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INTRODUCTION

“The Navier-Stokes equation occupy a central position in the study of nonlinear partial differ-
ential equations, dynamical systems, and modern scientific computation, as well as classical fluid
dynamics. Because of the complexity and variety of fluid dynamical phenomena, and the simplicity
and exactitude of the governing equations, a very special depth and beauty is expected in the math-
ematical theory. Thus, it is a source of pleasure and fascination that many of the most important
questions in the theory remain yet to be answered, and seem certain to stimulate contributions of
depth, originality and influence far into the future.” (J.G. Heywood [15])

The Navier-Stokes equations were formulated by the French physicist C.L.M.H. Navier (1785-
1836) in 1822 and the British mathematician and physicist G.G. Stokes (1819-1903) in 1845. Ex-
istence and uniqueness theorems for the stationary Navier-Stokes equation were first proved by
F. Odquist in 1930 [27] and by J. Leray in 1933-1934 [22], [23]. E. Hopf [17] (1952) was the first
who obtained the equation for the characteristic functional of the statistical solution giving a prob-
ability description of fluid flows. There is much information about statistical hydromechanics with
detailed review of literature in the books written by A.S. Monin and A.M. Jaglom [25] in 1965, 1967.
C. Foias investigated in [10] (1972) the questions of existence and uniqueness of spatial statistical
solutions. A. Bensoussan and R. Temam [2] (1973) gave for the first time a functional analytical
approach for the stochastic Navier-Stokes equations. The research has accelerated during the last
twenty five years.

“Researchers are now undertaking the study of flows with free surfaces, flows past obstacles,
jets through apertures, heat convection, bifurcation, attractors, turbulence, etc., on the basis of
an exact mathematical analysis. At the same time, the advent of high speed computers has made
computational fluid dynamics a subject of the greatest practical importance. Hence, the development
of computational methods has become another focus of the highest priority for the application of
the mathematical theory. It is not surprising, then, that there has been an explosion of activity in
recent years, in the diversity of topics being studied, in the number of researchers who are involved,
and in the number of countries where they are located.” (Preface for “The Navier Stokes Equations
IT”- Proceedings of the Oberwolfach meeting 1991, [16])

After this short history about the deterministic and stochastic equations of Navier-Stokes type,
we give the equation for the stochastic Navier-Stokes equation which describes the behavior of a
viscous velocity field of an incompressible liquid. The equation on the domain of flow G C IR"
(n > 2 a natural number) is given by

(0.1) %—g—VAU:—(U,V)U+f—Vp+C(U)%—1:

divU =0, U(0,z)="Uy(x), U(t,z)|oc=0,t>0, z€dq,

where U is the velocity field, v is the viscosity, A is the Laplacian, V is the gradient, f is an
external force, p is the pressure, and Uy is the initial condition. Realistic models for flows should
contain a random noise part, because external perturbations and the internal Browninan motion

ow

E.

influence the velocity field. For this reason equation (0.1) contains a random noise part C(U)
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Here the noise is defined as the distributional derivative of a Wiener process (w(t))te[o - whose

intensity depends on the state U.

This nonlinear differential equation is only for the simplest examples exactly soluble, usually
corresponding to laminar flows. Physical experiments show that turbulence occurs if the outer force
f is sufficiently large. In many important applications, including turbulence, the equation must be
modified, matched or truncated, or otherwise approximated analytically or numerically in order to
obtain any predictions. Sometimes a good approximation can be of equal or greater utility than a
complicated exact result.

In the study of equations of Navier-Stokes type one can consider weak solutions of martingal
type or strong solutions. Throughout this paper we consider strong solutions (“strong” in the sense
of stochastic analysis) of a stochastic equation of Navier-Stokes type (we will call it stochastic
Navier-Stokes equation) and define the equation in the generalized sense as an evolution equation,
assuming that the stochastic processes are defined on a given complete probability space and the
Wiener process is given in advance.

The aim of this dissertation is to prove the existence of the strong solution of the Navier-Stokes
equation by approximating it by means of the Galerkin method, i.e., by a sequence of solutions of
finite dimensional evolution equations. The Galerkin method involves solving nonlinear equations
and often it is difficult to deal with them. For this reason we approximate the solution of the
stochastic Navier-Stokes equation by the solutions of a sequence of linear stochastic evolution
equations. Another interesting aspect of the stochastic Navier-Stokes equation is to study the
behavior of the flow if we act upon the fluid through various external forces. We address the issue
of the existence of an optimal action upon the system in order to minimize a given cost functional
(for example, the turbulence within the flow). We also derive a stochastic minimum principle and
investigate Bellman’s equation for the considered control problem.

Chapter 1 is devoted to the proof of the existence of the strong solution of the Navier-Stokes
equation using the Galerkin method and then to approximate the solution by a linear method.
First we give the assumptions for the considered equation and show how the considered evolution
equation can be transformed into (0.1) in the case of n = 2. We prove the existence of the solution by
the Galerkin method (see Theorem 1.2.2). Important results concerning the theory and numerical
analysis of the deterministic Navier-Stokes equation can be found in the book of R. Temam [32].
The author also presents in this book the Galerkin method for this equation, which is one of the
well-known methods in the theory of partial differential equations that is used to prove existence
properties and to obtain finite dimensional approximations for the solutions of the equations. The
Galerkin method for the stochastic Navier-Stokes equation has been investigated for example from
A. Bensoussan [4], M. Capinski, N. J. Cutland [6], D. Gatarek [7], A. I. Komech, M. I. Vishik
[20], B. Schmalful [30], [29], M. Viot [34]. Most of the above-mentioned papers consider weak
(statistical) solutions. The techniques used in the proofs are the construction of the Galerkin-type
approximations of the solutions and some a priori estimates that allow one to prove compactness
properties of the corresponding probability measures and finally to obtain a solution of the equation
(using Prokhorov’s criterion and Skorokhod’s theorem). Since we consider the strong solution (in
the sense of stochastic analysis) of the Navier-Stokes equation, we do not need to use the techniques
considered in the case of weak solutions. The techniques applied in our paper use in particular the
properties of stopping times and some basic convergence principles from functional analysis. An
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important result is that the Galerkin-type approximations converge in mean square to the solution
of the Navier-Stokes equation (see Theorem 1.2.7). There are also other approximation methods for
this equation involving, for example, the approximation of the Wiener process by smooth processes
(see W. Grecksch, B. Schmalfuf} [13]) or time discretizations (see F. Flandoli, V. M. Tortorelli [8]).
In this chapter we further approximate the solution of the stochastic Navier-Stokes equation by
the solutions of a sequence of linear stochastic evolution equations (see equations (Pn)), which are
easier to study. We also prove the convergence in mean square (see Theorem 1.4.5). Since the
approximation method involves linear evolution equations of a special type, we give in Section 1.3
results concerning this type of equations.

Chapter 2 deals with the optimal control of the stochastic Navier-Stokes equation. We inves-
tigate the behavior of the flow controlled by different external forces, which are feedback controls
and respectively bounded controls. We search for an optimal control that minimize a given cost
functional. Whether or not there exist such optimal controls is a common question in optimal con-
trol theory and often for the answer one uses the Weierstral Theorem and assumes that the set of
admissible controls is compact. To assure the compactness of this set is sometimes not practicable.
Therefore we investigate this problem and prove in Theorem 2.3.4, respectively Theorem 2.4.2, the
existence of optimal controls, respectively e-optimal controls, in the case of feedback controls. In
the case of bounded controls this method can not be applied, because it uses the special linear
and continuous structure of the feedback controls. Using the ideas from A. Bensoussan [3] and
adapting them for the considered Navier-Stokes equation we calculate the Gateaux derivative of
the cost functional (see Theorem 2.6.4) and derive a stochastic minimum principle (for the case of
bounded controls), which gives us a necessary condition for optimality (see Theorem 2.7.2). We
complete the statement of the stochastic minimum principle by giving the equations for the adjoint
processes.

Chapter 3 contains some aspects and results of dynamic programming for the stochastic
Navier-Stokes equation. First we prove that the solution of the considered equation is a Markov
process (see Theorem 3.1.1). This property was proved by B. Schmalfufl [29] for the stochastic
Navier-Stokes equation with additive noise. In Section 3.2 we illustrate the dynamic programming
approach (called also Bellman’s principle) and we give a formal derivation of Bellman’s equation.
Bellman’s principle turns the stochastic control problem into a deterministic control problem about
a nonlinear partial differential equation of second order (see equation (3.11)) involving the infinites-
imal generator. To round off the results of Chapter 2 we give a sufficient condition for an optimal
control (Theorem 3.2.3 and Theorem 3.2.4). This condition requires a suitably behaved solution
of the Bellman equation and an admissible control satisfying a certain equation. In this section
we consider the finite dimensional stochastic Navier-Stokes equation (i.e., the equations obtained
by the Galerkin method). The approach would be very complicate for the infinite dimensional
case, because in this case it is difficult to obtain the infinitesimal generator. M.J. Vishik and A.V.
Fursikov investigated in [35] also the inverse Kolmogorov equations, which give the inifinitsimal
generator of the process being solution of the considered equation, only for the case of n = 2 for
(0.1).

The final part of the dissertation contains an Appendix with useful properties from functional
and stochastic analysis. We included them into the paper for the convenience of the reader and
because we often make use of them.
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The development and implementation of numerical methods for the Navier-Stokes equation
remains an open problem for further research: “...the numerical resolution of the Navier-Stokes
equation will require (as in the past) the simultaneous efforts of mathematicians, numerical analysts
and specialists in computer science. Several significant problems can already be solved numerically,
but much time and effort will be necessary until we master the numerical solution of these equations
for realistic values of the physical parameters. Besides the need for the development of appropiate
algorithms and codes and the improvement of computers in memory size and computation speed,
there is another difficulty of a more mathematical (as well as practical) nature. The solutions of the
Navier-Stokes equation under realistic conditions are so highly oscillatory (chaotic behavior) that
even if we were able to solve them with a great accuracy we would be faced with too much useless
information. One has to find a way, with some kind of averaging, to compute mean values of the
solutions and the corresponding desired parameters.” (R. Temam [33])
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Frequently Used Notations

V*

£2(Q x [0,7))
£ ()

Dy (22 x [0,T7])
Dy (Q2)

almost every

weak convergence (in the sense of functional analysis)
indicator function for the set A

set of strictly positive integers

set of real numbers

Lebesgue measure on the interval [0, T

complete probability space

mathematical expectation of the random variable X
right continuous filtration such that Fy contains all F-null sets
dual space of the reflexive Banach space V'

the application of v* € V* onwv eV

duality map J: V — V*

O-algebra of all Borel measurable sets of V'

space of all continuous functions u : [0,7] — V

space of all linear and continuous operators from the Banach space
V to itself
space of all B([0,T])-measurable functions u : [0,7] — V with

T
[ lut@) Rt < oo
0

space of all F-measurable random variables u : Q — V with E|jul|} < oo

space of all F x B([0,T])-measurable processes u :  x [0,7] — V that
T

are adapted to the filtration (F)icpo,7] and E/Hu(t)”%/dt < o0
0

space of all F x B([0,T])-measurable processes u :  x [0,7] — V that
are adapted to the filtration (F)icpor) and for a.e. (w,t) bounded

space of all F-measurable processes u : {2 — V that are bounded
for a.e. w

set of £ € L (Q x [0,T]) with £ =vp,v € V¢ € L (2 x [0,T7)
set of & € L (Q) with £ = v, v € V, ¢ € LE(Q)



CONTENTS 6

¢
b
Ax(t) notation for exp{ - ;/HX(S)H%/dS}, where (X(t))te[o - is a V-valued
0 )

stochastic process; b, v are positive constants

Tir stopping time for the stochastic process (X (t)) (for the exact definition

t€[0,T]
see Appendix B)

I, orthogonal projection in a Hilbert space

As usual in the notation of random variables or stochastic processes we generally omit the
dependence of w € €.



Chapter 1

Existence and Approximation of the
Solution

In this chapter we use the Galerkin method to prove the existence of the strong solution of the
Navier-Stokes equation. We mean strong solution in the sense of stochastic analysis (see [14],
Definition 4.2, p. 104): a complete probability space and a Wiener process are given in advance and
the equation is defined in the generalized sense over an evolution triple. The techniques that we used
are not the same as in the papers of A. Bensoussan [4], M. Capinski, N. J. Cutland [6], D. Gatarek
[7], A. I. Komech, M. I. Vishik [20], B. Schmalfuf} [29], [31], M. Viot [34], because in the above-
mentioned papers one consider weak (statistical) solutions. The Galerkin-type approximations
of the solutions and some a priori estimates allow one to prove compactness properties of the
corresponding probability measures and to obtain a solution of the equation. In the paper of B.
Schmalfuf} [30] are considered strong solutions for the equation with an additive noise (the intensity
of the random noise part does not depend on the state). The techniques applied in this dissertation
are different from those used in the papers above. We utilize the properties of stopping times
and some basic convergence principles from functional analysis. An important result is that the
Galerkin-type approximations converge in mean square to the solution of the Navier-Stokes equation
(see Theorem 1.2.7). This we can prove by using the property of higher order moments for the
solution (see Lemma 1.2.3 and Lemma 1.2.6). The Galerkin method is useful to prove the ezistence
of the solution, but it is complicated for numerical developments because it involves nonlinear terms.
In Section 1.4 we give another approzimation method by making use of linear evolution equations
(see equations (Pn)), which are easier to study. We also prove that the approximations converge
in mean square to the solution of the stochastic Navier-Stokes equation (see Theorem 1.4.5). Since
the approximation method involves linear evolution equations of a special type, we give in Section
1.3 some results concerning this type of equations.

The development and implementation of numerical methods for this type of equations remains
an open problem for further research. For numerical solutions of stochastic differential equations
we refer the reader to the book of P. Kloeden and E. Platen [19].
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1.1 Assumptions and formulation of the problem
First we state the assumptions about the stochastic evolution equation that will be considered.

(i) (Q,F,P) is a complete probability space and (Fi);ejo,r) is a right continuous filtration such
that Fo contains all F-null sets. (w(t))yc[o,7] is a real valued standard Fi-Wiener process.

(ii) (V, H,V*) is an evolution triple (see [37], p. 416), where (V.| - ||v/) and (H, || - ||) are separable
Hilbert spaces, and the embedding operator V' < H is assumed to be compact. We denote
by (-, ) the scalar product in H.

(iii) A:V — V*is a linear operator such that {Av,v) > v|v||} for all v € V and (Au,v) = (Av, u)
for all u,v € V, where v > 0 is a constant and (-, -) denotes the dual pairing.

(iv) B:V xV — V* is a bilinear operator such that (B(u,v),v) = 0 for all u,v € V and for
which there exists a positive constant b > 0 such that

[(B(u,v), 2)* < BllIfF [ulllullv[lvlvlly-

(v) C:[0,T] x H— H is a mapping such that
(a) |IC(t,u) —C(t,v)||*> < A|lu—v|? for all t € [0,7T], u,v € H, where ) is a positive constant;
(b) C(t,0) =0 for all t € [0,T];
(c) C(-,v) € £%]0,T] for all v € H.

(vi) ®:[0,7] x H — H is a mapping such that
(a) [|®(t,u) —@(t,v)||> < pljlu—v|? for all t € [0,T], u,v € H, where p is a positive constant;
(b) ®(¢,0) =0 for all t € [0,T7;
(c) ®(-,v) € L%]0,T) for all v € H.

(vii) zg is a H-valued Fy-measurable random variable such that E|xg||* < co.

Definition 1.1.1
We call a process (U(t))te[o - from the space £2,(2 x [0,7]) with E||U(¢)||> < oo for all ¢ € [0, 7]

a solution of the stochastic Navier-Stokes equation if it satisfies the equation:

t t

(1.1) (U(t),) +/(AU(5),v>ds — (20,v) +/<B(U(s),U(s)),v>ds

0 0

+ 0/(cp(s,U(s)),v)ds 4 O/(C(S,U(s)),v)dw(s)

forallv e V,t €[0,T] and a.e. w € 2, where the stochastic integral is understood in the Ito sense.
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Remark 1.1.2

1) Since A is a linear and monotone operator, it follows that it is continuous (see [37], Proposition
26.4, p. 555), i.e., there exists a constant c4 > 0 such that for all u € V' we have

[ Al < callull-
2) From the properties of the operator B we can derive the following relation
(B(u,v),z) = =(B(u, z),v) for all u,v,z €V,

which we will use often in our proofs.

3) The condition C(t,0) = 0 (for all ¢ € [0,7T7]) is given only to simplify the calculations. It can be
omitted, in which case one can use the estimate ||C(t,u)||?> < 2\|ul|? +2|/C(t,0)|? that follows from
the Lipschitz condition. The same remark holds for ® too.

4) Ifweset n =2,V ={ueWy (G):divu =0}, H = V@) and

ou (% B n ;. B
(Au,v) / Z X 3% (B(u,v),z) = —/Gi]zjluza—xizjda:, O (t,u) = f(t)

for u,v,z € V,t € [0, T], then equation (0.1) can be transformed into (1.1); see [32].

For finite dimensional approximations we need some preliminaries. Let hq, ho, ..., hy,... € H be
the eigenvectors of the operator A, for which we consider the domain of definition
Dom(A) = {v € V | Av € H}. These eigenvectors form an orthonormal base in H and they
are orthogonal in V' (see [24], p. 110). For each n € IN we consider H,, := sp{hi,ho,...,h,}
equipped with the norm induced from H. We write (H,, || - |[yy) when we consider H,, equipped
with the norm induced from V. We define by II, : H — H,, the orthogonal projection of H on H,

n

Ooh:=> (b hi)h;.

i=1
Let A, : H, — H,, B,,: H, x H, — Hy, ®,,,C, : [0,T] x H, — H,, be defined respectively by

n n

Apu = Z(Au, hiYhi, Bp(u,v) = Z(B(u,v), hi)hi,

i=1 =1
Cn(t,u) =11,C(Lu), P@u(t,u) =11, 2(t,u), =zon, =IL,x0
for all t € [0,T), u,v € Hy,.

Let (X (t)) t€[0,T]

properties of A and of its eigenvectors hq, ha,... (A1, Ae, ... are the corresponding eigenvalues), we
have

be a process in the space £ (Q x [0,7]) and let X,, := II,X. Using the

(1.2) X7 <IXOI,  IX@OF <IXOFF,  1X@) - X0l < 1X O],
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(1.3) VX)) = Xa@OIF < (AX(1) = AXn(t), X (1) = Xa(t)) = Z Ai(X (), hi)?
< (AX(1), X(1) < callX@)F-
Hence for P x [0,T] a.e. (w,t) € Q x [0,T] we have
Tim [[X(w,8) — X, = 0.

By the Lebesgue dominated convegence theorem it follows that

T
(14 Jim [ () = Xa(0) [ dt = 0
0
and .
(1.5) lim B[ X(t) — X, (t)||3-dt = 0.
0
If the process (X (t))te[o - has almost surely continuous trajectories in H, then
(1.6) lim | X(T) — X,(T)|? =0 forae weQ
n—oo
and
(L.7) Tim_ B X(T) - X,(T)]? = 0.

1.2 Existence of the solution of the stochastic
Navier-Stokes equation by Galerkin approximation

We want to prove the existence of the solution of the Navier-Stokes equation (1.1) by approximating
it by means of the Galerkin method, i.e., by a sequence of solutions of finite dimensional evolution
equations (see equations (P,)). Since we consider the strong solution of the Navier-Stokes equation,
we do not need to use the techniques considered in the case of weak solutions. The techniques
applied in our paper use in particular the properties of stopping times and some basic convergence
principles from functional analysis. An important result is that the Galerkin-type approximations
converge in mean square to the solution of the Navier-Stokes equation (see Theorem 1.2.7).

For each n =1,2,3,... we consider the sequence of finite dimensional evolution equations
¢ ¢
(P) (Un(b),0) + / (AnUn(s),0)ds = (zom,0) + / (Bo(Un(s), Un(s)), v)ds
0 0

~+

+  [(Pn(s,Un(s)),v)ds —i—/(Cn(s, Un(s)),v)dw(s),
0

o

for all ve Hy,, t € 0,7] and a.e. w € Q.
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Theorem 1.2.1 For each n € IN, equation (P,) has a solution U, € L% (Q x [0,T]), which is
unique almost surely and has almost surely continuous trajectories in H.

PROOF. We use an analogous method as in [31]. Let (X M) be a family of Lipschitz continuous

mappings such that
1, if 0<z<M,
xm(z)=4¢ 0, it x>M+1,
M+1—2z, if ze(M,M+1).

For each fixed n € IN we consider the solution U, of equation (P,) approximated by (Ué\/l )
(M =1,2,...) which is the solution of the equation

(Péu) (Urzzu(t)vv) + (.AnUT]LM(S),U)dS = (1‘0”,1))

+ O (10 )P)Ba(UR (5), U (), v)ds

+

S O—  °O~—__

(@1(s, U (5)),0)ds + [(Culs, U2 (), v)du(s),
0

forallv € H,,t € [0,T], and a.e. w € Q. For this equation we apply the theory of finite dimensional
Ito equations with Lipschitz continuous nonlinearities (see [18], Theorem 3.9, p. 289). Hence there
exists UM € E%Hmll-llv)(Q x [0,7]) almost surely unique solution of (PM) which has continuous
trajectories in H.

We consider the stopping times Ty := T]\%w (the definition of stopping times is given in Ap-
pendix B). By using (PM), the properties of A, By, Cp, ®,, and Proposition B.2 (for Q := UM,
ag := Ton, k1 =20, ko :=2\/u+ N\, F1 = F5 :=0,F3 := 2C,,) we obtain the following estimate

T
(1) £ sup |UMOF +2wE [ U2 ()} ds < cEllzo .
t€[0,T 0

where c is a positive constant independent of n and M. From Markov’s inequality, the definition
of Tpr, and (1.8) we have

(1.9) P(Ty <T) < P( sup [UM(®)]? > M) < = Bl
te[0,7 M

Let QM be the set of all w € Q such that UM (w, ) satisfies (PM) for all t € [0,7],v € H,, and
UM (w,-) has continuous trajectories in H. We denote ' := ﬂ OM and have P(Q) = 1. We also

. M=1
consider

Sy = U U {we|Tx =T and 3t € [0,T] : UX(w,t) #UM(w,t)}.
M=11<K<M
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We get P(S,,) = 0, because otherwise there exist two natural numbers My, Ky with Ky < Mj such
that the set

Shtoxcy = 1w € [T, =T and 3t € [0,T] : UKo (w,t) £ UMo(w, 1)}
has the measure P(Sh, ) > 0. We define for each ¢ € [0, 7]

Ugo(wvt) , WE SJT\L/IO,KO
Ur(w,t) :=
UMo(w,t) , weQ\ S k-
We see that for all w € S§, ., there exists ¢ € [0,7] such that Up(w,t) # UMo(w,t). This

contradicts to the almost surely uniqueness of the solution of (PM°). Consequently, P(S,) = 0.
o0

Let Q" :=Q'N ( U {7 =173\ Sn). Using (1.9) and the definition of S we have
M=1

" . _ _ . . _
P = A}linooP({TM =TH\S,) =1 Jim P(Ty <T) = 1.
Let w € Q. For this w there exists a natural number My such that 7y, = T for all M > M. Hence
X (JUM(5)]|?) = 1 for all s € [0,T] and all M > M. Equation (PM) implies
¢

(A UM (s),v)ds = (2on, ) —i—/(lS’n(U,]LM(s), UM (s)),v)ds
0

(1.10) (UM@#),v) +

n

_l’_

S, O ——

(B, (s, UM (5)),v)ds —i—/(Cn(s, UM (5)),v)dw(s)
0

for all M > My and all ¢t € [0,T],v € H,. For this fixed w € Q" and for each ¢ € [0,T] we define
(1.11) Up(w,t) == UMo(w,t) = lim UM (w,t)

M—o0
with respect to the H-norm. This definition is correct because w ¢ S,. Then using (1.10) and
(1.11) we obtain

t t

(Un(t), ) + /(AnUn(s),v)ds — (2om,0) + /(Bn(Un(s),Un(s)),v)ds
0 0

n O/(cbn(s,Un(s)),v)ds+0/(cn(s,Un(s)),v)dw(s)

for all w € (Q N Q”) \ Sn,t € [0,T],v € Hy. The process (Un(t))sejo,r) is Hn-valued, F x B g
measurable, adapted to the filtration (F).co,7] and has almost surely continuous trajectories in
H,, because all UM have this property. Obviously for all ¢ € [0,7] we have

(1.12) Mlim [UM@t) - U, (8)|> =0 for ae. weQ
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and

Mlim /HUM w(8)||Zds =0 for a.e. we Q.

By using (1.8) we obtain the following estimates
E|U.@®)|* < 1]1\?11nfE\|U%(t)\|2 < cE|zo|* for all t € [0,T]

and

T T

E [|Un(s)}ds < limint £ [0 ()} ds < 3= Elao*
—00 v

0 0

Therefore U, € £3(Q x [0,T)).

The uniqueness of the solution can be proved analogously to the case of the stochastic Navier-
Stokes equation (see Theorem 1.2.2). W

One of the main results of this chapter is given in the following theorem, in which we state
the existence and almost surely uniqueness of the solution U of the Navier-Stokes equation.

Theorem 1.2.2
The Navier-Stokes equation (1.1) has a solution, which is almost surely unique and has almost
surely continuous trajectories in H.

For the proof of this theorem we need several lemmas.

Lemma 1.2.3
There exists a positive constant ¢1 (independent of n) such that for alln € IN

E sup ||Un(t )||2+2VE/IIUn(t)H2vdt < 1Bz
te[0,T)

and each of the following expressions

E sup U] /HU I dt)’
te[0,7

is less or equal to ¢y E||zol|*.

PROOF. Let n be an arbitrary fixed natural number. Equation (P,) (given at the beginning of this
section) can also be written as

(1.13) (Un(t),hi)+/<AUn(s),hi>ds _ (mo,hi)+/<B(Un(s),Un(s)),hi>ds
0

+j(( ds+/ (5, Un(s), ha)duw(s),
0
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foralli =1,...,n,t € [0,7] and a.e. w € Q. By the Ito formula and by our hypothesis from
Section 1.1 we have

U (®F + 20 [ [0 ds < ol + @y/F+ ) [ 10 ()]s +2 (€. Un (), Un()duo(s)
0 0 0

for all t € [0,7] and a.e. w € Q. Now we apply Proposition B.2 for Q := U,k := 2v,
ko := 2./ + X ag := xo,F1 = F» := 0,F3 := 2C. Then we obtain the estimates given in the
statement of this lemma. W

Lemma 1.2.4

(i) There ezist U € L3(Qx[0,T)), B* € L2.(Qx[0,T)), ®*,C* € L3 (2x[0,T)), and a subsequence
(n') of (n) such that for " — oo we have

Uy —=U in LE(Qx[0,T]),
B(Un/,Un/) - B* in ﬁ%/*(Q X [O,T]),
O, Up() =@, C(,Un() =C" in LH(Qx[0,T)),
where — denotes the weak convergence.

(ii) For allveV,t€[0,T] and a.e. w € Q the process (U(t))te[o - satisfies the equation:

t

(1L14)  (U(t),0) + /(AU(S),U)ds:(xo,v) + /(B*(s),v)ds

0 0
¢ ¢
b [@ (). 0)ds + [(€(5), v)duls).
0 0
The process (U(t))te[o - has almost surely continuous trajectories in H.

(iii) The function U from (ii) satisfies E sup |U(t)||* < oo.
te[0,7

ProoF. (i) Taking into account the properties of ®, C, and the estimates from Lemma 1.2.3 it
follows that (@(-,Un(-))), (C(,Un())) are bounded sequences in the space £%(Q x [0,T]). By

using the properties of B we can derive

T T
B[ IBU(0), Un(e) -t < b [ 100} [0 ()]t < ber B,
0 0
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SO (B(Un, Un)) is a bounded sequence in the space £2.. (€2 x [0,T]). Applying Proposition A.1

(see Appendix A), it follows that there exist a subsequence (n') of (n) and U e L£3(Q x [0,T)),
B* € £3.(Q x [0,T)), ®*,C* € L%(Q x [0,T]) such that for n’ — oo

Uy =U inL3Qx[0,T)), BUy,Uy)—B* in L%.(Qx][0,T]),

(I)(" Un’()) - (I)*’ C(a Un’()) —C" in ‘C%{(Q X [O’T])'

(i) In (1.13) we take the limit n’ — oo, use the properties of A, the weak convergences from above
(also Proposition A.2 and Proposition A.3) and obtain

(115) (O h) = (0. h) ~ [(AT() hayds + [(B°(s), ha)ds
0

0
; O/<q>*<s>,hi>ds + 0/<c*<s>,m>dw<s>7

for a.e. (w,t) € Q x [0,7] and 7 € IN. Since sp{h1,ha,...,hy,...} is dense in V' (because of the
properties of the eigenvectors of A) it follows that (1.15) holds also for all v € V.

There exists a Fj-measurable H-valued process which is equal to U(t) for P x A a..
(w,t) € Q x [0,T] and is equal to the right side of (1.15) for all ¢ € [0,7] and ae. w € Q.

We denote this process by (U(t))te[o v Hence

t

(U(#),0) + / (AU (s), v)ds = (z0,v) + / (B*(s), v)ds + / (@7 (s), v)ds + / (C* (), v)duw(s)
0 0 0

0

forallv e V,t €[0,T] and a.e. w € §; the process (U (t))te[o - has in H almost surely continuous
trajectories (see [21], Theorem 3.1, p. 88). ’

(iii) In (1.14) we apply the Ito formula, use the properties of A and some elementary inequalities.
%/* + ”@*H2 + HC*H2’ F2 — QC*,

1
Then we apply Proposition B.2 for Q := U, ag := zg, F} := —||B|
v
F3 = 07 /{)1 = V,kz =1. N

For each fixed M € IN we consider 7y := 7}/, where (U(t)) is the process obtained in

t€[0,T]
Lemma 1.2.4.

Lemma 1.2.5
The following convergences hold

Ty
lim E/HU(S) CUn(s)|3ds =0 and  lim E|U(Tar) — Un(Tar)|? = 0.

n/—o0 n/—oo

0
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PROOF. For each n € IN let U, (t) = II,U. From (1.14) and (1.13) we have

(U(t) = Un(t),hi) +

+ (@) - )ds +/ (C*(s

S | O—

16

(AU (s) = AU (5). i)ds /<B*<> B(U(s),Un(s)), hi)ds

hi)dw(s)

forallt €[0,T],i=1,...,n, a.e. w € Q. After applying the Ito formula and summing from i = 1

to n, we use the properties of A and obtain

t

IT(6) = UalO + 2 [(AT(5) — AV (5), Tu(s) — Un(5)) s
0
= 2 [(B"(5) = BWUW(S). Un(5)). Un(s) ~ Un(s))ds
0

+ 2/(@*(3) — (s, Un(s)), Un(s) — Un(s))ds
0

+ 2/(C*(5) —C(s,Upn(9)), Un(s) — Uyn(s))dw(s) —|—/Z(C*(s) —C(s,Up
0 5 i=1

forall t € [0,T],i=1,..., n, a.e. w € Q. Write

e1(t) = Ay(t) exp{—(2X + 2/p + 1)t},

where the notation for Ay is given in the paragraph “Frequently Used Notations”.

formula get

(1.16) ex ()|Tn(t) = Un(0)]2 + 2/el(s)<Affn(s) — AU(s), Un(s) — Un(s))ds
0

t
b

G RN RS PAST AR <>u2ds+2/ L(8)(@%(s) — D (s, Un(s)), Un(s) —

2/61(5)<B*(8) — B(Un(s), Un(5)), Un(s) — Un(s))ds — ;/el(S)HU(S)H%HUn(S) -
0

(5)), hi)*ds

By the Ito

Un(s)||2ds

+ /Zel(s)(c*(s)—C( ds+2/el (5) — C(5,Un(5)), Un(s) — Un(s))duw(s)
0
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for all t € [0,T],7=1,...,n, a.e. w € Q. From the properties of B and those of U,, (see (1.2) we
see that

(B(Un(s), Un(s)), Un(s) = Uy(s)) = (B(Un(s), ﬁn(s)), ﬁn(s) — Un(s))

= (B(Un(s) - 071(3)7071(3))7071(3) —Un(s)) + <B(0n(3)= ﬁn(s))7ﬁn(3) — Un(s))

IN

%Ilﬁn(S)II%IIUn(S) — Un(s)II” + gIIUn(S) ~ Un(9)[I¥ + (B(Un(5), Un(s)), Un(s) — Un(s))

< %IIU(S)II%/HUn(S) — Un(s)[1* + gHUn(S) = Un(8)|[} + (B(Un(5), Un(s)), Un(s) = Un(s)).
The properties of ® imply

2(*(5) = ®(5,Un(5)), Unls) = Un(s)) < 2(®*(s) = ®(5,U(5)), Un(s) = Un(s))
+ (L4 2/ Un(s) = Un(s)[* + ullU(s) = Un(s)|?
and from the properties of C and U,, we get

n

S (C(s) — €, Un(s)). i) = €5, U (s)) — CCs. Un(s)) Iy,

=1
+2(C(s) = Cls.Un(9)),€7(5) = C(s, U (), = €5, U () = C*(s)][3,
2T (5) = Un()II + 2\ Un(5) — Un(3)|2 +2(C*(5) = C(s, Un(5)),C*(5) — C(5,U(5)))
— lle(s, U () = C*(5),

Hy

where we write ||z| g, := |l z|| and (z,9)q, = (,z,Il,y) for x,y € H.
We use these estimates in (1.16) to obtain

Ty
(1.17) Eer(Tan)||Un(Tnr) — Un(Tan) |1 + VE/el(S)Wn(S) — Un(s)|¥-ds
0

Tu
£ E [ea(s)Ie6.Us) - ¢ )l,ds

IN
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Tm
+ 2E/el(s)(C*(s) —C(5,Un(s)),C"(s) = C(s,U(s))) g, ds
0
where M € IN. Using the properties of B, those of the stopping time 73; and the fact that ( ~n) is
the partial sum of the Fourier expansion of U € L3 (€ x [0,7]) (see the properties (1.2) and (1.5)
given in the final part of Section 1.1) we have

Ty

E [ex(s)IBU). U(s) = BOw(s). Tn(s)) - ds
0

Tm
< bE/el(S)(HU(S)H\/HU(S)H + Hﬁn(S)HvHﬁn(S)H)HU(S) = Un(s)|IVIIU(s) = Un(s)|1ds

0
T

BE [ ) UG ITEIPIUE) - Tas)
0

AN
h

=
U
w

Ty

Ty 1 1
< 2 (E [[U©IRds)" (B [1U6) - Tulo)lfas)
0 0
and hence ;
nlggoE/el(s)HB(U(s), U(s)) = B(n(s), Un(s))|[2ds = 0.

0
We have Ijg 7,,)B(U,U), B* € L3.(Q x [0,T]). For the subsequence (n’) of (n) we have proved that
Uy — U in £3(Q % [0,T]) and U,y — U in £ (Q x [0,T]) (see Lemma 1.2.4 and (1.5) from Section
1.1). Consequently,

Tar
nll_r)nooE e1(s)(B*(s) = B(Un(5), Un (5)), Upr (s) = Ups(3))ds
(;—IVI
= lim B [ ()8 () — BU(s),U5)), U () = Une(s))ds
gNI
£ B [ e(s)BU(5), U(s)) ~ Bl (), (), Ty () — U (s = 0.

0

It also follows that

Ty
lim E/el(s)(q)*(s) — ®(s,U(s)), Up(s) — Un(s))ds = 0.

n/—o00
0
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Since C(-, Uy (+)) — C* in L%(Q x [0,7T]) and I1,,C* — I1,C(-,U(-)) — C* —C(-,U(-)), the following
convergences hold:

Tm

n}gnwE/el(s)(C*(s) —C(s,Uy(s)),C*(s) — C(s, U(s))Hnlds
g‘]\/f

- Jm B / e1(5)(C*() = C(s, Ui (), ILuC*(5) = TuC(s, U (s)) ) ds = 0
0
and
T Ty
im B [ei(s)[C(s, U(s)) — C*(s)l[3,, ds = E/el(S)IIC(Sa U(s)) = C*(s)|*ds.
0 0

In view of these results, we see that by taking the limit n’ — oo in (1.17) the right side of this
inequality tends to zero. Therefore

Ty
lim Eey(Tan)||Un (Tar) — Un (Tar)|)? = 0, lim E/el(s)HUn/(s) —Up(s)||}ds =0
n —oo n —oo o
and
Tv
(1.18) E/el(s)HC(s, U(s)) — C*(s)|2ds = 0.
0

From the properties of e; over [0, 7] and from (1.5) follows that for each fixed M € IN we have
Ty

(119)  lim E/HU(s) U (9)fds =0 and  Tim E|U(Tar) — U (Tar) |2 = 0. n
0

Proof of Theorem 1.2.2.
From (1.18) we conclude that

(1.20) Lio,13,1(8)C(8,U(8)) = Ljo,73,,(8)C*(s) for ae. (w,t) € Qx[0,T].

Because ®(-, U/ (-)) = ®* in L% (Q x [0,7]) and ® is a continuous mapping, it follows from (1.19)
that
(1.21) Lo (8)®(s,U(8)) = Ljo, 13, (5)@"(s5) for ae. (w,t) € Qx[0,T].

Using (1.19) and the properties of B it can be proved that
Tm

lim E /(B(U(s),U(s)) — B(Un(s),Up(s)),z(s))ds =0 for all =z € Dy(Q x[0,T]).

n’—oo
0
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But B(U,/,Uy) — B* in L£%. (2 x [0,T]), so

Ty
n}gnooE /(B*(s) — B(Up(s), Uy (s)),z(s))ds =0 for all =z € Dy(Q x [0,T7]).
0

Since Dy (2 x [0,77) is dense in £3 (2 x [0,T]), it follows that
(1.22) Lo 13, (8)B*(5) = Tjo, 1, (5)B(U(s),U(s)) for a.e. (w,t) € Qx[0,T].

Using (1.20), (1.21), and (1.22) in (1.14)

tATas tAThr
(1.23) (UtNTy),v) + /(Au(s),v>ds:(mo,v)+ /(B(U(s),U(s)),v>ds
t(A)TM tA T ’
+ /((I)(S,U(s)),v)ds—i— /(C(s,U(s)),v)dw(s)
0 0

for all v € V,t € [0,T], and a.e. w € Q.
From the properties of the stopping time 73; and Proposition B.1 we see that

P(U{tu=1}) =1
M=1
Let
QO — {w eEN:we U {Tp =T} and U(w, t) satisfies (1.23) for all v € V¢ € [O,T]}.

M=1

Obviously, we have P(Q)) = 1.
For w € ' there exists a natural number My such that 7y;(w) = T for all M > My. From
(1.23), we obtain

t

(1.24)  (U(t),0) + /(.AU(S),U)ds:(xo,v) + /(B(U(s),U(s)),v>d5
0

0
+ 0/ (@ (s, U(s)), v)ds + 0/ (Cs,U(s)), v)dw(s)

for all v € V,t € [0,T]. Consequently (1.24) holds for all w € €. This means that the process
(U(t))te[o - satisfies the Navier-Stokes equation (1.1). Taking into account Lemma 1.2.4 it follows

that U has almost surely continuous trajectories in H and we have

E sup ||U@®)|? < oo.
t€[0,T]
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Hence (U(t)) is a solution of the Navier-Stokes equation (1.1).
te[0,7

(ii) In order to prove the uniqueness we assume that X,Y € £3,(Q2 x [0,T]) are two solutions
of equation (1.1), which have in H almost surely continuous trajectories. Let

ea(t) = Ax (1) exp{—(A + 2/n)t}

for all t € [0,T] and a.e. w € Q. It follows by the Ito formula that

(V)| X (1) — Y ()% + 2]62(8)(./4X(5) — AY (s), X () — Y (s))ds
0
= 2 [ ea(s)(B(X(s), X(s)) = B(Y(s),Y(s)), X(s) = Y(s))ds
— = [ea®)IX ()X () = Y(s)[Pds — (A + 2\/ﬁ)/t62(8)HX(8) — Y (s)[[Pds
0
+ 2 [ ea(s)(®(s, X(s)) — B(s,Y(s)), X (s) — Y(s))ds

+ 2

O O O\@“ o—__

e2(s)(C(s, X(s)) = C(s,Y (5)), X(s) = Y(s))dw(s) +/62(3)HC(3,X(3)) = C(s,Y (5))|ds.
0

In view of the properties of B we can write
2(B(X(s), X(s)) = B(Y(s),Y (), X(s) = Y(s)) = 2(B(X(s) = Y(s), X(s)), X(s) = Y (s))
< gIIX(S)II%/HX(S) =Y ()| +v[IX(s) = Y (s)[}-

Now we use the properties of A, ®, and C to obtain

aIXE) -YOI* + v [e(s)X(s) = Y(s)[}ds

—

0
< 2 [ ex(s)(Cs, X (5)) — Cls. Y (), X(5) = V(s)duo(s)
0

for all ¢t € [0,7] and a.e. w € . This implies (using also the ideas from the proof of Proposition
B.2)
Eey()|X(t) =Y (@)|>=0 forall te[0,T]
and hence P(X(t) = Y(t)) = 1 for all ¢ € [0,7]. Then for each countable and dense subset
S C [0,T] we have
P(sup || X(t) - Y(®)] = 0) = 1.
teS
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But X and Y have almost surely continuous trajectories in H, so
P( sup [[X(t) - Y(®)] =0) =1.
t€[0,T

This means that (1.1) has an almost surely unique solution. H

Lemma 1.2.6
There exists a positive constant co (depending only on A\, v, and T') such that

T
2
E sup U@+ E( [IU)}ds) < c2Bllaoll
t€[0,7] 0

The proof of Lemma 1.2.6 is analogous to the proof of Lemma 1.2.3 and makes use of Proposition
B.2.

Another important result of this chapter is the following theorem, in which we state that
the Galerkin approximations (U,,) converge in mean square to the solution of the Navier-Stokes
equation.

Theorem 1.2.7
The following convergences hold:

T
lim E[ |U(s) — Un(s)||¥ds =0

n—oo

0

and
lim E|U(t) ~ Up(t)|IP =0 for all t €[0,T].

T
PRrROOF. First we apply Proposition B.3 with 7 := T, Qv (7 ) := / |Un (8)=U(s) |3 ds, use Lemma
0

1.2.5, Lemma 1.2.3, and Lemma 1.2.6 to obtain
T

lim E [ |U(s) — Un(s)|/¥ds = 0.
n/—o0
0
Let ¢t € [0,T]. Now we apply Proposition B.3 with 7 := ¢, Q,/(T) := [|[Upw(T) —U(7)||, use Lemma
1.2.5, Lemma 1.2.3, and Lemma 1.2.6 and get
lim E||Uy(t) — U(t)||* = 0.
n/—o0

Every subsequence of (U,) has a further subsequence which converges in the norm of the space
L% (2 x[0,T]) to the same limit U, the unique solution of the Navier-Stokes equation (1.1) (because
we can repeat all arguments of the results of Section 1.2 for this subsequence). Applying Proposition
A.1 it follows that the whole sequence (U,) converges in mean square to U. By the same argument

we can prove that for all ¢ € [0, 7] the whole sequence (U, (t)) converges to U(t) in the norm of the
space £3(Q). &
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Remark 1.2.8

1) The results of this section also hold if we consider equation (1.1) starting at s with s € [0,T)
(instead of 0) and we assume that xo is a H-valued Fs-measurable random variable such that
E||zo||* < oo.

2) The results of this section also hold if we consider instead of a mapping @, satisfying hypothesis

T
(vi) from Section 1.1, a process belonging to the space L% (Q x [0,7]) with E/H@(t)H‘%it < 0.
0

1.3 A special linear stochastic evolution equation

The results presented in this section prepare the investigations for the linear approximation method
from Section 1.4.

Let X,Y € £3(Q x [0,T]) be arbitrary processes with almost surely continuous trajectories in
H and

E suwp [|X(t)* <o, E sup [Y(1)]? < oo.
t€[0,T t€[0,T

For each M € IN let Ty := min{7;},7.;}. From the properties of the stopping times (see
Appendix B) it follows that

(1.25) Mlim Ty =T forae weq,

as soon as .

(1.26) P(UA{mu=1} =1
M=1

We define XM (t) := X (¢t A Tag), YM(t) := Y (¢t A Tyy) for all ¢ € [0, T].
Let G : [0,T] x H — H be a mapping satisfying hypothesis (v) from Section 1.1 and we assume
that for each ¢ € [0,T] the mapping G(¢,-) : H — H is linear. Let ag be a H-valued Fy-measurable

random variable with E||ag||* < oo and let ¥ € £2.(Q x [0,T]),T" € £%(Q x [0,T]). We consider
the linear evolution equation:

(P\IJI) (Z\p,[‘(t), v) + (AZ\I;I(S), U>d5 = (ao, v)

- O\N

+  [(B(X(s), Zw,r(s)) + B(Zw,r(s),Y(s)),v)ds

t

(U(s),v)ds +/(g(s,Z\y7p(s)),v)dw(s) —|—/(F(s),v)dw(s)
0

0

_l’_

o0 . °
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for all v € V, t € [0,7], and a.e. w € Q and for each M € IN we consider:

(Pyr) (Zyr(),v) + [{AZyp(s),v)ds = (a0, v)

L O —

+ <B(XM(S)7Z\ZI%I‘(S)) +B(Z\JI\14,F(8)7YM(S))7U>C[S

t

(W(s), v)ds + [(G(s, Zie(s)). v)du(s) + [(T(s), )du(s)
0

0

+

o _ . °

forall v e V, t €[0,T], and a.e. w € Q.
For each n € IN we define G, : [0,T] x H,, — H, by G,(t,v) :=II,G(t,v) and consider

X, =IL,X, Y,:=1ILY, ap,:=ao, XM(t):=X,(tATa), YM(t):=Y(tATu),

n

for all t € [0,T],v € H, and a.e. w € Q.

Let n € Nand ¢ € E%Hn 1) (2% [0,TT), v € L3 (2x[0,T]). We consider the finite dimensional
evolution equations

(Pnﬂlw) (Zn,wﬁ(t)w) + (Aanwp,(s),v)ds = (GOn,U)

t

(05)s0)ds + [(Gals, Zns () 0)du(s) + [(2(5),0)du(s)
0

0

0

b [BaXa9): Zuiiy(9)) + BulZuaiy (9, Ya(s), 0)ds
0
0

and for each M € IN let

(A ZM (5),v)ds = (agn,v)

(Prlz\,/lw,v) (ZM (t)7 U) + n,,y

1,3,y

t

(¥s),0)ds + [(Guls, Z1% , (5)). v)du(s) + [(3(5). v) ()
0

0

0
+ /(Bn(XéM(S), Znﬂl’ﬁ(s)) + Bn(Zn7¢7“/(s)7 YnM(s))7 U)ds
0
+
/

for all t € [0,T],v € Hy, and a.e. w € Q.
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Theorem 1.3.1
i) For each W € L2.(2x [0,T)),T € £2,(2 x [0,T]) there exists a V-valued, F x By, 71-measurable
H [0,T]
process (Z\I,7p(t))t€[0 - adapted to the filtration (Fi)icpo,r), satisfying (Pyr) and which has

almost surely continuous trajectories in H. The solution is almost surely unique, and there
exists a positive constant ¢y (independent of ag, V,I") such that

T
E SElp}AY(t)HZ\II,F(t)‘P + E/Ay(t)llZ\p,r(f)II%/dS
tel0,T

0

T T
< a[Blaol® + E [19(5)[-ds + E [ IT(s)ds
0 0

T T
and if E/H\If(t)”“l/*dt < o0 and E/|yr(t)u4dt < o0, then
0 0

T
2 4 2 1\2
E suwp A 01 Zur®l' + E( Ay Zer @)l ds)
te[0,7) 0
T T
< alBla* + E [ 0()l{-ds + B [ 7)) as].
0 0
(ii) For each ¢ € E%Hn ”_”V)(Q x [0,T)),y € L3 (2 % [0,T)) there exists a V-valued, F x B r)-

measurable process (Znﬂlw(t) adapted to the filtration (F)icjor), satisfying (Pn )

t€[0,T]
and which has almost surely continuous trajectories in H. The solution is almost surely

unique, and there exists a positive constant co (independent of n, ag,,~) such that

T
B sup Ay Ol Zuss @I+ B [ Ayl Zuso 0l ds
’ 0

T T
< afBlaol?+ £ [ [é()2ds + B [ I1()]%ds]
0 0

T T
and if E/H¢(t)\|4dt < oo and E/||7(t)||4dt < o0, then
0 0

T
2 4 2 2
S L L [Av O Z Ol ds)
€10, 0

T T
< alBlaol + E [ @) 'ds + £ [ 115 as]
0 0
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n
ProOF. (i) Let ¥ € £2,.(Q x [0,T]),T € £%(2 x [0,T]). For each n € IN let ¥,, := Z(\I/,hi>hi,
i=1
I, :=II,I". For the finite dimensional evolution equation (P%I,mpn) we apply the theory of finite
dimensional Ito equations with Lipschitz continuous nonlinearities (see [26], Theorem 5.5, p. 45).
Hence there exists a solution Zfl\f[q,mrn € L'% (2x1[0,71) of (P%I,mrn), which has almost surely

Has|l-llv)
continuous trajectories in H; this solution is almost surely unique.

For notational simplicity we define ZM := Z%Wn,r‘n'

Let M,n € IN. From the equation for ZM and Proposition B.2 we obtain the estimate:

T
(120 EAu@IZIDF + E A2 0l
0

T T
< c[Bllaol? + E [ |9()}-ds + B [ I(s)|ds],
0 0

where ¢ is a positive constant independent of M and n, but it depends on v, A\,T. We can write

T T
(1.28) E (120 dt < BAGLT) [ Ay 0122 ()]t
0 0

IN

T T
b
E{ exp {; O/ Y7 Tar) O/ Ay )12 <t>u%dt}

IN

T T
b
E{ exp {, 0/ 1Y (¢ A Tao) e 0/ Ay ()12 <t>u2vdt}

T
cexp {%} [E‘|a0‘|2 + E/H‘I’(t)‘
0

Hence, for fixed M the sequence (Z,]@w ) is bounded in the space £2,(Q x [0,7]). Consequently, there

exists a subsequence (n') of (n) and ZM € £2,(2 x [0,T]) such that for n’ — oo we have

IN

T
2_dt +E/Hl“(t)||2dt].
0

(1.29) zM  ZM,

We want to prove that for n’ — oo the weak convergence B, (X, ZM) —~ B(XM ZM) holds
in £3.(2 x [0,7)). Let v € V and v, := II,v. We see that

(Bn(X%,ZéM),U) - (Bn(Xr]y7ZéM)avn) - <B(X%7Zy)avn>

= (B(XM v) = B(XM, v,), zMy + (B(XM ,v), zM — ZM) + (B(XM, ZM) v).
Consequently,
(1.30) (Bp(XM zMy — B(XM, ZM) v)
= (B(XM v) = B(XY v,), ZMy + (B(XM,v), zM — ZM).

n n
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It holds !
T
£ [IBOGY (5), ) = BOCY (3). )] ds
0
T T
< ben (ol B [1X () = X2 (3) ds + o = val B [ 1X7 () ds).
0 0
Since v, and XV are the Fourier expansions of v and XM respectively, it follows that
(1.31) lim E/\\B(XM(S),vn) ~B(XM (s),0)||%.ds = 0,

Using (1.29), (1.31) in (1.30) we get

T T
Jim B (B (X (5), 23 (5)),€(5))ds = B [(BXY (), 2 (5)), ()
0 0

for all £ € Dy (2 x [0,T)). Since B, (XM, ZM), B(XM,ZM) € £%.(Q x [0,T]) and Dy (2 x [0, 7))
is dense in £2,(Q x [0,77]), we have B,/ (XM, ZM)y —~ B(XM ZM) for n’ — co. Analogously we can
prove that B,/ (ZM Y M) — B(ZM Y M) for n' — oo.

We take the limit n’ — oo in (Pr]z\’/[,\lfn/,Fn,)’ use the weak convergence (1.29), as soon as the strong
convergences of (X,JLW) to XM and of (YnM) to Y™ in the space £%(2 x [0,T]) and Proposition
A.3 to obtain

(1.32) (ZM(1),0) = (ag,v)— /(AZM(s),v>ds+ /(B(XM(S),ZM(S))+B(ZM(5),YM(S)),v>ds
0 0

+ 0/(@(5),@615 —|—0/(g(s,ZM(s)),v)dw(s) +O/(F(s),v)dw(s)

forallv € Vand Px A a.e. (w,t) € Qx[0,T]. The right side of (1.32) has a continuous modification

(as an H valued process), and this process we identify with (Z\Jl‘,{r(t)) (see [21], Theorem 3.2,

p. 91). So, (Z@{F(t))tem
continuous trajectories in H and satisfies (Pg’) (identically with (1.32)) for all v € V, ¢ € [0,T] and
a.e. w € (). By standard methods (see the final part of the proof) we can prove that the solution
of (P\%“) is almost surely unique.

t€[0,T]

is a process from the space £2, (2 x [0,7]) which has almost surely

'Since V < H we have ||v||*> < cav||v||} for all v € V.
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Let Qk be the set of all w € Q such that Zé,(r(w, -) satisfies (P\{f’r) for all t € [0,7],v € V and

[e.9]
such that Zé,{ r(w, ) has continuous trajectories in H. We define ' := ﬂ Q. We also consider
K=1
o0
S = U U {we Q| Tk =T and 3t €[0,T] : Z\Il,ip(w,t) # Zfl‘,/{p(w,t)}.
M=11<K<M

We have P(S) = 0, because otherwise there exist two natural numbers M, Ky with Ky < My such
that the set

Sho ko = {w € V|Ti, =T and It € [0,T] : Zg$(w,t) # Zg % (w, 1)}
has the measure P(Sh,x,) > 0. We define for each t € [0, T]
Zg,%(w,t) , weE SM(LKO
Z*(w,t) =
Zé‘j{%(w,t) s WGQI\SM()’KO.

We see that for all w € Sy, k, there exists t € [0,7] such that Z*(w,t) # ZM0(w,t). This
contradicts to the almost surely uniqueness of the solution of (Pé/[ ). Consequently, P(S) = 0.
We define

= U {Ty =T}.
M=1

Obviously P((Q/ N\ S) = 1 (see also (1.26)). Let w € (' NQ”)\ S. For this w there

exists a natural number My such that Tps(w) = T for all M > My. Hence XM (s) = X(s) and
YM(s) =Y (s) for all s € [0,T] and for all M > M. Equation (P\%F) implies

(1.33) (Z\]I\,/{F(t),v) + <AZ\JI‘,{F(S),v>d5 = (ag,v)

- o\ﬂW

+ [(B(X(5), Zy'r(s)) + B(Zyip(s), Y (s)), v)ds

t

(W(s). 0)ds + [(G(s. Zi (), v)dwls) + [(T(s). 0)dun(s)
0

0

_l’_

o—__°

for all M > My and all t € [0,T],v € V. We have

T
Jim [1Z4(0) = 230 de = 0
—00
0

and

Jim 1Z2805-(t) — ZEo @) =0 forall te[0,T).
—00 b b
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For each ¢ € [0,T] we define

Zyr(w,t) = Zg%(w,t) = lim Z§(w,1).

M—o0

This definition is correct because w ¢ S. Then (1.33) implies

(1.34) (Zor(t)v) + /(AZ\p,p(s),v)ds — (a0, v)
0
(B ), Zur(s) + BZar(). Y (5)). v)ds
0
+ /<\I/(s),v>ds +/(Q(S,Z\p7p(s)),v)dw(s) —|—/(F(s),v)dw(s)
0 0 0

for all w € (Q N Q”) \ S,t € [0,T],v € V. The process (Zy r(t))icio,r is V-valued, F x Bjg 7
measurable, adapted to the filtration (F;);co,7] and has almost surely continuous trajectories in
H, because all Z\ZI\,/{F have this properties. For Z\ZI\,/{F we can prove an analogous inequality as (1.27).
Thus we get

T
(135 BAYD|Zox@)IF + E[Av®)Zur®)d:
0
T
< liminf {EAyu (D ZV (@) + E [ Ay 01285 0]t}
0
<

T T
c[Bllaol* + E [ [0} ds + E [ 1) %ds].
0 0

where ¢ is the same constant as in (1.27). We obtain the other estimate by using in (Py ) the Ito
formula and then Proposition B.2.
Now we prove that equation (Py ) has an almost surely unique solution. Let

e1(t) == Ay (t) exp{—X\t}.

We assume that Z and Z are two solutions of (Py,r) which have almost surely continuous trajec-
tories in H. Then for all ¢ € [0,7] and a.e. w € Q we have
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e (D1Z() = Z()|? + 2 / er(s)(AZ(s) — AZ(s), 2 (s) — Z(s))ds
0
= 2 [er(s)BX(s), Zs) = 2() + B(Z(s) ~ 2(5), Y (5)), Z(s) ~ Z(s))ds
0

t t
b - .
- /61(5)0\ + ;HY(S)H%/)HZ(S) — Z(s)||*ds +/€1(8)Hg(5, Z(s)) — G(s,Z(s))|*ds
0 0
t
+ 2 [er(5)(0s, 2()) — G5 2()), Z(5) = Z(s))dw(s).
0
Taking into account the properties of A, B and G, it follows that for each t € [0,T] and a.e. w €

(1.36)  a®IZt) - ZOI* + v[el)Z(s) - Z(s)lfids

—

0
< 2 [e(s)(G(s Z(5)) ~ G, Z(5)). Z(5) ~ Z(s))du(s).
0

This implies (we use the same ideas as in the prove of Proposition B.2)
T
E/AY(S)HZ(S) ~ Z(s)||2ds = 0.
0

Hence Z(w,t) = Z(w,t) for P x A a.e. (w,t) € (Q x [0,T]). Using this result and (1.36) we deduce
that
E sup Ay(1)|Z(t) - Z(1)|* =0,
t€[0,T]
which means that (Py r) has an almost surely unique solution.
(ii) The existence, estimation, and (almost surely) uniqueness of the solution Z, y , of (P 4 ~)
can be proved analogously to the proof of (i). l

Lemma 1.3.2
We assume that EAV?(T) < co. Let (1), (7a) be sequences in L£2,(Q x [0,T]) and L3(Q x [0,T]),
respectively, such that i, € E%Hmll-llv)(Q X [0,T]), v € LY, (2 x[0,T]) for each n € N . If (Juy)
converges weakly to U € £2,.(Q x [0,T]) and (v,) converges weakly to T' € £2,(Q x [0,TY)), then for
n — oo we have

AyZn7¢n7,yn — AyZ\p,[‘ in ﬁ%/(Q X [O,T])

and
Ay (T) Zn oy (T) = Ay (T) Zyp(T) in LK)
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PROOF. Because (Ji,,) converges weakly to U € £2,.(Q x [0,T]) and (v,) converges weakly to
[ € £3(Q x [0,7T]), it follows that there exists a constant c3 > 0 such that for all n € IN

T T
B[ Jon (o)t + E/ i (O)]dt < s
0

For simplicity we define Z,, :== Z,, y,, 5, and zM .= ZM Applying Theorem 1.3.1 we obtain

nd}n Yn*

(1.37)  sup {EAY(D)||Za(T) = Zox(D)|* + B / Ay (5)1Zn(s) = Zux(s)|[}ds }

1<n

T
< (a+ (et Elaol® + E [ [9(s)}-ds + B [IT(s)|%ds).
0 0
Let € € Dy« (2 x [0,T]) be arbitrary, but fixed. We want to prove that
T
lim E [(£(s), Zn(s) — Zwr(s))ds = 0.

n—oo

0
Since Mlim Ty =T (see (1.25)) for a.e. w € Q, EAV*(T) < oo and € € Dy«(Q x [0,T]), we get
T
(1.38) Tim B [ AP ($)E(5) -ds = 0
v

Let € > 0. There exists a natural number K = K, such that

1<n

T 52
(1.39) sup {E [ Ay (5)12u(5) = Zur(5)ds | E / AP (s) ) -ds < =
0

Relation (1.38) implies

E / — Zyr(s))ds
vz
< <§gp{E/Ay N1Zu(s) = Zur(s) s | B /A D) <
for all n € IN.
From the (almost surely) uniqueness of the solutions of (P ) and (PE ‘o v )» TESDECEIVELY, We
conclude that
Tk
E / 1Zu(s) ~ ZX (5) i ds = B / 128 () = Zox()}ds 0.

Then for all n € IN we have
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T

(140) | [(€(s). Zuls) ~ Zox(s)ds

Ti T

< |B [ (€6 2us) = Zur@)ds| + |E [(€06), Zu(s) ~ Zur(s))ds
0 Tk
7 T

IN

£ / (§(6). Zu(s) = 215 (s))ds

+|E [0, 256) - ZEr(9)as

n

s
B [(€0).25(5) - 2 p(o)as| +

n

+ E/ Z\I/ F Z\IJ7F($)>d$ + - =

In the following we prove that there exists an n. > 0 such that
Tk

B [ (€0, 285 5) - ZiSr(s)as| <

n

for all n > n.. Analogous to (1.28) (see the proof of Theorem 1.3.1) we have

T
bK
E/ Hfo(s)H%/ds < cexp {7} [EHGOHZ + 03}-
0

Hence (ZX) is a bounded sequence from £2,(Q x [0,7]). Consequently, by sequential weak com-
pactness there exists a subsequence (n') of (n) and Z% € £2( x [0,T]) such that for n’ — oo we
have

(1.41) zZE ~ 75 in £3(Q x [0,T)).

As in the proof of Theorem 1.3.1 we can show that B, (XX ZEK) — B(XE, ZK) and
B (ZE,YE) = B(ZX,YE) in £2.(Q x [0,T]) for n’ — oco. We take the limit n’ — oo in equation

1y Lo
(PK@ ., ) use the weak convergences given in the hypothesis and in (1.41), then the strong con-

vergences of (Xff) to XX and of (Ynf,() to Y in the space £%(Q x [0,T]) and Proposition A.3.
Then we obtain

(Z5(0),0) + [(AZF (), 0)ds = (a0,0) + [BOC(5), 25(5)) + BEZK (5), Y (5),v)ds
0 0

t

+ / (W(s), v)ds + O/(Q(S,ZK(S)),v)dw(s) + O/(F(s),v)dw(s)

0

forallv € V and P x A a.e. (w,t) € Q x [0,7]. The (almost surely) uniqueness of the solution of
equation (P\f,(’r) implies that

ZK(w,t) = qufr(w,t) for Px A ae. (w,t)€Qx][0,T].
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Hence
Z8 = Zgr in L3(Qx[0,T]).

We also see that each weakly convergent subsequence of (fo ) converges weakly to the same

limit Zé,{ r- Therefore, the whole sequence (fo ) converges weakly to Z\II,{ rin £3(Q x [0,77) (see

Proposition A.1).
Hence, there exists n. > 0 such that for all n > n,. we have

Tk
E 0/ (€(5). ZX (5) — Zipl(s)ds < =

Using (1.40) we deduce that

T
‘E/({(s),Zn(s) - Zq,,p(s)>ds’ <e forall n>n,
0

and consequently,
T

lim E [(£(s), Zn(s) — Zwr(s))ds = 0.

n—00
0

Because Dy+ (€2 x [0,7]) is dense in £3..(Q2 x [0,T]) and Ay Z,, Ay Zyr € L (Q x [0,7T]) (we do
not know whether Z,, Zy r € £3,(2 x [0,77])) we conclude that for n — oo

(1.42) AyZ, = AyZyr in LE(Qx[0,T]).
We want to prove that for all & € Dy (£2) we have
(1.43) Jim E(Zyr(T) — Zn(T),§) = 0.
Let £ = v € Dy (), € > 0. There exists an index K € IN such that for all n € IN we get
(1.44) |E(Zw,r(T) = Zn(T),v)¢| < |[E(Zw,r(T) = Zn(T), gv)d|
B 1/2
+ v = Mo { E(¢*AyH(T) ) sup [ EAY(T)|| Zu 0 (T) — Zu(T)|?] }
1<n
5
< |E(Zur(T) = Zu(T), gv)g| + 3 -

In the second inequality we have used (1.37). From (P, y,) and (Py ) we conclude that
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T
E¢(Zo.r(T) — Zy(T), T gv) + Ed / (AZy1(s) — AZu(s), T xv)ds
0

T

= E(ﬁ/(B(X(S% Zw,r(s)) = B(Xn(s), Zn(s)) + B(Zwr(s), Y (s)) = B(Zn(s), Yn(s)), L v)ds
0
T

T
+ B [(W(s) = T (s), Mxv)ds + Eo / (G(5, Zu.r(5) — Zu(s)), Mxcv)duw(s)
0

T

+ E¢ [(T(s) — vn(s),Igv)dw(s).
0

In the above equation we take the limit n — oo, use the weak convergence (1.42) and obtain that
there exists an n. > 0 such that

|E(Zy p(T) — Z,(T),Igv)p| < g for all n > n..

We use (1.44) to deduce that
|E(Zyr(T) — Zn(T),v)¢| <e forall n > n..

Hence (1.43) yields.  Since Dy(Q) is dense in £3(2) — L%(Q) and since we have
Ay (T)Z(T), Ay (T) Zy r(T) € L3(2) (note, we do not know whether Z,(T), Zy r(T) € L3(Q))
we conclude that

Ay(T)Zn(T) = Ay (T)Zyp(T) in  L3(). u

Remark 1.3.3

Theorem 1.3.1 and Lemma 1.3.2 hold also if G is not a mapping satisfying hypothesis (v) from
Section 1.1, but a stochastic process belonging to the space £%,(Q2 x [0,7T7).

1.4 Linear approximation of the solution of the stochastic
Navier-Stokes equation

In this section we approximate the solution of the Navier-Stokes equation by the solutions of a
sequence of linear equations with additive noise and prove that the approximations (un) converge

in mean square to the solution of (1.1).
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For each n =1,2,3,... we consider the linear evolution equation with additive noise

t

(B) (un(t),v) + / (Aun(s), v)ds = (z0,v) + / (B(un_1(s), un(s)), v)ds
0

0
t t
o [@Canoa () 0)ds + [(Cls,un-1(5)). 0)du(s),
0 0
forallve V,t€0,T], and a.e. w € Q, where ug(t) =0 for all t € [0,7] and a.e. w € Q.

Remark 1.4.1

1) In equation (]5”), considering that u,_1 is known, the operators A and B depend linearly on wu,
and the noise is additive with respect to u,.

2) The approximation method given in this section holds also, if the sequence of approximations
(uy) starts with ug(t) := zq for all ¢ € [0,T] and a.e. w € Q.

Theorem 1.4.2
For eachn € N equation (P,) has an almost surely unique solution u, € L3,(Qx [0, T]) with almost
surely continuous trajectories in H.

Proor. We prove the statement by induction. We apply successively Theorem 1.3.1 on Zy 1 := uy,
ap == xg, X 1= Up_1,Y = 0,a9 := zg, ¥(s) := O(s,up—1(5)), I := 0, G(s) := C(s,upn—1(s)) (for G

we also take into account Remark 1.3.3). W

Now we establish some properties for the solutions of the equations (15”), n € IN.

Lemma 1.4.3
There exists a positive constant c¢1 (depending only on X, p, v, and T) such that each of the
expressions

sup Eljun (0] /||un Jlpds)”
te[0,7

(n=1,2,...) is less than or equal to c1E||zo||*.

PROOF. Let n € IN. We define Z(t) = e~V ¢ ¢ [0, T]. Using the Ito formula we have

OO+ 2/ ) Aun () (s )>ds—Hwo!!2+2/ 05, tn-1(5), wn(5))ds

+ /z( )C(5. w1 (s))|Pds — (9X + 5 /7) O/ ) lfun(s)|ds

o

+ 2 [25)(Clstn1(5)), a(3))du(s)
0



CHAPTER 1. EXISTENCE AND APPROXIMATION OF THE SOLUTION

and
t

EBOlun O + 4/5(8)<Aun(8),un(8)>|!un(8)|!2ds

0

|rxou4+2/ e, - (Pl ()]2ds = (O3 +5/R) [ Z(3)]fun ()] 'ds
0
+ 4 / (5) (® (5,11 (5)), () ) s + 4 / (5)(Cls, tn-1(5)), un(5))*ds
0

+ 4/ (5, un—1(5)), un(s))llun (s) [ *duw(s).

Using the properties of A, ®, and C and some elementary calculations, we obtain

(1.45) 20 [2)un(s)ods < ool + O\t VD) [ 2(6) un-1 ()]s
0 0

t

2 [H6) (Cs. () un(5)) ()
0

and

(146)  EOun( + v [25) [un()I un (5) s + 2030+ VR [ 2(6)]fun ()] ds
0 0

IN

lzoll* + (3X + VD) [ 2(6) un-1 ()] *ds
0

t
A5t () (5)) ()] o).
0
Using (1.46) and the ideas from the proof of Proposition B.2 we get
t
(47) B O+ 283+ VAE [26)llun ) s

0
t

< Bllaoll* + GA+ VA E [ 2(3)]lun1(5)]ds.
0
By successive application of (1.47), we obtain
t
EZ(t)||un (t)||* + 23\ + \/ﬁ)E/é(s)Hun(s)H‘lds < (1 + % +...+

0

51) Ellaoll”
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Consequently, there exists a constant co > 0 (independent of n) such that
(1.48) P Ellun(®)]* +2(31 + \/ﬁ)E/Ilun(S)|!4d8 < 2Bl
te[0,T

In (1.45) we square both sides of the inequality. Then we use the properties of the stochastic
integral and those of the Lebesgue integral to obtain

T T

4V2E/ un()[7ds)” < 3Bllao|[* +3(\+ V)E /z a1 (s)[%ds)”

0

0
+ 128 /z<s><c<s,un,1<s>>,un<s>>dw< | <3E||330H4+03E/ s (5) s

T
+ E/§2(s)|]un(s)|]4ds,
0

where c3 is a positive constant depending on A, p, and 7. Taking into account (1.48) and the
properties of Z, it follows that there exists a constant ¢4 depending on (A, u, v and T') such that

2
E( [ lun(s)lds)” < exBllal =

We define
(t) = Au(t) exp{—(\ + Vii)t}

for all t € [0,7] and a.e. w € © and introduce the following notations:

N
(1.49) sn(t) =D e)[lun(t) = U@,
n=1
N
(1.50) Sn(t) =Y eM)|ua(t) = UM,
n=1

where N is a natural number, ¢ € [0,7], w € Q.

Lemma 1.4.4
The following convergences hold:

T
lim E [ é(s)|jun(s) — U(s)|3-ds =0

n—oo

0

and

lim Eé(t)|un(t) —U@)|>=0  for all t e [0,7].

n—oo
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PROOF. Let n € IN. Using (1.1), (P,) and the Ito formula we obtain

(1.51) e(t)|lun(t) (t)|1* + 2/ V(Aun(s) — AU (s),un(s) — U(s))ds

t

= 2 [E5) (Bl (5), un(5)) = BU(5). U (). unls) ~ Uls)ds

0

JENU ) un(s) = U(Pds = A+ VD [ &) (s) = Uls)]ds
0

R o

—+
[\

0
6@, 1(5)) — B(s, U(5)), () — Us))ds
0
+ / NIC(s,un—1(s)) — C(s,U(s))|*ds
0

+ 2/6(3)(C(s,un_1(s)) —C(s5,U(3)),un(s) —U(s))dw(s),
0
for all ¢t € [0,7] and a.e. w € Q. From the properties of B we can derive the following estimate:
2(B(un—1(s),un(s)) — B(U(s),U(s)),un(s) = U(s))
= —2(B(un-1(s) = U(s), un(s) — U(s)), U(s))
2VBU(3) vl -1(5) = U ) om-1(5) = U ()1l (5) = Us) [ 1 (5) — U )
Shin1(5) = U) [} + S lunls) = UGs) I}

IN

IN

b U 1 (5) ~ U + oo |0 () () ~ U(s)P

for all s € [0,7] and a.e. w € Q. Using this estimation and the continuity of C in (1.51), we obtain

t t

2(0)un() U + 5 25} lun(s) = Uls)[Beds + (A + VR [&(6)]lun(s) — U (s)] s

0 0

(s,un—1(s)) = C(s,U(s)),un(s) — U(s))dw(s)

IN
oo |
\
?

3
<:

Q.

VA

+

b
\

- 2,// ) (un-1(5) - @M?—WM@»—U@m%ds

0
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£ OV [E5) unma(s) — UGs)Pds
0

for all t € [0,7] and a.e. w € Q.
Summing up these relations for n = 1 to an arbitrary natural number N, we get

NORY" / Sw(s)ds + 5o AU uw(s) - U(s)|Pds
0

t

+ O VR [s)un () = Us)|Pds < 3 [e(@)luos) - Uls) [ ds
0 0
+ O+ VR [@lunls) ~ UE)Pds + o [0} luols) — Uls)]%ds
0 0
N t
+ 2 Z/é(s)(C(s,un_l(s)) —C(s,U(s)),un(s) — U(s))dw(s)
n:10

for all t € [0,T] and a.e. w € Q, where sy and Sy are defined in (1.49) and (1.50). Taking the
mathematical expectation we have

Esn(t) + VE/SN(S)dS < gE/é(s)Huo(s) —U(s)||}ds
0

+ A+ VHE é(s) luols) — U(s)|Pds + = [e()|U()] [uols) — U(s)]%ds
0 v 0

for all ¢ € [0,7]. But 0 < é(s) <1 and up(s) =0 for all s € [0,7], a.e. w € . Applying Lemma
1.2.6 and Lemma 1.4.3 it follows that there exists a positive constant ¢, which does not depend on
N, such that

T
Bsn(t) +vE [Sx()ds < B [ (106} + 0+ VITE) + 5o [USRITE)?)ds < e
0

for all ¢ € [0,7] and all natural numbers N. Consequently, for all ¢ € [0, 7] we have

t

> Be(t)ua(t) = U +v Y B [e()lun(s) ~ U(s)lpds < e
n=1 n=1

0

Hence
T

lim Ef é(s)||un(s) — U(s)||#ds =0

n—oo

0
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and for all ¢ € [0, 7] we have
lim Eé(t)|un(t) — U(t)||* = 0. |

n—oo

The main result of this section is the following theorem.

Theorem 1.4.5
The following convergences hold:

T
Jin [ un(s) = U(s) fds = 0
0

and
lim_ E|un(t) — UB|?=0 forall tel0,T).

PrRoOOF. We take Ty := TJ\% . From Lemma 1.4.4 it follows that for each fixed natural number
M we have

Tu
nangoE/ |un(s) = U(s)||3ds =0 and nhﬁn&) Elun(Tar) = U(Tar)||> = 0.
0

T
First we apply Proposition B.3 for 7 := T, Q,(7) := /Hun(s) — U(s)||?ds, use Lemma 1.4.3 and
0

Lemma 1.2.6 to obtain

T
Jim B [ (s) = U(s) fyds = .
0

Let ¢t € [0,T]. Now we apply Proposition B.3 for 7 :=t, Qn(7) := ||un(7T) — U(T)||, use Lemma
1.4.3 and Lemma 1.2.6 to get

lim Elfu, (t) - U(H)]> = 0. .



Chapter 2

Optimal Control

We consider the stochastic Navier-Stokes equation controlled by linear and continuous feedback
controls, respectively, by bounded controls (which are not feedback controls). Since the considered
equation is nonlinear, we are dealing with a nonconvex optimization problem. Our purpose is to
prove in Section 2.2 ; Section 2.3 and Section 2.4 the existence of optimal and e-optimal controls.
In Section 2.5 we investigate a special property for the solution of the stochastic Navier-Stokes
equation, which we assume to be fulfilled in the following sections. In Section 2.6 we calculate the
Gateaux derivative of the cost functional and in Section 2.7 we formulate a stochastic minimum
principle. We complete the statement of the stochastic minimum principle by giving in Section 2.8
the equations for the adjoint processes. In the last three sections we use and adapt the ideas from
A. Bensoussan [3] for the case of the stochastic Navier-Stokes equation.

2.1 Formulation of the control problem

First we consider the stochastic Navier-Stokes equation controlled by linear and continuous
feedback controls. In this case we denote by U the set of all admissible controls, which we
assume to be the set of all functions ® : [0,7] x H — H satisfying the following conditions: for
each t € [0,T] we have ®(t,-) € L(H) and

| (t1, 1) — <1>(t2,x2)||2 < alt; — 1f2|2 + pllzy — 302||2 for all t1,ty € [0,T], 21,20 € H

where a, u > 0 are given constants.
Our purpose is to control the solution Ug of the Navier-Stokes equation

41
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t t

(2.1) (Ug(t),v) +/<AUq>(s),v>ds = (x0,v) —i—/(B(Ucp(s),Ucp(s)),v)ds
0 0

+ O/(Cb(s,U@(s)),v)ds +O/(C(3,Uq>(s)),v)dw(s)

forall v € V, t € [0,T], a.e. w € , by the feedback controls ® € Y. We consider the following
cost functional

T
(2.2) J(®) = E/L[s, Us(s), ®(s, Us(s))]ds + EKX[Us(T)],  ® €U,

0

where £:[0,7] x H x H— R4, K: H — IR} are mappings satisfying the conditions:
(Hy) LGt @1,91) = L0 22,99)] < e (flor = 22 + 1 — 12,
(1) = K(2)] < exclla — a2
for all t € [0,T], z1,22,y1,y2 € H, where c¢, ¢k are positive constants;
(Hy) for all z,y € H we assume that £(-,z,y) € L%[0,T).

We denote by (P) the problem of minimizing J among the admissible controls.

Now we consider the stochastic Navier-Stokes equation controlled by bounded controls, which
are not feedback controls. In this case we denote by U® the set of all admissible controls, which we
assume to be the set of all functions ® € £%(2 x [0,T]) satisfying the condition:

|P(w,t)|| <p for Px A ae (w,t)ex]0,T],

where p > 0 is a given constant.
In this case the stochastic Navier-Stokes equation has the form

t t

(2.3) (Ua(t),v) + / (AUs(s),0)ds = (z0,0) + / (B(Us(s), Us(s)), v)ds
0 0

t t
+ /(@(s),v)ds + /(C(S,Uq>(s)),v)dw(s)
0 0
forallve V, ¢t €[0,T], a.e. w€ Q, where ® € U®. The cost functional is in this case given by
T
(2.4) T(®) = E/ﬁ[s, Us(s), ®(s)|ds + EK[Us(T)],  ® e U,
0

where £ and K satisfy (Hy) and (Hs). We denote by (P°) the problem of minimizing 7, given in
equation (2.4), among the admissible controls of the set .
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Remark 2.1.1
In their paper [1] F. Abergel and R. Temam investigate the deterministic Navier-Stokes equation

by controlling turbulence inside the flow. They give a cost functional which involves the vorticity in
the fluid. For our problem (P?) this would be L(t,Us(t), ®(t)) := ||V x Us(t)||? + ||®()]|?, K := 0.

2.2 Existence of optimal controls

First we prove some properties of the cost functional 7.
Lemma 2.2.1
(i) Let (®,) be a sequence in U and let & € U be such that

Jim, / [t ) = (&) Bt = 0.

Then lim J(®,) = J(®).

n—oo

(ii) Let (®,,) be a sequence in U and let ® € U be such that
lim /HCD (t)||*dt = 0.

Then lim J(®,) = J(®).

n—oo

PROOF. (i) Let U := Usp and e(t) = Ay(t) exp{—(\ + 2\/p + 1)t}. It follows by the Ito formula
that

e(®)U(t) = Us, (1)]* + 2/6(8)<AU(8) — AUs,(5),U(s) = Us, (s))ds
0

= 2/6(8)(5(U(8),U(5)) = BUs,(s),Us,(5)),U(s) = Us, (s))ds
0

|
R | o
—

eNUGSIVIU(s) = Us, (s)I*ds — (A + 2/ + 1)/6(8)HU(8) — Us, (s)|*ds
0

e(s)(®(s,U(s)) — Pn(s, U, (s)),U(s) = U, (s))ds

+
[\
o\ﬁ o

e(s)lIC(s,U(s)) = C(s, Vs, (5))|*ds

+
o\w

e(s)(C(s,U(s)) —C(s,Us,(5)),U(s) —Us, (s))dw(s).

+
[\
O\_,&
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In view of the properties of B we can write
2(B(U(s),U(s)) — B(Us,(s),Us,(s)),U(s) = Us,(s))

= 2(B(U(s) = Ua,(s),U(s)),U(s) = Ua,(s))

< SHU(S)HZvHU(S) ~Us, () +v[|U(s) = Us, (s)]V-

Now we use the properties of A, ®, C, and those of the stochastic integral to obtain

E sup ¢(s)|[U(s) = Us, (s)|* + vE /6(5)||U(5) — Us, (5)|[Vds
s€[0,t] d

IN

2E/ ()[1®(5,U(s)) = ®n(s,U(s))|*ds

+ 4B sup | / = C(r.Us, (1), U(r) = Vs, (r))du(r)
s€[0,2]

re(0,s]

< QE/e(S)H‘P(S,U(S)) ®,(s,U(s))]| ds+k1E/ sup e(V")HU(T)_U@n(T)HQ}ds
0

+ %E sup e(s)|U(s) — Us, (s))|I?,
s€[0,t]

where k; is a positive constant and ¢ € [0, 7]. By Gronwall’s Lemma we get

E sup ¢(s)|U(s) = Us, (s)* + 2VE/€(5)||U(5) — Us,(5)|¥/ds
s€[0,t]

T
< 462’ﬂTE/H<1>(s, U(s)) — ®n(s, U(s))|2ds,
0

for all t € [0,T].

44

We take t := T]\(/f . Using the hypothesis and the above inequality it follows that for each fixed

M € IN we have
Ty
Jim BIU(TY) ~ Vo, (TP =0, Jim E [ [U(s) = U, (5) s = 0.
0
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Applying Proposition B.3 for T := T, Ty == T}, Qu(T) = ||[U(T) — Us, (T)|?, respectively,

T
Qn(T) = / |U(s) — Us, (5)|[2ds, we obtain
0

n—oo

T
lim E|U(T) — Us, (T)|? =0, nlingoE/ |U(s) — Us, (s)|[3ds = 0.
0

The continuity properties of £ and K imply lim J(®,) = J(®).
n—oo
(ii) We use the same method as in (i). B

Using Lemma 2.2.1 and the generalized Weierstrafi Theorem we obtain the following theorem.
Theorem 2.2.2

(i) If the admissible controls are in a compact subset of U, then there exist optimal feedback controls
for the minimization problem (P).

(ii) If the admissible controls are in a compact subset of U, then there exist optimal controls for
the minimization problem (PP).

2.3 The existence of optimal feedback controls

It is difficult to guarantee the compactness of the set of admissible controls and therefore it is
useful to derive the existence of optimal controls using other methods. In this section we prove the
existence of optimal feedback controls.

Let (®,,) be a sequence in U.

Lemma 2.3.1
There exist a subsequence (n') of (n) and a mapping ® € U such that for allt € [0,T], z,y € H we
have

(2.5) lim (@, (t,x),y) = (P(¢, z),y).

n/—o0
PROOF. Let {t1,t2,...} be a dense subset of [0,7] and recall that {h1,hs,...} is an orthonormal
base in H. The sequence (q)n(tl,hl)) N is a bounded sequence in H. Hence there exists a
n

subsequence (ni’l) of (n) and an element 2} € H such that for all y € H we have

lim (@,11(t2, 7)) = (21, y).

k—o0

The sequence (@n(tl, hg)) o is a bounded sequence in H. Hence there exists a subsequence (n,lcQ)
n

of (n,lcl) and an element z4 € H such that for all y € H we have

kllnolo(q)n;,2(t1,h2),y) = (23,9)-
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This procedure we repeat for all hq, ho,... and then we take the “diagonal sequence” (ni’k)kelN,
which has the property

lim (@, 16 (b1, h),y) = (21, 9)
k

k—o0
for all y € H and ¢ € IN. Of course, the subsequence (ni’k) depends on t;. Now we repeat the
procedure from above for to,t3,... and take again the “diagonal sequence” (nﬁ’k)kem, which we
denote by (n'). For all y € H and i,j € IN, we have
(2'6) !im ((I)n/(t]" hi)’y) = (Zg,y),

n —oo

where zf € H.
We want to prove that for each fixed ¢,7 € IN, © € H the sequence (@n/(tj,x),hi)) N is
n'e
convergent.

Let € > 0. There exists p. € IN such that
9 €
r—x < 0=
o= 2 < 357
where z,_ = II,_z. Equation (2.6) implies that there exists n{, € IN such that for all n’,m’ > nj,

(@t 2p.), hi) = (B (5, 2p.), i)

<

Wl m

For all n’,m' > n{, we have

(@ (t, ), i) = (Do (8, 7), i)

<@ty m = ), i)

+ | (@ (b, 7 = 2p.), hi)

| @ty ) ) = (D (), i)

<e.

Hence (@n/(tj, x), hl)) N is a Cauchy sequence, and we can define the function f; ; : H — IR by
n

fi,j(x) = hm (@n/(tj,x),hi).

n/—o00

Obviously, f;; is linear. Let p € IN. We have

p p
@7 S S = lim S (@t ), he)? < limsup [ @ (t, )2 < pla] < oo
i=1 [ n'—00
and
p p
(2.8) S Ufii(@) = figl@)? = n}EHwZ(¢n/(tj,$) — @, (ty, ), hy)?
i=1 =1
< limsup [ (£, 2) — (e, 2)[|* < oty — 1] < 00

n’—oo

for all j,k €N, z € H.
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We define @ : {t1,t2,...} x H — H as follows:
O(tj,x) = wa hi, j€IN, x € H.
By (2.7) and (2.8) we see that for each j € IN the mapping ®(¢;,-) is linear and continuous with
[®(t;,2)||* = me ) < pljz||* forall z € H,
as soon as for each j,k € IN we have
(2.9) |P(t), x) — P(ty, x Z | fij(x k(@) <alt; — x> forall z € H.

Now we define ® : [0,7] x H — H. Let t € [0,T]. There exists a sequence (%,) in {t1,ts,...} such
that lim ¢, = t, and we put
n—oo
O(t,r) = lim ®(t,,).

n—oo

Using (2.9) it can be proved that this definition is independent of the choice of (£,). Obviously, we

have
[@(t1, ) — D(ta, 2)||* < afty — ta

for all ¢1,t5 € [0,7] and all © € H. Consequently, ® € U and by the construction of ® we deduce
that it satisfies (2.5). H

For convenience, in the following we will denote the subsequence of indices (n’) obtained in
Lemma 2.3.1 by (n).

For n=1,2,... we consider the evolution equation
¢ ¢
(Bo,)  (Oa,(t).0) + [(ATa (). 0)ds = (w0,0)+ [(BUs(s), T, (5)). 0)ds
0 0

+ 0/(<I>n(s,Uq>(s)),v)ds +O/(C(S,Uq>(s)),v)dw(s)

for all t € [0,T],v € V and a.e. w € ). By Theorem 1.3.1, applied for Zy 1 := U%,X = Up,
Y =0, ap := mo, ¥(s) := Pp(s,Un(s)), G := 0, I'(s) := C(s,Us(s)) it follows that there exists an
almost surely unique solution Usp, € L3(Q x [0,T]) of (Es, ), which has almost surely continuous
trajectories in H and

T T
~ ~ 2
B sup |10, (01" + B [0, ()l ds)” < &2 [Bllaol + B [ |Ua(s)]'ds].
te

b 0 0

where ¢ > 0 is a constant (independent of n).
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For n=1,2,... we consider the n-dimensional evolution equation

(Bus,) (Onan(t)o) + /<Aﬁn@n<s> 0)ds = (@00, ) + [(Ba(TLUs(s). U, (5)). v)ds
0

t

N 0/ (s, Us(s)),v) ds + 0/ (T.C (s, Ua(s)), v) du(s)

for all ¢ € [0,T],v € Hy, and a.e. w € Q. By Theorem 1.3.1, applied for Z, 4. = ~n7q>n,

Xy, =LUs, Yy := 0, agn = 2on, ¥(s) := L@ (s,Us(s)), G := 0, y(s) := I[,C(s, Ua(s)) it follows
that there exists an almost surely unique solution U, ¢, € E( Holl- ”V)(Q x [0,T7]) of (Epn s, ), which
has almost surely continuous trajectories in H and

T

~ 2

B sup [10nen O+ B( [ 100, (9)]ds) < ea[Blleol* + 2 [ 10 (5) s
0 0

where ¢ > 0 is a constant (independent of n).

Theorem 2.3.2
The following convergences hold:

T
Jim B[ |[Us(s) = Us, (s)[ds = 0, lim E|Us(T) ~ Us, ()| =0,

0
nILngE/H% = Unan()[ids =0 and  lim E|Us(T) = Una, ()] =

ProoOF. We consider the evolution equation

t

(2.10) (#(t), v) + / (Az(s), v)ds = (z0,0) + / (C(s,Us(s)), v)dw(s)
0

0

for all t € [0,T]),v € V and a.e. w € Q. There exists an almost surely unique solution
z € L3(Q x [0,T]) of (2.10), which has almost surely continuous trajectories in H (see [14],
Theorem 4.1, p. 105). By using the ideas from Proposition B.2 we can prove that the estimate

B sup 201" + 208 [ ()]s < e[ Efaol? + B [Ua(s)]ds]
0 0

holds, where c is a positive constant depending on A. From Theorem 1.2.2 we have

E sup [Up(t)]* < oo, B [Us(s)]}ds < x.
t€[0,T] 0
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Hence, there exists k(w) > 0, independent of n, such that for all n € IN and a.e. w € Q

T T
@) sup (M@ < sup 2O < k@), [ITa(s)]ds < [l12()]ds < kw),
t€[0,T] t€[0,T] 0 0

T T
212)  sup [MUs()|? < sup Vsl < k(w), [IMLUs(s)lds < [ Vs (o)} ds < k(w)
te[0,7 te[0,7 0 0

By the properties of the stochastic integral and by the properties of Ug (see Lemma 1.2.6) we
see that for all s,t € [0, T

IN

£l [ et vatrnau)|,. < wE( [1C0:Usr))R-dr)

< ko(t—3)’E sup [Us(r)|* < e(t — s)*El|zo|*
re[0,T]

and

4

IN

V*

E|| [ I Us(r)du) b ( [ |Lcever); dr)’

< ka(t—5)’E sup [|Us(r)|[* < e(t — )*Ellzo|,
rel0,T7]

where k1, ko are positive constants. In the above estimates we need the V*-norm, because we will
apply the Dubinsky Theorem (see [35], Theorem 4.1, p. 132).

By the Theorem of Kolmogorov-Centsov (see [18], Theorem 2.8, p. 53; applied for a :=4, 5 :=1
and a process with values in a Hilbert space) it follows that there exist a random variable y(w) and
a positive constant ¢ such that

(2.13) H /C(r, Uq>(7"))dw(r)Hf/* <ot — 3]27,
(2.14) H /HnC(r, Uq>(7"))dw(r)Hf/* <0t — 3]27,

1
for v € (O, Z) and for every t,s € [0,T] with |t — s| < x(w) and a.e. w € Q.

Let Q C Q with P(Q) = 1 be such that for all w € Q we have:

e cquations (2.1) and (2.10) hold for all ¢ € [0,T], v € V;

e for each n =1,2,... equations (Es,) and (E, 4,) hold for all t € [0,T], v € V,
respectively v € Hy;

e the inequalities in (2.11), (2.12), (2.13) and (2.14) hold.
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From (Es, ), (2.10), (2.11), (2.12), and the properties of A, B, ®,,, it follows that for all w € Q
we have!

Vv dS
t€[0,T]

T T
sup (U, (1) = 20+ u/ [0, (5) = (5) s < 5, [IBWa(s), ()7
0

T
dpcyy 2b
+ & /||U Pds <57 sup 10a(0)1? 10 (5) 1 s
0

T

2b 4uc,,

+ = sup (0P / (@)l ds + = [ |[Ua(s)]*ds < ex (3 (w) + k(w)
V tefo,1] 5 v 5

where ¢ is a positive constant independent of n and w. Analogously, using (E, ¢, ) and (2.10) we
have

sup [[Uro, (6) = Iz()* + v [ |0, () = Taz(s) s
t€[0,T]

T t

2b 2b

= sup [LUs (O [ Us(s)ds + = sup [Tz [[Tx(s)} ds
0 te[0,7) 0

IN

t€[0,T
4 HV
y Lo / Vs (s)[Pds < e1 (@) + k(w)
0

where ¢ is the same constant as above.
Hence for all n € IN we have

(2.15) sup |Us, ()]1* + V/||U¢R(S)H%/d5 < co(w) forallweQ
tel0,T 4
and
(2.16) sup [[Tns, (O] + y/HUn@n(s)H%/ds < ep(w) forallwe O,
te[0,7 0

where co(w) is positive, independent of n.
Let w € €. For this w, we consider the sets

S:{U%(w,-)}n:lﬂ,...}, S:{Unq,n }n—l,Q,...}.

For each of these sets we want to apply the Dubinsky Theorem. By (2.15) and (2.16) we get
that S C £%,[0,T] and S c L} [0, T] are bounded. We have to verify that S, respectively S, are

'Since V — H we have ||v]|*> < cml|v||3 for all v € V.
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equi-continuous in C'([0,7],V*). From (Eg, ) and the Schwarz inequality we have

Ve +IBUs(r), Us, (r)ir+ + [ @n(r, Ua ()]

1Us,(t) = Us, (s)] %/*)dr

o< () [ (1ATs,0)

V*

+ H/C(r, Uq>(r))dw(7")‘ ?

for each t,s € [0,T],t > s. By (2.13), (2.15), and the properties of A, B, ®,, we obtain

1Us,(t) = Us, () < ca(w)(t —s) +6(t — 5)*

1
for v € (0, Z) and for every ¢,s € [0,T] with |t — s| < x(w), where ¢3(w) > 0 is independent of

n. Consequently, S is equi-continuous in C([0,77,V*). Analogously we can prove that S is equi-
continuous in C([0,77],V*). Now, using the Dubinsky Theorem, it follows that S and S are relatively
compact in £%[0,T] and hence there exists a subsequence (n) of (n) and U,U* € £%][0,T] such
that

T
(2.17) lim /HU%, (s) — U(s)|2ds = 0
" *)OOO
and
T
(2.18) TJim_ / 1T, (5) — U*(5)||ds = 0.
0

We use (Eg,,) and (2.1), the generalized chain rule, the properties of A and B to obtain

T
G0, (T) = Us(DIF + 20 [T, (5) = Un(s) [ ds
0

IN

2 [ (®w(5,Ua(s)) — ®(s,Ua(s)), Ua,, (s) = U(s))ds

+ 2 (@n/(s, Us(s)) — ®(s,Us(s)),U(s) — Uq>(s))ds.

O\ﬂ O\’ﬂ

According to Lemma 2.3.1, (2.17), and the properties of ®,,,® € U we get
T
(2.19) lim |Ts,(T) — Us(T)|> =0, lim /”Uq) (s) — Us(s)||>ds = 0.
n’—o0 " n’/—oo "
0

Every subsequence of (qun (w, )) has a further subsequence, which converges in the space £3/[0, 7]
to the same limit Ug(w,-) (because we can repeat all arguments of above). Applying Proposition
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A.1, it follows that the whole sequence (qun (w, )) converges to Up(w,-) in the space L£[0,T].
Analogously we conclude that the whole sequence (qun (w, T)) converges to Up(w,T) in H.

Our arguments from above worked for an arbitrary fixed w € Q. Hence (2.19) holds for a.e.
w € © and for the whole sequence (n). Taking into consideration that the processes (qun (t))

te[0,7)
and <Uq)(t))te[0 - are uniformly integrable (see Theorem 1.3.1 and Lemma 1.2.6) it follows that
T
T B[ [Us(s) — T, (5) 3ds = 0
0

and -
Jim B|[Us(T) = Us, (T)|[* = 0.

Now we prove the convergences for the sequence (Upne,). We use (E. ¢ ,) and (2.1), the
generalized chain rule, the properties of A and B to obtain

T
(220) |00, (1) ~ U@+ v [ [0, (5) ~ Llh ()} s
TO
< [IB@Us (). Llia(s)) ~ B (s), Ua(s))|[3-ds
0

T
+ o2 / (L@ (s, Us(s)) — @(s, Us(s)). U, () —~ U (s) ) ds.
0

By the properties of B we have

T
J1BILUs(s). IUs () = B (), Us (5)) - ds
0

T

1/2

< 2( sup [Ua(t) - IUa (O [ IUa(s) I ds)
te[0,7 0

T
1/2
< (sup (V@) [ [Us(s) ~ WU (s) 7 ds)
t€[0,T] 0

and by (1.4) it follows

%/*ds - O.

T
(2.21) lim / IB(ILy Us (s), Ly Us(s)) — B(Us(s), Us(s))|
0

n’—oo
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We write

T
/ (M@ (s5, Us(5)) — @ (5, Ua(s). U, () —~ MU (s) ) ds
0

O\ﬂ O\H O\ﬂ

(@n(s, Us(s)) — @(s,Us(5)), Un.a,(s) — U*(s))ds

+ (@n(s, Ugp(s)) — @(s,Us(s)), U*(s) — U<1>(s))ds

+ [ (@nls, Us(s)) = @(s,Ua(s)), Ua(s) — I, Us(s) ) ds.

By using this equality for n’, as soon as (1.4), (2.12), (2.16), (2.18), the properties of ®,, ® and
Lemma 2.3.1 we get

T
(2.22) lim [ (T @y (s, Us(s)) — (s, Us(5)), U, () — T Us(s) ) ds = 0.

n/—oo

0

From (2.21) and (2.22) we obtain that the right side of the inequality in (2.20) tends to zero.
Therefore

n/—oo

T
tim (00, (T) ~ T Ua(T)* =0, Jim / 10, (5) — Ly Us(s) [ ds = 0.
0
Hence by (1.4) and (1.6) we have
T
223l [Owe, ()~ Us(DIP =0, lm [0, () = Us(s)lds =0.
0

Every subsequence of (Un,cbn (w, )) has a further subsequence, which converges in the space £3,[0, T
to the same limit Ug(w,-) (because we can repeat all arguments of above). Applying Proposition
A1, it follows that the whole sequence (Un@n (w, )) converges to Ugp(w,-) in the space £3,[0,7],

respectively. Analogously we conclude that the whole sequence (ﬁn,% (w,T)) converges in H to
Uq> (w, T) . ~
Our arguments from above worked for an arbitrary fixed w € . Hence (2.23) holds for a.e.

w € Q and for the whole sequence (n). Taking into consideration that the processes (f]n@n (t))
and (Uq) (t))te[O,T]
it follows that the conclusions of this theorem hold. W

Let U, ¢ be the solution of (P,) (see Section 1.2) using the feedback control ®,, := II,®. Note
that U,.e = Up 1,9 for ® €U or € ue.

t€[0,T]
are uniformly integrable (see Theorem 1.3.1 and Lemma 1.2.6) and using (1.5)
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Theorem 2.3.3
The following convergences hold:

T
lim B[ ||Us(s) — Us,(s)[[-ds =0,  lim E|Us(T) — Us, (T)|I* =0,
0
T
lim B[ ||Us(s) — Un.a,(s)|¥ds =0 and lim E||Ug(T) — Un.a, (T)|? = 0.
0

Proor. We write U := Ug. Let M € IN and let Tys := T]\[/I] be the stopping time of U. We write

e(t) = AL (t) exp{—(2\ + 2\/p + 1)t}.
It follows by the Ito formula that for a.e. w € € we have

Ty

(2.24)  e(Ta)|Us,, (Tar) — U, (Tar)||* + 2 / e(s)(AUs, (s) — AUs, (5),Us, (s) — Us, (s))ds
Ty ’
= 2 [ () (BU(). U, (5)) ~ BUs, (5). Us, (5)). U, (5) ~ Ua, (s))ds
22 T Ty
- = e()IU ()3 U, (s) — Us,, (s)]|Pds — (2A + 2/ + 1) /e(s)HU@n(s) — Us, (s)ds
. "
+ 2/6(8)(‘1)n(8, U(s) — Us,(s)),Us, (s) — Us, (s))ds
(')TM
49 / e(s)(C(s,U(s)) — C(s, Us, (), Us. (5) — Us, (5))dw(s)
B
+ /e(s)IIC(S,U(s)) —C(s,Us, (5))||"ds.
0

In view of the properties of B we can write

2(B(U(s),Us, (s)) — B(Us, (5), Us, (5)), Us, (s) — Us, (s))
= 2B(U(s) = Us,(5),Us,(s) = U(s)),Us, (s) — Us,(5))
+ 2B(U(s) = Us,(s),U(s)),Us,(s) — Us, (s))

+ 2(B(Us,(s) = Us,(s),U(s)),Us, (s) — Us,(5))
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25|03, (5) = UGV IU(s) ~ Vs, () 11U (5) ~ Ua, ()12

IN

X [[Ta,() ~ Us, ()12 10, (5) — Us, (s)]13
+ 2;bIIU(S)IIHU(S)HvHU(S) ~Us, (8)IlV[IU () = Us,(s)Il + v[[Us, (s) = Us, (s)II},

+ YU 1T, (5) Vo, ()]

Using this estimates in (2.24) and after some elementary calculations, we obtain

Ty
Ee(Tw)|Us,, (Tar) — Us, (Tn) > + VE/B(S)HU%(S) — Us, (s)|[}/ds
0

IN

2Vb(E /T 10, (s) — U(s)llzvds)%
0

1
2

X

T
<E/(||U(S) ~ Us, ()VIU(s) = Ua,(s)I* + 1Us,,(5) = Us,, () 1Us,(s) - Uq>n(8)\l2)d8>
0
T

2bM - 1/2 . 1/2
b 2R (E[106) - T, (0)lpds) (B sup [U(0) - T, 0]
v 5 t€[0,T

T
(et 2>\)E/||U(s) — Ty, (5)||2ds.
0

Using the above inequalitiy, Theorem 2.3.2 and Lemma 1.2.6 we have

Tm
lim E|U(Tas) — Us, (Tar)|I? = 0, nlggoE/ |U(s) — Us, (s)||%ds = 0.
0
By Proposition B.3, applied on 7 := T, Qn(T) = |U(T) — Us,(T)|?, respectively
T
Qu(T)i= [ I1U(s) = U, ()}, we gt
0
T
lim E[[|U(s) ~ Us,(s)|yds =0 and lim E||U(T) — Us, (T)]* =0.
0

Now we prove the convergences for the sequence (Un@n). It follows by the Ito formula and the
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properties for A that for a.e. w € Q) we have

(2.25)

+

+

Ty

e(Ta)|Un,o, (Tar) — Un,a, (Tar)|I” + QV/G(S)HUn,cbn(S) — Un.a, (5)[{ds
0
Ty

9 / e(s)(BALU(5), U, (5)) — BUn.a, (), Un.o, (5))s Unt, (5) — Un.o, (5))ds
0

Ty
2 [N T2, — Vo, ()]s
" Ty
2\ + 27 + 1) / ()Tt (5) — Un.o, (5)||2ds
Ty "
2/6(3)(Hn<1>n(s, U(s) = Una,(s)), Un@n (s) — Un@n(s))ds
0
Ty

2 / e(s) (HnC(s, U(s)) = ,C(s, Un.a, (5)), Un.a, (5) — Un,%(s))dw(s)
0
Ty

[ @)L is.Uls) - (s, U, (5)) .

0

In view of the properties of B and (1.2) we can write

2UBILU (), Un, (5)) = BUnio, (), Uit (5)), Un, (5) = Uns, (5))
= ABILU(s) = Uno, (), Uit (5) = TU(5)), Un, (5) = U (5))
+ 2ABILU(S) = Uno, (), TLU(5)), Un o (5) = Uno, (5))
+ 2B(Uns,(5) = Una,(5),1U(s)), Uns,(s) = Uns,(s))
< VBT, (5) = LU v [TLU(5) = Una, ()20 (s) = U, (5)]]3

~ 1l 1
X NUn,(s) = Una, (s)I{|Una,(s) = Una,(s)]>

+ 27bHU(S)HHU(S)HVHl'InU(S) — Una,(s)v U (s) = Un,e,(s)]|

- 2 -
+ VUna,(5) = Una, (s)I5 + ;IIU(S)II%/HUn,cI»n(S) — Up,a,(9)[I-
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Using this estimates in (2.25) and after some elementary calculations, we obtain

T
Ee(Tan)||Un,o, (Tar) = Uno, (Tar)||* + VE/G(S)HUn,@n(S) — Una, (8)ds
0

IN

25 (E /T 1 (5) — HnU<s>||2vds)%
0

T
x (E J(IUG) = Uno, )R ITLU () = Un, ()]
0

[ SIS

+ 1000, (5) = Un o ()1 10, (5) — Unm(s)”z)dS)

2bM ’ - 1/2 . 1/2
b (B[ IV - One, ()ds) (B sup [LUE) - T, (O]
v 5 t€[0,T

T

e+ 2VE[ o) [Us) - O, (9)]*ds.
0

Using Theorem 2.3.2 and Lemma 1.2.6 we have

Tar
nlijnooEHUn,% (Tm) = Un,a, (i) |I” = 0, nlijnooE/ 1Un,,,(5) = Un,a, (s)||ds = 0.
0
By Proposition B.3, applied for 7 := T, Qn(T) = Hﬁmq)n(/]') — Un@n(T)Hz, respectively

T
Qu(T)i= [ 1Tw,0,/(5) = Uno, (5) [ s, we et
0

n—oo

T
lim E / 1Una.,(s) = Una,(s)[yds =0 and  lim E|Ung,(T) — Unae,(T)|* = 0.
0

Now we use Theorem 2.3.2 to obtain the conclusion of this theorem. H

The main result of this section is the following theorem, in which we prove that there exists
at least one optimal feedback control for problem (P).

Theorem 2.3.4
Assume for allt € [0,T],z € H that the mappings L(t,x,),K(:) are weakly lower semicontinuous.
Then there exists an optimal feedback control for problem (P).
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PrROOF. Let (®,) be a minimizing sequence for problem (P). We apply Lemma 2.3.1 and
Theorem 2.3.3 for this sequence. Therefore there exists a subsequence (n') of (n) and ® € U
such that for all ¢ € [0,T], z,y € H and a.e. w € § it holds

lim (@ (t, U, (1)), ) = (@(t, Un(£)), )-

n/—oo0

From (H;), (Hz), and Theorem 2.3.3 we have

T T
E/E[t, Ugp(t), ®(t, Us(t))]dt < lim inf £ Llt,Usp(t), P (t,Us ,(t))]dt
0 e 0
T T
< liminf <E/£[t, Us ,(t), ®n(t,Us ,(t))]dt + CLE/HU.:p(t) - Us,, (t)H%dt)
e 0 0
T
< liminfE Llt,Usp ,(t), P (t,Us, ,(t))]dt
e 0
and
EK[Us(T)] < ligiiglof EK[Us,,(T)].
Consequently,

J(®) < liminf J(®,).
n’/—o0
But (®,) is a minimizing sequence for problem (P). Hence

J(®) = min J (¥)

and therefore ® € U is an optimal feedback control for problem (P).

Remark 2.3.5

We can not use this method in the case of problem (P%), because the minimizing sequence (®,,)
then belongs to the space £%; (2% [0,7]) and we can not find (as in Lemma 2.3.1) a subsequence (n')
of (n) independent of w,t such that (®,,(w,t)) would converge in H to a process ® € L% (Q2x [0,T))
for P x A a.e. (w,t) € Q x [0,T]. The independence with respect to w is essential in the proof of
Theorem 2.3.2.

2.4 Existence of c-optimal feedback controls

For (P) we formulate the corresponding n-dimensional control problem

(Pa) {;{Zn(e )
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where .
Ta(®0) = E [ £15,Uno, (5). @u(s, Unes, (5))]ds + EK[Un, (T)
0
and

Up = {®, 1 [0,T) x Hy — Hy| @ =T,0,@ €U}

Here U, ¢, is the solution of (P,) using the feedback control ®,, € U,.
Analogously we define the n-dimensional control problem corresponding to (P?). We denote
this problem by (P%).

Theorem 2.4.1
Let (®,,) be a sequence in U such that ®,, € Uy, for each n € IN. There exists a subsequence (n’) of
(n) such that

T
lim E [ ||Us ,(5) = Upa ,(s)|¥ds =0 and lim E|Us ,(T) - Uyae ,(T)|> =0,
n/_)oo n T n n/_)oo n 1t n

0

where Ugp , and Uy o , are the solutions of (2.1), respectively (Pyr), using the feedback control ®,,.

PROOF. First we apply Lemma 2.3.1 on the sequence (®,,). Consequently, there exist a subsequence
(n') of (n) and ® € U such that for all t € [0,T], z,y € H

lm (2 (t,2),y) = (2(t,2), ).

n’—o0
By Theorem 2.3.3 it follows that
T
(2.26) lim E [ |Us.,(s) —Us(s)|3-ds =0, lim E|Us ,(T)— Us(T)||> =0
n’/—oo " n’/—oo "
0
and
T
(2.27) lim E [ |Uyas ,(s) —Us(s)|ids =0, lim E|Uyas (T)—Us(T)|* = 0.
n’/—oo e n’/—oo n
0
We see that

T T T
B [|Us,,(5) = Una,,(5)ds < 2E [ |Us,, () = Ua (o)} ds +2E [ [Us(s) = Uiwa, ()]} ds.
0 0 0

By using (2.26) and (2.27) we have

T
lim E [ |Us. ,(s) = Uyas ,(s)|¥ds = 0.
n/—oo0 " T
0
Analogously we deduce
lim E|Us,,(T) - Uys, (T)|* =0. |

n/—o0
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Theorem 2.4.2

Assume that for sufficiently large n there exists optimal controls for problem (Py). If * € U is an
optimal control for problem (P) and & > 0 is arbitrary fized, then there exists n. € IN such that for
all n > ne ® € U, is an optimal control for the n-dimensional control problem (Py) and

[Tn(®7) = T (@) <&, T(®,) = T (D7) <&,

hence ®*,, is an e-optimal control for problem (P).

PROOF. Let € > 0 and take -

Q(CL + CIC) ’
where cg, ¢ are that constants that occure in (H;) and (Hy) from Section 2.1.

For each m € N let ®,, := II,,®*. From Theorem 1.2.7 and the properties (1.5) (from Section
1.1) it follows that there exists an m. > 0 such that for all m > m, it holds

*

T
E/IIUm,cb*(S) — Us+(s)|*ds + E||Un,o+(T) — Up=(T)||* < &
0

and

T
E/”ci)m(s, Up.a- () — ®*(s, Uge (5))]|%ds < &*.
0

Let n > m. and let ®} be an optimal control for the n-dimensional control problem (P,). By
Theorem 2.4.1, applied on (®}), there exists a subsequence (n') of (n) and n. > m. such that for
all ' > n. we have

T
(2.28) E/HU@;I(S) ~ Un,a2,(s)[Pds + E[|Us,(T) = Up ax, (T)]|* < €*.
0

First case: Jn/(®F,) — J(®*) > 0. Then by using the properties of £ and K (given in Section
2.1), we have for all n > n.

0 < Tu(®) = T(@) < T (Br) — T(3%)

IN

T T
e (E [1U-(5) = Uar (9)]2ds + B [0 (5, U (5)) — (5, U (5)) )
0 0

. €
+ ek E|Up .o+ (T) — Up(T)||* < (cz + cx)e* < 5
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Second case: Ty (®F,) — T (P*) < 0. We write
0 < J(®) = Tw(®y) < T (Pp) = T (Py)

T
< CﬁE/HUn',@;;,(S) — Uss, (8)]%ds + cx B|Uw 0, (T) = Ugs, (T)]?
0

€
< (CL + C]C)ef* < 5
Hence for all n’ > n. we have for all n’ > n.

| T (@) — T (@7)] < % <e.

Using this inequality and (2.28) we get
0 < J(@y)—J(@) <|T(Pr) = Tn(®p)| + [T (Pry) — T (7)]

T
g
< e [|Us;, (5) = U, (5)|Pds + cElUss, (T) = Unar, (D)1 + 5
0

. €
< (eg+cx)e +§:€.

The sequence (n'), n. € IN and ®*,,; obtained above satisfy the conclusion of the theorem. W

2.5 A special property

We will prove a special property for the solution Us of the Navier-Stokes equation (2.1) (respectively
(2.3) in the case of bounded controls):

T
(2.29) an{g/m@@m%¢}<kz<m
0

where 3 > 0 satisfies certain conditions and K is a positive constant independent of ®. We need this
property because of the special structure of the Navier-Stokes equation. If (2.29) is not satisfied,
we have to consider in the cost functional J together with the expression of the state Ug the
expression Ay, too (as a discount factor). The computations are in this case more complicated. If

b
B := — then (2.29) becomes
v
EALL(T) < K < .
We want to show that there exist situations for which (2.29) is satisfied. We formulate some

conditions which assure that (2.29) holds. Of course, these conditions are not the only possible
ones.
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For the stochastic Navier-Stokes equation we assume that the supplementary assumptions hold
(v?) C satisfies assumption (v) from Section 1.1 and

vi= sup [|C(t,z)|]* < oo;
z€eH
t€[0,T]

(vii’) zp € H (it does not depend on w).

Let ® € U or ® € U’ (we recall the definition of ¢ and U® from Section 2.1). We make the
convention: if ® € I then we take p := 0 and if ® € U® then we take p := 0.

We consider the conditions:

(v = \/ﬁcw)2
C) ——F——>3;
(€0 2y¢yy &
20(v — /i) v(1—2,/pyT)?
Cy)l1-2,/pl >0, ———F—=> > 3
(C2) VH ; po B, T B;
V26— 2/AT
(C3) ——>7
YCuy
A possible interpretation for this conditions in the case § := 47b (which will be used in the

following sections) is given at the end of this section in Remark 2.5.2.

Theorem 2.5.1

Assume that hypotheses (i)-(iv), (v*), (vii’) are fulfilled and ® € U or ® € U°. If one of the
conditions (C1), (Cg) or (Cs) holds, then there exists a positive constant K independent of ® such
that inequality (2.29) is satisfied.

ProoF. Applying the Ito formula for U := U and using the properties of A, B and ® we obtain

t 9 t
(230 @I+ 20 [0 Rds < laoll* + 5 + 2+ o) [[U)]ds
0 0

+ 2/(C(s,U(s)),U(s))dw(s) +/HC(s, U(s))|2ds
0 0

with € > 0.
We assume that (Cy) is fulfilled: There exists a sufficiently small £ > 0 such that

_ _ 2
(2.31) (v — /HCw — Cyy) -
2yeuy

We find an 1 > 0 such that
(2.32) 20(v — y/ucy — ey — yemn) = B
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By (2.30) and assumption (v’) we get

t 9 t
np
(233) U@ + 200 [1U(s)Rrds < nlleol + T + I + 27+ o) [10(5)|ds
0 0

t t

20 [, U (), U ds + 20 [(€ (s, U (), U(s)duls) — 207 [(€ (s U(s)),U(5))ds,
0 0 0

which implies that

t
2
np
MU+ 2000 = e — e = men) [N0(s) s < ol + T + 2
0

+ 277/((3(3, U(s)),U(s))dw(s) — 2772/(6(8, U(s)),U(s))%ds.
0 0
Hence

t
Bexp {20 — ey — <cn —ymen) [ 1V ()]s}
0

2
np
< oxp {nllaol® + T + 5=}
t

x Eexp {277/(6(5, U(s)), U(s))dw(s) — 2772/(0(5, U(s)), U(s))ds .
0

0

By Levi’s inequality (see [12], p. 331) it then follows that
¢
np?
Eexp {Qn(u — VHCyy — ECyy — fmc,,v)/HU(s)H%/ds} < exp {n”on2 + T + 2—6}
0
By using (Cy), (2.31) and (2.32), we can find a positive constant K independent of ® such that
t
2 2 np’
Eexp {8 [10()|3ds} < exp {nlool + T+ B=} < K < oo,
5
0

Now we assume that (Cy) is fulfilled: There exists a sufficiently small € > 0 such that

v(1 —2,/uT — 2eT)?
aNT

(2.34) 1— 20T — 2T > 0, > 8.

By the Ito formula and the property of B we have
t

exp{nllU (1)} + 277/(«4U(8), U(s)) exp{nl|U(s)[*}ds < exp{n]lzo]*}
0
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+ 0 [ (2000, U(). U ) + [0 U)I) expinllU ()]s
0

+ 20 [(€(s.U (), U(s) exp{ullU ()2 duw(s) + 207 [(€(s.U()),U(s)* exp{nllU(s) s,
0 0

with 7 > 0. Now we use the properties of A, ®,C to obtain

exp{l U} + 20(2- = Vi~ = =) [N explnllU () ds < explllol)
0

HY
t t

2
+ ny+ &) [explulU@))ds + 20 [(€(s.U (). U () exp{allU(s) (s
0 0

for all ¢ € [0,T]. We chose n such that v —,/uc,, —ec,,—nyc,, > 0 (see (2.38)). Then by Proposition
B.2 (applied for real valued processes) we get

(2.35) Eexp{n||U®)|*} < cexp{n|lzo|?} for all t € [0,T],
where ¢ > 0 is a constant depending on 7,~,T, p,e. Taking into account the Holder and the Levi

inequality in (2.33), we have

T
2
(2.36) Bexp {200 [0 R s} < exp {nlleolP + 7+ 2}
0

3 =

T T
x (E exp {2np (€., Uls)du(s) - 20%8* [(€(s,U 5. U<s>>2ds}>
0 0
T 1
X (E exp {2?761(\/;7 +e+ 7wp)/IIU(S)IIQdS})
0
np°

T 1
q
< o ol + 0+ 22} (Eesp (ot < o) [10 o )
0

1 1
where p,q > 1, — + — = 1 (the exact value of p is given in (2.38)). By Jensen’s inequality we obtain
p q

T T
1
(237) Eexp {2na(yii+e+mp) [UENds) < 2 [exp (20T (Vi + < + mp)lU(s)* }ds.
0 0
We set 5
(2.38) n:i= £ and p=

2v 1—=2/pT — 2T ’



CHAPTER 2. OPTIMAL CONTROL 65

Using (2.34) and (2.38) we write the condition for § as follows:

(1 —2/fT — 2eT)p —

<
gy VTp?

This implies
2qT (/i +e+myp) < 1.
By applying these estimates in (2.35), (2.36), and (2.37) we get

1
1

q
Fexp 277V/HU Wdsh <774 exp {naol? + T+ - }(/Eexp AU ) < c0.

Hence there exists a positive constant K independent of ® such that (2.29) holds.
We assume that (Cg) is fulfilled: There exists a sufficiently small € > 0 such that

2e—2(/E+e)T
_ >

2.39
( ) 2ve,,
and 7 > 0 such that
(2.40) e 2T (1 — yem) = B

By the Ito formula and the properties of A, B, ® we obtain

t

2

MU+ 20 [ 2D U(s) R ds < ool + -
0

b2 [ 2B (s, (), U(s))s) + e X s, U () s
0 0

For an arbitrary fixed n > 0 we write

t
= np*
20— ne,) [ 2THNU(S) [ ds < nlleol* + T +
0

+ 277/6*2(\/@”5)5(6(3, U(s)),U(s))dw(s) — 2772/6*4(\/‘_”5)5(0(8, U(s)),U(s))%ds.

Hence

Eexp {20e 2V (0~ qne,,) [[U(s) ds| < exp {1 + T + ’;i}
0

T T
< Boxp {2 / e~2VEH)S (0 (s, TU(5)), U (s))dw(s) — 22 / e AV (C (s, U (5)), U(s))ds .
0 0
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Using Levi’s inequality we have
! 2
E exp {2ne 2VEIT (1 WUCHv)/HU(S)H%/dS} < exp {nllwol* + 7 + 2=},
0
By (2.40) it follows that there exists a positive constant K independent of ® such that

2

t
Eexp {ﬁ/HU(s)H%/ds} < exp {77H$0H2 + T + ng—g} < K < o0. [ ]
0

Remark 2.5.2
1) In the following sections of this chapter we need the condition
T
—4 b 2
(2.41) BEAGNT) = Bexp {4;/HU¢(S)Hvds} <K < .
0

By taking 0 := 4717 the conditions mentioned at the beginning of this section become

(Cy) =)

> b;
8'7/CHV
202 (v — \/BCuy) v2(1—2,/pT)?

Cy) 1—2/uT >0 b b;
( 2) \/,[_1, > U, 4'YCUV > 0, 16’)’T > b;

3e—2VAT
C3) ——— >b.
(Cs) dryey, =

If one of these conditions is fulfilled then (2.41) holds.

2) If ® € U’ then by the convention from the beginning of this section we have p := 0 and the
three conditigons from above can be written as follows:

(ch) —

> b;
8'7/CHV

v3 v?

b, —
29Cuy =% 169T =
3

v

Cb
(C3) oo

If one of these conditions is fulfilled then (2.41) holds.

3) These conditions seem to be very complicate, but they can be interpreted as follows: if v,
involving the viscosity, is large (we have a “very viscous fluid”) then we can act with large external
forces (u can be chosen large) and we can have a “strong” influence of the Brownian motion (v can
be chosen large). The inequality 1 — 2,/uT > 0 is satisfied if we have large external forces and a
small interval [0, 7] or conversely, a large interval and small external forces.

(Ch) b;

> b.
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2.6 The Gateaux derivative of the cost functional

For the mappings that occur in the expression of the cost functional J (see (2.2)) we will assume
further some supplementary conditions:

(Hs) the mappings L(t,-,-), (-) are Fréchet differentiable for each fixed ¢ € [0, T7;
(H4) the mappings L4 (t,-,-), Ly(t,-,-),K'(-) are Lipschitz continuous and

L2t 2, )| + 1Ly (8 2, )| < ke[l + [lyl)  and  [IK'(2)]] < k(1 + [|=]])

for all t € [0,T],xz,y € H, where kg, ki are positive constants;
(H5) ‘Cm(',x’y)aﬁy("x’y) € ‘CQH[OaT] for all T,y € H.

For the stochastic Navier-Stokes equation we assume that the supplementary condition holds:
(v”) C satisfies assumption (v) from Section 1.1 and for each t € [0, 7] the mapping C(¢, -) is Fréchet
differentiable and C'(t,x) € L2(H, H), the Fréchet derivative of C(t,-) at the point z, satisfies

IC'(t, )W)l < kerllyll for all t € [0,T],z,y € H

where k¢ is a positive constant independent of ¢ and x.

Using the properties of B it can be proved that the mapping z € V — B(x,z) € V* is Fréchet
differentiable and
B'(z)(y) = B(x,y) + B(y,z) for all z,y € V.

We consider the case of bounded controls. Let ® T € U® such that for sufficiently small
6 > 0 we have ® + 0T € U*. We denote by

_ Usyor —Us — 02y

92.42 X,
(2.42) 9 7

Throughout this section we assume that 3,v,, p, T are chosen in such a way that
EAGT) < K < .

We recall here the results mentioned in Remark 2.5.2.
Let T € £2,(2 x [0,T]). We consider the stochastic evolution equation

(2.43) (Zy(t),v) +

—

(AZ(s),v)ds = / (B'(Us())(Zr(5)), v)ds
0

0
+ 0/ (X (s), v)ds + O/<c'<s, Ua (5))(Zr(s)), v)duw(s)

forall v e V, t€[0,7] and a.e. w € Q.
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Lemma 2.6.1

There exists a V-valued, F X By ]-measurable process (ZT(t))te[o 7 adapted to the filtration

(Fi)eelo,1), satisfying (2.43) and which has almost surely continuous trajectories in H. The so-
lution is almost surely unique and there exists a constant ¢ > 0 (independent of Y ) such that

T T
EAuy (D) Ze(T)|? + B [ Auy 0] Zr (0] dt < e 0 (0) Pt
0 0

and

T 9 T
BAY, (D) 22T+ B 80,012 0lfdt) < B[ x(0)]at
0 0

PrOOF. We apply Theorem 1.3.1on X =Y :=Us,ap :=0,¥ := T, :=0,G(s,h) :=C'(s,Us(s))(h),
Z\I]7F = Z’r. |

Lemma 2.6.2

(i) There exists a positive constant ¢ independent of 6 such that

Us1ox(T) — Us(T) 4+E (/TAU@(S)H Us1ox(s) — Us(s)
0

0

EAE,(T) H

2 2 T
ds) < cE/HT(s)H‘lds
0 y J

and

T
. 1
Jim EE/AZUQ(S)HU@Jr@T(S) — Us()|[/|Us o7 (s) — Ua(s)|*ds = 0.
0
(ii) The following convergences hold
T
lim E|Xp(T)|F =0 and  Jim B [[1X0(5)][}ds = 0,
0

where Xy is defined in (2.42).

PRrROOF. For all t € [0,7] and a.e. w € Q let
e1(t) = Ay, () exp{—(2X + 1)t}.
(i) We use the Ito formula and the properties of A, B,C to get

(2.44)  er(t)|Upror(t) — Us(t)|® + V/el(S)HU<1>+9T(S) — Us(s)|[-ds
0

< 6 [er()IT6)IPds +2 [ e1(5)(Cs, U sor () = Cls. Un(s)). Vo (5) — Ua(s))du(s)
0 0
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for all ¢t € [0,7] and a.e. w € Q. Using Proposition B.2 we obatin

! v Us+or(s) — Us(s)
o st
0

2 2
d8>
1%

E{ sup A?]q)(t)

H Upor(t) — Us(t)
te[0,7

< ok [I7(s)) s
where c is a positive constant independent of . We write

E/A%]q)(s)H(LPJr@T(S) — Us(5) |5/ [|Us 401 (s) — Us(s)*ds

1 T
b ( O/ Avy(s)

Usptor(s) — Us(s)
0

H Upor(t) — Us(t)
0

2 212
< 94[ { sup A% »(t) ds) ]2.
te[0,7 \%

Consequently,

lim E/A )|Us107(5) — Us ()| |[Unsor(s) — Ua(5)]|ds = 0.

(ii) By the Ito formula and the properties of A, ®, T we get

T

ex(T) || Xo(T)]1* + 2V/61(8)\|X9(8)||3/d8

0

T
< 2/61(8)<B(X9(8)7 Us(s)) + %B(UMGT(S) = Us(5), Usror(s) — Us(s)), Xo(s))ds
’ T b T
= @) [a@lXo(s) s -~ [T (s)]21Xa(s) ds
0 0

T
+ 2/ elés (s U¢+€T(8)) — C(S, U@(S)) — 06’(37 U@(S))(ZT(S)),X@(s))dw(s)
0

T
: 0/619(28 HC 8, Up+o1(s)) — C(s,Ua(s)) _GCI(SaUCD(S))(ZT(S))H2dS,

Using the properties of B, ®,T,C, it follows that

T
Beu(D)|Xo(T)> + 5L [er(s)1Xo ()3 ds
0
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T
4b
< 5 E [ Ussor(s) = Ua(s) P [Ussox (s) — Ua(s)lFds
0
T

b B [er($)Cs,Un(s) + 022(5)) — Cls, Un(s) = 6C' s, Un(s)) (Zx (5) .
0

Applying (i), the properties of C and the Lebesgue Theorem we conclude

T
(2.45) i B, (D Xa(D)? =0, Jin B [ Auy (5)1 X (3) s =0,
0
We see that
T
2 4 2 ,\2
(2.46) EAR, (@)X + B( [ Auy (5)|Xo(s)]3ds)
0

T) - Us(T)
0

4
+ EAL, (1)1 2 (T)|I*

- SlEA?@(T)HUMT(

2

T 2 T
+ E(/AUé(S)HU@—FGT(S;_UCI)(S) ds> +E(/AUq,(s)HZT(s)H%/ds)Q].
0 0

\%4

By using the Schwarz inequality we obtain

=

1 1
B Xo(T)|” < (BAu, (D) Xe(T)?)* (BAGL(T)) (BAL, (1) Xo(T)]*)
Taking into account (2.45), (2.46), (i), Theorem 1.3.1 and the condition EA(}i(T) <K < ooit
follows that
lim E|| Xy(T)|* = 0.
ti 7%,(7)|

Analogously we can prove that

T
lim E [ || Xg(s)|[3-ds = 0. u
lim 0/|| o) ds

Remark 2.6.3
For the proof of (i) in Lemma 2.6.2 we do not need the condition EA&; (T) < 0.
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Theorem 2.6.4
The cost functional J is Gateaux differentiable with

4T (® + 67)

= F
dé

6=0

(2.47)

(Llt.Us(0). ®(0)], 21 (1)) dt

+ B[ (Lyft,Us(®), ()], T (1)) dt + E(K'[Us(T)], Z1(T)).

O\H O\ﬂ

Proor. We have

1
(2.48) K(z) — K(F) = / (K@ 4+ r(e — &)z — &) dr
0
and

(2.49) L(t,z,y)—L(T,75) = (Ex[t, z+r(x—-2),9+r@y—9),z— j)dr

+ (Eﬂt,x—i—r(m—f),gj—i—r(y—g)],y—g)dr

O O

for all z,z,y,y € H, t € [0,T]. Equation (2.48) implies

K[Uspo7(T)] = K[Us(T)] = / 0(K'[Us(T) + r0(Xo(T) + Z1(T))], Xo(T) + Zx(T))dr.
0

Using (2.49) we obtain
Llt, Upior(t), (2 +60T)()] — L[, Us(t), 2(t)]
1
— / L0(Lalt, Ua(t) + r0(Xo(t) + Zr(1)), B (1) + rOY (1)), Xo(t) + Z1 (1))
0
+ (Lylt Us(t) +r0(Xp(t) + Zr(2)), ®(t) + rOT(1)], 07 (1) )dr

= / 0{ (Lalt, Ua(t) + r0(Xo(t) + Zr (1)), ®(t) + 10T (1)), Xp(t) + Zr (1))

71

for all t € [0,T]. Using the properties of £,K, and Lemma 2.6.2 it follows that relation (2.47)

holds. &
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Remark 2.6.5

Now we consider the case of feedback controls. Let ®,T € U such that for sufficiently small § > 0
we have ® + 071 € U.
We assume that 3, v,~, p,T are chosen in such a way that

EAGH(T) < K < .

We recall here the results mentioned in Remark 2.5.2.

Analogously to Theorem 2.6.4 it can be proved that the cost functional J is Gateaux differen-
tiable with

dJ(® +67)

(2.50) =

T
/ [t Us (), ®(t, Us (1), Z’r(t))dt—i-
0

VB / £, Ua (1), (1, Us (1)), X (1, Us (1)) + B(t, Z2 (1)) )dt + B(K' [Ua(D)], Z¢(T)),

where Zvy is the solution of the evolution equation
¢ ¢ ¢
(Zr(t),0) + [(AZr(s)o)ds = [(B/Ua)(Zr(s)),v)ds + [(€ (s, Va(s))
0 0 0

+ B(s, Zr(s)), v)ds + / (C'(s, U (s))(Z1(5)), v)dw(s)

forallv eV, t€[0,7] and a.e. w € Q. To establish the existence and almost surely uniqueness of
the solution of this equation we use the same methods as in Theorem 1.3.1.

2.7 A stochastic minimum principle

We will state a stochastic minimum principle in the case of problem (Pb). Let ®* € U® be an
optimal control with EAI}; (T) < o0, ¥ € L2.(2x[0,T)),T € £%(Q2 x [0,T]) and let Zy 1 be the
solution of

(2.51) (Zer(t),v) + /(.AZ\RF(S),v)ds:/<B'(Uq>*(s))(Z\p7p(s)),v>ds
0 0

+ 0/<\1f<s>,v>ds + 0/<c/<5, U (5)) (Zu (), v)duw(s) + 0/<r<s>,v>dw<s>

for all v € V, t € [0,7] and a.e. w € €. This equation is (Py ) from Section 1.3 applied for
X =Y :=Us+, a9 :=0,G(s,h) :==C'(s,Up=(5))(h).
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The mapping
(T, 1) € L3.(2x[0,T)) x L3 (Q x [0,T])

T
— E/ t Uq;.* (t)], Z\pr(t))dt + E(’C,[Uq;.* (T)], Z\I/,F(T)) R
0

is linear and continuous, because
(U, T) € LE.(Q2 % [0,T)) x L3 (Q x [0,T]) — Zyr € LI (Q x [0,T])

and

(U,T) € LZ.(2 % [0,T]) x L3 (Q x [0,T]) — Zy1(T) € L}(Q)
are linear. By using the properties for £, IC, Ug~, ®* and Theorem 1.3.1 we get

‘E/ o[t Uae (£), ®* ()], Zu,r (1) )dt + E(K'[Ug+ ()], Zo.p(T))| < (BAZZ, (T))1/4

E(O/Hﬁx[t, Uq»(t),q)*(t)]Hth)z} 1/4 n (EHIC’[U@(T)]H‘l)lM}

T
< {(B [ dvy. 01 Zur@)Pat) " + (Bdw,. ()| Zur(m)P) )
0

T T
< a(magzm) " (B [1v@ R+ B [ire)a) "
0 0

where ¢ is a positive constant independent of ¥ and I'. By the Riesz Theorem it follows that there
exist in a unique way processes

pELYQx[0,T), qeLf(Qx[0,T])

such that

T T
(2.52) E/(\Il(t),p(t)>dt + E/(F(t) q(t))dt
0 0

E/(Q[t, Ug«(t), ®*(1)], Z\I/,I‘(t))dt + E(’C'[Ucb* (1], Z\II,F(T))
0

for all U € £2.(Q x [0,T]),T € L%(Q x [0,T)).

Let
H(t,v,0,2,y) := L(t,x,y) + (—Ax + B(z,z),v) + (C(t,x),0) + (y,v)

for v,x € Vv, 0,y € H.
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Lemma 2.7.1
For all T € U we have

dT(®* + 6(T — %))
a9

(2.53)

T
_ E/ (Hylt, (1), a(t), Use (£), ®* (£)], Y (t) — ®*(t) ) dt > 0.
6=0 0

PROOF. Since U’ is convex it follows that ®* + (T — ®*) € U® for all § € [0,1]. Equation (2.52)
and Theorem 2.6.4 implies

T

_E / (1)~ ®*(1),p(1)) dt + E / (Lylt, Use (6, @ (1)), X () — (1)) .
0 0

0

dT(@* +6(T — %))
)

0=
Since ®* is an optimal control, we have

AT (D% + 6(T — %))

> 0.
dé -

0=0

Taking into account the definition of H, it follows that (2.53) holds. B
The statement of the stochastic minimum principle is contained in the following theorem.

Theorem 2.7.2
If ®* € U is an optimal control, then for all h € H with ||h|| < p the inequality

(2.54) (Lylt, Use (), 0" ()] + p(t), h — @*(2)) > 0
holds for P x A a.e. (w,t) € Qx [0,T].
PROOF. Let h € H with ||| < p. We denote by
Elw,t) = (Hylt, p(1), a(t), Ua- (1), @ (1)), h = @*(1)), S 1= {(w,t) € Q@ x [0, T][&(w, ) < 0},

and §; = {w € Q|¢(w,t) < 0} for each ¢t € [0,T]. Obviously, for each ¢t € [0,T] the set S; is
Fi-measurable. We take

_ h ’ w e St
T(“”“‘{ P wt) | we S

We see that T € Ub and

(2.55) (ot p(), a(6), Use (6), B (D), T (1) = °(1)) = I, ()€, ) < 0.
From Lemma 2.7.1 and (2.55) it follows
T

0<E / (Mylt, (), a(t), Ua (£), @ (1)), T () — (1) ) it



CHAPTER 2. OPTIMAL CONTROL 75

Consequently, (P x A)(S) = 0 and therefore

(Hylt.p(), g(t), U (£), @7 ()], b = 0* (1)) = (Lylt, Uae (), 9" ()] + p(t), h — @*(2)) > 0

for P x A ae. (w,t) € 2x[0,T] and all h € H with [|h| < p. R

2.8 Equation of the adjoint processes

To complete the statement of the stochastic minimum principle, we need to derive the equation
for the processes (p(t))te[O,T} and (q(t))te[o,T]’ called adjoint equation. We will use an approx-

imation procedure and we will derive the equation for the approximation processes ( n(t))

(qn(t))te[o,T} (n € IN).

tefo,T)’

In this section we specialize the filtration (-E)te[O,T] namely by (f[w(r):rst])te[o - which is the

filtration generated by the Wiener process (w(t))te[o T}.

Let n € IN, ¢ € L'%Hn ”.”V)(Q x[0,T]),T € £} (2x[0,T]) and let @* € U be an optimal control

with EA(}; (T) < oo (Remark 2.5.2 contains sufficient conditions for this inequality). We consider
Zn .~ to be the solution of

(2.56) (Znyr(t),v) + /(Aanwﬁ(s),v)ds :/(B;’L(Ug* (8))(Zn,p,(5)), v)ds
0 0

t

W), 0ds + / (5, U () Zns (). 0)do(s) + [(2(5). v} (s)
0

0

n

for all v € Hy, t € [0,T] and a.e. w € Q, where B (z)(y) = Z(B/(x)(y),hi>hi for all z,y €

i=1
V, Ug. = I,Us~, C,, := II,C'. This equation is (P, ) from Section 1.3 applied on ag := 0,

X =Y :=Us+,Gn(s,h) :=Cl(s,Uspx(5))(h).
The mapping

(¥,7) € E%H i) (@< [0, TT) x Ly, (% [0,T]) —

— B / o[t U (8), (D), Znpy (1))t + E(K' U (T Z 5 (T)) € R

is linear and continuous (by the same arguments as in the infinite dimensional case from
Section 2.7).
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By the Riesz Theorem it follows that there exist in a unique way processes

Pn € L3, o) (2 X [0,T]), qn € LF, (2 x [0,T7)

such that
T T

(2.57) E/(zp(t),pn(t))dt + E/(fy(t),qn(t))dt
0 0

T

_ E/(Lm[t,Uq,* (t),@*(t)],zn,w,v(t))dt +E(K/[Uq>* (T)],me,v(T))
0

for all ¢ € E%Hn,ll-llv)(Q x [0,T1),y € L£F (2 x [0,T]).
Let ¥ € £3.(2 x [0,7)),T € £3(Q x [0,T]) and set

Uy, o= > (W, hi)hs, r, =1II,I.
=1

We have

T

T

@58)  E[@@.pt)dt + B[ (T, 0(0))dt
0
T

0

- E/(\IJ (t), pu(t) dt+E/ £),gn(t))dt

= E/ Lot Us- (0.9 ()], Avy. (02, 0, (1))t

+ E(A;];x K [Us (T)], Aty (T) Z w1, (T) ).

From the properties of the solution of the Navier-Stokes equation (see Lemma 1.2.6) and from the
hypothesis on £ and K we can deduce that

A (OLa[t, Ups (1), 2% (1)] € L(Q x [0,T]), Ay, (T)K'[Us~(T)] € L(Q).

We have U = lim ¥, in the space £3..(Q x [0,T]) and T' = lim T, in the space L% (Q x [0,7T7]).
n—oo

n—~0o0

Now we use Lemma 1.3.2 and (2.52) in (2.58) to obtain
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Jim_ {E/ ), Pt dt+E/ n(t))dt}

_ E / (Lalt, Use (£), ®* ()], Zur (1) ) dt + +E (K [Up (T)], Zu.r(T))

0
T T
- E0/<\Il(t),p(t)>dt + EO/(F(t) q(t

for all U € £2.(Q x [0,T]),T € L2%(Q x [0,T]). Hence, for n — oo we have
(2.59) pn—p in LLQx[0,T]) and ¢, —q in L%(Qx[0,T]).

In (2.57) we take ¥ := p,,7 := g, use the weak convergence from above and Lemma 1.3.2. Then

T T
260) lim {B [Ip0)%dt + B [ lan(t)|?dt} = / o[t U (6, 9° (1)), Zopg 1))
0 0

+ B(K/Ua- (1)), Z3p(T)) = / Ip(®)}dt + E [ (o) *ar
0 0

From (2.59) and (2.60) it follows that the following strong convergences hold:

(2.61) lim p, =p in L3 (Q % [0,T]) and lim g, =¢ in L3(Q % [0,T]).

Now we derive the equations for (pn(t))te[o - and (q"(t))te[o - (n € IN) and then by passing

d (q(0))

to the limit obtain the equation for (p(t))

an .
t€[0,T) t€[0,T)

We consider the following matrices:
A= ((Ahg b)), o= (85),

Bu(s) = ((B'Ug-(s))(hy), 1)) Culs) = ((C'(s, U ())(hy), ).

ij=1n ij=1n’
The last two matrices depend on s and w and are Fz-measurable.
For each natural number n we introduce the n x n matrix processes

(Xn(t))te[O,T] - ((X%j(t))i,jlm)te[o,ﬂ’ (Yn(t))te[O,T] - ((Y#j(t))ivjlv")te[O’T}

as the solutions of the stochastic matrix equations

(2.62) X (1) + / A X (s)ds = T, + / B(s) X0 (s)ds + / Co(5) X (5)dw(s)
0
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and

t t t t

0 0 0 0

for all t € [0,7] and a.e. w € Q. To prove the existence and (almost surely) uniqueness of the
solution of (2.62) and (2.63), respectively, we consider the above equations as linear evolution
equations with the unknown variable X,,, respectively Y,,. Their coeficients may depend on w and
s (see By,,Cy). We use the same techniques as in the investigation of equations (Py.r), (Ppy~) in

Section 1.3. For each i,j € {1,...,n} the process (Y,i’j(t))t 0] has continuous trajectories in IR.
€10,

Using the Ito formula we obtain

(2.64) Y, () Xn(t) =1, forallte[0,T], ae we
and hence
(2.65) Xn(t)Yn(t) =1, forallte|0,7T], ae. we .

If M := (M”) ' is a matrix of real numbers and h € H,,, then we write
,7—1,n

), )

Mh = Z MZ'J'(h, hj)hl

ij=1
We write M for the transposed matrix of M.

Theorem 2.8.1

The processes (p(t))te[o,T] and (q(t))te[o,T] satisfy the adjoint equation

T
(K Ve (T)) = p(t),v) [ (Av.pls))ds

T T
- / (B(Ug+(s),v) + B(v, Up+(s)), p(s))ds — / (Lals, Upe(s), (5], v)ds

forallt € [0,T],v € V and a.e. w € Q. The processes (p(t))

characterized by this equation.

vel0.1] and (q(t))te[o,T] are uniquely

PROOF. Let ¢ € Dy (Q x [0,T]), v € Dy (2 x [0,T]) and we define for each K € IN the stopping
time iy
"= min{’]}?"’ :1<i,j5<n}
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and we take
Vi = Lo 7m, vie = Tjo, 1017

We consider the H,-valued process

W (t) =Yy (t)Zn7¢K7’YK (t)

n

where the process (Zn7¢'K7’YK (t))te[o 7 is the solution of (2.56) (with ¢k and g instead of ¢ and

7). Using (2.65) we obtain for all ¢ € [0,7] and a.e. w € Q that
(2.66) T rcrne (8) = Xn ()W (8)-
Using (2.56), (2.63), and the Ito formula it follows that the process (WK (t)) satisfies

" te[0,T]

(267) (WL (1), 1) = [(Va(s)bue(s). B)ds = [(Val($)Cu(s)yac(s). B)ds + [ (Vs)c(5), ) dao(s)
0 0

0

for all t € [0,T], h € H,, and a.e. w € Q.
We use (2.57) and (2.66) to obtain

T T
(2.68) B / (6rc(®).pn(®))dt + E [ (e, an(t))
0
- E / o[t Use (8), D" (O], Zn e e (8) ) dt + B (K [Use (T)], Zi e e (1)
- E/ (D) L2[E, Use (£), @* ()], W (1) dt + B( X (1), [Uge (T)], Wi (T))

where L7 (¢, z,y) = I, L. (t,z,y), Kl (x) = II,K'(z), t € [0,T],2,y € H. Let us define the H,-

valued random variable
T

(2.69) £ = Kn(T)KL U+ (T / 0Lt U (1), & (£)]dt,
0

and the H,-valued process

(2.70) / Ko (L7t Use (1), & (0)dt + E(6a|F)

for all t € [0,7] and a.e. w € €. By the representation theorem of Levy (see [18], Theorem 4.15,
p. 182 and Problem 4.17, p. 184) we have

(271) Bl ) = B + [ Guls)du(s)
0
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for all t € [0,7] and ae. w € Q where G, € L3 (Q x [0,T]). Without loss of generality

we can assume that the process (C"(t))te[o 7 has continuous trajectories in H. We see that

Co(T) = Xn(T)K. [Ug+ (T)] for ae. w e Q.
By using (2.69), (2.70), and (2.71) we deduce by Ito’s calculus that

T

E(GT). WD) =~ [ (Ra(®)L21t Vo (1), @ (1)), WA (1))

0
T
B [{(Gult), Ya (00 (8) = Yut)Ca(t)1sc(6) + (Gn(t), Yo (0 (1)
0

Here we have omitted to write explicitly an intermediate step: To consider stopping times for G,,.
After taking the mathematical expectation in the above relation (with T]\(j" instead of T') we let
these stopping times to tend to T" and use the almost surely continuity of the trajectories of ¢,, and
WK, Then we obtain the above equality.

Hence,

T
E(Ru (1)K Vs (DLW (D) + B [ (Xl 31t Ve (1), 87 (0)), WA (1))
0

~

(TG (). ¥ (1) dt+E/ Gult) — CalO)Va(0)Ga 1), 15 (1))t

The processes 1,y were arbitrary fixed, and by (2.57) and (2.66) it follows that
(2.72) Lo, 7 ()P (t) = Tjo. 7] ()Y (t)Ca(t) for P x A ace. (w,t) € Qx[0,T]

and

To.p)(an() = Tozp) () (Va() G () = Ca(DVu()a (1)) = Lo, () (Y ()G (1) = Ca()pn (1))
for P x A ae. (w,t) € Qx[0,T]. Since Klim T =T for a.e. w € Q (see Proposition B.1) and by
using (2.72) we have

Ty

T
0= Jim B [ pu(t) = Tu(06Olldt = B [ Ipn(t) = Tu(0)Gu (0]t
0 0

This implies R
pn(t) = Yo (t)(n(t) for P x Aae. (w,t) € Qx[0,T].

Analogously we obtain

—

an(t) = Y, (H)Gn(t) — Cn(t)pn(t)) for P x A ae. (w,t) € Qx[0,T].
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We can identify (pn(t)) with a process which has continuous trajectories in H. Then for

te[0,7
all t € [0,T] we have
() = Y (8)Ca(t) forallt € [0,7] and p,(T) = K, [Ug+(T)] for ae we Q.

t€[0,T] and (Cn(t)) o] it follows by the Ito calculus that

( n(t))te[o - satisfies for all t € [0,7] and a.e. w € §2 the n-dimensional evolution equation

)

By using the equations for (f’n(t))

T T
(2.73)  pu(T) — pu(t) — /Anpn(s)ds = / )+ LY]s, Up= (s),fb*(s)]}ds

|
T~

Caaa3)ds + [ au(s)du(s)

with p,(T) = K, [Us+(T)]. Equation (2.73) can be written equivalently as
T
(pn(T) — / (Av, pn(s
t
T

/ (Ug=(s),v) + B(v,Ug«(s)) /T 2[5, U= (s), ®*(s)],v)ds

t

|
T~

(cﬂ<s,IL@*<5>><v>,qn<s>)ds«+-j/<qn<s>,v>dums>,

for all t € [0,T],v € H,, and a.e. w € Q. In this equation we take the limit for n — oo, use (2.61),
and obtain

T
(2.74) (K/[Ug» (T)] — / (Av, p(s

T T
_ / (B(Us-(5),v) + B(v, Us+()), p(s))ds — / (Lals, U (), ®* ()], h)ds

T

/ C/SUcp* ds—l—/

t

for P x A ae. (w,t) € Q2 x[0,7] and all v € V. We can identify (p(t))te[o - with a process which
has continuous trajectories in H and satisfies (2.74) for all ¢t € [0,7] and ae. we Q.

In order to show that (2.74) characterize in a unique way the adjoint processes (p(t))

and (q(t))

t€[0,T]

w0 1] let us take any processes (p(t))tE[O,T] and (q(t))te[o,ﬂ which satisfy (2.74). Let
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Ve L. (Qx][0,T]), T € L%(Q x[0,T]) and let Zy 1 be the solution of (2.51). Then we have

T
E(p(T), Zu.r(T)) = B [{(AZur(®)p(0)~ (B U+ (0)(Zo,r (1)), p(t)

0

— (Lot Use (1), @ (1)), Zup (1)) = (C'(t, Uae (1)) (Zwr (1)), (1)) — (AZw 0 (8), p(1))

+ (B (U= (£)(Zwr (1)), (1)) + (¥(1), p(1)) + (C'(t, Ua+ (1))(Zu.x (1)), (1)) + (D(2), g(1)) .

Hence for all ¥ € £3. (2 x [0,7]),T € £3,(Q x [0,T]) we get
E(K'[Ua+ (D)), Zop(T)) + B [ (Lot Use(t), ®* ()], Zur(t) ) dt

= B

O\ﬂ O\H

T
(W(e),p(t))dt + E [(T(0),(0))dt.
0

Therefore, (p(t))te[o - and (q(t))te[o,T] must be the processes that are uniquely defined
in (2.52). m



Chapter 3

About the Dynamic Programming
Equation

In Section 3.1 of this chapter we prove that the solution of the stochastic Navier-Stokes equation
is a Markov process (see Theorem 3.1.1). In Section 3.2 we illustrate the dynamic programming
approach (called also Bellman’s principle) and we give a formal derivation of Bellman’s equation.
Bellman’s principle turns the stochastic control problem into a deterministic control problem of
a nonlinear partial differential equation of second order (see equation (3.11)) involving the in-
finitesimal generator. To round off the results of Chapter 2 we give a sufficient condition for an
optimal control (Theorem 3.2.3 and Theorem 3.2.4). This condition requires a suitably behaved
solution of the Bellman equation and an admissible control satisfying a certain equation. In this
section we consider the finite dimensional stochastic Navier-Stokes equation, i.e., the equations
(P,) used in the Galerkin method in Section 1.2. The approach would be very complicate for the
infinite dimensional case, because in this case it is difficult to obtain the infinitesimal generator.
M.J. Vishik and A.V. Fursikov investigated in Chapter 11 of [35] the inverse Kolmogorov equations,
which give the inifinitesimal generator of the process being solution of the considered equation, only
for the case of n = 2 for (0.1). We take into account ideas and results on optimal control of Markov
diffusion processes from the book of W.H. Fleming and R.W. Rishel [9] and adapt them for our
problem.

3.1 The Markov property

An important property used in the dynamic programming approach is the Markov property of the
solution of the Navier-Stokes equation. We will prove this property in this section.

Let us introduce the following O-algebras

Owe) =0{U(s)}, Oy = 0{U(r) : 7 < s}

and the event

OU(s)=y] ‘= {w:U(s) =y}.

83
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We define for the solution U := Ug of the Navier-Stokes equation (2.1), where ® € U, the
transition function

P(s,x,t,A) = P(U(t) € A’J[U(s):m])

with s,t € [0,T],s < t,z € H,A € B(H). In the following theorem we prove that the solution of
the Navier-Stokes equation is a Markov process. This means that the state U(s) at time s
must contain all probabilistic information relevant to the evolution of the process for times ¢t > s.

Theorem 3.1.1
(i) For fized s,t € [0,T],s <t,A € B(H) the mapping
y € Hw P(s,y,t,A) € R

is measurable.

(ii) The following equalities hold
PU() € AlF;) = P(U(t) € AlO[u(s))
and
P(U(t) € Alowarey) = P(UR) € Al )
forall s,t €10,T],s <t,y€ H A€ B(H).

Proor. (i) Let s,t € [0,T],s < t,y € H. We denote by (U(t,s,y))te[ - the solution of the

Navier-Stokes equation starting in s with the initial value y, i.e. ﬁ(s, s,y) =y for a.e. w € Q.
Let A € B(H). Without loss of generality we can consider the set A to be closed. Let (a,) be
a sequence of continuous and uniformly bounded functions a,, : H — IR, n € IN such that

(3.1) lim |jan(y) —Ia(y)]| =0 forally e H.

n—oo

By the uniqueness of the solution of the Navier-Stokes equation and from the definition of the
transition function we have

P(s,y,t,A) = E(La(U®)| 0=y ) = B(1a(U (¢, 5,9))).

We consider an arbitrary sequence (y,) in H such that lim |y, — y|| = 0. Using the same
n—oo

method as in the proof of Lemma 2.2.1 we can prove that

(3.2) lim B|U(t,5,yn) = U(t,5,9)|* = 0.

Therefore (U(t, s, yn)) converges in probability to U(t, s,y). Using (3.2) and the Lebesgue Theorem
it follows that for all k£ € IN

nlLHgo Eak(ﬁ(t,s,yn)) = Eay, (U(t,s,y)).
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We conclude that for each k£ € IN the mapping
y€ Hw— Eak<U(t,s,y)) eR

is continuous. Hence it is measurable. By the Lebesgue Theorem and (3.1) we deduce that for all
ye H

klg{)lo Eay, (U(t,s,y)) =Fly (U(t,s,y)).

Consequently, P(s,-,t,A) = Ely4 (f](t,s,-)) is measurable, because it is the pointwise limit of
measurable functions.

(ii) First we prove that for each fixed s,t € [0,7],s < t,y € H the random variable U(t, s, y)
(considered as a H-valued random variable) is independent of F5. By relation (1.12) from Section
1.2 we have

(3.3) ]V}im (UM (t,s,y) — Un(t,s,y)|| =0 for each n € IN and a.e. w € Q,
— 00

and by Theorem 1.2.7 it follows that there exists a subsequence (n') of (n) such that

(3.4) lim ||Uy(t,s,y) —U(t,s,y)| =0 for ae we

n’—oo

where (Uy(t’s’y))te[s,ﬂ and (Un(t,s,y))te[s’ﬂ

if we start in s with the initial value y (see Section 1.2). Since for fixed n, M the random variable
ﬁ,i‘/[ (t,s,y) is approximated by Picard-iteration and each Picard-approximation is independent of
F, (as a H-valued random variable), it follows by Proposition B.4 that U,(t,s,y) is independent
of F,. Using (3.3), (3.4), and Proposition B.4 we conclude that U(t, s, y) is independent of F.

Let A € B(H). Now we apply Proposition B.5 for F = Fs, fy,w) = IA<U(t,s,y)),
¢(w) :=U(s). Hence

are the solutions of (PM) and (P,,), respectively,

(3.5) E(IA (O(t,5,U(s)))

j—“s) = E(IA (O(t,5,U(s))) \U[U@n)-

Since the solution of the Navier-Stokes equation is (almost surely) unique it follows that

U(t,s,U(s)) =U(t) foralltel[s,T] and a.e. w € .

Then relation (3.5) becomes

E(IA(U(t)) .7-“5> - E(IA (v@®) ‘O'[U(S)O.

Consequently,
(3.6) P(U(t) A

‘We know

fs) - P(U(t) c A‘a[U(S)}).

O-[U(s)] - O-[U(r):rgs} C Fs.
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Taking into account the properties of the conditional expectation and (3.6) we deduce that

)

P(U(t) € A‘O[U(r):rﬁs}) = E(E(U(t) €A J[U(r):rSS])

E(E(U(t) € A}J[U(s)])}O[U(r):rgs}) = P(U(t) € A}U[U(s)])' u

Corollary 3.1.2 ([11], Chapter 3, Section 9, pp. 59)
(i) For fized s,t € [0,T],s < t,y € H the mapping
A€ B(H)w— P(s,y,t,-) € R
s a probability measure.

(ii) The Chapman-Kolmogorov equation
P(s,y,t,A) :/ P(r,z,t, A)P(s,y,r,dr)
H

holds for any r,s,t € [0,T],s <r <t,y € H A€ B(H).

Remark 3.1.3
1) We have the autonomous version of the stochastic Navier-Stokes equation if for ¢ € [0,7],

h € H we have C(t,h) = C(h) and ®(t,h) = ®(h) for ® € U. In this case (Uq>(t))

homogeneous Markov process, i.e., we have

is a
t€[0,T]

(3.7) P(0,y,t —s,A) = P(s,y,t, A)
for all s,t € [0,T],s <t,y€ H, Ae€ B(H).

We prove the above property for ® € U?, where U® is the set of all autonomous feedback
controls. Let s,t € [0,T],s < t,y € H. The solution Ug of the Navier-Stokes equation, which
starts in s with the initial value y satisfies

t ¢
Ualt),0) + [(AVs(r),0)dr = (.0) + [(BUs(r),Us(r)). v)r

s s
t

+ [@Uatr),0)dr + [ (W), )du(r)

S

for all v € V and a.e. w € Q. We take U(r) = Ugp(s +7),(r) :== w(s +r) — w(s) for r € [0,t — s].
Then for U(t — s) we have

(Tt —s),0) + / AT (r),0)dr = (y,0) + / (BT (1), T(r)), v)dr
0 0
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for all v € V and a.e. w € 2. Since (17)(7’)) and (w(r)) (o] have the same distribution and

rel0,t—s] r€ls,t R
because of the uniqueness of the solution of the Navier-Stokes equation, it follows that U(t — s)

and Us(t) have the same distribution. Hence (3.7) holds.

2) The Galerkin approximations (the solutions of the equations (P,) from Section 1.2) of the
Navier-Stokes equation are also Markov processes.

3.2 Bellman’s principle and Bellman’s equation for the

finite dimensional stochastic Navier-Stokes equation
Before we illustrate the dynamic programming approach (also called Bellman’s principle) for our
control problem, we need the definition of the infinitesimal generator associated to a process. This

infinitesimal generator is a partial differential operator of second order (see Lemma 3.2.2) and it
occurs in Bellman’s equation.

Definition 3.2.1

Let (X(t)) be a process in the space L% (Q2x[0,T]) and let ¢ € [0, T]. The function F: H — IR

t€[0,T]
is said to belong to the domain Dy , () of the infinitesimal generator A x of (X (t))te[o - if the
limit 1 7
(3.8) Ax(OF(9) = im 5 | E(FX +6)|01x0-) - FO)|

exists and is finite for all y € H.

We define C2(H) to be the set of all mappings F' : H — IR which are twice continuously Fréchet
differentiable in each point of H and which satisfy the conditions:

(i) F, F', F" are locally bounded;
(ii) for each h € H

IE ) < er(+ (R, |(F (), ho)| < eplli B2+ []).

where cp is a positive constant.

We define C%2([0,T] x H) to be the set of all mappings G : [0,7] x H — IR such that
(i) for each fixed t € [0, 7] we have G(t,-) € C%(H);
(ii) there exists the partial derivative G which is assumed to be continuous on [0, 7] and

|Gt )| < calll

for all t € [0,T] and = € H.
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In this section we consider the n-dimensional stochastic Navier-Stokes equation

t

(AnUp a(s),v)ds = (z9,v) +/(Bn(Un7¢(s), Unao(s)),v)ds
0

—

(FPn) (Una(t),v) +

t

0
+ 0/(<I>(s,Un7q>(s)),v)ds —i—O/(Cn(s,Un@(s)),v)dw(s),

for all v € H,, t € [0,T] and a.e. w € Q, controlled by feedback controls ® € U, (we proceed
analogously in the case ® € U?%), where the set U, (respectively U?) is defined in Section 2.4. We
denote by

Epy() = E( ) ‘O-[Unxb(t):y})
where t € [0,T],y € H.
We assume that the mappings C(-,z), L(-,z,y) are continuous on [0,7] for each z,y € H.

The formula of the infinitesimal generator for the process (Un@(t))t 017 is given in the following
€10,
lemma.

Lemma 3.2.2

The infinitesimal generator of (U"’q)(t))te[o - satisfies

AUn@(S)G(S,y) = Gt(37y) + (G$(Say)7 —-Any + B(y7y) + (I)(Say)) + %(Gx$(say)cn(say)7cn(37y))

for all s €[0,T),y € H,,G € CY%([0,T] x Hy,),® € U,.
In the autonomous version of problem (P,) the infinitesimal generator of (U"’q)(t))te[o . satisfies

AV F) = (Faly), ~Any + Blu,v) + 2()) + 5 (Feay)Caly), Cal))
for ally € H,, F € C*(H,),® € U°.

ProOOF. Let G € C12([0,T] x H,). We write ®(r) instead of ®(r, U o(r)). By the Ito formula it
follows that

G(s+h,Upa(s+h)) — G(s,Upa(s))
s+h

= [ G Una () + (Golr, Una (7). = AnUno(r) + Bu(Una(r): Una (1) + ©(r) ) dr

s+h

+ % / (G (1, Un @(1)Co (7, Un0 (7)), Ca (r, Un (1)) ) dr

s
s+h

+ / (Gx(r, Una(r)),Cp(r, Un,@(?)))dw(m

s
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for each h,s € [0,T] with s + h < T'. In the above relation we take the conditional expectation
E,,. We obtain

% [Es,y (G(S +h, Una(s + h))) — Gl y)}
s+h

— Euf; / Gl Un (1) + (Gt Uns(), = AuUna(r) + Bu(Uns ). U (1) + B(r)) i}

s+h
+ %Es,y{% / (Gm(r,Un@(r))Cn(r,Un@(r)),cn(r,Un@(r)))dr}.

s

We take h \, 0, use the properties of the process (Un@(t))te[o . (see Theorem 1.2.1 and Lemma

1.2.3) and those of G, ®,C,. Then, for each t € [0,T],y € H,, we have

1
Av, o (5)G(s,y) = Gi(s,y) + (Culs,y), —Auy + By, y) + ®(s,9)) + 5 (Ca(s,9)Cals, ), Cals.y))-
We proceed similarly in the autonomous case. B

We consider the cost functional
T
T(s,y,®) = Es7y{ / Ll Una (1), ®(r, Upo (1)) dr + /C[Un,cp(T)]}

where s € [0,T],y € H,, and the feedback control ® € U,,.

To illustrate the dynamic programming approach we give a formal derivation of Bellman’s
equation, our arguments are of heuristic nature. Bellman’s principle turns the stochastic control
problem (P,,) into a problem about a nonlinear differential equation of second order (see equation

(3.11)).

In dynamic programming the optimal expected system performance is considered as a function
of the initial data
Wis,y) = jnf T(s5.9.)

If W e CY2([0,T] x H,), then by using (P,), the Ito formula, and Lemma 3.2.2, it follows that

(3.9)  E,,W(t,Una(t)) — W(s.y) = Es, <Wt(r, Una(r) + A, , (W (r, Un@(r)))dr.

S
Suppose that the controller uses ® for times s < r < ¢t and uses an optimal control ®* after time

t. His expectet performance cannot be less than W (s,y). Thus for all y € H,, let

= B O(r,y) for s<r<t
@(r,y)—{ o*(r,y) for t<r<T.
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By the Chapman-Kolmogorov equation (see Corollary 3.1.2) and the properties of the conditional
expectation we have

t
j(37 Y, ci)) = Es,y / ﬁ[?“, Un,¢(r)7 ‘b(ﬁ Unﬂ)(r))]dr + Es,yj(tv Un,<1>* (t)7 CI)*)'

Because ®* € U,, is an optimal control, then for all ¢t € [0,T],y € H,, we have
W(t7 Un@* (t)) = j(t7 Un@* (t)v (I)*)7 W(87 y) < \7(37 Y, CI))

and

(3.10) Wi(s,y) < Es7y/ﬁ[r, Una(r), ®(r,Upa(r))]dr + Es yW(t,Up o+ (t))

In (3.10) we have equality if an optimal control ® := ®* is used during [s,t]. By (3.9) and (3.10)
we obtain
t

0< By [ {£0rUna(r). @0 Un 6 (r)] + Wilr, U a(r)) + Ags, o (0W (r, Un (1)) }dr-

s

In the above inequality we divide by t—s, take t \, s, use the continuity properties of (Un@ (t))
(see Theorem 1.2.1 and Lemma 1.2.3) and those of W, Ay, ¢, L. Thus

0< [’[Saya (I)(Say)] + Wt(s7y) + AUn,@(S)W(‘g?y)'

t€[0,T]

Equality holds above, if & = ®*. For W we have derived formally the continuous-time dy-
namic programming equation of optimal stochastic control theory, also called Bellman’s
equation

(311)  0=Wils,y) + min {Lls.y.@(5.9)] + A, . (W (s,9)} s € [0.7), y € H,
with the boundary condition
W(T,y)=K(y), y€ Hp.

The main result of this section is a sufficient condition for a minimum (Theorem 3.2.3 and for
the autonomous case Theorem 3.2.4). The sufficient condition requires a suitably behaved solution
W of the Bellman equation (3.11) and an admissible control ®* satisfying (3.14). Such a result is
called wverification theorem.

Theorem 3.2.3
Let W be the solution of Bellman’s equation

(3.12) 0=Wys,y)+ q)iélzg {E[s,y, P(s,y)] + Av, 4 (S)W(s,y)}

n

for all (s,y) € [0,T] x Hy, satisfying the boundary condition
(3.13) W(T,Upe(T)) = K(Upa(T)) forall ®cU.
If W e CY2([0,T] x Hy,), then:
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() W(s,y) < T (s,y,®) for any ® € Un, s € [0,T],y € Hy.
(i) If ®* € Uy, is a feedback control such that

(814) L.y, @ (s,9)] + A, g ()W (s,9) = min {L]s,y, D(s,9)] + A, o ()W (s,9) }

EUn

for all s € [0,T] and y € Hy,, then W(s,y) = J(s,y, ®*) for all s € [0,T),y € H,. Thus
®* is an optimal feedback control.

ProoFr. (i) Let ® € U,,,s € [0,T],y € Hy,. From (3.12) it follows that
0 < Wi(r,Una(r)) + Lr,Upa(r), ®(r,Usa(r))] + Ay, (rW(r,Upa(r)), rel0,T].

We integrate from s to T', use (3.9), take the conditional expectation F, and have
T
W (5,9) < Boy WL Una(T)) + Eey [ L. Una(r), 000, Upa(r))Jdr
S

Now we use the boundary condition (3.13) and hence
W(s,y) < I (s,y,P).

(ii) We use the same arguments as above. Instead of ® we take ®*, and instead of < we
take =. W

Let us state a corresponding verification theorem for the autonomous version of the problem,
formulated at the end of Section 3.1. The cost functional is given by

T
T(0.9) = By{ [ £1U0(r), @Una (r)Ndr + KU oD},
0

withy € Hy,, ® € U7 (see Remark 3.1.3) and Ey(-) = E( ’U[Un,q,(o):y})- The mapping £ that occurs

in the expression of the cost functional does not depend on r € [0,7] and satisfies the conditions
(H;) and (H3) from Section 2.1.
Analogously to Theorem 3.2.3 we can prove the following verification theorem.

Theorem 3.2.4
Let W be the solution of Bellman’s equation

0= juf {Lly, @) +Av, W)} forall ye H,

with the boundary condition

W(Unao(T)) = K(Upna(T)) forall ®ecl.

)

If W € C*(H,), then:
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(1) W(y) < IJ(y,®) for any ® € U} and any initial data y € Hy,.

(i) If ®* € U is a feedback control such that

Lly, 2" (y)] + Av, 5. W(y) = min {E[y, O(y)] + AUR,QW(y)} for all y € Hy,

then W (y) = J (y, ®*) for all y € Hy,. Thus ®* is an optimal feedback control.

92



Appendix A

Basic Convergence Results

For the convenience of the reader we recall some basic convergence results.

Proposition A.1 ([36], Proposition 10.13, p. 480).
Let (z,) be a sequence in a Banach space S. Then the following assertions hold:

(i) If S is reflexive and () is bounded, then (x,) has a weakly convergent subsequence. If, in
addition, every weakly convergent subsequence of (x,) has the same limit x € S, then (z,)
converges weakly to x.

(ii) If every subsequence of (x,) has a subsequence which converges strongly to the same limit
x €S, then z, — x.

Proposition A.2 ([37], Proposition 21.27, p.261).
Let Sy and Sy be Banach spaces and let L : S1 — So be a continuous linear operator. If (z,) is a
sequence in Sy such that x, — x (where x € S1), then L(x,) — L(z).

Proposition A.3

If S is a Banach space and if (z,) is a sequence from L%(Q x [0,T]) which converges weakly to
z € L%(2 x [0,T]), then for n — oo the following assertions are true:

(i) /tacn(s)dw(s) - O/tac(s)dw(s) and O/t:vn(s)ds - O/t:v(s)ds in  L%(Q % [0,T]);

OT T T T
(i) /xn(s)dw(s) — /x(s)dw(s) and /xn(s)ds — /x(s)ds in  L3(Q).
0 0 0 0

PROOF. We apply Proposition A.2 on S; = Sy := L4(Q2x[0,T1), L : L%(Q2x[0,T]) — LZ(Q2x[0,T7)),

where
t

L(x) ::/x(s)dw(s).

0
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Obviously, is L a linear mapping. By the properties of the stochastic integral we have

T t t
I gy = B ] [ jae <7 s | fatravia)]
T

IN

ATE [ olt) [t = 4T 212 g 0
0

Hence L is continuous and we can apply Proposition A.2. The other convergences are proved
analogously. W



Appendix B

Stopping Times

Let (Q(t))te[O,T} be a V-valued process with

T
Jl@@ds <00 and  sup QI < o0
0 te[0,7

for a.e. w € Q). For each M € IN we introduce the following stopping times

T, if sup QW) <M
t€[0,T]

79 _
inf {¢ € 0,7]: Q)| > M}, otherwise,
T
T.oit [1Q) s < 1
79 _ 0

¢
inf {t € [0,T] :/HQ(S)H%/ds > M}, otherwise.
0

We define o
T]\Cj = min{’]ﬁ, TACJ?}
We see that for all ¢t € [0,7] and a.e. w € Q we have
AT

I AT < M, / 1Q(s)[7-ds < M.
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Proposition B.1
The following convergences hold:
lim P(T2 <T)=0

M—o0
and
lim T]\? =T forae wel
M —o0

ProOOF. Using some elementary inequalities we obtain

lim P(T3 <T) < Jim P(TY <T)+ lim P(TY <T)

M—o0
. 2 . 2
< Jm_P( s 1QWIP 2 2) + Jim P / |Q(s)[[}ds) > M)

o0

< P(0 {002 0})+2( O /HQ I = a}) =0

M=1 t€[0,T M:

8

The sequence (T — ’TJ\?) is monotone decreasing (for a.e. w € ). We have proved above that it
converges in probability to zero. Therefore it converges to zero for almost every w € Q). B

Proposition B.2
We assume that the following assumptions are fulfilled:
(1) k1, k2 > 0 are real numbers;

(2) ag is a H-valued Fy-measurable random variable with E|ag|* < oo;
(8) F1 € LR(Q x [0,T]), F> € L{(Q x [0,T]).

(4) F5:[0,T)x H — H is a mapping such that for allt € [0,T],x € H we have ||F3(t,x)|| < kg, |||
with kg, a positive constant and F3(-,z) € L%[0,T] for all v € H;

(5) (Q(t))te[o,T] is a V -valued process with

/||Q(s)||%/ds < oo and Sup 1Q(H)|? < oo for ae. weQ,
t€[0,T
0

satisfying the inequality

t t
QI+ [IQ)Rds < llaol? + k2 [ 1Q(s) ds
0 0

+ 0/ |Fi(s)|ds + 0/<F2<s> + Fy(5,Q(5)), Q(s))dw(s)
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forallt € [0,T] and a.e. w € Q. Then there exists a positive constant ¢ (depending on k1, ko, kr,,T')
such that

T T T
B B sw QU+ E [IQW)}ds < c[Elaol + B [1Fi()]ds + E [ |1Fa(s)ds]
t€[0,T] 0 0 0

T T
and if E/|F1(s)|2ds < oo, E/HFQ(S)H% < oo then
0 0

T T T
4 2 1.\?2 4 2 4
B2)  E s 1QMI*+ 5 0/ 1Q)1}ds)” < e[Ellaol +EO/ IFi(s) ds+EO/ | Fas) [ *ds].

PrOOF. We consider the stopping times 7y, := 7, Q, M € IN. Using (5) it follows that for all
t€[0,T]

tATar tATrr
sup QWP+ k[ Q) Ifds < 2aol + 2k [ Q)]s
SE[O,t/\T]M] 0 0
tAT s
+ 2 [IREds+2 s | [(B0)+ B.Q0). Q@)du().
0 SE[O,t/\TNI] 0
and
tATm tATm

sup QI + k([ IQWIEds)” < 16a0] + 16k ( [ Q(s)Ids)”
0 0

SE[O,t/\T]M]

tA T]u

S
2 2
+16( [ 1RG)ds) +16_swp | [(Fa) + B.Q), Qu)du(r)]
0 SG[O,t/\TAj} 0
Now we use the Burkholder inequality (see [18], p. 166) and the Schwarz inequality to obtain
tATm tATm
E s [QWIP+RE [ 1Q)}ds < 2Blaol + 2k [ [Q(s)|ds
SG[O,t/\TAj] 0 0
tAT 1 tATpr
+ 28 [|RG)ds+3E s [QWIF+aE [ IFs) + Fyls Qs)Pds
s€[0,tAT ]
0 0
and
tATar tATrr
E Y+ KE 2ds)” < 16| ag|[* + 16KTE 4d
sup  [|Q(s)[I" + ki 1Q(s)[lvds) < 16E]aol|” + 16k; 1Q(s)]"ds
SG[O,t/\TAj] 0 0
tATar tATrr

1
+ 6TE [ IR@Pds+ 3B s QW)+ eE [ IFs) + Fyls Q) 'ds
: 2 s€[0,tAT ] i
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for all ¢ € [0,T], where c1, ¢y are positive constants. Consequently, for all ¢ € [0,7T], we have

t
E sup]f[o 70, () Q)I” + leE/I[o,m}(8)|!Q(8)|!2vd8 < 4E]|ao|”

s€[0,t

Ak + i) / up Tom(DIQEIPdr +48 [IFi(s)lds + e [ 12 (s) P
0 0

and

86[

t
B sup Ty QI+ 2B [Toz) () ds)” < 825l aol
0

T T
+ (32K2T + 16cokr,) E/ o 1[0 Tl (r )\|Q(r)||4dr+32TE/|F1(5)|2d5+16c2E/HF2(s)H4ds.
0 0

By Gronwall’s Lemma it follows that there exists a positive constant ¢* (independent of M) such
that

TNy
E_swp QW) +2mE [ QG >Hvds<c[Euao||2+E/|F1 |ds+E/||F2 )IPds]
SE[O,T/\T]\/[} 0
and
TNy

E_sup Q)+ 2 E(E [ Q) ds)’ <c[E||ao||4+E/|F1 |ds+E/||F2 )|1*ds).
SE[O,T/\T]M] 0

Now we use Proposition B.1, take the limit M — oo in the above inequalities to obtain (B.1) and

(B.2). m

Proposition B.3
Let (Tar) and T be stopping times, such that

lim P(TM < T) =0.

M—oo

Let (Qn) be a sequence of processes from the space L3 ([0,T) x ) such that for each fived M we
have
Jim_ BIQu(T)| =0

and there exists a positive constant ¢ independent of n such that
ElQ.(T)?* <c¢ forall necN.
Then
lim E|Q.(7T)| =0.

n—0o0
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PROOF. Let €, > 0. There exists My € IN such that

(TMO < T) <

l\?lf“)

By the hypothesis it follows that for this My we have lim F|Q,(7as)| = 0. Consequently, there
n—oo
exists ng € IN such that

SEIQu(To)| <

DO ™

for all n > ng. We write

P(IQu(T) 268) < P(Ta, <T) + P({Tar, = T} A {|Qu(T)] = 6})

€ e 1 E €
< 5+ P(1Qu(Ton)] 2 8) < o + SEIQu(Tan) < 5 +5 =<

for all n > ng. Hence for all 6 > 0 we get nlinéo P<|Qn(T)| > 6) = 0. Therefore, the sequence

(|Qn(T)|) converges in probability to zero. From the hypothesis it follows that this sequence is

uniformly integrable (with respect to w € Q). Hence it converges also in mean to zero

lim E|Qn(T)| = 0. m

Proposition B.4
Let F C F be a O-algebra, (Qn) be a sequence of H-valued random variables which converges for
a.e. w€ Q to Q. If each random variable Q,, is independent 0f.7-" then Q is independent 0f.7-"

PrOOF. The random variable @) is independent of Fif
(B.3) PR <z} n A) = P(|QI < z)P(A)

for all # € R, A € F. The hypothesis implies that the sequence (HQnH) converge in probability to
|Q||. Therefore, the sequence of their distribution functions is convergent

(B.4) lim Fo | (z) = Fig| (z)

n—oo
for each x € IR which is continuity point of Fjq.

Let x € R, A € F ,0 > 0. First we consider that Fjg) is continuous in xz. Then using the
hypothesis and (B.4) we get

B5)  lim P{Qull <2} A) = lim P(IQu] < 2)P(4) = P(IQ] < x)P(A).
We write

PRI <z—-dtnA) < PHIQI <z -} n{l|@n] <z} N A)
+ P{IQI <z =} n{l|Qnll = z} N A)

IN

P{IIQunll < 2} 1 4) + P([IQl = 1Qull] > ).
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Analogously we have

P({[Qull <z} n4) < PHIIQI < 2+ 8} 1 4) + P([IQIl — Q| > ).

Consequently,

P{IIQI < == 8} n 4) = P([IQll = 1Qull| > 6) < P(|Qul < 2)P(A)
< PRl <x+d}n 4) + P([IQll - 1l > 6).

In the inequalities above we take the limit n — oo and use (B.5) to obtain
PlQI <z —=4d1nA) < P(lQl| <x)P(A) < PH[IQIl < =+ 4} N A).
Let 6 \ 0 in the inequalities above. Then
PlllQl <zpnA) < P(IQf < 2)P(A) < P|IQ] <z} N A).

Since z is a point of continuity for Fjg we have

PHlIQI <z} nA) = PHIIQI <z} N A).

Consequently, (B.3) holds and @ is independent of F.
Now we consider that z is not a point of continuity of Fjg|. Let (z,) be a monotone increasing
sequence of continuity points of Fj g which converges to x. Then

lim_Fjo)(zn) = Fjg (),

n—oo

and because ;, is a point of continuity for Fq, we have

PlIQI <za} N A) = P(|Q]] < 2n)P(A).

Now we take the limit n — oo and conclude that (B.3) holds. Hence @ is independent of F.u

Proposition B.5

Let F C F be a O-algebra, f: H x Q — H be a mapping such that for each x € H the random
variable f(x,-) is bounded, measurable and independent of F. Let &€ be a H-valued F-measurable
random variable. Then

E(f(&.w)|F) = E(f(&w)|07g),
where O¢) 1s the O-algebra generated by the random variable §.

This Proposition can be proved analogously to Lemma 1, p. 63 in [11]. H
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APPROXIMATION UND OPTIMALE
STEUERUNG DER STOCHASTISCHEN

NAVIER-STOKES-GLEICHUNG

Dipl.-Math. Hannelore Inge Breckner

Zusammenfassung der Dissertationsschrift

vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen Fakultéat
der Martin-Luther-Universitat Halle-Wittenberg

1. In der Hydromechanik hat die Navier-Stokes-Gleichung wichtige Anwendungen. Sie be-
schreibt das Verhalten eines inkompressiblen Stromungsfeldes in einem gegebenen Stromungsgebiet.
AuBere zufallige Einfllisse sowie die innere Brownsche Bewegung beeinflussen das Verhalten der
Flissigkeit. Daher enthalten realistischere Modelle auch stochastische Terme und die Losung der
Gleichung ist ein stochastischer Proze. Die Behandlung solcher Gleichungen bettet sich in die
Theorie der stochastischen Evolutionsgleichungen ein.

Die vorliegende Arbeit ist der Untersuchung der Eigenschaften der stochastischen Navier-
Stokes-Gleichung gewidmet: Es werden Existenz- und Eindeutigkeitssétze fiir die Losung bewiesen,
Approximationsmethoden angegeben sowie Aussagen zur optimalen Steuerung der Gleichung be-
zuiglich des Einflusses der dufleren Kréfte hergeleitet.

W

Die Arbeit besteht aus den Kapiteln: ”Existenz und Approximation der Loésung®, ”Optimale

“won

Steuerung*, ”Zur Gleichung der dynamischen Optimierung*“.

2. In der Arbeit wird der starke Losungsbegriff (im Sinne der stochastischen Analysis) der
stochastischen Navier-Stokes-Gleichung zugrundegelegt, und die Gleichung wird im verallge-
meinerten Sinne als eine Evolutionsgleichung iber einem Evolutionstripel

(V1 1), CHE - ), (V5 -
vollstindigen Wahrscheinlichkeitsraum (€2, F, P) definiert, (F;);c(o,7] ist eine rechtsstetige Filtra-

V)) betrachtet. Die zufélligen Variablen sind auf einem gegebenen

tion, und es wird ein reellwertiger J;-Wiener-Prozef (w(t))te[o - als gegeben vorausgesetzt. Wir

nennen den zur Filtration (F;);c(o,7)-adaptierten, V-wertigen stochastischen Prozef (U (t))te[o -
T k)

Losung der stochastischen Navier-Stokes-Gleichung, wenn E / (U ()|} dt < oo, E||U)||% < oo fiir
0



alle t € [0,7], und

t t

(2.6)  (U®),0)n + /(AU(s),v>ds — (w0, v)m + /(B(U(s),U(s)),v>ds
0 0

+ 0/(<I>(s,U(s)),v)Hds —i—O/(C(s,U(s)),v)Hdw(s)

fir alle ¢ € [0,T],v € V und fast alle w € Q.

Der Operator A : V — V* ist linear, symmetrisch und koerzitiv, xg ist eine H-wertige Fo-
meBbare Zufallsgrofie mit Eljxg||* < oo. Der bilineare Operator B : V x V — V* erfiillt die
Bedingungen (B(u,v),v) = 0 und |(B(u,v), 2)|* < b||2|%||ullz|jvlv||v||g|v]v fir ale u,v,z € V (b
ist eine positive Konstante). Die Abbildungen ®,C : [0,7] x H — H sind lipschitzstetig beziiglich
der zweiten Variablen, und es werden solche Voraussetzungen gewahlt, dafl die deterministischen
Integrale und das stochastische Integral (im Sinne von Ito) in (2.6) existieren.

3. Als eigenstandiges Resultat wurde die Existenz der Losung von (2.6) mit Hilfe der Galerkin-
Methode bewiesen. Die Losung des unendlichdimensionalen Problems ergibt sich als Grenzwert im
quadratischen Mittel der Galerkin-Approximationen, indem man a priori Abschatzungen fiir die
Galerkin-Approximationen herleitet, Stoppzeiten fiir stochastische Prozesse einfiihrt und Konver-
genzprinzipien der Funktionalanalysis anwendet. Es wird auch die Eindeutigkeit (mit Wahrschein-
lichkeit 1) der Losung von (2.6) bewiesen.

4. Die Galerkin-Approximationen sind ebenfalls Losungen von nichtlinearen Gleichungen, und
diese sind fiir numerische Simulationen aufwendig. Dabei wurde eine neue Linearisierungsmethode
entwickelt. Fiir jede natiirliche Zahl n sei der Prozefl (u"(t))te[o 7 Losung der folgenden linearen
Evolutionsgleichung 7

t

(B (un(t),0)n + /(Aun(s),v>ds:(x0,v)H+ /<B(un,l(s),un(s)),v>d5
0

0
+ !(@(s,unl(s)),v)Hds +O/(C(s,un1(s)),v)Hdw(s)

fir alle t € [0,T],v € V und fast alle w € Q, wobei ug := 0 ist. Es werden die Existenz und
Eindeutigkeit der Losung dieser Gleichungen untersucht und folgende Konvergenzeigenschaften
bewiesen:

T
Jin B [ fun(t) = U}t =0
0

und fiir alle ¢ € [0, 7]



5. Im zweiten Teil der Arbeit wird das Verhalten des Stromungsfeldes untersucht, wenn ver-
schiedene &uflere Krafte & als Steuerungen wirken, wobei sowohl lineare und stetige
Riickkopplungssteuerungen als auch beschrankte Steuerungen als zuléssige Steuerungen betrachtet
werden. Das Problem der optimalen Steuerung besteht in der Minimierung des Kostenfunktionals

T
J(@) =E / LIt Us(t), &(t, Us (£))|dt + EK[Us (T),
0
beziiglich der eingefiihrten zuldssigen Steuerungen, wobei £ : [0,7] x H x H — IRy,

K : H — IRy bestimmte Stetigkeits- bzw. Differenzierbarkeitsbedingungen erfiillen. Es gelang,
die Existenz von optimalen und e-optimalen Riickkopplungssteuerungen zu beweisen, wobei die
Kompaktheitseigenschaft der Menge der zuldssigen Steuerungen in diesen Féllen nicht vorausge-
setzt werden muf.

6. Eine notwendige Optimalitatsbedingung fiir das Problem der optimalen Steuerung wird in
Form eines stochastischen Minimumprinzips hergeleitet. Dazu wird die Ableitung im Sinne von
Gateaux des Kostenfunktionals berechnet. Weiterhin werden Gleichungen fiir die adjungierten
Prozesse hergeleitet und Naherungen durch endlichdimensionale Approximationen ermittelt.

7. Um die Aussagen fiir das Steuerproblem abzurunden, wurde die Bellmansche Funktional-
gleichung fiir die endlichdimensionalen Galerkin-Approximationen hergeleitet. Der unendlichdi-
mensionale Fall kann nur in Spezialfallen behandelt werden, da die Existenz des infinitesimalen Ge-
nerators vorausgesetzt werden mufl. Durch das Bellmansche Prinzip wird das stochastische Steuer-
problem in ein deterministisches Steuerproblem beziiglich einer nichtlinearen partiellen
Differentialgleichung zweiter Ordnung iiberfiihrt. Die Bellmansche Funktionalgleichung liefert hier
eine hinreichende Bedingung fiir die Existenz optimaler Steuerungen.

8. Es wird auch bewiesen, dafl die Losung der Gleichung (2.6) und die zugehorigen Galerkin-
Approximationen die Markov-Eigenschaft besitzen.

9. Im Anhang der Arbeit werden Aussagen der Funktionalanalysis sowie der stochastischen
Analysis angegeben und ein Teil davon auch bewiesen.
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