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A     surface area  

A0    amplitude of periodic modulation 

max
AA~ 0

0 =    scaled amplitude 

a,b    parameters of double-well potential 

AS    asymptotic  

C0     linear capacitance  

CF     ferroelectric capacitance 

ck     Fourier coefficient 

d     sample thickness 

D     noise intensity 

Dm    noise intensity that maximises system response 

2
max

DD~ =    scaled noise intensity 

E     electric field strength  

eq.    equation  

f    frequency 

m/)x(V)x(f ′−=    scaled first derivative of the potential V(x) 

gn    expansion coefficient 

H(t)    Heaviside step function 

i    imaginary unit 

k, m, n     indexes 

)(0 tK xx     correlation function  
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L0(t)    unperturbed Fokker-Planck operator 

Lext(t)    Fokker-Planck operator of periodic perturbation 

L*(t)    adjoint Fokker-Planck operator 

m    mass 

Mn    complex valued amplitudes of the system response 

p    probability density 

{pµ}    Floquet modes 

P     polarisation  

Ρ(X,t|Y, s)   transition probability density 

P    power 

P1    integrated power of the delta-like peak at the frequency f=Ω 

PA    total power of the modulation signal in the absence of noise 

Pn    integrated power of δ-peaks of the n-th frequency component 

Q    electric charge 

QF     electric charge of nonlinear capacitance CF 

rK    Kramer’s rate  

R     ohmic resistance  

S(ω)    output spectral density 

SN(ω)    spectral density of noise 

SNR    signal-to-noise ratio 

t, s, τ    time  

t0    initial time 

γ
att~ =     scaled time 

T    period 

TK    period of Kramer’s hopping 

TΩ    period of periodic modulation 

TGS     triglycine sulfate  

0CU     voltage drop over C0 

FCU     voltage drop over CF 

UG     driving voltage (periodic modulation) 

RU     voltage drop over R 
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v    velocity  

V(x)    double-well potential 

∆V(x)    height of the potential barrier  

x(t)    one-dimensional time-dependent coordinate 

x0=x(t0)   initial condition 

xm    coordinate of the potential minima 

)(Dx     periodic component of the system response 
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xx~ =    scaled variable x 

δx(t)    system response within linear response approximation 

X(ω)     Fourier transform of x(t) 

X(t), Y(s)   state vectors  

Z    impedance 

χ(t)    response function 

χ(ω)    Fourier transform of χ(t) 

δ delta-function  

φ    phase shift 

γ    viscous friction 

η     spectral amplification 

ϕ      phase 

λn    eigenvalue of Fokker-Planck operator 

µ    Floquet eigenvalue 

Θ    temperature 

∆Θ    accuracy of temperature measurement 

τsmpl    sample rate 

ω0     angular frequency  

ωk, ωn    discrete angular frequency 

Ω angular frequency of external periodic modulation 

a
~ Ω

=Ω
γ    scaled angular frequency 

ξ(t)    Gaussian white noise 



   

 
 
 
 
 
 
 

Chapter One 
 
 
Introduction 
 
 
1.1 The Phenomenon of the Stochastic Resonance 
 
For the last two decades the phenomenon of the stochastic resonance has undoubtedly served 
for a boom in nonlinear sciences. Since its introduction in the early 80s merely as a theoretical 
assumption in the modelling of the recurrence cycles of the Earth’s ice ages, it has been 
attracting an increasing attention from diverse fields of science such as climatology, 
chemistry, biophysics and physiology, laser physics, solid-state physics, neuroscience, 
ferromagnetism, superconductivity and even social sciences, being successfully explored 
theoretically as well as experimentally.  
The reason for this growing interest lies unquestionably in the unique nature of the 
phenomenon. It has been shown in numerous investigations that the action of noise, usually 
believed to be an unwelcome obstacle feature in most investigations, can nevertheless act as a 
positive element. In nonlinear systems the influence of noise can under certain conditions lead 
to the appearance of the ordered functioning regimes through the formation of regular signal 
structures, increase of coherence degree, signal-to-noise ratio enhancement, etc. therefore 
improving the overall system performance rather than hampering it. 
The term “stochastic resonance” characterises new group of effects, whereby this rather 
paradoxical concept of the enhancement of the order degree of the system by means of 
random noise is realised [44].  
As it is pointed out in [34], there are three following basic requirements for the onset of 
stochastic resonance, namely: a) a nonlinear system with energetic activation barrier or any 
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form of threshold, b) a weak coherent input signal and c) a source of random noise coupled to 
the coherent input or embedded in the system. The main characteristic property of the system 
demonstrating stochastic resonance behaviour is the increased sensitivity to even vanishingly 
small perturbations. Granted these features, the response of the system subjected to the feeble 
external coherent input signal and noise undergoes a resonance-like dependence as a function 
of noise intensity due to the establishment of global statistic synchronisation between the 
stochastic processes governed by noise and coherent input, which in its turn results in the 
maximum enhancement of the coherent component of the system response at some optimum 
noise level. 
Owing to the principal generality of the above mentioned requirements, stochastic resonance 
might be thought of as a distinctive feature of nonlinear systems rather independent on their 
physical nature, whereby the characteristic system time scales can be controlled through the 
use of noise.  
Over the last twenty years since its discovery, the effect of stochastic resonance has been 
studied in numerous theoretical and experimental investigations. After the appearance of the 
first publications by Benzi [1,2] and Nicolis [3], several theoretical approaches have been 
developed for the description of stochastic resonance in various dynamical regimes. Since the 
list of publications on stochastic resonance is exponentially growing, as it is reflected, for 
instance, in the permanently updated bibliography maintained in the database by Gammaitoni 
[54], it is scarcely possible to provide a complete digest of all latest areas of study and 
applications of the stochastic resonance. The core contributions to the understanding of the 
phenomenon have been made by McNamara and Wiesenfeld [5,7,34], Gammaitoni et 
al.[11,12,22,34], Jung and Hänggi [13,15,34] and others. The theoretical predictions have 
been supported by numerous digital [13,14,34] and analogue simulations [34,44], amongst 
others, the first successful demonstration of the stochastic resonance in Schmitt trigger circuit. 
Up to date stochastic resonance has been observed in a wide variety of experiments as well, 
including laser systems, semiconductors, ferromagnetic systems, neurophysiological living 
systems etc., and there seems to be no end in sight [54]. 
In spite of the impressing number of works devoted to the experimental investigation of 
stochastic resonance in divergent systems, the ferroelectrics as a class of materials have not 
yet been reported to provide the experimental evidence for this effect. Simple consideration of 
the general properties of ferroelectricity, as given briefly for example in [25], leads to the 
straightforward conclusion that ferroelectrics in fact may well serve as a bright example of the 
stochastic resonance phenomenon, owing, first of all, to their peculiar nature. As it is known, 
at the temperature below the Curie point, i.e., in ferroelectric phase, the ferroelectrics have 
two (or more) metastable states characterised by different direction of spontaneous 
polarisation, which are separated by a potential barrier. Being imposed simultaneously to the 
action of noise and weak (in general, periodic) external signal not sufficient to cause the 
reversal of polarisation, such a system obviously meets the above mentioned general 
conditions for stochastic resonance as a fundamental phenomenon, especially when taking 
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into account the extreme sensitivity of ferroelectric materials to the small perturbations in the 
vicinity of phase transition. Therefore the appearance of typical resonance-like behaviour of 
the system response on the noise intensity can be expected.  
The idea of obtaining the experimental evidence of stochastic resonance in ferroelectrics is 
quite tempting. On one hand, the ferroelectrics such as TGS, chosen in the present work to 
conduct the investigations, claim to represent a comfort model system to study stochastic 
resonance due to several practical advantages. Apart from easy sample preparation, relative 
simplicity and convenience of experimental conditions (the existence of reversible 
spontaneous polarisation at ambient temperatures), which allow to avoid unnecessary 
measurement complications, profound experimental and theoretical knowledge of material 
properties has been gained since ferroelectric TGS has been long serving as a model material 
in the study of ferroelectrics. 
On the other hand, despite numerous investigations in the successful history of 
ferroelectricity, there are various problems not likely to be solved in the framework of 
conventional theoretical and experimental methods, even when it comes to comparatively 
uncomplicated crystal structures, (just to mention a few, domain structure behaviour during 
polarisation reversal, phase transitions etc.). As a new effect for this class of materials, 
produced directly by alteration of ferroelectric domain structure, stochastic resonance 
represents a fresh and promising approach for the study of ferroelectrics.  
 
 
 

1.2 The Purpose of the Study 
 
Taking into account the above presented considerations, the first task of the present study is to 
establish experimentally the effect of stochastic resonance in ferroelectric TGS crystal. As a 
next step it should be proved whether the theoretical conceptions as developed in the 
framework of generic model for continuos bistable systems can be considered valid when 
realising stochastic resonance in actual experiment with ferroelectric TGS crystal. The 
theoretical predictions concerning general effect properties are to be checked experimentally. 
In order to do this, the stochastic resonance behaviour should be studied over the wide range 
of experimental parameters. To provide thorough characterisation of the stochastic resonance 
in ferroelectric TGS crystal, the plan presented below is followed in the course of study: 
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• Experimental set-up design. 

 
The measurement set-up which makes possible the experimental realisation of stochastic 
resonance in the course of investigations is described in Chapter 2. The experimental 
techniques are introduced together with the definition of actual stochastic resonance 
observables and ways of their estimation in the experiment.  
 
 
• Presentation of theoretical conceptions for stochastic resonance. 
 

In Chapter 3 the theoretical considerations concerning stochastic resonance are given. The 
effect basics and its main characteristics are introduced briefly on the basis of a generic 
two-state model. The accurate description of the effect applicable in general to the case of 
ferroelectrics is provided within the framework of the Floquet approach for continuos 
bistable systems after Jung and Hänggi [13] and Gammaitoni et al. [34]. Brief explanation 
of the main properties of ferroelectrics which are responsible for the onset of stochastic 
resonance is sketched in Section 3. 
 
 

• Experimental study of stochastic resonance in ferroelectric TGS.  
 
The experimental results obtained in the study of stochastic resonance in TGS crystal are 
presented in Chapter 4. The validity of theoretical predictions raised in the modelling of 
stochastic resonance behaviour in continuos bistable system is proved experimentally for 
the case of a ferroelectric TGS crystal serving as a system to observe the effect. The 
characterisation of stochastic resonance in actual experiment is provided over the wide 
range of measurement parameters such as frequency and amplitude of the external 
modulation signal and temperature of the ferroelectric sample. The specific features of 
stochastic resonance have been registered, which were not observed in other experimental 
systems. 

 
 



   

 
 
 
 
 
 
 

Chapter Two 
 
 
The Experimental Set-up 

 
 
This chapter describes the nonlinear system used in the experimental study of stochastic 
resonance in ferroelectric TGS crystal.  
First, the electric circuit serving as a core element of the experimental set-up is presented. As 
a next step the general principles of signal characterisation used in the investigation of the 
stochastic resonance are outlined. This is followed by the introduction of the stochastic 
resonance measures involved in the actual experiments and methods of their estimation. 
Finally the description of the measurement set-up developed for the study of the effect over 
the wide range of experimental parameters is provided specifying available measurement 
configurations and regimes.  
 
 

2.1 The Electric Circuit  
 
The electric circuit described below is configured to satisfy basic requirements of stochastic 
resonance under conditions of real experiment. Ferroelectric crystal chilled below Curie point 
possesses double-well potential that corresponds to the two metastable states with opposite 
polarisation direction. Since stochastic resonance is confirmed to be a fundamental 
phenomenon i.e. independent of the nature of the system where it is observed, when exposed 
to the sum of weak periodic modulation and noise, the presented experimental system should 
manifest corresponding output signal enhancement as a function of noise. On one hand, the 
proposed experimental set-up admits the possibility to verify experimentally the general 
theoretical predictions derived for stochastic resonance behaviour. On the other hand, because 
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the phenomenon of stochastic resonance in ferroelectric crystal is produced by the 
polarisation switching at the frequency of the weak periodic modulation established at an 
appropriate noise level, it provides the opportunity to investigate the behaviour of ferroelectric 
material within this complicated stochastic process as well as peculiarities of the stochastic 
resonance itself defined by the properties of ferroelectrics. 

 
 
2.1.1 Experimental Realisation  
 
The circuit involved in the course of measurement is a well-known Sawyer-Tower bridge 
which is usually used to register ferroelectric hysteresis. This circuit shown schematically on 
Figure 2.1 includes following parts: non-linear ferroelectric capacitance CF , linear 
capacitance C0 and linear ohmic resistance R. The non-linear capacitance CF  is represented in 
our experiment by ferroelectric TGS crystal plate with electrodes. The ferroelectric axis of the 
crystal is oriented along the thickness and is normal to the electrode surfaces. Therefore the 
sample can be considered as bar-shaped condenser filled with ferroelectric dielectric material.  
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Experimental circuit 
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Applying the periodic voltage of appropriate amplitude to the circuit one produces 
polarisation switching of ferroelectric. This process can be registered by recording hysteresis 
loops which accompany repolarisation.   
The voltage applied to the circuit is split into the sum of voltage drops over every circuit 
component and can be written as: 
 

RCCG UUUU
F

++= 0 .      (2.1) 

 
Choosing the capacitance C0 much larger than CF and thus maintaining the relation 
 

                                               
FCC

R
000

11
ωω

<<<<      (2.2) 

 
assures that most of the driving voltage drops over the ferroelectric capacitance CF. Because 
of the serial junction of capacitors C0 and CF the charges of both capacitors are equal Q=QF . 
Therefore the voltage drop over C0 yields: 
 

00
CUCU CFCF

= ,          (2.3) 

 

       
0

0 C
Q

U F
C = .      (2.4) 

 
Since the polarisation of ferroelectric is defined as a charge per surface unit, i. e.: 
 

A
QF=Ρ ,        (2.5) 

 
by registering the voltage over C0 versus field strength, which is defined as  
 

d
U

E FC=  ,      (2.6) 

 
where d stands for sample thickness, one retrieves well known hysteresis loop.  
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2.2  Methods of Signal Characterisation  
 
In the investigations of stochastic resonance the behaviour of system output signal in the 
dependence of noise intensity is studied. Most of different experimental techniques are based 
on the measurements of power spectrum and time series of system output [13, 34]. Before the 
introduction of the stochastic resonance measures used in the course of investigations, the 
basic principles concerning signal characterisation in time and frequency range are outlined 
below.  
The arbitrary signal can be represented as either function of time x(t) or frequency X(ω). 
According to Fourier theorem, time-dependent signal x(t) can be represented in the following 
form: 
 

∫
∞

∞−

= ωωω
π

dtiXtx )exp()(
2
1)( ,    (2.7) 

 
where X(ω) is defined as follows 
 

∫
∞

∞−

−= dttitxX )exp()()( ωω .     (2.8)

   
Here X(ω) stands for so called Fourier transform of x(t) and according to definition (2.7), 
represents time evolution of signal x(t) in the form of superposition of oscillations 
X(ω)exp(iωt) over the wide frequency range. In general case the Fourier transform of real 
function x(t) is a complex function 
 

)exp()()( ϕωω iXX = ,     (2.9) 

 
where |X(ω)| stands for the amplitude and ϕ for the phase of the signal with frequency ω. The 
representation of the amplitude and phase of the signal in dependence on the frequency is 
named Fourier-spectrum of the signal. If the square of the signal amplitude is registered, the 
spectrum becomes so called power spectrum.  
If the signal under investigation is periodic in time, i.e. x(t)=x(t+T), its Fourier transform 
reads 
 

∑
∞

−∞=

=
k

k t
T

ikctx )2exp()( π ,              (2.10) 

 
where ck are corresponding Fourier coefficients defined as follows 
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∫ −=
T

k dtt
T

iktx
T

c
0

)2exp()(1 π .             (2.11) 

 
Therefore, the periodic signal with frequency ω=2π/T can be represented as a superposition of 
periodic signals with frequencies ωk = 2πk/T. The corresponding power spectrum consists of 
discrete δ-like peaks centred at frequencies ωk.1 

 
 

2.3 Stochastic Resonance Measures 
 
Next the stochastic resonance observables measured in the experiments are introduced. The 
signal measured over capacitance C0 is considered to be the output signal of the system. As it 
has been shown above the voltage drop over this linear capacitor is proportional to the 
polarisation of ferroelectric sample, therefore registering the power spectrum and time series 
of this signal provides the opportunity for direct observation of the processes taking place in 
the ferroelectric during the onset of stochastic resonance. 
 
 

2.3.1 Spectral Amplification 
 
The spectral amplification is one of the most prominent characteristics used to demonstrate 
the effect of the amplification of the periodic component of the output signal at the variation 
of the noise intensity at the system input. In the present work the spectral amplification is 
defined as a ratio between the power PS stored the first harmonic measured at a given noise 
strength D and power P0 of first harmonic measured in the absence of noise.  
 

0P
PS=η  .               (2.12) 

 
Here both PS and P0 are supposed to be measured in linear units (i.e., watts). In actual 
measurement the absolute peak values in power spectrum are first registered in logarithmic 
dBm scale and then evaluated according to the definition of absolute peak value given by the 
following relation (here and further on the indexes “dBm” and “W” correspond to the 
logarithmic and linear scale respectively): 
 
                                                           
1 Note that in real system there’s always some noise present, therefore power spectrum of periodic signal is 
presented by δ-peaks at frequency harmonics distributed over broadband noise. 
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



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


=

mW
PlgP

W
ABSdBm

ABS 1
10 .            (2.13) 

 
Since the measurements are performed at some given noise intensity added to the system 
input, there is always noise power contributions to the value of first harmonic peak of the 
power spectrum, which must be extracted to get the true value of the periodic component of 
the output power spectrum.  
All of the estimates used are sketched on Figure 2.2 for reader’s convenience. Splitting the 
absolute peak value PS+N of the first harmonic measured at some noise power PN into the sum 
of the noise power and pure periodic component: 
 

 
 
 

 
Figure 2.2 Estimation of stochastic resonance measures from power spectrum 
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W
N

W
S

W
NS PPP +=+ ,              (2.14) 

 
where noise power is calculated analogously to (2.13), i.e.,  
 









=

mW
PlgP

W
NdBm

N 1
10 ,              (2.15) 

  
the relative peak value PREL is determined as follows (see Figure 2.2 ) 
 








 +
=−= + W

N

W
N

W
SdBm

N
dBm

NS
dBm

REL P
PPlgPPP 10 .             (2.16) 

 
Following some unsophisticated estimations the correction formula for the pure periodic 
signal power PS can be extracted: 
 











−=

−

+
10101
dBm

RELP
W

NS
W

S PP .              (2.17) 

 
Therefore, knowing the absolute value of first harmonic peak, noise power at a signal 
frequency and relative peak value one can estimate the corrected value of signal power and 
calculate the spectral amplification according to the formula (2.12). 
 
 

2.3.2 Signal-to-Noise Ratio  
 
Another frequently used characteristic of stochastic resonance is signal-to-noise ratio (SNR), 
which is an alternative measure of signal enhancement. Traditionally, this ratio is defined as a 
ratio between the power of periodic signal and the noise power at a signal frequency, i.e. 
 

W
N

W
S

P
PSNR =  .               (2.18)

     
In terms of power spectrum measured in dBm-scale, signal-to-noise ratio corresponds to the 
value of relative peak at a signal frequency, provided the total power of noise and signal PS+N, 
which is actually measured in experiment, is replaced by the corrected power of pure periodic 
signal PS. It is worth to mention that since one has to deal with logarithmic dBm-scale, the 
difference of 20dB between first harmonic peak and noise background leads to the fact, that 



 19

power of periodic component exceeds that of the noise in 100 times. Therefore, if the periodic 
output is high enough, the estimated power of pure periodic signal differs from the total 
measured output power of noise and periodic signal in some vanishingly small percentage. 
Hence the corrections on noise power contribution may become practically neglectable and 
credible results can be reached by measuring directly the level of first harmonic peak and 
corresponding relative peak value to obtain the spectral amplification and signal-to-noise ratio 
values. 
 
 

2.4 Experimental Set-up 
 
The stochastic resonance behaviour in the proposed experimental system is undeniably 
governed by a number of experimental parameters. First of all, as the process of stochastic 
resonance onset is related directly to the polarisation switching of the sample included in the 
circuit, the choice of the ferroelectric material will affect the whole range of the appropriate 
measurement parameters. In this work the study of stochastic resonance is restricted to TGS 
crystals. It is known that the process of  ferroelectric switching is a nonequilibrium process 
strongly influenced by the properties of the actual ferroelectric crystal under investigation, 
such as defects, their interaction with domain walls, etc., which are determined by the history 
of the crystal and its geometry. In this sense the choice of TGS crystal as a ferroelectric 
material to study stochastic resonance is quite evident, alone for two following reasons. Since 
the TGS crystal has been long serving the role of model ferroelectric in a number of various 
investigations, the volume of knowledge obtained for its different properties is rather 
sufficient and covers practically all thinkable parameters of the experiment and crystal itself 
over an impressing diversity of combinations. This “excessiveness” of experimental data is to 
some degree provoked by the fact that TGS is quite convenient (but nevertheless not simple!) 
ferroelectric material to explore, having one axis of polarisation and Curie point within the 
ambient temperature range. 
Apart from the properties of the system determined by the ferroelectric sample and its 
geometry, the stochastic resonance behaviour is affected by the following experimental 
parameters provided by the electric circuit itself: 
 
• Circuit parameters, such as capacitance C0 and resistance R. While holding the relation 

(2.2) true during the course of investigations, these parameters may require adjustment as, 
for instance, the frequency of periodic driving signal is set to high or low values thus 
affecting the reactive resistance of both capacitors.  
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• Parameters of the external driving signal UG, such as frequency, amplitude and form of 
oscillations. 

 
• The temperature of the ferroelectric sample which determines the parameters of the 

ferroelectric sample such as spontaneous polarisation, dielectric permittivity, etc. by 
affecting the form and height of potential barrier separating two stationary states with  the 
opposite polarisation directions (below Curie point). In the vicinity of the phase transition 
the ferroelectric material becomes extremely sensitive to even vanishingly small external 
perturbations. This sensitivity together with increasing nonlinearity of the ferroelectric 
may lead to the considerable changes in the system behaviour. 

 

 
 
Figure 2.3 Experimental plug-in 
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Pondering on the above said speculations, it is straightforward that the experimental set-up  
should be constructed to so as to allow to perform measurements of stochastic resonance 
observables over most wide parameter range available, while keeping along high data 
acquisition reliability.  
To extract the experimental data the Sawyer-Tower circuit driven by the sum of periodic 
signal and noise is linked via additional connection to the measurement circuit as shown on 
Figure 2.3. This connection allows to measure the voltage over ferroelectric capacitor CF , 
which is proportional to the strength of the electric field E between the electrodes and the 
voltage over linear capacitor C0 proportional to the instant value of polarisation of 
ferroelectric sample. The complete scheme of experimental set-up is presented on Figure 2.4. 
As it can be seen, the considerable flexibility is provided within the set-up design achieved 
through the implementation of two switch units HP3488A. Using this feature it is possible to 
perform various series of investigations which refer to different aspects of ferroelectricity. 
The set-up allows to conduct measurements on dielectric properties of ferroelectric sample, 
ferroelectric hysteresis, chaotic behaviour (by adding the coil and thus transforming the 
Sawyer-Tower bridge into nonlinear resonance RLC-circuit), etc. without rebuilding the set-
up design, which enhances the reliability of the measurements.  
The periodic driving signal is applied to the circuit from function generator HP3325B. Its 
features allow to vary with high accuracy the frequency of the output signal in the range from  
1 µHz to 20.999 MHz and the amplitude from 0.3 mVRMS to 3.5 VRMS along with the form of 
carrier signal. The arbitrary function Generator  HP33120A is used in the investigation of 
stochastic resonance as a source of broadband noise. With the amplitude of noise signal being 
variable from 6.09 mVRMS to 1.217 VRMS, it has a cut-off frequency of f = 10 MHz and 
therefore can be referred to as a white noise source since most of the frequencies used in the 
course of measurements lie below 100 kHz. After adding up the periodic driving signal and 
noise the summary input signal is amplified approximately by the factor of 10 with the 
amplifier. Due to very low internal impedance of Z ≈ 2Ohm of the amplifier, the amplitude of 
the driving signal is considered to be independent from current flow in the circuit. The input 
signal value is monitored by digital voltmeter RFT G-1006.500.  
To characterise the output signal measured over the capacitance C0 which is proportional to 
the polarisation of ferroelectric sample in terms of power spectrum over the wide frequency 
range, the Spectrum- and Network Analyser Wandel-Goltermann SNA-2 is used. The power 
and amplitude spectrum as well as the phase of the signal can be directly registered. To 
exclude possible input overload with signals of high amplitudes, two attenuators with 
damping factors of –20dB and –40 dB are provided. 
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Figure 2.4  Scheme of experimental set-up 
 
Simultaneously with power spectrum measurement, the time series reflecting the temporal 
evolution of the studied signal can be registered by two channel digital oscilloscope Nicolet 
Pro 30 with 12 Bit resolution and sample rate of τsmpl ≥ 100 ns. Apart from time series 
observation it is possible to display directly the input signals of both channels versus each 
other thus providing for example, the opportunity to inspect hysteresis loops occurring during 
the repolarisation of ferroelectric. The possibility of averaging the input signals over many 
sampling cycles available as signal acquisition option becomes very useful in the 
investigations of stochastic resonance. It allows to perform experimentally the procedure of 
averaging of the output signal over the ensemble of noise realisations which, as it will be 
shown below, is core starting point in theoretical modelling [7,34,44,]. Since in the study of 
stochastic resonance one has to analyse by definition the statistical properties of the signal, the 
averaging, along with the high-and low-frequency filtering facilitates the extraction of 
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periodic component of the output signal and thus the registration of synchronisation 
phenomenon taking place during stochastic resonance. The LCR-meter HP 4263A which is 
plugged over the ferroelectric sample allows for quick characterisation of the dielectric 
properties of the material. 
The ferroelectric sample is located in the thermostat. The measurement of the temperature is 
realised by registering the voltage over Ni-NiCr thermoelement with digital PREMA 4000 
voltmeter. Correct scaling of the measured values is provided with the help of zero-point cell 
Zeref 1360. The regulation of temperature is achieved using the built-in heating line driven by 
the power source HP 6634A. The different regimes of temperature change as well as 
temperature stabilisation are accomplished with the help of software developed under 
LABWindows™ [46]. Stabilisation of the temperature, being of great importance especially 
for the measurements in the vicinity of the phase transition of the ferroelectric is provided 
with accuracy not less than ∆Θ=0.01 K. Apart from temperature monitoring and regulation, 
the software package admits the possibility to control via IEC-Bus all the measurement 
equipment included in the experimental set-up. Due to flexibility of the program and set-up 
design, it is possible to perform complicated measurement regimes involving simultaneous 
use of different measurement devices at either continuous or discrete pre-set variation of 
external experimental parameters. Data acquisition features included in the software provide 
direct instant recording of the experimental measures followed by conversion procedures 
required for further data processing.   
 
 
 
 
 



   

 
 
 
 
 
 
 
Chapter Three 
 
 
 
 

Theoretical Description of Stochastic Resonance 
 
 
 
 
In the current chapter the theoretical conceptions describing the phenomenon of stochastic 
resonance are presented. As it has been already mentioned in Introduction, stochastic 
resonance is a well established fundamental phenomenon occurring in nonlinear systems 
where characteristic time scales determining the system behaviour can be varied by means of 
noise. The basic requirements for the onset of this effect are general enough to expect the 
appearance of the typical resonance-like dependence of the system response on the noise 
intensity in a large diversity of systems in spite of their different physical nature and 
corresponding underlying mechanisms.  
Therefore the accurate theoretical description of the general stochastic resonance properties 
provided for a particular class of systems yields relevant theoretical predictions which can be 
proved in concrete experimental realisation using the universal features of the system under 
investigation, responsible for the stochastic resonance behaviour. As it will be demonstrated 
below, such an approach is successfully applicable in the actual study of the effect in 
ferroelectrics although there is no special theory derivations developed particularly for this 
class of systems.  
The chapter is structured as follows. First, to facilitate the understanding of the underlying 
physical principles of stochastic resonance and give some historical overview, the effect 
basics are introduced starting with the brief description of curious initial consideration of the 
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problem of Earth’s periodic climate change, which originated the conception of stochastic 
resonance. Following the introduction of main characteristics of the effect, the theory of 
stochastic resonance for the class of continuos bistable systems is given in Sections 3.3 and 
3.4. Most theoretical estimations and conclusions, including results of simulations are 
presented after the works of Jung and Hänggi [13], Gammaitoni et.al. [34] and V. Anishenko 
et. al. [44] where the stochastic resonance behaviour is modelled with Fokker-Planck 
equation. The theoretical results derived within this approach cover wide range of parameter 
variation and thus allow for a possibility to prove the obtained predictions in real experiment 
(see Chapter 4). In addition, the basic properties of ferroelectric TGS are presented. It is 
shown that due to the peculiarities of the material, the system with ferroelectric crystal as a 
core element meets the above outlined requirements for the onset of stochastic resonance and 
therefore qualifies at least qualitatively for an experimental study. Brief consideration of some 
possible distinctive features of the stochastic resonance in ferroelectrics, which are 
determined primarily by the nature of the material and may not be observed in other 
experimental systems is given as a concluding remark. 
  
 

3.1 Effect Basics 
 
The term „stochastic resonance“ describes the group of effects observed in nonlinear systems, 
whereby the response of the system to the weak external signal is remarkably amplified by the 
increase of noise intensity in the system. As a result, integral system characteristics such as 
signal-to-noise ratio, spectral amplification, etc. undergo pronounced maximum as a function 
of noise intensity at some optimal noise level2. 
Originally this term was introduced independently by Benzi and co-workers[1,2] and Nicolis 
[3] in attempt to explain the peculiar phenomenon of periodic recurrence in Earth ice ages. It 
is known from the results of statistical analysis of continental ice volume variations over 106 
years that the sequence of glaciation times has an average periodicity of approximately 105 
years. The only comparable astronomical time scale of Earth dynamics known up to date is 
the modulation period of Earth’s orbital eccentricity caused by planetary gravitational 
perturbations, which in their turn result in the variations of the solar energy influx, on the 
Earth’s surface, so called solar constant. As these variations attain vanishingly small values of 
approximately 0.1%, the question arises if the climate sensitivity to such small external 
periodic perturbations can be amplified, which would lead to periodic climate change.  

                                                           
2 Exact definition of stochastic resonance measures see below Section 3.2. Famous analogue simulation of the 
effect in Schmitt trigger circuit, [34] can serve here as a typical example. It has been proved that when the circuit 
is imposed simultaneously to the external noise source and weak periodic signal at the input, the signal-to-noise 
ratio at the trigger output first increases with the increase of the noise, then reaches the maximum and then 
decreases again. Thus periodic component of the output signal attains its maximum value at a certain noise 
intensity. 
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In the proposed model the global climate is characterised by the position of particle moving in 
double-well potential. The corresponding potential minima represent ice ages with low 
temperatures and normal climate cycles respectively. The potential is subject to small periodic 
forcing which reflects the modulations of the eccentricity of Earth orbit. Usual short-term 
climate fluctuations such as the annual variance of solar radiation are implemented through 
Gaussian white noise. As it has been proved by numerical simulations, by varying the noise 
intensity in such a system, the interplay of stochastic fluctuations and weak periodic 
modulation could result in synchronised switching between warm and cold climate thus 
leading to significant enhancement of the response of the Earth’s climate to small 
perturbations caused by modulations of orbital eccentricity of the Earth [34]. 
For nearly a decade then the effect of stochastic resonance was left to oblivion, owing not at 
last to the principal difficulty of precise computations at the time. The renaissance it 
experiences ever since has eventually resulted in different theoretical approaches treating the 
problem. The concept of stochastic resonance has been extended to include various 
mechanisms. The theoretical description  has been developed for excitable and threshold 
systems, quantum stochastic resonance, systems with deterministic chaos and many more.  
Despite the vast diversity of systems exhibiting stochastic resonance behaviour, where 
stochastic resonance is undeniably governed by the forces of sometimes completely different 
nature, to grasp the idea of the onset of this intuitively contradictable phenomenon, the 
following principle picture of physical mechanisms that give rise to stochastic resonance will 
suffice. Qualitatively the effect basics could be explained in a consideration of the motion of 
over-damped particle in symmetric double-well potential subject to both noise source and 
periodic driving3.  
 
 

3.1.1 System with Double-well Potential  
 
The motion of the over-damped particle in double-well potential coupled to the source of noise and periodic 
driving is described with the following simple equation: 

 
)()cos()()( 0 ttAxVtx ξϕ ++Ω+′−=& ,     (3.1) 

 
where )(xV  represents a double well potential given in the dimensionless form by 

 

                                                           
3 Which is the initial model proposed by Benzi [1,2] in the consideration of periodical change of Earth’s climate.  
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4
1

2
1)( xxxV +−= .      (3.2) 

 
The potential )(xV  is bistable with its minima located at mx± , where 1=mx , as shown on 

Figure 3.1 which illustrates schematically the process responsible for the onset of stochastic 
resonance. The height of the potential barrier between the two minima is 4

1=∆V .  

The zero-mean Gaussian white noise )(tξ  with intensity D is defined by its auto-correlation 

function 
 

)(2)0()( tDt δξξ = .       (3.3)   

 
In the absence of periodical driving the particle fluctuates around one of its local stable states. 
The probability for the particle to “hop” between the potential wells is defined through noise-
dependent Kramer’s rate 
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


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 ∆
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D
VrK exp

2
1
π

.     (3.4) 

 

Weak periodic forcing of amplitude 0A , which alone is insufficient to make particle switching 

between the potential wells, leads to the periodic modulation of the potential and, 
consequently, to that of the probability for the particle to switch. The potential wells are tilted 
asymmetrically up and down thus periodically raising and lowering the potential barriers as it 
is shown on Figure 3.1. The noise-induced hopping can become then statistically 
synchronised with periodic driving. If the averaged waiting time between two interwell 
hopping events, which is given by 
 

K
K r

DT 1)( =                 (3.5)

     
becomes comparable with the half of the period ΩT  of periodic driving, the system attains the 

maximum probability to switch, as the Kramer’s rate is also varied with the same period, then 
the synchronisation takes place thus providing simple time scale matching condition for 
stochastic resonance:  
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Figure 3.1 Brief illustration of the stochastic resonance mechanism
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2
Ω=

TTK        (3.6) 

 
In this sense, the phenomenon of stochastic resonance can be in general interpreted as a 
statistical synchronisation between noise-induced hopping events and weak periodic driving, 
achieved by the noise variation.  
 
 

3.1.2 System Response 
 
As a result of the synchronisation establishment, the periodic component of the system 
response gets amplified at some optimal noise level. To illustrate this behaviour 
mathematically  the expression for time-dependent system response, (i.e., the solution of 

equation (3.1)) could be obtained by computing the mean value x t( ) . Averaging the 

stochastic process x(t) with initial conditions )( 00 txx =  over the ensemble of noise 

realisations the mean value 00 ,|)( txtx  is calculated, which in asymptotic limit ∞→0t  

becomes periodic function of time, i.e.,
ASAS

Ttxtx )()( Ω+=  with TΩ=2π/Ω. For small 

amplitudes of the periodic modulation the system response can be written as follows: 
 

x t x tas( ) cos( ),= −Ω φ       (3.7) 

 
where x  represents noise-dependent amplitude of the periodic component of the system 
response and could be given by the following approximate expression: 
 

x D
A x
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2

0
2 2

2
4 Ω

 .     (3.8) 

 

Here x2
0
 stands for D-dependent variance of the stationary unperturbed system at 00 =A . 

[5, 34]. Figure 3.2 illustrates typical behaviour of the amplitude of the periodic component of 
the system response in dependence of noise intensity, obtained in our measurement. Two 
other dependencies, namely signal-to-noise ratio and spectral amplification are intended to 
provide an essential picture of the behaviour of these stochastic resonance characteristics 
introduced below in Section 3.2. 
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Figure 3.2  Typical behaviour of the system response characteristics 
 
As it can be seen, the periodic response of the system subject to both weak periodic 
modulation and noise can be manipulated by varying the noise intensity at the system input, 
since the amplitude of the periodic component x depends non-monotonically on the noise 
strength D. At the increase of  the noise the amplitude x  first increases, reaches the maximum 
at some optimal noise intensity mD  and decreases again thus demonstrating classical 

stochastic resonance effect. In the view of the above presented physical picture of stochastic 
resonance as a phenomenon of the system output enhancement established through 
synchronisation of noise-induced hopping with periodic driving, the value mD  attains 

following physical meaning. The noise intensity D defines the probability for the system to 
switch from one potential well into another which is expressed by the noise dependent 
switching rate of the unperturbed system given by Kramer’s rate Kr (see equation (3.4)). 

Starting with low noise intensity   mDD << the switching events occur very rarely thus 

making the periodic component of the system output hardly visible since the system 
behaviour is bounded to the intrawell motion within one potential well. 
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Figure 3.3.  Onset of synchronisation at the increase of the noise intensity 
 
As the noise is increased, the random switching rate can be tuned by mDD =  so as to fulfil 

the time matching condition (3.6). At this point the synchronisation between noise induced 
switching and weak periodic modulation takes place as the probability for the system to 
switch reaches its maximum (and particle reaches the „best“ opportunity to switch during half 
period of modulation that tilts the potential ). The output signal becomes tightly locked with 
the periodic input (See Figure.3.3). At the further increase of the noise the break of 
synchronisation sets in for the noise intensities mDD >> , for the system manages to switch 

many times during each half of the period of the external modulation. This process is 
illustrated on Figure 3.3, where the time series of the output signal is shown for the increased 
value of the noise intensity D.  
 
 

3.2  Stochastic Resonance Characteristics 
 
Undoubtedly the choice of relevant quantifiers depends on the properties of the system under 
investigation. Since experimental studies of stochastic resonance cover rather wide range of 
systems of completely different nature from electronic circuits to neurophysiological 
applications, there are several distinct methods to characterise the effect. Detailed description 
of stochastic resonance characteristics used in real experiments and simulations can be found, 
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for instance, in [34]. We will restrict ourselves to the measures based on the power spectrum 
for reason of their relevance in relation to our investigations. 
 
 

3.2.1 Spectral Amplification  
 
According to [13] the spectral amplification is introduced on the basis of the amplitude of 
periodic component of the output signal as follows. The integrated power 1P  of the delta-like 

peak at an external modulation frequency f=±Ω  of the output power spectrum is 
 
      P x D1

2= π ( ).      (3.9) 
 
The total power of the modulation signal in the absence of noise is  
 

P AA = π 0
2 .               (3.10) 

 
The spectral amplification is defined as a ratio between 1P  and AP : 
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3.2.2 Signal-to-Noise Ratio 
 
As mentioned in introduction, stochastic resonance is manifested by an enhancement of weak 
periodic signals by means of noise. Therefore the study of this effect can be considered as a 
problem of weak signal extraction from broadband background noise. The corresponding 
measure widely adopted in radiophysics and electronics is called signal-to-noise ratio (SNR). 
Here we define the SNR after the papers [13,34] as follows. The output spectral density S(ω) 
of the system driven by noise and periodic modulation is represented by superposition of 
background noise spectral density )(SN ω  and a number of delta-like spikes centred at 

Ω+= )12( nnω , with n = 0,±1,±2... . Considering only first harmonic, for small amplitudes of 

the external modulation signal the power spectral density of the system output can be 
separated into two terms, the periodic component with amplitude x D( ) given by expression 
(3.8) and noisy background )(SN ω : 
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[ ]S x D SN( ) ( ) ( ) ( ) ( )ω
π

δ ω δ ω ω= − + + +
2

2 Ω Ω .            (3.12) 

 
The signal-to-noise ratio measured at the frequency of the periodic modulation is defined by  
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 .              (3.13) 

 
The factor 2 reflects the symmetry of power spectral density S(ω) = S(-ω). Writing down the 
approximate power of background noise )(ωNS  for the double-well system with relaxation 

rate Kr2  in the form 
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one can obtain the signal-to-noise ratio using equation (3.8) 
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According to the expressions for stochastic resonance observables obtained within this 
approximation, both of them display resonance-like behaviour as a functions of noise 
intensity. As it will be shown later, the behaviour of signal-to-noise ratio observed in real 
experiments diverges while developing also a local minimum at low noise levels and therefore 
expression (3.15) appeals for more detailed consideration. It should be pointed out that at the 
noise variation, the values of noise intensities that maximise spectral amplification and signal-
to-noise ratio do not coincide.  
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3.3 Stochastic Resonance in Continuous Bistable System 
 
The simplest consideration of stochastic resonance provided in Section 3.1 in the framework 
of two-state approximation while facilitating the understanding of the effect basics, does not 
though yield appropriate picture of all effect properties because the system dynamics is 
reduced only to the switching between two metastable states. The adequate description of the 
stochastic resonance features is provided within Fokker-Planck approach developed for wide 
class of continuous bistable systems. 
 
 

3.3.1 Fokker-Planck Description 
 
As a starting point the motion of overdamped Brownian particle of mass m and viscous 
frictionγ in bistable potential V(x) is considered. The particle is subject to the source of 

Gaussian white noise )(tξ  with zero average and autocorrelation function 

)()()( stDst −= δξξ  and intensity D at a temperature Θ and external periodic perturbation, 

which is characterised by an amplitude 0A  and frequency Ω. The initial phase of periodic 

forcing is assumed to be equally distributed between 0 and π2 . The system behaviour is 
described by the Langevin equation ([34]): 
 

)(2)cos()( 0 tmDtmAxVxmxm ξγϕγ ++Ω+′−−= &&& .            (3.16) 

 
The statistically equivalent description of this stochastic process is provided by the two-
dimensional Fokker-Planck equation for corresponding probability density );,,( ϕtxvxp &=  
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where mxVxf /)()( ′−= . Equation (3.16) can be simplified for the high values of friction 

coefficient γ  (overdamped particle) by eliminating the velocity variable. For the system with 
bistable quartic double-well potential  
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with a>0, b>0, f(x) reads as mbxaxxf /)()( 3−= . Re-scaling the variables as follows 
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where baxm /=±  denotes the minima of V(x), the Langevin equation can be written in the 

following form 
 

)(2)cos(0
3 tDtAxxx ξϕ ++Ω+−=& .             (3.20)  

 
Here and further on all caps are omitted for convenience. Corresponding Fokker-Planck 
equation for the probability density reads as follows 
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By introducing Fokker-Planck operators 0L  in the form of        
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which describes the unperturbed dynamics in the re-scaled double well potential 

4/2/)( 42 xxxV +−=  with barrier height 4
1=∆V  and extL  as 

 

x
tAtLext ∂

∂
+Ω−= )cos()( 0 ϕ                (3.23) 

 
for periodic perturbation, the Fokker-Planck equation can be re-written in the operator form 
 

[ ] ),,()(),,()(),,( 0 ϕϕϕ txptLLtxptLtxp
t ext+≡=

∂
∂ .            (3.24) 

 
This equation has a periodic drift term in time with the period TΩ=2π/Ω. Τhe Fokker-Planck 
operator in equation (3.24) is invariant for discrete time transitions t → t+TΩ , yielding 
L(t)=L(t+TΩ).  
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3.3.2 Floquet Approach 
 
Applying Floquet theorem [34,44], the solutions of the equations (3.21), (3.24) can be found 
in form of so-called Floquet solutions, as functions of the following type 
 

),,()exp(),,( ϕµϕ µ tXpttXp −= ,              (3.25) 

 
where X(t) defines the state vector in multidimensional space X(t)=( );...();( txtx &  ), µ  is 

Floquet eigenvalue and pµ are the periodic Floquet modes 
 

);,();,( ϕϕ µµ Ω+= TtXptXp .              (3.26) 

 
The periodic Floquet modes { }µp  are the eigenfunctions of the Floquet operator 
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Introducing the Floquet modes of the adjoint operator L*(t) 
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where the sets { }µp  and { }*
µp  are bi-orthogonal and fulfil the following normalisation 

condition 
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one can yield spectral representation of the equations (3.27), (3.28) for the time 
inhomogeneous transition probability Ρ(X, t | Y, s) density, which for t>s can be written as 
follows 
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For large times τ = t - s, s→ -∞  probability Ρ(X, t|Y, s) approaches unique asymptotic 
periodic solution pas(X,t;ϕ) (see eq.(3.25)) of equation (3.21): 
 

);,();,( 0 ϕϕ µ tXptXpas == ,            (3.31) 

 
which can be expanded into Fourier series, i.e.: 
 

∑
∞

−∞=

+Ω=
m

mas timXatXp )](exp[)();,( ϕϕ .           (3.32) 

 

At the next step the corresponding averaged mean values 
as

tX )(  can be evaluated, which 

are also periodic in time and therefore allow for the representation in the form of Fourier 
series: 
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The last expression presents one of the main conclusions of the Floquet theory for the motion 
of the periodically perturbed Brownian motion. The amplitude of the periodic component of 
the system response is expressed as a sum of complex-valued amplitudes Mn≡Mn(Ω, A0), 
which are nonlinear functions of the modulation amplitude A0, modulation frequency Ω and 
the noise intensity.  
 
 

3.3.3 Expressions for Stochastic Resonance Characteristics 
 
For the purposes of quantitative analysis both measures of stochastic resonance as introduced 
in Section 3.2 can be expressed using the above mentioned amplitudes of periodic response. 
 
 
3.3.3.1  Expression for Spectral Amplification 
 
The integrated power of δ-peaks of the n-th frequency component of the output spectral 
density can be expressed in terms of |Mn| ([34]): 
 

24 nn MP π= .    (3.34)  

 
If the total power contained in the modulation signal at the system input is given by  
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2
0APA π= ,               (3.35) 

 
then the spectral amplification η at the input signal frequency ω = Ω can be written as 
follows: 
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3.3.3.2  Expression for Signal-to-Noise Ratio 
 
Another characteristic of stochastic resonance frequently used in theoretical investigations, 
signal-to-noise ratio (SNR) can be also defined through averaged amplitude of the system 
response.  
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 ,               (3.37) 

 
where )(ΩNS is the power of noise measured at the modulation frequency.   

 
 

3.3.4  Results of Simulations 
  
To characterise the behaviour of spectral amplification coefficient η in dependence of system 
parameters, the course of simulations of stochastic resonance in symmetric double-well 
potential has been performed in [13] in the framework of Floquet approach as presented 
briefly above. Here we reproduce main results of these numerical simulations after [34]. 
Figure 3.4 shows the spectral amplification η evaluated for three different frequencies as a 
function of noise intensity. It can be seen that for high frequency Ω the dependence is rather 
flat and there is practically no power amplification present. At the decrease of the frequency 
of modulation signal, the maximal value of spectral amplification grows. The position of the 
maximum shifts towards lower noise intensity values. While obtaining the evident 
enhancement of the amplitude-frequency characteristic of the system in low frequency range, 
it is not possible though to get resonance behaviour of spectral amplification coefficient in 
dependence of increased frequency at a fixed noise intensity D. Generally, the spectral 
amplification in this case shows the behaviour of monotonically decreasing function.  
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Figure.3.4  Results of the numerical simulations: dependences of spectral amplification for 
different frequencies Ω of modulation signal (after [13, 34]) 

Figure 3.5  Results of numerical simulations: dependences of spectral amplification for 
different amplitudes A of the modulation signal. LRT stands for “linear 
response theory” approximation (after [13, 34])  
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The dependence of spectral amplification on noise intensity for several amplitudes of 
modulation signal is presented on Figure 3.5. Here it should be pointed out that on decreasing 
the amplitude, the location of amplification maximum drifts towards higher noise intensities. 
With the increase of the amplitude the maximum of the spectral amplification decreases.  
 
 

3.4 Intrawell Motion Contribution 
 
To characterise adequately the behaviour of signal-to-noise ratio one must undertake a 
somewhat refined analysis. Returning to the approximate expression for signal-to-noise ratio 
given by equation (3.15), it can be seen that by scanning the noise intensity, the signal-to-
noise ratio undergoes a simple resonance-like dependence with a single maximum reached at 
some optimum noise strength mD . Such a behaviour does not though correspond completely 

to the results of real experiments [10,34,44]. The main distinctive feature observed in these 
investigations is that the signal-to-noise ratio develops a local minimum at low noise values, 
as it can be seen for example, from Figure 3.2. At the further increase of the noise it reaches 
the maximum and then decreases again. To provide adequate description of signal-to-noise 
ratio behaviour, the influence of the intrawell motion which at low noise levels determines in 
general the system dynamics must be taken into account. To overcome this gap between 
experiment and theory, the contribution of interwell dynamics in weak noise limit is 
introduced [34,44] in the framework of linear response theory. 
 
 

3.4.1 Linear Response Approximation 
 
According to linear response theory, the system response 〈x(t)〉 to weak external perturbation 
A(t) = ( )tA Ωcos0  in asymptotic limit for large times is given by integral expression [44]: 
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where 
0

)(tx is the stationary average of the unperturbed process at A(t)=0 . The function χ(t) 

is called the response function. For stationary systems in equilibrium the response function 
can be expressed through the autocorrelation function of unperturbed system using the 
fluctuation theorem [34,44] 
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χ ( )
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( )( )t
H t

D
d
dt

K txx= − 0 ,               (3.39) 

 
where H(t) denotes Heaviside step function responsible for the occasional character of 
response. The approximate expression for correlation function K txx

( ) ( )0  is obtained  by 

expanding it over the eigenvalues λn of the Fokker-Planck operator in (3.24). This yields the 
following equation for the response function:      

 

    χ λ λ( ) ( ) exp( )t H t g tn n n= −∑ .             (3.40)  

 
Expantion coefficients gn are calculated by averaging corresponding eigenfunctions and of the 
unperturbed Fokker-Plank operator [34]  
On performing the Fourier transform of χ(t) 
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the spectral representation of response function is derived: 
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Using equations (3.40) and (3.38), the expression for the linear response approximation of the system response is 
obtained: 
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Combining this expression with equation (3.38) yields 
 

δ χ ω φx t A t( ) ( ) cos( )= −0 Ω ,              (3.44) 
 
with phase shift φ given by  
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Both stochastic resonance observables can then be represented through the response function. 

On comparing the equations (3.33) and (3.44) it follows that the spectral amplitude 1M  can 

be written as 
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and therefore the expression for spectral amplification in terms of response function yields 
[44] 
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Analogously, the linear response theory gives for signal-to-noise ratio 
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It should be pointed out that within linear response approximation the noise strength is 
assumed weak. To describe the bistable dynamics of the system one must take into 
consideration both characteristic time scales that rule the system behaviour. These time scales 
are the escape time out of one metastable state into another that corresponds to the interwell 
dynamics and time that characterises the relaxation within local stable state, i.e., intrawell 
dynamics. Within the simplest approximation the intrawell motion at small noise strength is 
characterised by the smallest non-vanishing eigenvalue of unperturbed Fokker-Planck 
operator L0 
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The approximate expressions for the correlation function and spectral density of the 
unperturbed system can be written as follows: 
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To take into account the local interwell dynamics the additional exponential term should be 
included in the expression for correlation function (3.50), which would describe fast 
fluctuations within one potential well. Hence the correlation function will describe both 
interwell and intrawell dynamics: 
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where α is estimated as a second derivation of given potential and for the case of double-well 
potential is α=2. The expression for power density yields: 
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The coefficients g1 and g2 are defined from correlation function and its derivative at τ=0 and 
read 
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Using the expression for correlation function the estimation for susceptibility taking into 
account the intrawell dynamics can be written as follows 
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Knowing the susceptibility of the system and power spectral density of the unperturbed 
system, the expressions for spectral amplification and signal-to-noise ratio can be found 
according to equations (3.47) and (3.48) [44]:  
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The dependence of spectral amplification  for several different frequencies of periodic 
modulation is presented on Figure 3.6 (after [44]). Here the dots correspond to the estimations 
of amplification coefficient performed without taking into account the intrawell dynamics. 
Yet using linear response theory does not yield qualitative difference in the behaviour of 
spectral amplification with the results of Floquet approach described above. On comparing 
Figures 3.4, 3.5 and 3.6 it can be assumed that both approaches show good agreement in the 
region of high amplification values.  
On the contrary, the signal-to-noise ratio displays distinct features which are not reflected 
within general theory of stochastic resonance in double-well potential. The results illustrating 
the behaviour of signal-to-noise ratio for different frequencies of modulation signal as 
obtained within linear response approximation are shown on Figure 3.7 (after [44]). As it is 
seen, for low frequencies the signal-to-noise ratio at the increase of the noise first develops a 
local minimum. This point corresponds to the moment where stochastic resonance is 
“triggered”, as the corresponding dependence of spectral amplification starts to grow at 
approximately the same noise level (compare Figures 3.6. and 3.7). The initial decrease of 
signal-to noise ratio is contributed by the local intrawell motion. It is clear that for low noise 
values, the barrier crossing events happen very rarely, hence the system dynamics is limited to 
the motion within single well. At the further increase of the noise, signal-to-noise ratio 
increases, reaches its maximum and then slowly falls off. The observed behaviour is in the 
agreement with experimental results for SNR measured in a variety of different systems 
where stochastic resonance is studied. With the increase of the frequency the local extrema of 
signal-to-noise ratio dependence disappear and it becomes a monotonically decreasing 
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Figure 3.6  Dependences of spectral amplification on the noise intensity for different 

frequencies of modulation amplitude obtained in the consideration of intrawell 
motion contribution. Dots represent estimations that do not take into account 
the intrawell dynamics [44] 

 
Figure 3.7  Dependences of signal-to-noise ratio on the noise intensity for different values 

of modulation frequency, displaying intrawell motion contribution as a local 
minimum.[44] 
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function. The noise intensities that maximise spectral amplification and signal-to-noise ratio 
do not coincide for the whole frequency range as was already mentioned when introducing 
corresponding approximate expressions for these characteristics. For low frequencies, the 
maximum of signal-to-noise ratio is achieved at the noise intensity of approximately D=1/8. 
Upon neglecting the intrawell contribution, i.e., setting in the formulas (3.54, 3.55) g2=0, one 
immediately recovers the expression for signal-to-noise ratio obtained within two-state 
approximation (3.15): 
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3.5 Concluding Remarks 
 
 
3.5.1 Ferroelectric TGS Crystal as a System Displaying Stochastic 

Resonance 
 
 
Triglycine sulphate (CH2NH2COOH)3H2SO4 (TGS) is a well known one-axis ferroelectric 
crystal with the second type of phase transition that represents one of the model materials in 
the physics of ferroelectrics. The ferroelectric phase transition at Θ=49 °C is accompanied by 
the typical anomalous behaviour of dielectric constant which delivers a sharp value peak at 
the transition temperature. The temperature dependence of the spontaneous polarisation of 
TGS is a monotonically decaying function reaching zero value in Curie point [49,51]. At the 
temperatures below 49 °C TGS crystal has ferroelectric phase characterised by the two stable 
states with opposite direction of spontaneous polarisation separated by the energetic potential 
barrier. Upon applying the electric field of the value exceeding the coercive field of the 
crystal at a given temperature, the process of the polarisation reversal takes place which is 
manifested by the typical loop of the ferroelectric hysteresis. While not pursuing the idea of 
the presentation of all the characteristic ferroelectric properties of TGS, thorough information 
on which has been gained in the long-run of successful studies, we intend to outline some 
points important for the stated purpose of study. 
As it follows from the Landau’s phenomenological theory of phase transitions, below the 
Curie temperature the thermodynamic potential of the one-axis ferroelectric with second type 
of phase transition has typical form of double-well potential as shown on Figure 3.1 and in 
the vicinity of the curie point can therefore be approximated by the expression (3.2). Clearly, 
a ferroelectric such as TGS, when imposed to the combined action of external noise and 
generally periodic modulation, meets the basic requirements for the onset of the stochastic 
resonance presented in Introduction: a) a nonlinear system with energetic activation barrier or 
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any form of threshold, b) a weak coherent input signal and c) a source of random noise 
coupled to the coherent input or embedded in the system.  
It is reasonable to assume that once established, stochastic resonance in ferroelectric TGS 
should be produced by the corresponding behaviour of the spontaneous polarisation, i.e., 
switching of polarisation direction in coherence with the weak external modulation achieved 
at some optimal level of noise intensity.  
 
 

3.5.2 Frequency Scaling 
 
Here we would like to attract reader’s attention to a minor but very important detail. As it is 
explicitly assumed in expression (3.19), the frequency of external modulation among other 
experimental parameters is scaled against the parameter a of potential barrier V(x) (see eq. 
(3.18)).Introduced formally in the course of theoretical description of stochastic resonance for 
a mere computational convenience, this feature in our opinion appeals for more detailed 
consideration.  
As it follows from the proposed scaling property, the frequency of external periodical 
modulation can be equally varied, from the mathematical point of view, by either direct 
variation of the frequency of periodic signal, or by changing the height of potential barrier 
separating two stable states. Since in the present study one has to deal with ferroelectric 
material, in the last case such a variation can be achieved by the change of the temperature of 
the ferroelectric, which defines this parameter value.  
Having said this, it is straightforward that the expected behaviour of the stochastic resonance 
observables, displayed at the variation of the frequency of external modulation signal and the 
temperature of the ferroelectric should be qualitatively similar. Since the behaviour of both 
signal-to-noise ratio and spectral amplification in dependence on the temperature of the 
sample will be determined primarily by the temperature dependencies of spontaneous 
polarisation and dielectric constant, one can expect the following. At lower temperatures it 
will take higher signals and noise intensities to obtain the effect of the signal amplification. 
With the increase of the temperature as the system approaches the phase transition point, the 
maximum system response should decrease and its position move toward lower noise values, 
which follows from the decay of the spontaneous polarisation with temperature at the 
simultaneous drastic growth of the sensitivity of the system in the vicinity of phase transition. 
  



   

 
 
 
 
 
Chapter Four 
 
 
 
 

Experimental Results 
 
 
 
 
In order to accomplish the purposes of study as outlined in the Introduction, the series of 
measurements on the stochastic resonance behaviour in ferroelectric TGS have been 
conducted. Current chapter presents the results of this experimental investigation. The chapter 
is organised as follows. First the measurement results concerning the establishment of the 
stochastic resonance in the system with ferroelectric crystal are presented. The 
characterisation of the effect performed for the wide range of system parameters such as 
frequency and amplitude of the modulation signal, temperature of the ferroelectric sample etc. 
is given in several sections. Each section is followed by the discussion of the observed 
stochastic resonance behaviour and its peculiarities produced by the physical properties of the 
system under investigation in particular. 
 
 

4.1  Signatures of Stochastic Resonance 
 
To establish stochastic resonance in the system with ferroelectric crystal, the parameter space 
of the system has been scanned. Granted the basic requirements for the onset of the effect are 
realised experimentally with the help of measurement set-up, one can seek for the appearance 
of characteristic signatures of the effect, such as synchronisation between the weak 
modulation signal and noisy system output and typical resonance behaviour of the stochastic 
resonance measures, e.g., spectral amplification and signal-to-noise ratio. 
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4.1.1  Synchronisation and Signal Enhancement 
 
 
As a first step of the current study, the principal possibility of establishing the effect of 
stochastic resonance has been provided experimentally. In order to meet the above specified 
general conditions necessary for the onset of the effect, the main system parameters were set 
as follows before the measurement start. 
The ferroelectric sample was stabilised at the temperature of Θ=(318±0.01) K well below 
phase transition point. Periodic (sine) modulation signal plugged at the system input was set 
to frequency f=10 kHz and voltage UG=2V RMS that corresponds approximately to one third of 
coercive field strength of TGS crystal at given temperature, thus producing no polarisation 
reversal caused  by pure periodic signal. In terms of stochastic resonance requirements it 
addresses the issue of potential barrier modulated by weak periodic forcing not sufficient to 
produce deterministic particle switching across the barrier.  
To demonstrate the processes taking place in the system during the measurement cycle, time 
series and power spectra of the electric charge flow registered over capacitor C0 were 
measured at the increase of the amplitude of the external noise signal coupled with the 
periodic modulation from D=0 VRMS up to 11 VRMS and its subsequent decrease back down to 
zero value. 
The evolution of time series and power spectra as presented in Figures 4.1.1 and 4.1.2 for the 
full cycle of noise variation, allows one to inspect closely the appearance of stochastic 
resonance in the system under investigation. Let us take a detailed look at the procedure of 
this measurement performed as follows. At the first step pure sinusoidal signal had been 
applied to the sample after stabilising the temperature.  
Corresponding power spectra and time series are presented in first row of Figure 4.1.1. It is 
clearly seen from the time series that system output is periodical with very low amplitude 
which indicates that in the absence of noise pure periodic driving is insufficient to cause any 
polarisation switching in TGS sample at this temperature. Power spectrum contains only first 
harmonic of driving frequency, with its peak level located approximately 40 dB above the 
noise. At a next step, the external noise with the amplitude of D=1VRMS was added to the 
system input. While the output signal remains nearly the same at this point, the average noise 
value in the corresponding power spectrum (second row of Figure 4.1.1) grows for about 10 
dB, resulting in the decrease of the relative peak value of the first harmonic of system 
response. 
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Figure 4.1.1  Time series and power spectrum of the system response measured at the 

increase of the noise intensity at the system input  
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Figure 4.1.2  Time series and power spectrum of the system response measured at the 

decrease of the noise intensity at the system input 
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The further increase of the input noise value leads to the drastic growth of both output signal 
and noise. At the noise level of 2.5 VRMS the output signal becomes tightly locked with 
periodic modulation signal shown with the dot line (see Figure 4.1.1, third row). This means 
that the synchronisation between the input periodic modulation signal and system output takes 
place as a result of interplay between noise and periodic modulation resulting in a process of 
„energy pumping“ from broad band noise into the peak at signal frequency. The periodic 
component of the output signal reaches its maximum as manifested by the absolute peak value 
of about –5 dBm with the relative peak approaching practically the initial value of 40 dB. 
Further increase of the noise leads to the break of synchronisation and consequently to the 
decrease of the periodic component contribution in the system output. Time series become 
increasingly noisy followed by continuos decrease of the first harmonic of the power 
spectrum of system response at growing noise level. At the middle point of measurement 
cycle which corresponds to the highest noise strength of 11 VRMS, periodic component of the 
system output becomes hardly visible indicating a drop of about 20 dB below the maximum 
peak value in power spectrum. Time series represent only noisy signal with no periodicity 
detectable (see last row of Figure 4.1.1).  
After reaching this point, the complete procedure was performed backwards following the 
same steps of noise variation as for the rate and value of change. The evolution of power 
spectra and time series is shown on Figure 4.1.2. As it follows from the comparative analysis 
of Figures.4.1.1 and 4.1.2, the process run at the decrease of the noise remains quite similar if 
not the same down to the values of noise approximately equal to those which cause 
maximisation of signal output during first half-cycle, i.e., in this case D=2.5 VRMS. The signal 
evolves from low peak values and noisy time series at 11 VRMS of external noise into the 
synchronisation region at 2.5 VRMS (see 3rd row of Figure.4.1.2). On the further decrease of 
the noise though, the signal passes the synchronisation area without loosing the 
synchronisation down to quite low values of external noise (approx. 1 VRMS), as it can be seen 
from the second row of Figure 4.1.2. Output power spectrum contains up to the 5th harmonic. 
This sustaining synchronisation is accompanied by the growth of signal output value at 
simultaneous decrease of the output noise delivering much higher 1st harmonic peak values on 
the back run. After removing the noise from the system input, the power spectrum and time 
series of the output signal recover initial values obtained at the start of the measurement.  
As it follows from the observed behaviour, at the variation of the noise intensity at the system 
output, the phenomenon of the statistical synchronisation between the noisy output and input 
periodic modulation takes place at some “optimal” noise level, which results in the 
enhancement of the periodic component of the output signal. Such a behaviour is the typical 
signature of stochastic resonance. The degree of signal optimisation appears to be dependent 
on the direction of noise variation.  
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4.1.2 Behaviour of Spectral Amplification 
 
To characterise the process of the onset of stochastic resonance quantitatively the 
dependencies of spectral amplification and signal-to-noise ratio on the external noise value as 
introduced in Chapter 3, have been calculated directly from power spectra. Both dependencies 
reflect very clearly the effect of the amplification of the periodic component of the output 
signal as a result of synchronisation establishment and consequent “energy pumping” from 
broad band noise into periodic component of the system output, demonstrating resonance-like 
behaviour in dependence of external noise intensity by increase as well as by decrease of the 
noise.  
 

 
 
Figure 4.2  Spectral amplification vs. noise intensity measured at the increase and 

decrease of the noise 
 
 
 
The dependence of spectral amplification on the noise intensity level for both directions of the 
noise variation is shown on Figure 4.2. The dependence displays typical resonance-like 
behaviour. Comparing the dependence trajectory obtained at the increase of the noise with the  
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results of the measurement run for the first half of noise variation cycle (Figure 4.1.1) allows 
one to establish the following facts. Starting with low noise value, the spectral amplification 
retains low values around 1 due to low value of periodic component of the output signal. It is 
reflected in power spectrum as well, as the peak value of the first harmonic, which defines the 
value of spectral amplification (see exact definition in Chapter 3), remains practically 
unchanged at the level of P=-35 dBm4. 
As the system steps into stochastic resonance region, where the statistical synchronisation 
between periodic modulation signal and external noise takes place, as it is reflected in time 
series of the output signal, this synchronisation leads to the increase of the first harmonic peak 
value and subsequently to the increase of the spectral amplification. When the stochastic 
system output becomes tightly locked with the weak modulation signal (shown with red dot 
line in the third row of Figure 4.1.1), and the periodic component of the power spectrum 
achieves the maximum value by the noise intensity of 2.5 VRMS, the spectral amplification 
attains its maximum as well. At further increase of the noise intensity, the spectral 
amplification decreases along with the break of the statistical synchronisation process which 
is accompanied by the decrease of the first harmonic peak value. As it can be seen, the 
resonant-like dependence of the spectral amplification on the noise value is produced by the 
establishment and subsequent break of the synchronisation. 
The behaviour of the spectral amplification during second half cycle of noise variation 
diverges from that obtained at the increase of the noise intensity. In the present system a 
peculiarity of the stochastic resonance has been discovered which, to our best knowledge, has 
been neither described theoretically nor observed experimentally yet in other systems.  
As it is shown in Figure 4.2, on the decrease of the noise the spectral amplification values 
undergo a hysteresis, (in general case, as it will be shown later in this chapter, on both scales). 
While the values of the spectral amplification  for both directions of noise variation coincide 
for the most points on the right shoulder of the dependence, the maximum value of spectral 
amplification achieved  at the decrease of the noise is greater for about 35%. On further 
decrease of the noise the registered values remain also considerably higher at all measurement 
steps. As the noise level is driven back to zero value, the final value of spectral amplification 
equals the initial one.  
 
 

4.1.3 Behaviour of Signal-to-Noise Ratio 
 
Figure 4.3 presents the dependence of signal-to-noise ratio in the cycle of noise variation. It is 
worth to mention that though in most applications the values of both characteristics in use, 
i.e.,  signal-to-noise  ratio  and spectral amplification are calculated on the base of  the power 

                                                           
4 Note that the increase of the noise intensity level does not impact noticeably the value of spectral amplification 
as the relative peak value keeps exceeding 20 dB! These small deviations have been neglected for the sake of 
convenience in the chosen scale. 
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spectra of the output signal, they nevertheless display quite a different behaviour in the 
stochastic resonance region. They are responsible for the characterisation of different 
stochastic resonance features and complete each other. As value of spectral amplification is 
defined, generally speaking, by the absolute peak value of the first harmonic, the signal-to-
noise ratio reflects the behaviour of the relative peak value during the cycle of noise variation. 
The dependence of signal-to-noise ratio allows to inspect the behaviour of the system in the 
weak noise limit, which is not reflected in the dependence of spectral amplification. In the 
absence of external noise signal-to-noise ratio displays high value due to the very low 
intensity of internal noise of the system compared to the output signal peak level. 
 

 
 

Figure 4.3  Signal-to-noise ratio vs. noise intensity measured at the increase and decrease 
of the noise  

 
 

At the increase of the noise, the dependence of signal-to-noise ratio on the contrary to that of 
spectral amplification develops a minimum at a noise level of D=1.5 VRMS. This happens due 
to the fact that though external noise of low intensity applied to the system increases yet the 
noise level of the output signal but is not sufficient to make system switch between its two 
metastable states. The system dynamics is thus limited to the intrawell motion around  
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potential minima, and the periodic component of the output signal remains low being 
determined mostly by the value of weak periodic modulation signal at the input. (Compare 
with 1st and 2nd rows of Figure 4.1.1). This behaviour of signal-to-noise ratio establishes 
close agreement with the results of theoretical predictions and numerical simulations of the 
motion of overdamped particle in symmetric quartic double well potential performed in 
[13,44]. As it has been mentioned in Chapter 3, taking into consideration the interplay of the 
interwell and intrawell dynamics in the weak noise limit, the results of computation display 
minimum of the signal-to-noise ratio caused by the contribution of the fluctuations of particle 
around potential minima, being though not accompanied by the remarkable hopping of the 
particle between the wells. As the signal-to-noise ratio reaches its minimum, the 
synchronisation sets in followed by the growth of the periodic component of the system 
response as manifested in the dependence of spectral amplification and stochastic resonance is 
“triggered.” On the further increase of the noise the dependence of signal-to-noise ratio 
develops a maximum as well, achieved by the noise amplitude of D=2VRMS  
It is important to mention that in the actual experiment the values of noise amplitude, which 
maximise spectral amplification and signal-to-noise ratio do not coincide, as it has been 
pointed out in [13,34].  
Further increase of the noise leads to the decrease of signal-to-noise ratio value, as the 
periodic component of the output signal  and subsequently the relative peak value of first 
harmonic becomes more and more suppressed by the growing noise level. (see Figure.4.1.1). 
The periodic component of the system response almost vanishes. During the cycle of noise 
decrease from high values, the signal-to-noise ratio exhibits a hysteretic behaviour as well. In 
comparison to the spectral amplification dependence, the hysteresis appearing for opposite 
directions of noise variation is obviously more pronounced for signal-to noise ratio. As it has 
been described above, on the decrease of the noise the synchronisation, once recovered, is 
sustained down to very low noise values. Passing the point where signal-to-noise ratio is 
maximised by the noise intensity of D=2VRMS on the noise increase, the ratio grows 
furthermore and attains its maximum by the D=1VRMS. This is caused by the crossover  
between the decrease rates of the first harmonic and noise values in the power spectrum. As 
the first harmonic value reduces, the noise level falls down even faster. This results in an 
enormous growth of the signal-to-noise ratio (note that in our system we register the power 
spectrum in dBm scale, therefore the relative peak value of the first harmonic when 
recalculated in linear scale achieves very high values). Reducing the noise to the zero value, 
one reaches the initial value of signal-to-noise ratio.  
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4.1.4 Discussion 
 
The analysis of the results obtained in the course of measurement leads to the following 
conclusions. Subject to weak periodic modulation signal and external noise, the investigated 
system displays peculiar behaviour. Upon the continuos increase of the noise at the system 
input, the statistical synchronisation between the weak input modulation signal and noisy 
output of the system sets in, accompanied by the enhancement of the periodic component of 
the system response at some appropriate noise level. This behaviour is reflected in the 
dependencies of spectral amplification and signal-to-noise ratio, which quantitatively 
characterise the optimisation of the periodic component of the system output in dependence of 
the noise value. Both measures display resonance–like trajectories as a function of the noise 
intensity at the system input.  
All the above said peculiarities of the system behaviour point out to the “resonant” character 
of the system response in dependence on noise intensity in the system. Therefore one can 
conclude that the effect of stochastic resonance is observed experimentally in the system 
under investigation, represented by its typical signatures.  
In the given experimental configuration, the nonlinear system responsible for the onset of 
stochastic resonance is represented by the ferroelectric TGS crystal in the ferroelectric phase 
(below Curie point). Therefore one can assume that the model consideration of the particle in 
double-well potential corresponds in this particular case to the two metastable states with 
opposite polarisation direction separated by a potential barrier. The synchronised hopping 
over the potential barrier is realised as a process of formation and motion of domain walls 
accompanied by the (partial) polarisation reversal. As it was already mentioned above in 
Chapter 2, the experimental circuit is configured so as to make the voltage drop across C0, 
which is actually measured, proportional to the polarisation of ferroelectric TGS. Therefore 
the evolution of the corresponding time series and power spectra reflect directly the behaviour 
of the domain structure of the sample.    
As the synchronisation between the weak periodic input and noisy output that leads to the 
enhancement of the periodic component of the system response takes place upon the noise 
variation at the system input, the ferroelectric sample obviously undergoes the process of 
polarisation reversal manifested by the large time series signal (third row of Figure 4.1.1). 
This is also confirmed by the form of power spectrum which contains higher harmonics as in 
the case of polarisation switching caused by strong electric fields. As one can judge from the 
time series and power spectrum, at this point the system response becomes not only fully 
synchronised with the periodic input but appears to be to the great extend periodic itself. 
Therefore one can assume that the effect of stochastic resonance in ferroelectric TGS is 
manifested by the process of polarisation reversal with the frequency of the weak periodic 
modulation, produced by the interplay between noise and periodicity. This assumption is also 
confirmed by the fact that it was not possible to establish any signature of stochastic 
resonance in the paraelectric phase of TGS where no polarisation reversal exists. 



 

 

58

The character of the obtained dependencies of spectral amplification and signal-to-noise ratio 
confirm the results of theoretical simulations and experimental investigations. The 
dependence of signal-to noise ratio displays local minimum caused by the increased level of 
the noise in the system which is not yet sufficient to produce the synchronised hopping over 
potential barrier (i.e. polarisation switching with the frequency of periodic modulation) thus 
limiting the system dynamics to the intrawell motion. The values of noise that maximise 
spectral amplification and signal-to-noise ratio do not coincide, which is also in agreement 
with theoretical predictions. The observed behaviour of both measures confirms the 
fundamental character of the effect of stochastic resonance and generality of the 
corresponding theoretical considerations which appear to be valid for the concrete system 
under investigation. 
 
 

4.2 Characterisation of Stochastic Resonance  
 
In order to perform characterisation of stochastic resonance the behaviour of signal-to-noise 
ratio and spectral amplification has been investigated in dependence of frequency and 
amplitude of the modulation signal. Obtained results are compared with numerical 
simulations developed in the framework of Fokker-Planck approach for the description of 
stochastic resonance presented in Chapter 3. 

 
 
4.2.1 Frequency Dependences  
 
As the next step in characterisation of stochastic resonance in ferroelectric TGS, the system 
behaviour in dependence on the value of the frequency of modulation signal has been studied. 
The other two system parameters responsible for system output, namely temperature of the 
sample and modulation signal amplitude were kept constant during the measurement. The 
ferroelectric TGS sample was stabilised at the temperature Θ=45 °C. Periodic modulation 
voltage was adjusted to V=0.2 VRMS, to ensure that there was no polarisation switching 
produced by modulation signal alone. Then the noise variation from zero up to the highest 
value allowed by the measurement equipment was performed for each chosen frequency. As 
the energy of the noise added to the system inevitably transfers into the heat thus affecting the 
temperature of the sample and consequently, the height of the potential barrier between two 
metastable states of polarisation, to keep this parameter constant the measurement was 
performed rather slowly, giving system at each registered point the time to get into 
equilibrium at stabilised temperature. The chosen frequencies while covering wide frequency 
range, correspond to the areas where TGS sample is characterised by mobile domain  
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structure. For the purity of experiment each frequency value was proved so as not to coincide 
with resonant frequencies of the measurement circuit. 
Figure 4.4 presents the results of the spectral amplification measurement for four frequencies 
of the modulation signal f=2, 10, 50 and 1 MHz. As it can be seen, by increasing the 
frequency, the maximum value of spectral amplification decreases and shifts toward greater 
values of noise. This behaviour confirms experimentally the results of  simulations made in 
attempt to describe the stochastic resonance behaviour in dependence of modulation 
frequency of the input signal for the overdamped particle in double well potential, as 
presented in Chapter 3.  
 

 
 
Figure 4.4  Dependence of spectral amplification on the noise intensity measured for four 

different frequencies of the modulation signal f=2 kHz, 10kHz, 50 kHz, 1MHz.  
 
 
Qualitatively, the observed behaviour can be understood as follows. As the growth of 
ferroelectric domains (i.e., hopping particles in generic model) is bounded to the finite times 
of nucleation process, with increasing frequency, fewer and fewer domains manage to switch 
in coherence with modulation signal, which leads to the decrease of the output signal power in 
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comparison to low frequency regime. The probability to switch during half period of the 
modulation is increased by the increase of the noise intensity that in its turn increases the 
transition rate, shifting the maximum of the system response to the higher values of noise. On 
the high noise level, the probability for the domain being switched in the anti-phase direction 
during the period of modulation is increased, which results also in the decline of the signal 
output. Therefore, one can think of stochastic resonance at high frequencies as a kind of 
compromise established between two competing processes.  
The signal-to-noise ratio has also been measured for the given frequencies. The results are 
presented on Figure 4.5. Exploring the dependencies, one can establish the following facts. 
For the low noise values for all presented frequencies the signal-to-noise ratio displays a local 
minimum, which is contributed by the intrawell dynamics of the system. With the increase of 
the modulation frequency, the relative value of the local maximum in the signal-to noise ratio 
dependence  diminishes, and the  dependence trajectory approaches that of the monotonically  
 

 
Figure 4.5  Dependence of signal-to-noise ratio on the noise intensity measured for four 

different frequencies of the modulation signal f=2 kHz, 10kHz, 50 kHz, 1MHz.  
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decreasing function. Due to slow decline of the signal-to-noise ratio values, it is possible to 
assume that there is no significant frequency dependence of the position of maximum value of 
signal-to-noise ratio on the noise intensity. 
The observed features of stochastic resonance observable proved to be in good qualitative 
agreement with the results of theoretical investigations for the stochastic resonance behaviour 
for different frequencies, as presented in Chapter 3, Section 3.3. 
   
 

4.2.2  Discussion 
 
The obtained results show good qualitative agreement with theoretical predictions considering  
behaviour of stochastic resonance quantifiers in dependence on the frequency of external 
modulation signal. Comparing the experimental dependences with the results of numerical 
simulations, presented in Sections 3.3.4 and 3.4 (see Figures 3.4-3.7) of Chapter 3 one can 
see that the following characteristic properties of the frequency dependence of stochastic 
resonance have been reproduced successfully in actual experiment.  
Upon displaying the obvious enhancement of the amplitude-frequency characteristic of the 
system at the low frequencies both experimental dependencies of spectral amplification and 
signal-to-noise ratio follow the simulated behaviour of stochastic resonance and confirm 
theoretical conclusions which underline low-frequency character of the effect. The 
dependencies of signal-to noise ratio display a local minimum at the weak noise intensities in 
the whole investigated frequency range, produced apparently by the motion of domain walls 
not yet leading to the polarisation switching, which is reflected in theoretical predictions by 
extending the consideration of the system dynamics with the contribution of intrawell motion. 
The resonance-like behaviour of the system response in terms of either spectral amplification 
and signal-to-noise ratio though divergent for the different frequencies of the measurement 
has not however been observed at the direct variation of the frequency of modulation signal 
during the measurement, while keeping other experimental parameters (including noise 
intensity) constant. It confirms the fact outlined in several works [13,34,42] that stochastic 
resonance does not represent the case of classical (bona-fide) resonance whereby the 
enhancement of system response is achieved by locking the natural frequency (or its 
harmonics) of the system, as it may seem from somewhat misleading terminology. As it 
follows also from the corresponding results of numerical simulations, the system response 
shows monotonic decay at the increase of the modulation frequency. 
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4.2.3 Amplitude Dependences 
 
To investigate the behaviour of the system in dependence on the modulation amplitude value, 
series of measurements have been performed, varying the amplitude in wide range. The main 
task of this study was first, to provide as complete characterisation of stochastic resonance in 
ferroelectric sample as possible by covering wide range of experimental parameters. 
Secondly, to prove whether theoretical predictions and simulations, performed as a rule for a 
much simpler system, such as overdamped particle moving in double well potential, can still 
be considered as valid when it comes to real experiment, where the actual system behaviour is 
much more complicated. In the course of measurements, the following procedure was 
performed for each chosen value of modulation amplitude. Granted that the ferroelectric 
crystal does not yet achieve polarisation switching area if subject to any amplitude value from 
the proposed parameter variation range in the absence of noise, the full cycle of noise 
variation has been conducted for each modulation amplitude. The frequency of modulation 
signal was kept constant at f=10 kHz. The ferroelectric sample was stabilised at the 
temperature of Θ=45 °C. Figures 4.6.1 and 4.6.2 present the dependencies of spectral 
amplification for the increase and decrease of the noise respectively. As it can be seen, by 
increasing the noise, the maximum of the spectral amplification increases, and shifts towards 
lower noise intensities with the increase of the modulation amplitude. The same behaviour is 
displayed for the decrease of the noise as well. For both directions of noise variation, the 
character of the dependences gives fair agreement with the results of simulations obtained in 
the framework of theoretical description (compare with Figures 3.4-3.7, Chapter 3). The 
difference between simulated and experimentally observed dependences is due to the slightly 
divergent definition of spectral amplification we used in the course of investigation. Having in 
mind that no absolute signal amplification can be extracted as a result of stochastic resonance 
as it is reported in the literature ([41]), we scale the power of the first harmonic of the system 
response over the response amplitude measured in the absence of noise (See Section 2.2, 
Chapter 2). Such a definition while remaining adequate since the response amplitude in the 
unperturbed system is proportional to the input amplitude nevertheless leads to the divergent 
spectral amplification behaviour, as in the actual measurement we practically register scaled 
response amplitude, which clearly reaches greater values at higher amplitudes of the input 
modulation (see Figure 3.5, Chapter 3)5.  
 
 

                                                           
5 Note also that in the presented simulation input amplitudes have values less than 1. 
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Figure 4.6.1  Dependences of spectral amplification measured for different amplitudes of the 

modulation signal at the increase of the noise intensity 
 
 
The observed behaviour is intuitively clear. By varying the amplitude of the modulation 
signal, one changes the energy flow into the system and therefore the probability value of the 
barrier crossing. At high amplitudes, it is easier for ferroelectric domains to switch in 
coherence with external modulation, provided the necessary dose of noise is added to the 
sample. For decreased amplitude of periodic modulation the response of the system is 
expected to decrease, as it is confirmed by our measurements, because the switching will 
involve less domains. The lower the amplitude, the fewer domains are reversible due to 
domains pinning. Furthermore, it inevitably takes then greater values of noise to provide the 
system with the energy sufficient to produce switching as a result of interplay between noise 
and coherent signal. Here we would like to draw reader’s attention to the point, that our 
measurements confirm clearly the fact that stochastic resonance is a threshold effect. The 
value of threshold is set, of course by the system parameters and can be changed. The greater 
the amplitude of the periodic modulation, the less is the noise intensity, at which system 
reaches the point where stochastic resonance is „triggered“, provided the frequency of 
external modulation and temperature of the sample are kept constant. 
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Figure 4.6.2  Dependences of spectral amplification measured for different amplitudes of the 

modulation signal at the decrease of the noise intensity 
 
 
This fact is reflected, for instance, in Figure 4.6.1, as for higher amplitudes of modulation the 
spectral amplification starts to increase at the lower noise intensities.   
The dependence of signal-to-noise ratio demonstrates the similar behaviour as shown on 
Figures 4.7.1 and 4.7.2. By the increase of the noise we observe the local minimum, which, as 
it has been already mentioned above, appears for low noise level where no polarisation 
switching is possible. The maximum value of signal-to-noise ratio grows with the increase of 
the value of amplitude of modulation signal and is established at lower noise level. The 
difference of initial values of signal-to-noise ratio follows straightforward from the definition 
of this characteristic as given in Chapter 2, according to which the calculations have been 
performed. It is obvious that higher initial value of modulation signal (in the absence of noise) 
leads to the greater relative peak value of the first harmonic which is responsible for signal-to 
noise ratio value, while the noise variation is the same for all given amplitudes. By the 
decrease of the noise the dependence of spectral-to-noise ratio displays only maximum 
achieved by low noise values. 
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Figure 4.7.1  Dependences of signal-to-noise ratio measured for different amplitudes of the 

modulation signal at the increase of the noise intensity 
 
 
For all values of the modulation amplitude, both dependencies of spectral amplification and 
signal-to-noise ratio show clear hysteretic behaviour in dependence on the direction of noise 
variation. For spectral amplification dependence the difference between the values obtained at 
the increase and decrease of the noise grows proportionally to the amplitude of the 
modulation. The gap between the maximal registered values of spectral amplification on the 
noise intensity scale increases as well. This hysteretic behaviour is more pronounced for the 
dependence of signal-to-noise ratio. At the decrease of the noise the local minimum of 
spectral-to noise ratio disappears and maximum is attained for much lower noise intensity.  
It should be pointed out that the noise intensity values that maximise spectral amplification 
and signal-to-noise ratio respectively do not coincide for neither increase or decrease of the 
noise. 
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Figure 4.7.2  Dependences of signal-to-noise ratio measured for different amplitudes of the 

modulation signal at the decrease of the noise intensity 
 
 

4.2.4 Discussion 
 

The behaviour of spectral amplification and signal-to-noise ratio in dependence on the 
amplitude of the modulation signal observed experimentally proves to be in accordance with 
theoretical predictions presented in Chapter 3. The system response characteristics attain 
higher values for greater amplitudes of the modulation signal. The threshold character of 
stochastic resonance is reflected by the fact that it takes lower noise intensities to “trigger” the 
signal optimisation, the higher is the amplitude of modulation. The dependence of the 
behaviour of both stochastic resonance measures on the direction of noise variation is 
observed. The values of spectral amplification and signal-to noise ratio achieved at the 
decrease of the noise appear to be much greater than these measured at the increase of the 
input noise intensity, remaining also relatively high down to very low noise levels thus 
displaying a hysteretic behaviour. We tend to term this property, that has not yet been 
described in other systems with stochastic resonance, as “enhanced switching”. Having 
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considered stochastic resonance in ferroelectric above as a process of polarisation reversal 
with the frequency of external modulation produced by the interaction of noise and periodic 
signal we seek possible explanation in the nature of domain structure of ferroelectrics. As it is 
known, in real crystal the ferroelectric domains are always pinned on defects of the crystal 
structure. Applying high noise intensity to the sample can result in the process of deliverance 
of domains and lead to more mobile domain structure and consequently, to the increased 
response to the external perturbations. 
The results obtained in the characterisation of stochastic resonance in ferroelectric TGS 
crystal over broad range of amplitudes and frequencies of the modulation signal show very 
good qualitative agreement with numerical simulations performed in the framework of 
Fokker-Planck approach. It allows for the conclusion that this generic theoretical model based 
on the universal properties of the systems exhibiting stochastic resonance behaviour can be 
successfully applied for description of this effect in ferroelectrics due to its fundamental 
character.  
Having proved experimentally the theoretical conception developed for continuous bistable 
systems to be valid for the concrete instance of the system with ferroelectric crystal, the one 
of purposes of this study has been accomplished. 
 
 
 

4.3 Temperature Dependence of Stochastic Resonance 
Behaviour 

 
Having clarified the main features of stochastic resonance in ferroelectric TGS for different 
frequencies and amplitudes of the periodic modulation, we next will describe the system 
behaviour in dependence on the temperature of the ferroelectric sample.  
As it has been already mentioned, the actual system behaviour is controlled by the following 
experimental parameters: the frequency and amplitude of the external modulation signal, the 
noise intensity and the temperature of the ferroelectric sample. Changing the current 
parameter values, one affects the characteristic system time scales, which reciprocative 
competition is responsible for the onset of the stochastic resonance.  
The signal parameters and the noise intensity are the external parameters that affect only the 
velocities of the motions within the system and can be freely varied over the whole 
appropriate range. The variation of the temperature changes not only the intensity of internal 
noise of the system, which plays also an important role in the complete picture of stochastic 
resonance but in the particular case under consideration affects increasingly the structure of 
the ferroelectric material and consequently all of its properties as well. 
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Having interpreted the stochastic resonance in ferroelectrics on the basis of the obtained 
experimental results as a process of the polarisation reversal in coherence with the weak 
periodic modulation established at the corresponding external noise intensity, it can be next 
assumed without loss of generality that the properties of the stochastic resonance in 
dependence on the temperature of ferroelectric sample will be mostly defined by the 
behaviour of the polarisation of the ferroelectric, which is a decaying function of temperature, 
and behaviour of corresponding dielectric properties of the material.  
In terms of the general model for stochastic resonance presented in Chapter 3, the variation of 
the temperature of the ferroelectric sample would first of all mean the variation of the form 
and height of the potential barrier separating two metastable states of the system (i.e., two 
states with opposite direction of polarisation). Since the presented model is based on the 
fundamental properties of the effect and does not take into consideration unique properties of 
the particular systems, the behaviour of the stochastic resonance quantifiers in the dependence 
on the temperature of the ferroelectric TGS crystal can not be adequately described by means 
of the proposed theoretical approach. Nevertheless, due to the frequency scaling over the 
parameters of the potential barrier as featured in numerical simulations performed for the 
characterisation of the stochastic resonance (see Section 3.4, Chapter 3), at the variation of the 
temperature of ferroelectric crystal one can expect to observe the behaviour of the effect 
quantifiers similar to that obtained at the variation of the frequency of the external 
modulation. 
 
 

4.3.1 Behaviour of Stochastic Resonance Measures at Different 
Temperatures of Ferroelectric TGS 

 
In this section first the results of the measurements of signal-to-noise ratio and spectral 
amplification acquired for different temperatures of the ferroelectric TGS sample are 
presented. In the course of investigation the same measurement cycles have been performed 
for three temperatures of ferroelectric TGS sample using different amplitudes of modulation 
signal. This allows to conduct comparative analysis of the obtained results by varying 
simultaneously two experimental parameters. The system behaviour observed for temperature 
Θ=45°C as shown above has already served to describe the amplitude dependence of 
stochastic resonance characteristics. Figures 4.8. and 4.9 present the results of the 
measurements of spectral amplification and signal-to-noise ratio obtained at temperatures of 
ferroelectric sample Θ=40 °C and Θ=47.5 ° C respectively. 
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Figure 4.8.1  Dependences of spectral amplification vs. noise intensity measured for 

different amplitudes of the modulation signal at the temperature of the 
ferroelectric sample Θ=40 °C at the a) increase and b) decrease of the noise 
respectively 
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 Figure 4.8.2  Dependences of signal-to-noise ratio vs. noise intensity measured for different 

amplitudes of the modulation signal at the temperature of the ferroelectric 
sample Θ=40 °C at the a) increase and b) decrease of the noise respectively 
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Figure 4.9.1  Dependences of spectral amplification vs. noise intensity measured for 
different amplitudes of the modulation signal at the temperature of the 
ferroelectric sample Θ=47.5°C at the a) increase and b) decrease of the noise 
intensity respectively 
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Figure 4.9.2  Dependences of signal-to-noise ratio vs. noise intensity measured for different 

amplitudes of the modulation signal at the temperature of the ferroelectric 
sample Θ=47.5°C at the a) increase and b) decrease of the noise intensity 
respectively 
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As it can be seen, the system behaviour at the temperature of the ferroelectric TGS sample 
Θ=40 °C remains to the great extend similar to that observed for Θ=45 °C. With the increase 
of the modulation amplitude value, the maximum values of both spectral amplification and 
signal-to-noise ratio increase and shift towards low noise intensities. At the increase of the 
noise the signal-to-ratio displays wide local minimum which disappears as the direction of 
noise variation is changed backwards. Both presented characteristics demonstrate hysteresis 
between the values obtained at decrease and increase of the noise.   
On the contrary, the behaviour observed at the temperature of Θ=47.5 °C diverges (See 
Figure 4.9.1,2). The spectral amplification still demonstrates comparatively weak maximum. 
(Note that as the spectral amplification values are converted into linear scale from the peaks in 
power spectrum measured in dBm scale. Therefore such an increase of spectral amplification, 
as in this case, that of 6 units of linear scale corresponds to the increase of the peak value of 
approximately 8 dB only, whereas, for instance, at the temperature of Θ=40 °C, spectral 
amplification reaches the values of 1000 and more.). The dependence of signal-to-noise ratio 
displays no maximum and becomes monotonically decreasing function of noise intensity. No 
hysteretic behaviour of the values obtained at increase and decrease of the noise is observed 
either for spectral amplification or signal-to-noise ratio.  
 
 

4.3.2 Frequency Scaling 
 
To receive an opportunity of comparative analysis of the results presented above in the 
dependence of the temperature of the ferroelectric sample, one must consider appropriate 
form of normalisation, as their values diverge in the great range. By varying the temperature 
of TGS crystal, one changes the height and form of potential barrier which separates two 
opposite directions of polarisation. As it has been proved above, stochastic resonance in 
ferroelectric crystal is accompanied by the process of polarisation switching in coherence with 
weak periodic modulation established every time when the appropriate noise intensity is 
added to the sample. It is clear that at low temperatures the sample must be driven by much 
greater periodic and noisy signals to reveal stochastic resonance effect than at temperatures 
close to the phase transition point where domain structure becomes very sensible even to 
subtle perturbations and potential barrier can be crossed by very low amplitudes of the 
external signal already.  
Having this in mind, it is necessary to establish an adequate ratio between the value of 
modulation signal and the height of potential barrier relevant for all temperatures, which 
would allow to investigate the influence of the barrier height on the stochastic resonance 
observables, with the rest of experimental parameters being kept constant.  
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Therefore to perform measurements of signal-to-noise ratio and spectral amplification in 
dependence on temperature of the sample, the value of modulation amplitude was set such as 
to obtain the same initial peak level of the first harmonic measured on the system amplitude in 
the absence of noise for each temperature. This value of modulation amplitude should have 
not sufficed though to produce polarisation switching of ferroelectric sample, as this is 
considered to be one of the initial general requirements for classic stochastic resonance. For 
the sake of the measurement convenience the peak value of the first harmonic was adjusted to 
P= –30 dBm. The frequency of modulation signal was set to f=10 kHz. Then the cycle of 
noise variation was performed for each temperature. The results of this measurement are 
presented on Figures 4.10.1-4.10.2. As it can be seen, the values of the modulation amplitude 
which produce the same first harmonic in the system response differ in two orders of 
magnitude, being UG=6 and UG= 0.28 VRMS for temperatures Θ=45 °C and Θ=47.5 °C 
respectively. 
The values of spectral amplification, measured at increase and decrease of the noise are 
shown on Figure 4.10.1.a) and b) respectively for three different temperatures.  
It can be seen that with the decrease of the temperature of the measurement that: 1) the 
threshold value of noise intensity which “triggers” stochastic resonance increases, 2) the 
maximum value of spectral amplification achieved by the increase of the noise grows and 3) 
its position shifts toward higher noise intensities. At the decrease of the noise, while the 
system behaviour still holds true for the above said features, the hysteresis of the spectral 
amplification values and noise intensities which maximise them is developed as the 
temperature of the measurements is reduced. At the temperature of Θ=47.5 °C which is close 
to the phase transition of ferroelectric TGS there is no difference in the values measured for 
the decrease and increase of the noise. At the temperature of Θ=45 °C the maximum of 
spectral amplification observed at the decrease of the noise exceeds that obtained at the 
increase for about 30%, with hysteresis of corresponding noise intensities of about 2VRMS. As 
the temperature is reduced to 40 °C, the value of hysteresis grows enormously, reaching at the 
decrease of the noise over 1000% enhancement of spectral amplification values, while the 
hysteresis of the noise intensities is spread over more than half of the noise values scale.   
The behaviour of signal-to-noise ratio in dependence on the temperature of the ferroelectric 
sample changes as follows at the increase of the noise. Starting in the same point for all three 
investigated temperatures due to the measurement condition concerning the equal output 
power of the periodic component of the system response measured in the absence of noise, the 
signal-to noise ratio displays local minimum followed by rapid growth of measured values 
and decays again at the further increase of the noise intensity for the temperatures of the 
ferroelectric sample Θ=40 °C and Θ=45 °C. The position of the local minimum as mentioned 
above corresponds to the drastic growth of related spectral amplification dependence and 
manifests the point where the synchronisation is triggered.  
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Figure 4.10.1 Dependences of spectral amplification vs. noise intensity measured for 

three different temperatures of the TGS sample at the same initial 1st 
harmonic peak level of P=-30 dBm at the a) increase and b) decrease 
of the noise intensity respectively 
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Figure 4.10.2 Dependencies of signal-to-noise ratio vs. noise intensity measured for three 

different temperatures of the TGS sample at the same initial 1st harmonic peak 
level of P=-30 dBm at the a) increase and b) decrease of the noise intensity 
respectively 
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In accordance with spectral amplification values, the position of local minimum shifts toward 
greater noise intensities with the decrease of the temperature of the measurement, and the 
relative value of the minimum (i.e., the difference between initial and minimal value) 
decreases. The position of the maximum of signal-to noise ratio dependence shifts towards 
lower noise intensities at the increase of the temperature, and the value of maximum achieved 
at the noise variation decreases. On the contrary to the dependencies obtained at the 
temperatures of Θ=40 °C and 45 °C (i.e., relatively far from the phase transition point) the 
signal-to-noise ratio registered at Θ=47.5 °C displays no resonance-like behaviour being a 
monotonically decreasing function of the noise intensity. 
At the decrease of the noise from high values back to zero, the dependencies of signal-to noise 
ratio measured at Θ=40 °C and 45 °C display large hysteresis for both noise intensity and 
SNR scales in respect to the values registered at the increase of the noise. The hysteresis of 
the signal-to noise ratio is much pronounced than that of the spectral amplification due to the 
absence of local minimum of SNR at the decrease of the noise intensity. The value of 
hysteresis decreases with the increase of the measurement temperature. At the temperature of 
Θ=47.5 °C the hysteresis diminishes as the dependence of signal-to-noise ratio measured at 
the decrease of the noise completely reproduces that obtained at the increase, and also 
displays only a monotonic decay as a function of noise intensity.     

 
 
4.3.3 Discussion 
 
As it follows from the comparative analysis of the behaviour of stochastic resonance 
observables at different temperatures of the ferroelectric sample, the obtained results appear to 
be in accordance with the behaviour of corresponding properties of ferroelectric TGS crystal 
in dependence on temperature. Here we outline the basic features concerning the system 
behaviour. Clearly, at lower temperatures far enough from the Curie point comparatively high 
values of both noise intensity and amplitude of the weak periodic modulation are needed to 
produce the synchronisation between periodic input and system response and subsequently 
the effect of stochastic resonance. At lower temperatures, according to the known temperature 
dependencies of spontaneous polarisation and dielectric losses of TGS, subject to the coupled 
action of periodic modulation and noise, the system delivers also higher values of periodic 
component of the output signal, taking into consideration the proposed method of scaling. 
With the decrease of the value of spontaneous polarisation at the temperature increase and 
simultaneous growth of the dielectric constant, the optimisation of the output signal takes 
place at the lower noise intensities, as the sensitivity of the sample to the external 
perturbations is increased. The higher is the temperature, the lower are values of the related 
measures, both of them being defined by the value of polarisation of the sample. 
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The observed behaviour confirms the proposal made in Section 3.5 in relation to the 
frequency scaling property as featured in theoretical approach describing stochastic resonance 
in continuos bistable systems. As one can see, the behaviour of the stochastic resonance 
characteristics displayed at the variation of the temperature of the measurement and that of the 
frequency of weak periodic modulation is qualitatively similar (compare Figures 4.4,5 and 
4.10.1,2). According to the expressions for the scaled frequency given in chapter three (see 
eq. (3.19)), seen purely mathematically, the variation of the frequency of the modulation can 
be „achieved“ either by changing directly the frequency of the external periodic signal or the 
parameter a of the potential barrier, i.e. the barrier height since ∆V a b= 2 4/  (see Section 
3.4.). In the last case, the potential barrier height is controlled through the temperature of the 
ferroelectric sample. Corresponding real physical picture may be understood as follows. As 
well as the increase of the frequency of the modulation signal, the increase of the temperature 
of the sample (granted the other system parameters are kept constant) affects the motions 
taking place within the system. As long as the frequency of modulation controls only the 
velocity of barrier tilting, i.e., acts as an external clock in the system, the variation of the 
temperature, e.g., increase, leads to 1) the decrease of the potential barrier height which 
results directly in the increase of the noise-dependent probability for the system to switch 
between metastable states of polarisation and 2) the increase of the thermal energy of 
fluctuations within one stable state, i.e., intrawell dynamics contribution.  
Therefore the increase of the temperature of the ferroelectric sample at the constant given 
frequency and amplitude of the modulation will inevitably result in the relative decrease of 
the periodic component of the system response, as it is shown in presented experimental 
results, since, on one hand, increased probability to switch will though actualise coherent 
switching already at lower noise levels, on the other hand, fewer ferroelectric domains find 
time to switch in phase with external modulation, being permanently switched out of 
coherence with periodic signal many times during half modulation period. At the temperatures 
high enough, the potential barrier becomes such low, that it is hardly possible to separate 
intensive intrawell motion around one stable state from the barrier crossing events taking 
place at random, which leads to the increase of the actual noise level of the system without 
contributing to the periodic component of the system output, and as a result of such to the 
overall decline of signal-to-noise ratio. It is then no longer possible to establish stochastic 
resonance in the system.   
Similarity of the system behaviour at the variation of frequency and temperature, including 
the disappearance of the stochastic resonance at either high frequencies of modulation or the 
temperatures of the ferroelectric sample underpins the statistical nature of the effect, which is 
a result of coherent action of noise and periodic components of the system motion, established 
through the competition between characteristic system time scales.  
 



   

 
 
 
 
 
 

Chapter Five 
 
 
 
 

Conclusions and Outlook 
 
 
 
 
 
 
Present work is dedicated to the investigation of the stochastic resonance in ferroelectric TGS. 
According to the purpose of study outlined in the Introduction, the effect of stochastic 
resonance has been established in the experimental system with a ferroelectric crystal. 
Thorough characterisation of the properties of the effect has been conducted for the possible 
range of parameter variation. It has been checked as well, whether theoretical conceptions 
developed in the framework of a general theoretical approach for a wide class of continuos 
bistable systems can be considered valid in the concrete case of ferroelectric crystal as a 
system displaying stochastic resonance behaviour in the view of the fundamental character of 
the effect. 
Theoretical reasoning for the principle possibility to observe stochastic resonance in 
ferroelectrics is given in Chapter 3. After introducing the common definition, the basic 
underlying physical mechanisms along with the methods of the characterisation of the effect 
are presented. It is shown that stochastic resonance represents a fundamental effect, which is a 
distinctive characteristic feature of the nonlinear systems independent on their physical 
nature, where the time scales determining the system behaviour can be controlled through the 
use of noise. Therefore the theoretical conceptions considering stochastic resonance are based 
on the corresponding universal properties of nonlinear systems. The theoretical description of 
the stochastic resonance developed in the framework of Fokker-Planck approach for 
continuos bistable system presented in Chapter 3 is valid for a wide class of nonlinear systems 
and can be successfully applied in the particular case of ferroelectric material. Although the 
theoretical considerations bear rather general character, they allow for accurate predictions 
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concerning stochastic resonance behaviour in concrete system under investigation in spite of 
the absence of the special theory of stochastic resonance in ferroelectrics but due to the 
generality of this phenomenon. Main features of the stochastic resonance to be expected in the 
experimental study, as resulted from the presented theoretical consideration can be 
summarised as follows: 
 
• The stochastic resonance appears as an effect of synchronisation between weak input 

periodic modulation and noisy system output resulting in the enhancement of the periodic 
component of the system response.   

 
• The corresponding measures of the output signal optimisation such as spectral 

amplification and signal-to-noise ratio undergo pronounced resonance-like dependence as 
a function of the input noise intensity. The values of noise which maximise the response 
amplitude (that stands for amplification) and SNR do not coincide. 

 
• The dependences of both stochastic resonance quantifiers on the amplitude of the periodic 

modulation are characterised by the increase of the maximum values of the amplification 
and signal-to-noise ratio at the increase of the amplitude. At the same time, the positions 
of corresponding maximum values on the noise intensity scale shift toward lower noise 
levels.   

 
• The spectral amplification reaches greater values when registered at lower frequencies of 

the periodic modulation, with corresponding maximum amplification being achieved by 
smaller noise intensities. The Signal-to-noise ratio displays no significant frequency 
dependence of the position of its maximum values on the modulation frequency. For high 
modulation frequencies, the local maximum of SNR diminishes and the dependence 
degenerates into monotonically decreasing function. It should be stressed that at the direct 
continuous variation of the frequency of the periodic modulation, despite obvious 
enhancement of the amplitude-frequency characteristic of the system in the low frequency 
range, both stochastic resonance observables display no resonant-like behaviour but 
become monotonically decreasing functions of the noise intensity. This property 
underlines the fact that stochastic resonance is not a bona fide resonance in the original 
sense.   

 
• The scaling of the modulation frequency among other system quantities over the 

parameters of the potential performed in the theoretical consideration correlates with the 
possibility to control the velocities of the processes taking place in the system not only by 
direct variation of the frequency of the modulation signal but changing the height of the 
potential barrier, e.g. by the variation of the temperature. As it follows from theoretical  
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assumptions, corresponding stochastic resonance behaviour should be qualitatively similar 
to that displayed for different frequency regimes. 

 
These general predictions proved for the wide range of system variables in the series of 
numerical simulations allow for the comparative analysis of theoretical assumptions and the 
experimental results obtained for the characterisation of the stochastic resonance in 
ferroelectrics. The measurement set-up provides the experimental realisation of the 
requirements for stochastic resonance onset and attains the possibility of the investigation of 
the effect properties over the wide range of system parameters. The description of the 
properties and design of the experimental set-up is given in Chapter 2. 
The results of the experimental study of the stochastic resonance in ferroelectric TGS crystal, 
presented in Chapter 4 allow for the following conclusions. The stochastic resonance in 
ferroelectric TGS appears as a result of (partial) polarisation reversal with the frequency of 
the weak external modulation signal produced by synchronised action of noise and periodic 
modulation. The behaviour of the effect measures (i.e. spectral amplification and signal-to-
noise ratio) observed in the course of investigations shows very good qualitative agreement 
with theoretical predictions concerning stochastic resonance properties in dependence on the 
system parameters as outlined above. Hence the fundamental character of the stochastic 
resonance as an effect typical for nonlinear system for which the characteristic time scales can 
be controlled by means of noise is confirmed. Hereby the theoretical conceptions developed 
for wide class of continuous bistable systems in the framework of general Fokker-Planck 
approach using universal model assumptions are proved to be valid in the concrete case of 
ferroelectric material as a system displaying stochastic resonance behaviour. Obtained results 
of present experimental research admit to conclude that the purposes of this study, i.e., 
establishment and subsequent characterisation of the stochastic resonance in ferroelectric TGS 
crystal are successfully achieved. 

 
 
5.1 Outlook 
 
There is, of course, no need to mention that the study of stochastic resonance in ferroelectrics 
as presented in this work is yet far from being complete. The  performed course of 
measurements has revealed important issues which appeal for further investigation. In 
particular, the hysteretic behaviour of the stochastic resonance observables upon the reversal 
of the direction of noise variation requires prompt attention. Clearly, this new feature of the 
stochastic resonance, which has not been reported to be observed in other systems and appears 
to be a specific property of the effect in ferroelectrics is connected directly with the alteration 
of the domain structure of ferroelectric material as the system goes along the process of the 
stochastic resonance. Therefore it provides the opportunity to apply a new investigation 
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technique to the study of ferroelectric domain structure which might bring new and promising 
results to this complicated matter. Another interesting  possibility would be, for instance, to 
try to extract the information on the thermodynamic potential of the ferroelectric contained in 
the time series of the output signal since it may result in developing the additional tool in the 
modelling of the stochastic resonance signatures  as well as processes of the polarisation 
reversal of the ferroelectric itself which still remains an open question. 
The results of the conducted investigations confirm the proposal made in the Introduction in 
relation to the possibility to use presented system with ferroelectric crystal as a model system 
for experimental study of stochastic resonance. Within the proposed experimental set-up this 
elegant phenomenon can be realised with delectable convenience in different configurations. 
It is, for example, of great interest to establish so-called controlled stochastic resonance [34], 
using periodic modulation of the internal system parameters, which delivers much higher 
signal enhancement and therefore could become very useful in the exploration of weak 
signals. As the experimental system under consideration can be easily transferred into the 
nonlinear resonance circuit displaying chaotic behaviour, it is very tempting to discover 
experimentally stochastic resonance behaviour in the deterministic chaotic system [19,28,32] 
to provide important empirical information to the understanding of, on one hand, the nature of 
the effect in this advanced application. On another hand, this would give an insight into the 
fascinating process of the chaotic oscillations [49] which alone stand for very promising field 
of research. Besides, the above mentioned proposals while not exhausting the multiple 
opportunities of study, will contribute to the investigation of the properties of ferroelectric 
materials, such as domain wall motion, behaviour of the spontaneous polarisation etc., since 
ferroelectrics serve as a core elements of the described experimental circuits responsible for 
the system behaviour. 
 



 

 

83 

References 
 
 

 
1. R. Benzi, A. Sutera and A. Vulpiani: "THE MECHANISM OF STOCHASTIC RESONANCE"  

J. Phys. A: Math. Gen.14L 453, 1981  
 

2. R. Benzi, G. Parisi, A. Sutera and A. Vulpiani "STOCHASTIC RESONANCE IN CLIMATIC 
CHANGE", Tellus, 34,10, 1982  

 
3. C.Nicolis: "STOCHASTIC ASPECTS OF CLIMATIC TRANSITIONS - RESPONSE TO A PERIODIC 

FORCING" Tellus 34, 1, 1982 
 

4. S. Fauve and F. Heslot: "STOCHASTIC RESONANCE IN A BISTABLE SYSTEM"  
Phys. Lett. 97A, 5, 1983  

 
5. B. McNamara, K. Wiesenfeld and R. Roy: "OBSERVATION OF STOCHASTIC RESONANCE IN 

A RING LASER" Phys. Rev. Lett. 60, 2626, 1988  
 

6. L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta and S. Santucci "STOCHASTIC 
RESONANCE IN A BISTABLE SYSTEMS" Phys. Rev. Lett. 62 349 (1989)  

 
7. B. McNamara and K. Wiesenfeld: "THEORY OF STOCHASTIC RESONANCE"  

Phys. Rev. A39 4854 (1989)  
 

8. P. Jung and P. Hanggi: "STOCHASTIC NONLINEAR DYNAMICS MODULATED BY EXTERNAL 
PERIODIC FORCES" Europhys. Lett. 8, 505, 1989  

 
9. R. F. Fox: "STOCHASTIC RESONANCE IN A DOUBLE WELL" Phys. Rev. 39A, 4148 (1989)  

 
10. G. Vemuri and R. Roy: "STOCHASTIC RESONANCE IN A BISTABLE RING LASER"  

Phys. Rev. 39A, 4668, 1989 
 

11. L. Gammaitoni, E. Menichella-Saetta, S. Santucci, F. Marchesoni and C. Presilla: 
"PERIODICALLY MODULATED BISTABLE SYSTEMS: STOCHASTIC RESONANCE", Phys. Rev. 
40A, 2114, 1989  

 
12. L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, M. Punturo and S. Santucci:  

"STOCHASTIC RESONANCE: PHENOMENOLOGY AND APPLICATIONS"  
Non-Equilibrium Statistical Mechanics, World Scientific ed. (1989)  

 
13. P. Jung and P. Hanggi: "AMPLIFICATION OF SMALL SIGNALS VIA STOCHASTIC 

RESONANCE" , Phys. Rev. A44 8032 (1991)  
 

14. R. F. Fox and Y. Lu: "ANALYTIC AND NUMERICAL STUDY OF STOCHASTIC RESONANCE"  
Phys. Rev. E48 3390 (1993)  

 



 

 

84 

 
15. P. Jung: "PERIODICALLY DRIVEN STOCHASTIC SYSTEMS", Phys.Rept. 234, 175 (1993)  
 
16. F. Moss, D. Pierson, D. O'Gorman: "STOCHASTIC RESONANCE: TUTORIAL AND UPDATE"  

Int. J. Bifurcation and Chaos 4(6) 1383. [1994]  
 

17. S. Vohra, L. Fabiny: "INDUCED STOCHASTIC RESONANCE NEAR A SUBCRITICAL 
BIFURCATION", Phys. Rev. E50 R2391 (1994)  

 
18. D.S. Leonard, L.E. Reichl: "STOCHASTIC RESONANCE IN A CHEMICAL REACTION"  

Phys. Rev. E49 1734 (1994)  
 

19. A. Crisanti, M. Falcioni, G. Paladin and A. Vulpiani: "STOCHASTIC RESONANCE IN 
DETERMINISTIC CHAOTIC SYSTEMS", J. Phys. A: Math. Gen. 27 L597 (1994)  

 
20. M.C. Mahato and S.R. Shenoy: "HYSTERESIS LOSS AND STOCHASTIC RESONANCE: A 

NUMERICAL STUDY OF A DOUBLE-WELL POTENTIAL", Phys. Rev. E 50, 2503 (1994)  
 

21. T. Kapitaniak: "MECHANISM OF NOISE-INDUCED RESONANCE", Physical Review E. 52(1 
Part B):1200-1201, 1995 Jul.  

 
22. L. Gammaitoni, F. Marchesoni and S. Santucci: "STOCHASTIC RESONANCE AS A BONA 

FIDE RESONANCE", Phys. Rev. Lett. 74 1052 (1995).  
 

23. B. Shulgin, A. Neiman, V. Anishchenko: "MEAN SWITCHING FREQUENCY LOCKING IN 
STOCHASTIC BISTABLE SYSTEM DRIVEN BY A PERIODIC FORCE", Phys. Rev. Lett. 75, 
4157, (1995)  

 
24. A. Hilgers, M Gremm, J. Schnakenberg: "A CRITERION FOR STOCHASTIC RESONANCE", 

Phys. Lett. A 209 313 (1995)  
 

25. Dubinov A.E., Mikheev K.E., Nizhegorodtsev Y.B., Selemir V.D.: “ON THE STOCHASTIC 
RESONANCE IN FERROELECTRICS”, Izvestiya Akademii Nauk Seriya Fizicheskaya. 
60(10):76-77, 1996 Oct.  

 
26. Collins J., Chow C., Capela AC., Imhoff T.T.: “APERIODIC STOCHASTIC RESONANCE”, 

Physical Review A. 54(5):5575-5584, 1996 Nov.  
 
27. Simonotto E., Riani M., Seife C., Roberts M., Twitty J., Moss F.: “VISUAL PERCEPTION OF 

STOCHASTIC RESONANCE”, Physical Review Letters. 78(6):1186-1189, 1997 Feb 10.  
 
28.  F. Gassmann: “NOISE-INDUCED CHAOS-ORDER TRANSITIONS”, Physical Review E. 55(3 

Part A):2215-2221, 1997 Mar.  
 



 

 

85 

29. Sides SW. Ramos RA. Rikvold PA. Novotny MA.: “KINETIC ISING SYSTEM IN AN 
OSCILLATING EXTERNAL FIELD – STOCHASTIC RESONANCE AND RESIDENCE TIME 
DESTRIBUTIONS”Journal of Applied Physics. 81(8 Part 2B):5597-5599, 1997 Apr 15.  

 
30. Mahato MC., Jayannavar AM.: “RELATION BETWEEN STOCHASTIC RESONANCE AND 

SYNCHRONIZATION OF PASSAGES IN A DOUBLE WELL SYSTEM”, Physical Review E. 55(5 
Part B):6266-6269, 1997 May.  

 
31. Bose D., Sarkar SK.: “NOISY BISTABLE HYSTERESIS WITH MODULATION OF LARGE 

AMPLITUDE AND HIGH FREQUENCY”, Physics Letters A. 232(1-2):49-54, 1997 Jul 21.  
 
32. Neiman A.., Saparin P.I., Stone L..: “COHERENCE RESONANCE AT NOISY PRECURSORS OF 

BIFURCATIONS IN NONLINEAR DYNAMICAL SYSTEMS”, Physical Review E. 56(1 Part 
A):270-273, 1997 Jul.  

 
33. Mahato M.C., Jayannavar A.M.: “TWO-WELL SYSTEM UNDER LARGE AMPLITUDE PERIODIC 

FORCING – STOCHASTIC SYNCHRONIZATION, STOCHASTIC RESONANCE AND STABILITY”, 
Modern Physics Letters B. 11(19):815-820, 1997 Aug 20.  

 
34. Gammaitoni L., Hanggi P., Jung P. Marchesoni F.: “STOCHASTIC RESONANCE” [Review], 

Reviews of Modern Physics. 70(1):223-287, 1998 Jan.  
 

35.  Mahato M.C., Jayannavar A.M.: “SOME STOCHASTIC PHENOMENA IN A DRIVEN DOUBLE-
WELL SYSTEM”, Physica A. 248(1-2):138-154, 1998 Jan 1.  

 
36. Hess S.M., Albano A.M.: “MINIMUM REQUIREMENTS FOR STOCHASTIC RESONANCE IN 

THRESHOLD SYSTEMS”, International Journal Of Bifurcations And Chaos, 8(2):395-400, 
1998 Feb.  

 
37. Godivier X., Chapeaublondeau F.: “STOCHASTIC RESONANCE IN THE INFORMATION 

CAPACITY OF A NONLINEAR DYNAMIC SYSTEM”, International Journal Of Bifurcations And 
Chaos, 8(3):581-589, 1998 Mar.  

 
38. Tretyakov M.V.: “NUMERICAL TECHNIQUE FOR STUDYING STOCHASTIC RESONANCE”, 

Physical Review A. 57(4):4789-4794, 1998 Apr 
 
39. Fakir R.: “NONSTATIONARY STOCHASTIC RESONANCE”, Physical Review A. 57(6):6996-

7001, 1998 Jun.  
 

40. Sides S.W., Rikvold P.A., Novotny M.A.: “STOCHASTIC HYSTERESIS AND RESONANCE IN A 
KINETIC ISING SYSTEM”, Physical Review A. 57(6):6512-6533, 1998 Jun.  

 
41. Galdi V., Pierro V., Pinto I.M.: “EVALUATION OF STOCHASTIC RESONANCE-BASED 

DETECTORS OF WEAK HARMONIC SIGNALS IN ADDITIVE WHITE GAUSSIAN NOISE”, Physical 
Review A. 57(6):6470-6479, 1998 Jun.  

 



 

 

86 

42. Choi M.H., Fox R.F., Jung P.: “QUANTIFYING STOCHASTIC RESONANCE IN BISTABLE 
SYSTEMS – RESPONSE VS. RESIDENCE TIME DISTRIBUTION FUNCTIONS”, Physical Review A. 
57(6):6335-6344, 1998 Jun.  

 
43. Kim Y.W., Sung W.: “DOES STOCHASTIC RESONANCE OCCUR IN PERIODIC POTENTIALS”, 

Physical Review A. 57(6):R6237-R6240, 1998 Jun. 
 
44. V.S. Anishenko, A.B. Neiman, F.Moss, L.Shimansky-Geier: “STOCHASTIC RESONANCE: 

NOISE ENHANCED ORDER”, Uspehi Fizicheskih Nauk 169 (1), 1999 Jan (In Russian) 
 

45. Yu. L. Klimontovich: “WHAT ARE STOCHASTIC FILTRATION AND STOCHASTIC RESONANCE”, 
Uspehi Fizicheskih Nauk 169 (1), 1999 Jan (In Russian) 

 
46. R.-P. Kapsch: “UNTERUCHUNGEN DES EINFLUSSES SCHWACHER, FAST RESONANTER BZW. 

RESONANTER STÖRUNGEN AUF NICHTLINEARE DYNAMISCHE SYSTEME AM BEISPIEL DES 
DIELEKTRISCH NICHTLINEAREN SCHWINGKREISES”, Ph.D thesis, Halle 1994  

 
47. R-P. Kapsch, M. Diestelhorst, H. Beige: “SMALL SIGNAL AMPLIFICATION CAUSED BY THE 

NONLINEAR DIELECTRIC PROPERTIES OF TGS”, Ferroelectrics, Vols.208-209, 1998 
 
48. M. Diestelhorst, K. Drozhdin: “STOCHASTIC RESONANCE IN FERROELECTRIC TRIGLYCINE 

SULFATE”, Ferroelectrics, Vol.238, 2000 
 

49. H. Beige, M. Diestelhorst, R. Forster, T. Krietsch: “CHAOS NEAR STRUCTURAL PHASE 
TRANSITIONS”, Phase transitions 37, 1992, 213 

 
50. M.E. Lines, A.M. Glass: “PRINCIPLES AND APPLICATIONS OF FERROELECTRICS AND 

RELATED MATERIALS”, Clarendon Press Oxford 1977 
 
51. J.C. Burfoot: “FERROELECTRICS. AN INTRODUCTION TO THE PHYSICAL PRINCIPLES”, 

Princeton 1967 
 

52. B.A. Strukov, A.P. Levaniuk: “PHYSICAL PRINCIPLES OF THE FERROELECTRICITY IN 
CRYSTALS”, Moscow, 1983 (in Russian) 

 
53. M. Diestelhorst. Personal remarks 

 
54. Gammaitoni et al., http://www.pg.infn.it/sr/ 

 



 

 

 
 
 
An dieser Stelle möchte ich allen zum Entstehen dieser Arbeit beigetragenen Personen 
meinen herzlichen Dank aussprechen.  
Besonders danke ich Herrn Dr. M. Diestelhorst, für die mir erwiesene Ehre, mein Freund und 
Mentor zu sein, für seine Engelsgeduld und Teufelsakribie und für Spaß, das mir Physik -
teilweise nur seiner Bemühungen wegen, - machte.    
Den Kollegen der Fachgruppe „Nichtlineare Dynamik/Ferroelektrizität“ – besonders den 
Herrn Dr. R.-P. Kapsch, A. Tille, E. Fuchs, – danke ich für ihre Hilfe, und vor allem für die 
freundliche und offene Atmosphäre, in der die Zeit lustig und unbemerkt verflog.  
Ich danke Herrn Prof. Dr. H. Beige für die Möglichkeit, in der Fachgruppe „Nichtlineare 
Dynamik/Ferroelektrizität“ des Fachbereiches Physik der Martin-Luther-Universität Halle-
Wittenberg zu promovieren. 
Herrn Dr. D. Lorenz danke ich für die Freundschaft,  
und meinen Eltern – für Alles. 
 
 
 
 
Konstantin Drozhdin 
 
 



 

 

 
 
 
 
 
 
 
 
 
Ich versichere, daß ich die vorliegende Arbeit selbständig angefertigt habe. Ich habe keine 
anderen Quellen und Hilfsmittel als die angegebenen benutzt und den benutzten Werken 
inhaltlich oder wörtlich entnommene Stellen als solche gekennzeichnet. 
 
 
 
 
 
 
Konstantin Drozhdin 
 
 
Halle, den 28.11.2001 
 
 



 

 

 
 
Lebenslauf   
      

 
Name:   Konstantin Drozhdin 
geboren:   12. Juli 1973 in Woronesh 
 
 
 
 
Ausbildung: 
 
1980-1990  Schulausbildung an der 58sten Oberschule in Woronesh mit 

Spezialisierung für Mathematik und Physik 
   

1990-1996  Studium der Physik an der physikalischen Fakultät der Saatsuniversität 
zu Woronesh  
 

1997-2000 Doktorand in der Fachgruppe „Nichtlineare Dynamik/Ferroelektrizität“ 
an der Martin-Luther-Universität Halle-Wittenberg 

 
 
 
 
 
Konstantin Drozhdin 
 
 


	Contents
	Abbreviations and Symbols
	1 Introduction
	1.1 The Phenomenon of the Stochastic Resonance
	1.2 The Purpose of the Study

	2 The Experimental Set-up
	2.1 The Electric Circuit
	2.1.1 Experimental Realisation

	2.2 Methods of Signal Characterisation
	2.3 Stochastic Resonance Measures
	2.3.1 Spectral Amplification
	2.3.2 Signal-to-Noise Ratio

	2.4 Experimental Set-up

	3 Theoretical Description of Stochastic Resonance
	3.1 Effect Basics
	3.1.1 System with Double-well Potential
	3.1.2 System Response

	3.2 Stochastic Resonance Characteristics
	3.2.1 Spectral Amplification
	3.2.2 Signal-to-Noise Ratio

	3.3 Stochastic Resonance in Continuous Bistable System
	3.3.1 Fokker-Planck Description
	3.3.2 Floquet Approach
	3.3.3 Expressions for Stochastic Resonance Characteristics
	3.3.3.1 Expression for Spectral Amplification
	3.3.3.2 Expression for Signal-to-Noise Ratio

	3.3.4 Results of Simulations

	3.4 Intrawell Motion Contribution
	3.4.1 Linear Response Approximation

	3.5 Concluding Remarks
	3.5.1 Ferroelectric TGS Crystal as a System Displaying Stochastic Resonance
	3.5.2 Frequency Scaling


	4 Experimental Results
	4.1 Signatures of Stochastic Resonance
	4.1.1 Synchronisation and Signal Enhancement
	4.1.2 Behaviour of Spectral Amplification
	4.1.3 Behaviour of Signal-to-Noise Ratio
	4.1.4 Discussion

	4.2 Characterisation of Stochastic Resonance
	4.2.1 Frequency Dependences
	4.2.2 Discussion
	4.2.3 Amplitude Dependences
	4.2.4 Discussion

	4.3 Temperature Dependence of Stochastic Resonance Behaviour
	4.3.1 Behaviour of Stochastic Resonance Measures at Different Temperatures of Ferroelectric TGS
	4.3.2 Frequency Scaling
	4.3.3 Discussion


	5 Conclusions and Outlook
	5.1 Outlook

	References

