral amplification and signal-to-noise ratio in dependence on the
amplitude of the modulation signal observed experimentally proves to be in accordance with
theoretical predictions presented in Chapter 3. The system response characteristics attain
higher values for greater amplitudes of the modulation signal. The threshold character of
stochastic resonance is reflected by the fact that it takes lower noise intensities to “trigger” the
signal optimisation, the higher is the amplitude of modulation. The dependence of the
behaviour of both stochastic resonance measures on the direction of noise variation is
observed. The values of spectral amplification and signal-to noise ratio achieved at the
decrease of the noise appear to be much greater than these measured at the increase of the
input noise intensity, remaining also relatively high down to very low noise levels thus
displaying a hysteretic behaviour. We tend to term this property, that has not yet been
described in other systems with stochastic resonance, as “enhanced switching”. Having
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considered stochastic resonance in ferroelectric above as a process of polarisation reversal
with the frequency of external modulation produced by the interaction of noise and periodic
signal we seek possible explanation in the nature of domain structure of ferroelectrics. As it is
known, in real crystal the ferroelectric domains are always pinned on defects of the crystal
structure. Applying high noise intensity to the sample can result in the process of deliverance
of domains and lead to more mobile domain structure and consequently, to the increased
response to the external perturbations.

The results obtained in the characterisation of stochastic resonance in ferroelectric TGS
crystal over broad range of amplitudes and frequencies of the modulation signal show very
good qualitative agreement with numerical simulations performed in the framework of
Fokker-Planck approach. It allows for the conclusion that this generic theoretical model based
on the universal properties of the systems exhibiting stochastic resonance behaviour can be
successfully applied for description of this effect in ferroelectrics due to its fundamental
character.

Having proved experimentally the theoretical conception developed for continuous bistable
systems to be valid for the concrete instance of the system with ferroelectric crystal, the one

of purposes of this study has been accomplished.

4.3 Temperature Dependence of Stochastic Resonance

Behaviour

Having clarified the main features of stochastic resonance in ferroelectric TGS for different
frequencies and amplitudes of the periodic modulation, we next will describe the system
behaviour in dependence on the temperature of the ferroelectric sample.

As it has been already mentioned, the actual system behaviour is controlled by the following
experimental parameters: the frequency and amplitude of the external modulation signal, the
noise intensity and the temperature of the ferroelectric sample. Changing the current
parameter values, one affects the characteristic system time scales, which reciprocative
competition is responsible for the onset of the stochastic resonance.

The signal parameters and the noise intensity are the external parameters that affect only the
velocities of the motions within the system and can be freely varied over the whole
appropriate range. The variation of the temperature changes not only the intensity of internal
noise of the system, which plays also an important role in the complete picture of stochastic
resonance but in the particular case under consideration affects increasingly the structure of

the ferroelectric material and consequently all of its properties as well.
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Having interpreted the stochastic resonance in ferroelectrics on the basis of the obtained
experimental results as a process of the polarisation reversal in coherence with the weak
periodic modulation established at the corresponding external noise intensity, it can be next
assumed without loss of generality that the properties of the stochastic resonance in
dependence on the temperature of ferroelectric sample will be mostly defined by the
behaviour of the polarisation of the ferroelectric, which is a decaying function of temperature,
and behaviour of corresponding dielectric properties of the material.

In terms of the general model for stochastic resonance presented in Chapter 3, the variation of
the temperature of the ferroelectric sample would first of all mean the variation of the form
and height of the potential barrier separating two metastable states of the system (i.e., two
states with opposite direction of polarisation). Since the presented model is based on the
fundamental properties of the effect and does not take into consideration unique properties of
the particular systems, the behaviour of the stochastic resonance quantifiers in the dependence
on the temperature of the ferroelectric TGS crystal can not be adequately described by means
of the proposed theoretical approach. Nevertheless, due to the frequency scaling over the
parameters of the potential barrier as featured in numerical simulations performed for the
characterisation of the stochastic resonance (see Section 3.4, Chapter 3), at the variation of the
temperature of ferroelectric crystal one can expect to observe the behaviour of the effect
quantifiers similar to that obtained at the variation of the frequency of the external

modulation.

4.3.1 Behaviour of Stochastic Resonance Measures at Different

Temperatures of Ferroelectric TGS

In this section first the results of the measurements of signal-to-noise ratio and spectral
amplification acquired for different temperatures of the ferroelectric TGS sample are
presented. In the course of investigation the same measurement cycles have been performed
for three temperatures of ferroelectric TGS sample using different amplitudes of modulation
signal. This allows to conduct comparative analysis of the obtained results by varying
simultaneously two experimental parameters. The system behaviour observed for temperature
©®=45°C as shown above has already served to describe the amplitude dependence of
stochastic resonance characteristics. Figures 4.8. and 4.9 present the results of the
measurements of spectral amplification and signal-to-noise ratio obtained at temperatures of
ferroelectric sample @=40 °C and @=47.5 ° C respectively.
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Figure 4.8.1 Dependences of spectral amplification vs. noise intensity measured for

different amplitudes of the modulation signal at the temperature of the
ferroelectric sample @=40 °C at the a) increase and b) decrease of the noise

respectively



70

Signal-to-Noise Ratio vs. Noise
Modulation Frequency: 10 kHz a)
Temperature 40 °C
70 = Parameter:Modulation Voltage, VRMS
—a—24
—o—4
60 6
50 -
m
o 40 —
o
c% 30 4
20
u
10
0 T v T v T v T v T v 1
0 5 10 15 20 25
Noise, VRM S
Signal-to-Noise Ratio vs. Noise b
Modulation Frequency: 10 kHz )
Temperature 40 °C
70 - Paramzet;ar:ModuIatlon Voltage, V¢
1 —0—4
60 - 6
50 -
m 40 —
©
o i
> 30
w
20
10
0 T v T v T v T v T v 1
0 5 10 15 20 25
Noise, VRMS

Figure 4.8.2 Dependences of signal-to-noise ratio vs. noise intensity measured for different
amplitudes of the modulation signal at the temperature of the ferroelectric
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As it can be seen, the system behaviour at the temperature of the ferroelectric TGS sample
®=40 °C remains to the great extend similar to that observed for @®=45 °C. With the increase
of the modulation amplitude value, the maximum values of both spectral amplification and
signal-to-noise ratio increase and shift towards low noise intensities. At the increase of the
noise the signal-to-ratio displays wide local minimum which disappears as the direction of
noise variation is changed backwards. Both presented characteristics demonstrate hysteresis
between the values obtained at decrease and increase of the noise.

On the contrary, the behaviour observed at the temperature of @=47.5 °C diverges (See
Figure 4.9.1,2). The spectral amplification still demonstrates comparatively weak maximum.
(Note that as the spectral amplification values are converted into linear scale from the peaks in
power spectrum measured in dBm scale. Therefore such an increase of spectral amplification,
as in this case, that of 6 units of linear scale corresponds to the increase of the peak value of
approximately § dB only, whereas, for instance, at the temperature of @=40 °C, spectral
amplification reaches the values of 1000 and more.). The dependence of signal-to-noise ratio
displays no maximum and becomes monotonically decreasing function of noise intensity. No
hysteretic behaviour of the values obtained at increase and decrease of the noise is observed

either for spectral amplification or signal-to-noise ratio.

4.3.2 Frequency Scaling

To receive an opportunity of comparative analysis of the results presented above in the
dependence of the temperature of the ferroelectric sample, one must consider appropriate
form of normalisation, as their values diverge in the great range. By varying the temperature
of TGS crystal, one changes the height and form of potential barrier which separates two
opposite directions of polarisation. As it has been proved above, stochastic resonance in
ferroelectric crystal is accompanied by the process of polarisation switching in coherence with
weak periodic modulation established every time when the appropriate noise intensity is
added to the sample. It is clear that at low temperatures the sample must be driven by much
greater periodic and noisy signals to reveal stochastic resonance effect than at temperatures
close to the phase transition point where domain structure becomes very sensible even to
subtle perturbations and potential barrier can be crossed by very low amplitudes of the
external signal already.

Having this in mind, it is necessary to establish an adequate ratio between the value of
modulation signal and the height of potential barrier relevant for all temperatures, which
would allow to investigate the influence of the barrier height on the stochastic resonance

observables, with the rest of experimental parameters being kept constant.
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Therefore to perform measurements of signal-to-noise ratio and spectral amplification in
dependence on temperature of the sample, the value of modulation amplitude was set such as
to obtain the same initial peak level of the first harmonic measured on the system amplitude in
the absence of noise for each temperature. This value of modulation amplitude should have
not sufficed though to produce polarisation switching of ferroelectric sample, as this is
considered to be one of the initial general requirements for classic stochastic resonance. For
the sake of the measurement convenience the peak value of the first harmonic was adjusted to
P= -30 dBm. The frequency of modulation signal was set to /=10 kHz. Then the cycle of
noise variation was performed for each temperature. The results of this measurement are
presented on Figures 4.10.1-4.10.2. As it can be seen, the values of the modulation amplitude
which produce the same first harmonic in the system response differ in two orders of
magnitude, being Us=6 and Ug= 0.28 Vrums for temperatures @=45 °C and ©@=47.5 °C
respectively.

The values of spectral amplification, measured at increase and decrease of the noise are
shown on Figure 4.10.1.a) and b) respectively for three different temperatures.

It can be seen that with the decrease of the temperature of the measurement that: 1) the
threshold value of noise intensity which “triggers” stochastic resonance increases, 2) the
maximum value of spectral amplification achieved by the increase of the noise grows and 3)
its position shifts toward higher noise intensities. At the decrease of the noise, while the
system behaviour still holds true for the above said features, the hysteresis of the spectral
amplification values and noise intensities which maximise them is developed as the
temperature of the measurements is reduced. At the temperature of @=47.5 °C which is close
to the phase transition of ferroelectric TGS there is no difference in the values measured for
the decrease and increase of the noise. At the temperature of @=45 °C the maximum of
spectral amplification observed at the decrease of the noise exceeds that obtained at the
increase for about 30%, with hysteresis of corresponding noise intensities of about 2Vryus. As
the temperature is reduced to 40 °C, the value of hysteresis grows enormously, reaching at the
decrease of the noise over 1000% enhancement of spectral amplification values, while the
hysteresis of the noise intensities is spread over more than half of the noise values scale.

The behaviour of signal-to-noise ratio in dependence on the temperature of the ferroelectric
sample changes as follows at the increase of the noise. Starting in the same point for all three
investigated temperatures due to the measurement condition concerning the equal output
power of the periodic component of the system response measured in the absence of noise, the
signal-to noise ratio displays local minimum followed by rapid growth of measured values
and decays again at the further increase of the noise intensity for the temperatures of the
ferroelectric sample @=40 °C and @®=45 °C. The position of the local minimum as mentioned
above corresponds to the drastic growth of related spectral amplification dependence and

manifests the point where the synchronisation is triggered.
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In accordance with spectral amplification values, the position of local minimum shifts toward
greater noise intensities with the decrease of the temperature of the measurement, and the
relative value of the minimum (i.e., the difference between initial and minimal value)
decreases. The position of the maximum of signal-to noise ratio dependence shifts towards
lower noise intensities at the increase of the temperature, and the value of maximum achieved
at the noise variation decreases. On the contrary to the dependencies obtained at the
temperatures of @=40 °C and 45 °C (i.e., relatively far from the phase transition point) the
signal-to-noise ratio registered at @=47.5 °C displays no resonance-like behaviour being a
monotonically decreasing function of the noise intensity.

At the decrease of the noise from high values back to zero, the dependencies of signal-to noise
ratio measured at @=40 °C and 45 °C display large hysteresis for both noise intensity and
SNR scales in respect to the values registered at the increase of the noise. The hysteresis of
the signal-to noise ratio is much pronounced than that of the spectral amplification due to the
absence of local minimum of SNR at the decrease of the noise intensity. The value of
hysteresis decreases with the increase of the measurement temperature. At the temperature of
©=47.5 °C the hysteresis diminishes as the dependence of signal-to-noise ratio measured at
the decrease of the noise completely reproduces that obtained at the increase, and also

displays only a monotonic decay as a function of noise intensity.

4.3.3 Discussion

As it follows from the comparative analysis of the behaviour of stochastic resonance
observables at different temperatures of the ferroelectric sample, the obtained results appear to
be in accordance with the behaviour of corresponding properties of ferroelectric TGS crystal
in dependence on temperature. Here we outline the basic features concerning the system
behaviour. Clearly, at lower temperatures far enough from the Curie point comparatively high
values of both noise intensity and amplitude of the weak periodic modulation are needed to
produce the synchronisation between periodic input and system response and subsequently
the effect of stochastic resonance. At lower temperatures, according to the known temperature
dependencies of spontaneous polarisation and dielectric losses of TGS, subject to the coupled
action of periodic modulation and noise, the system delivers also higher values of periodic
component of the output signal, taking into consideration the proposed method of scaling.
With the decrease of the value of spontaneous polarisation at the temperature increase and
simultaneous growth of the dielectric constant, the optimisation of the output signal takes
place at the lower noise intensities, as the sensitivity of the sample to the external
perturbations is increased. The higher is the temperature, the lower are values of the related

measures, both of them being defined by the value of polarisation of the sample.
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The observed behaviour confirms the proposal made in Section 3.5 in relation to the
frequency scaling property as featured in theoretical approach describing stochastic resonance
in continuos bistable systems. As one can see, the behaviour of the stochastic resonance
characteristics displayed at the variation of the temperature of the measurement and that of the
frequency of weak periodic modulation is qualitatively similar (compare Figures 4.4,5 and
4.10.1,2). According to the expressions for the scaled frequency given in chapter three (see
eq. (3.19)), seen purely mathematically, the variation of the frequency of the modulation can
be ,,achieved either by changing directly the frequency of the external periodic signal or the
parameter a of the potential barrier, i.e. the barrier height since AV =a’/4b (see Section
3.4.). In the last case, the potential barrier height is controlled through the temperature of the
ferroelectric sample. Corresponding real physical picture may be understood as follows. As
well as the increase of the frequency of the modulation signal, the increase of the temperature
of the sample (granted the other system parameters are kept constant) affects the motions
taking place within the system. As long as the frequency of modulation controls only the
velocity of barrier tilting, i.e., acts as an external clock in the system, the variation of the
temperature, e.g., increase, leads to 1) the decrease of the potential barrier height which
results directly in the increase of the noise-dependent probability for the system to switch
between metastable states of polarisation and 2) the increase of the thermal energy of
fluctuations within one stable state, i.e., intrawell dynamics contribution.

Therefore the increase of the temperature of the ferroelectric sample at the constant given
frequency and amplitude of the modulation will inevitably result in the relative decrease of
the periodic component of the system response, as it is shown in presented experimental
results, since, on one hand, increased probability to switch will though actualise coherent
switching already at lower noise levels, on the other hand, fewer ferroelectric domains find
time to switch in phase with external modulation, being permanently switched out of
coherence with periodic signal many times during half modulation period. At the temperatures
high enough, the potential barrier becomes such low, that it is hardly possible to separate
intensive intrawell motion around one stable state from the barrier crossing events taking
place at random, which leads to the increase of the actual noise level of the system without
contributing to the periodic component of the system output, and as a result of such to the
overall decline of signal-to-noise ratio. It is then no longer possible to establish stochastic
resonance in the system.

Similarity of the system behaviour at the variation of frequency and temperature, including
the disappearance of the stochastic resonance at either high frequencies of modulation or the
temperatures of the ferroelectric sample underpins the statistical nature of the effect, which is
a result of coherent action of noise and periodic components of the system motion, established

through the competition between characteristic system time scales.



Chapter Five

Conclusions and Outlook

Present work is dedicated to the investigation of the stochastic resonance in ferroelectric TGS.
According to the purpose of study outlined in the Introduction, the effect of stochastic
resonance has been established in the experimental system with a ferroelectric crystal.
Thorough characterisation of the properties of the effect has been conducted for the possible
range of parameter variation. It has been checked as well, whether theoretical conceptions
developed in the framework of a general theoretical approach for a wide class of continuos
bistable systems can be considered valid in the concrete case of ferroelectric crystal as a
system displaying stochastic resonance behaviour in the view of the fundamental character of
the effect.

Theoretical reasoning for the principle possibility to observe stochastic resonance in
ferroelectrics is given in Chapter 3. After introducing the common definition, the basic
underlying physical mechanisms along with the methods of the characterisation of the effect
are presented. It is shown that stochastic resonance represents a fundamental effect, which is a
distinctive characteristic feature of the nonlinear systems independent on their physical
nature, where the time scales determining the system behaviour can be controlled through the
use of noise. Therefore the theoretical conceptions considering stochastic resonance are based
on the corresponding universal properties of nonlinear systems. The theoretical description of
the stochastic resonance developed in the framework of Fokker-Planck approach for
continuos bistable system presented in Chapter 3 is valid for a wide class of nonlinear systems
and can be successfully applied in the particular case of ferroelectric material. Although the

theoretical considerations bear rather general character, they allow for accurate predictions
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concerning stochastic resonance behaviour in concrete system under investigation in spite of
the absence of the special theory of stochastic resonance in ferroelectrics but due to the
generality of this phenomenon. Main features of the stochastic resonance to be expected in the
experimental study, as resulted from the presented theoretical consideration can be

summarised as follows:

e The stochastic resonance appears as an effect of synchronisation between weak input
periodic modulation and noisy system output resulting in the enhancement of the periodic

component of the system response.

e The corresponding measures of the output signal optimisation such as spectral
amplification and signal-to-noise ratio undergo pronounced resonance-like dependence as
a function of the input noise intensity. The values of noise which maximise the response

amplitude (that stands for amplification) and SNR do not coincide.

e The dependences of both stochastic resonance quantifiers on the amplitude of the periodic
modulation are characterised by the increase of the maximum values of the amplification
and signal-to-noise ratio at the increase of the amplitude. At the same time, the positions
of corresponding maximum values on the noise intensity scale shift toward lower noise

levels.

e The spectral amplification reaches greater values when registered at lower frequencies of
the periodic modulation, with corresponding maximum amplification being achieved by
smaller noise intensities. The Signal-to-noise ratio displays no significant frequency
dependence of the position of its maximum values on the modulation frequency. For high
modulation frequencies, the local maximum of SNR diminishes and the dependence
degenerates into monotonically decreasing function. It should be stressed that at the direct
continuous variation of the frequency of the periodic modulation, despite obvious
enhancement of the amplitude-frequency characteristic of the system in the low frequency
range, both stochastic resonance observables display no resonant-like behaviour but
become monotonically decreasing functions of the noise intensity. This property
underlines the fact that stochastic resonance is not a bona fide resonance in the original

S€nse.

e The scaling of the modulation frequency among other system quantities over the
parameters of the potential performed in the theoretical consideration correlates with the
possibility to control the velocities of the processes taking place in the system not only by
direct variation of the frequency of the modulation signal but changing the height of the

potential barrier, e.g. by the variation of the temperature. As it follows from theoretical
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assumptions, corresponding stochastic resonance behaviour should be qualitatively similar

to that displayed for different frequency regimes.

These general predictions proved for the wide range of system variables in the series of
numerical simulations allow for the comparative analysis of theoretical assumptions and the
experimental results obtained for the characterisation of the stochastic resonance in
ferroelectrics. The measurement set-up provides the experimental realisation of the
requirements for stochastic resonance onset and attains the possibility of the investigation of
the effect properties over the wide range of system parameters. The description of the
properties and design of the experimental set-up is given in Chapter 2.

The results of the experimental study of the stochastic resonance in ferroelectric TGS crystal,
presented in Chapter 4 allow for the following conclusions. The stochastic resonance in
ferroelectric TGS appears as a result of (partial) polarisation reversal with the frequency of
the weak external modulation signal produced by synchronised action of noise and periodic
modulation. The behaviour of the effect measures (i.e. spectral amplification and signal-to-
noise ratio) observed in the course of investigations shows very good qualitative agreement
with theoretical predictions concerning stochastic resonance properties in dependence on the
system parameters as outlined above. Hence the fundamental character of the stochastic
resonance as an effect typical for nonlinear system for which the characteristic time scales can
be controlled by means of noise is confirmed. Hereby the theoretical conceptions developed
for wide class of continuous bistable systems in the framework of general Fokker-Planck
approach using universal model assumptions are proved to be valid in the concrete case of
ferroelectric material as a system displaying stochastic resonance behaviour. Obtained results
of present experimental research admit to conclude that the purposes of this study, i.e.,
establishment and subsequent characterisation of the stochastic resonance in ferroelectric TGS

crystal are successfully achieved.

5.1 Outlook

There is, of course, no need to mention that the study of stochastic resonance in ferroelectrics
as presented in this work is yet far from being complete. The performed course of
measurements has revealed important issues which appeal for further investigation. In
particular, the hysteretic behaviour of the stochastic resonance observables upon the reversal
of the direction of noise variation requires prompt attention. Clearly, this new feature of the
stochastic resonance, which has not been reported to be observed in other systems and appears
to be a specific property of the effect in ferroelectrics is connected directly with the alteration
of the domain structure of ferroelectric material as the system goes along the process of the

stochastic resonance. Therefore it provides the opportunity to apply a new investigation
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technique to the study of ferroelectric domain structure which might bring new and promising
results to this complicated matter. Another interesting possibility would be, for instance, to
try to extract the information on the thermodynamic potential of the ferroelectric contained in
the time series of the output signal since it may result in developing the additional tool in the
modelling of the stochastic resonance signatures as well as processes of the polarisation
reversal of the ferroelectric itself which still remains an open question.

The results of the conducted investigations confirm the proposal made in the Introduction in
relation to the possibility to use presented system with ferroelectric crystal as a model system
for experimental study of stochastic resonance. Within the proposed experimental set-up this
elegant phenomenon can be realised with delectable convenience in different configurations.
It is, for example, of great interest to establish so-called controlled stochastic resonance [34],
using periodic modulation of the internal system parameters, which delivers much higher
signal enhancement and therefore could become very useful in the exploration of weak
signals. As the experimental system under consideration can be easily transferred into the
nonlinear resonance circuit displaying chaotic behaviour, it is very tempting to discover
experimentally stochastic resonance behaviour in the deterministic chaotic system [19,28,32]
to provide important empirical information to the understanding of, on one hand, the nature of
the effect in this advanced application. On another hand, this would give an insight into the
fascinating process of the chaotic oscillations [49] which alone stand for very promising field
of research. Besides, the above mentioned proposals while not exhausting the multiple
opportunities of study, will contribute to the investigation of the properties of ferroelectric
materials, such as domain wall motion, behaviour of the spontaneous polarisation etc., since
ferroelectrics serve as a core elements of the described experimental circuits responsible for
the system behaviour.



83

References

10.

11.

12

13.

14.

. R. Benzi, A. Sutera and A. Vulpiani: "THE MECHANISM OF STOCHASTIC RESONANCE"

J. Phys. A: Math. Gen.14L 453, 1981

R. Benzi, G. Parisi, A. Sutera and A. Vulpiani "STOCHASTIC RESONANCE IN CLIMATIC
CHANGE", Tellus, 34,10, 1982

C.Nicolis: "STOCHASTIC ASPECTS OF CLIMATIC TRANSITIONS - RESPONSE TO A PERIODIC
FORCING" Tellus 34, 1, 1982

S. Fauve and F. Heslot: "STOCHASTIC RESONANCE IN A BISTABLE SYSTEM"
Phys. Lett. 97A, 5, 1983

B. McNamara, K. Wiesenfeld and R. Roy: "OBSERVATION OF STOCHASTIC RESONANCE IN
A RING LASER" Phys. Rev. Lett. 60, 2626, 1988

L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta and S. Santucci "STOCHASTIC
RESONANCE IN A BISTABLE SYSTEMS" Phys. Rev. Lett. 62 349 (1989)

B. McNamara and K. Wiesenfeld: "THEORY OF STOCHASTIC RESONANCE"
Phys. Rev. A39 4854 (1989)

P. Jung and P. Hanggi: "STOCHASTIC NONLINEAR DYNAMICS MODULATED BY EXTERNAL
PERIODIC FORCES" Europhys. Lett. 8, 505, 1989

R. F. Fox: "STOCHASTIC RESONANCE IN A DOUBLE WELL" Phys. Rev. 39A, 4148 (1989)

G. Vemuri and R. Roy: "STOCHASTIC RESONANCE IN A BISTABLE RING LASER"
Phys. Rev. 39A, 4668, 1989

L. Gammaitoni, E. Menichella-Saetta, S. Santucci, F. Marchesoni and C. Presilla:
"PERIODICALLY MODULATED BISTABLE SYSTEMS: STOCHASTIC RESONANCE", Phys. Rev.
40A, 2114, 1989

. L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, M. Punturo and S. Santucci:

"STOCHASTIC RESONANCE: PHENOMENOLOGY AND APPLICATIONS"
Non-Equilibrium Statistical Mechanics, World Scientific ed. (1989)

P. Jung and P. Hanggi: "AMPLIFICATION OF SMALL SIGNALS VIA STOCHASTIC
RESONANCE" , Phys. Rev. A44 8032 (1991)

R F. Fox and Y. Lu: "ANALYTIC AND NUMERICAL STUDY OF STOCHASTIC RESONANCE"
Phys. Rev. E48 3390 (1993)



84

15. P. Jung: "PERIODICALLY DRIVEN STOCHASTIC SYSTEMS", Phys.Rept. 234, 175 (1993)

16. F. Moss, D. Pierson, D. O'Gorman: "STOCHASTIC RESONANCE: TUTORIAL AND UPDATE"
Int. J. Bifurcation and Chaos 4(6) 1383. [1994]

17.S. Vohra, L. Fabiny: "INDUCED STOCHASTIC RESONANCE NEAR A SUBCRITICAL
BIFURCATION", Phys. Rev. ES0 R2391 (1994)

18.D.S. Leonard, L.E. Reichl: "STOCHASTIC RESONANCE IN A CHEMICAL REACTION"
Phys. Rev. E49 1734 (1994)

19. 4. Crisanti, M. Falcioni, G. Paladin and A. Vulpiani: "STOCHASTIC RESONANCE IN
DETERMINISTIC CHAOTIC SYSTEMS", J. Phys. A: Math. Gen. 27 L597 (1994)

20. M.C. Mahato and S.R. Shenoy: "HYSTERESIS LOSS AND STOCHASTIC RESONANCE: A
NUMERICAL STUDY OF A DOUBLE-WELL POTENTIAL", Phys. Rev. E 50, 2503 (1994)

21.T. Kapitaniak: "MECHANISM OF NOISE-INDUCED RESONANCE", Physical Review E. 52(1
Part B):1200-1201, 1995 Jul.

22. L. Gammaitoni, F. Marchesoni and S. Santucci: "STOCHASTIC RESONANCE AS A BONA
FIDE RESONANCE", Phys. Rev. Lett. 74 1052 (1995).

23.B. Shulgin, A. Neiman, V. Anishchenko: "MEAN SWITCHING FREQUENCY LOCKING IN
STOCHASTIC BISTABLE SYSTEM DRIVEN BY A PERIODIC FORCE", Phys. Rev. Lett. 75,
4157, (1995)

24. A. Hilgers, M Gremm, J. Schnakenberg: "A CRITERION FOR STOCHASTIC RESONANCE",
Phys. Lett. A 209 313 (1995)

25. Dubinov A.E., Mikheev K.E., Nizhegorodtsev Y.B., Selemir V.D.: “ON THE STOCHASTIC
RESONANCE IN FERROELECTRICS”, Izvestiya Akademii Nauk Seriya Fizicheskaya.
60(10):76-77, 1996 Oct.

26. Collins J., Chow C., Capela AC., Imhoff T.T.: “APERIODIC STOCHASTIC RESONANCE”,
Physical Review A. 54(5):5575-5584, 1996 Nov.

27. Simonotto E., Riani M., Seife C., Roberts M., Twitty J., Moss F.: “VISUAL PERCEPTION OF
STOCHASTIC RESONANCE”, Physical Review Letters. 78(6):1186-1189, 1997 Feb 10.

28. F. Gassmann: “NOISE-INDUCED CHAOS-ORDER TRANSITIONS”, Physical Review E. 55(3
Part A):2215-2221, 1997 Mar.



85

29. Sides SW. Ramos RA. Rikvold PA. Novotny MA.: “KINETIC ISING SYSTEM IN AN

OSCILLATING EXTERNAL FIELD — STOCHASTIC RESONANCE AND RESIDENCE TIME
DESTRIBUTIONS” Journal of Applied Physics. 81(8 Part 2B):5597-5599, 1997 Apr 15.

30. Mahato MC., Jayannavar AM.: “RELATION BETWEEN STOCHASTIC RESONANCE AND

SYNCHRONIZATION OF PASSAGES IN A DOUBLE WELL SYSTEM”, Physical Review E. 55(5
Part B):6266-6269, 1997 May.

31. Bose D., Sarkar SK.: “NOISY BISTABLE HYSTERESIS WITH MODULATION OF LARGE

AMPLITUDE AND HIGH FREQUENCY”, Physics Letters A. 232(1-2):49-54, 1997 Jul 21.

32. Neiman A.., Saparin P.1., Stone L..: “COHERENCE RESONANCE AT NOISY PRECURSORS OF

BIFURCATIONS IN NONLINEAR DYNAMICAL SYSTEMS”, Physical Review E. 56(1 Part
A):270-273, 1997 Jul.

33. Mahato M.C., Jayannavar A.M.: “TWO-WELL SYSTEM UNDER LARGE AMPLITUDE PERIODIC

34.

35.

FORCING — STOCHASTIC SYNCHRONIZATION, STOCHASTIC RESONANCE AND STABILITY”,
Modern Physics Letters B. 11(19):815-820, 1997 Aug 20.

Gammaitoni L., Hanggi P., Jung P. Marchesoni F.: “STOCHASTIC RESONANCE” [Review],
Reviews of Modern Physics. 70(1):223-287, 1998 Jan.

Mahato M.C., Jayannavar A.M.: “SOME STOCHASTIC PHENOMENA IN A DRIVEN DOUBLE-
WELL SYSTEM”, Physica A. 248(1-2):138-154, 1998 Jan 1.

36. Hess S.M., Albano A.M.: “MINIMUM REQUIREMENTS FOR STOCHASTIC RESONANCE IN

37.

38.

THRESHOLD SYSTEMS”, International Journal Of Bifurcations And Chaos, 8(2):395-400,
1998 Feb.

Godivier X., Chapeaublondeau F.: “STOCHASTIC RESONANCE IN THE INFORMATION
CAPACITY OF A NONLINEAR DYNAMIC SYSTEM”, International Journal Of Bifurcations And
Chaos, 8(3):581-589, 1998 Mar.

Tretyakov M.V.: “NUMERICAL TECHNIQUE FOR STUDYING STOCHASTIC RESONANCE”,
Physical Review A. 57(4):4789-4794, 1998 Apr

39. Fakir R.: “NONSTATIONARY STOCHASTIC RESONANCE”, Physical Review A. 57(6):6996-

7001, 1998 Jun.

40. Sides S.W., Rikvold P.A., Novotny M.A.: “STOCHASTIC HYSTERESIS AND RESONANCE IN A

41.

KINETIC ISING SYSTEM”, Physical Review A. 57(6):6512-6533, 1998 Jun.

Galdi V., Pierro V., Pinto IM.: “EVALUATION OF STOCHASTIC RESONANCE-BASED
DETECTORS OF WEAK HARMONIC SIGNALS IN ADDITIVE WHITE GAUSSIAN NOISE”, Physical
Review A. 57(6):6470-6479, 1998 Jun.



42.

86

Choi M.H., Fox RF., Jung P.: “QUANTIFYING STOCHASTIC RESONANCE IN BISTABLE
SYSTEMS — RESPONSE VS. RESIDENCE TIME DISTRIBUTION FUNCTIONS”, Physical Review A.
57(6):6335-6344, 1998 Jun.

43.Kim Y.W., Sung W.: “DOES STOCHASTIC RESONANCE OCCUR IN PERIODIC POTENTIALS”,

44,

45.

Physical Review A. 57(6):R6237-R6240, 1998 Jun.

V.S. Anishenko, A.B. Neiman, F.Moss, L.Shimansky-Geier: “STOCHASTIC RESONANCE:
NOISE ENHANCED ORDER”, Uspehi Fizicheskih Nauk 169 (1), 1999 Jan (In Russian)

Yu. L. Klimontovich: “WHAT ARE STOCHASTIC FILTRATION AND STOCHASTIC RESONANCE”,
Uspehi Fizicheskih Nauk 169 (1), 1999 Jan (In Russian)

46. R.-P. Kapsch: “UNTERUCHUNGEN DES EINFLUSSES SCHWACHER, FAST RESONANTER BZW.

RESONANTER STORUNGEN AUF NICHTLINEARE DYNAMISCHE SYSTEME AM BEISPIEL DES
DIELEKTRISCH NICHTLINEAREN SCHWINGKREISES”, Ph.D thesis, Halle 1994

47. R-P. Kapsch, M. Diestelhorst, H. Beige: “SMALL SIGNAL AMPLIFICATION CAUSED BY THE

NONLINEAR DIELECTRIC PROPERTIES OF TGS”, Ferroelectrics, Vols.208-209, 1998

48. M. Diestelhorst, K. Drozhdin: “STOCHASTIC RESONANCE IN FERROELECTRIC TRIGLYCINE

SULFATE”, Ferroelectrics, Vol.238, 2000

49. H. Beige, M. Diestelhorst, R. Forster, T. Krietsch: “CHAOS NEAR STRUCTURAL PHASE

TRANSITIONS”, Phase transitions 37, 1992, 213

50. M.E. Lines, A.M. Glass: “PRINCIPLES AND APPLICATIONS OF FERROELECTRICS AND

RELATED MATERIALS”, Clarendon Press Oxford 1977

51.J.C. Burfoot: “FERROELECTRICS. AN INTRODUCTION TO THE PHYSICAL PRINCIPLES”,

Princeton 1967

52.B.A. Strukov, A.P. Levaniuk: “PHYSICAL PRINCIPLES OF THE FERROELECTRICITY IN

CRYSTALS”, Moscow, 1983 (in Russian)

53. M. Diestelhorst. Personal remarks

54.

Gammaitoni et al., http://www.pg.infn.it/st/



An dieser Stelle mochte ich allen zum Entstehen dieser Arbeit beigetragenen Personen
meinen herzlichen Dank aussprechen.

Besonders danke ich Herrn Dr. M. Diestelhorst, fiir die mir erwiesene Ehre, mein Freund und
Mentor zu sein, fiir seine Engelsgeduld und Teufelsakribie und fiir Spal3, das mir Physik -
teilweise nur seiner Bemiithungen wegen, - machte.

Den Kollegen der Fachgruppe ,Nichtlineare Dynamik/Ferroelektrizitiat“ — besonders den
Herrn Dr. R.-P. Kapsch, A. Tille, E. Fuchs, — danke ich fiir ihre Hilfe, und vor allem fiir die
freundliche und offene Atmosphire, in der die Zeit lustig und unbemerkt verflog.

Ich danke Herrn Prof. Dr. H. Beige fiir die Moglichkeit, in der Fachgruppe ,,Nichtlineare
Dynamik/Ferroelektrizitit“ des Fachbereiches Physik der Martin-Luther-Universitit Halle-
Wittenberg zu promovieren.

Herrn Dr. D. Lorenz danke ich fiir die Freundschaft,

und meinen Eltern — fiir Alles.

Konstantin Drozhdin



Ich versichere, daB ich die vorliegende Arbeit selbstindig angefertigt habe. Ich habe keine
anderen Quellen und Hilfsmittel als die angegebenen benutzt und den benutzten Werken

inhaltlich oder wortlich entnommene Stellen als solche gekennzeichnet.

Konstantin Drozhdin

Halle, den 28.11.2001



Lebenslauf

Name: Konstantin =~ Drozhdin

geboren: 12. Juli 1973 in Woronesh

Ausbildung:

1980-1990 Schulausbildung an der 58sten Oberschule in Woronesh mit

Spezialisierung fiir Mathematik und Physik

1990-1996 Studium der Physik an der physikalischen Fakultét der Saatsuniversitét
zu Woronesh

1997-2000 Doktorand in der Fachgruppe ,,Nichtlineare Dynamik/Ferroelektrizitat*
an der Martin-Luther-Universitidt Halle-Wittenberg

Konstantin Drozhdin



	Contents
	Abbreviations and Symbols
	1 Introduction
	1.1 The Phenomenon of the Stochastic Resonance
	1.2 The Purpose of the Study

	2 The Experimental Set-up
	2.1 The Electric Circuit
	2.1.1 Experimental Realisation

	2.2 Methods of Signal Characterisation
	2.3 Stochastic Resonance Measures
	2.3.1 Spectral Amplification
	2.3.2 Signal-to-Noise Ratio

	2.4 Experimental Set-up

	3 Theoretical Description of Stochastic Resonance
	3.1 Effect Basics
	3.1.1 System with Double-well Potential
	3.1.2 System Response

	3.2 Stochastic Resonance Characteristics
	3.2.1 Spectral Amplification
	3.2.2 Signal-to-Noise Ratio

	3.3 Stochastic Resonance in Continuous Bistable System
	3.3.1 Fokker-Planck Description
	3.3.2 Floquet Approach
	3.3.3 Expressions for Stochastic Resonance Characteristics
	3.3.3.1 Expression for Spectral Amplification
	3.3.3.2 Expression for Signal-to-Noise Ratio

	3.3.4 Results of Simulations

	3.4 Intrawell Motion Contribution
	3.4.1 Linear Response Approximation

	3.5 Concluding Remarks
	3.5.1 Ferroelectric TGS Crystal as a System Displaying Stochastic Resonance
	3.5.2 Frequency Scaling


	4 Experimental Results
	4.1 Signatures of Stochastic Resonance
	4.1.1 Synchronisation and Signal Enhancement
	4.1.2 Behaviour of Spectral Amplification
	4.1.3 Behaviour of Signal-to-Noise Ratio
	4.1.4 Discussion

	4.2 Characterisation of Stochastic Resonance
	4.2.1 Frequency Dependences
	4.2.2 Discussion
	4.2.3 Amplitude Dependences
	4.2.4 Discussion

	4.3 Temperature Dependence of Stochastic Resonance Behaviour
	4.3.1 Behaviour of Stochastic Resonance Measures at Different Temperatures of Ferroelectric TGS
	4.3.2 Frequency Scaling
	4.3.3 Discussion


	5 Conclusions and Outlook
	5.1 Outlook

	References

