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INTRODUCTION

“The Navier-Stokes equation occupy a central position in the study of nonlinear partial differ-
ential equations, dynamical systems, and modern scientific computation, as well as classical fluid
dynamics. Because of the complexity and variety of fluid dynamical phenomena, and the simplicity
and exactitude of the governing equations, a very special depth and beauty is expected in the math-
ematical theory. Thus, it is a source of pleasure and fascination that many of the most important
questions in the theory remain yet to be answered, and seem certain to stimulate contributions of
depth, originality and influence far into the future.” (J.G. Heywood [15])

The Navier-Stokes equations were formulated by the French physicist C.L.M.H. Navier (1785-
1836) in 1822 and the British mathematician and physicist G.G. Stokes (1819-1903) in 1845. Ex-
istence and uniqueness theorems for the stationary Navier-Stokes equation were first proved by
F. Odquist in 1930 [27] and by J. Leray in 1933-1934 [22], [23]. E. Hopf [17] (1952) was the first
who obtained the equation for the characteristic functional of the statistical solution giving a prob-
ability description of fluid flows. There is much information about statistical hydromechanics with
detailed review of literature in the books written by A.S. Monin and A.M. Jaglom [25] in 1965, 1967.
C. Foias investigated in [10] (1972) the questions of existence and uniqueness of spatial statistical
solutions. A. Bensoussan and R. Temam [2] (1973) gave for the first time a functional analytical
approach for the stochastic Navier-Stokes equations. The research has accelerated during the last
twenty five years.

“Researchers are now undertaking the study of flows with free surfaces, flows past obstacles,
jets through apertures, heat convection, bifurcation, attractors, turbulence, etc., on the basis of
an exact mathematical analysis. At the same time, the advent of high speed computers has made
computational fluid dynamics a subject of the greatest practical importance. Hence, the development
of computational methods has become another focus of the highest priority for the application of
the mathematical theory. It is not surprising, then, that there has been an explosion of activity in
recent years, in the diversity of topics being studied, in the number of researchers who are involved,
and in the number of countries where they are located.” (Preface for “The Navier Stokes Equations
II”- Proceedings of the Oberwolfach meeting 1991, [16])

After this short history about the deterministic and stochastic equations of Navier-Stokes type,
we give the equation for the stochastic Navier-Stokes equation which describes the behavior of a
viscous velocity field of an incompressible liquid. The equation on the domain of flow G ⊂ IRn

(n ≥ 2 a natural number) is given by

∂U

∂t
− ν∆U = −(U,∇)U + f −∇p+ C(U)

∂w

∂t
(0.1)

div U = 0, U(0, x) = U0(x), U(t, x) |∂G= 0, t > 0, x ∈ G,

where U is the velocity field, ν is the viscosity, ∆ is the Laplacian, ∇ is the gradient, f is an
external force, p is the pressure, and U0 is the initial condition. Realistic models for flows should
contain a random noise part, because external perturbations and the internal Browninan motion

influence the velocity field. For this reason equation (0.1) contains a random noise part C(U)
∂w

∂t
.
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Here the noise is defined as the distributional derivative of a Wiener process
(
w(t)

)
t∈[0,T ]

, whose

intensity depends on the state U .
This nonlinear differential equation is only for the simplest examples exactly soluble, usually

corresponding to laminar flows. Physical experiments show that turbulence occurs if the outer force
f is sufficiently large. In many important applications, including turbulence, the equation must be
modified, matched or truncated, or otherwise approximated analytically or numerically in order to
obtain any predictions. Sometimes a good approximation can be of equal or greater utility than a
complicated exact result.

In the study of equations of Navier-Stokes type one can consider weak solutions of martingal
type or strong solutions. Throughout this paper we consider strong solutions (“strong” in the sense
of stochastic analysis) of a stochastic equation of Navier-Stokes type (we will call it stochastic
Navier-Stokes equation) and define the equation in the generalized sense as an evolution equation,
assuming that the stochastic processes are defined on a given complete probability space and the
Wiener process is given in advance.

The aim of this dissertation is to prove the existence of the strong solution of the Navier-Stokes
equation by approximating it by means of the Galerkin method, i.e., by a sequence of solutions of
finite dimensional evolution equations. The Galerkin method involves solving nonlinear equations
and often it is difficult to deal with them. For this reason we approximate the solution of the
stochastic Navier-Stokes equation by the solutions of a sequence of linear stochastic evolution
equations. Another interesting aspect of the stochastic Navier-Stokes equation is to study the
behavior of the flow if we act upon the fluid through various external forces. We address the issue
of the existence of an optimal action upon the system in order to minimize a given cost functional
(for example, the turbulence within the flow). We also derive a stochastic minimum principle and
investigate Bellman’s equation for the considered control problem.

Chapter 1 is devoted to the proof of the existence of the strong solution of the Navier-Stokes
equation using the Galerkin method and then to approximate the solution by a linear method.
First we give the assumptions for the considered equation and show how the considered evolution
equation can be transformed into (0.1) in the case of n = 2. We prove the existence of the solution by
the Galerkin method (see Theorem 1.2.2). Important results concerning the theory and numerical
analysis of the deterministic Navier-Stokes equation can be found in the book of R. Temam [32].
The author also presents in this book the Galerkin method for this equation, which is one of the
well-known methods in the theory of partial differential equations that is used to prove existence
properties and to obtain finite dimensional approximations for the solutions of the equations. The
Galerkin method for the stochastic Navier-Stokes equation has been investigated for example from
A. Bensoussan [4], M. Capinski, N. J. Cutland [6], D. Gatarek [7], A. I. Komech, M. I. Vishik
[20], B. Schmalfuß [30], [29], M. Viot [34]. Most of the above-mentioned papers consider weak
(statistical) solutions. The techniques used in the proofs are the construction of the Galerkin-type
approximations of the solutions and some a priori estimates that allow one to prove compactness
properties of the corresponding probability measures and finally to obtain a solution of the equation
(using Prokhorov’s criterion and Skorokhod’s theorem). Since we consider the strong solution (in
the sense of stochastic analysis) of the Navier-Stokes equation, we do not need to use the techniques
considered in the case of weak solutions. The techniques applied in our paper use in particular the
properties of stopping times and some basic convergence principles from functional analysis. An
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important result is that the Galerkin-type approximations converge in mean square to the solution
of the Navier-Stokes equation (see Theorem 1.2.7). There are also other approximation methods for
this equation involving, for example, the approximation of the Wiener process by smooth processes
(see W. Grecksch, B. Schmalfuß [13]) or time discretizations (see F. Flandoli, V. M. Tortorelli [8]).
In this chapter we further approximate the solution of the stochastic Navier-Stokes equation by
the solutions of a sequence of linear stochastic evolution equations (see equations (P̂n)), which are
easier to study. We also prove the convergence in mean square (see Theorem 1.4.5). Since the
approximation method involves linear evolution equations of a special type, we give in Section 1.3
results concerning this type of equations.

Chapter 2 deals with the optimal control of the stochastic Navier-Stokes equation. We inves-
tigate the behavior of the flow controlled by different external forces, which are feedback controls
and respectively bounded controls. We search for an optimal control that minimize a given cost
functional. Whether or not there exist such optimal controls is a common question in optimal con-
trol theory and often for the answer one uses the Weierstraß Theorem and assumes that the set of
admissible controls is compact. To assure the compactness of this set is sometimes not practicable.
Therefore we investigate this problem and prove in Theorem 2.3.4, respectively Theorem 2.4.2, the
existence of optimal controls, respectively ε-optimal controls, in the case of feedback controls. In
the case of bounded controls this method can not be applied, because it uses the special linear
and continuous structure of the feedback controls. Using the ideas from A. Bensoussan [3] and
adapting them for the considered Navier-Stokes equation we calculate the Gateaux derivative of
the cost functional (see Theorem 2.6.4) and derive a stochastic minimum principle (for the case of
bounded controls), which gives us a necessary condition for optimality (see Theorem 2.7.2). We
complete the statement of the stochastic minimum principle by giving the equations for the adjoint
processes.

Chapter 3 contains some aspects and results of dynamic programming for the stochastic
Navier-Stokes equation. First we prove that the solution of the considered equation is a Markov
process (see Theorem 3.1.1). This property was proved by B. Schmalfuß [29] for the stochastic
Navier-Stokes equation with additive noise. In Section 3.2 we illustrate the dynamic programming
approach (called also Bellman’s principle) and we give a formal derivation of Bellman’s equation.
Bellman’s principle turns the stochastic control problem into a deterministic control problem about
a nonlinear partial differential equation of second order (see equation (3.11)) involving the infinites-
imal generator. To round off the results of Chapter 2 we give a sufficient condition for an optimal
control (Theorem 3.2.3 and Theorem 3.2.4). This condition requires a suitably behaved solution
of the Bellman equation and an admissible control satisfying a certain equation. In this section
we consider the finite dimensional stochastic Navier-Stokes equation (i.e., the equations obtained
by the Galerkin method). The approach would be very complicate for the infinite dimensional
case, because in this case it is difficult to obtain the infinitesimal generator. M.J. Vishik and A.V.
Fursikov investigated in [35] also the inverse Kolmogorov equations, which give the inifinitsimal
generator of the process being solution of the considered equation, only for the case of n = 2 for
(0.1).

The final part of the dissertation contains an Appendix with useful properties from functional
and stochastic analysis. We included them into the paper for the convenience of the reader and
because we often make use of them.



CONTENTS 4

The development and implementation of numerical methods for the Navier-Stokes equation
remains an open problem for further research: “...the numerical resolution of the Navier-Stokes
equation will require (as in the past) the simultaneous efforts of mathematicians, numerical analysts
and specialists in computer science. Several significant problems can already be solved numerically,
but much time and effort will be necessary until we master the numerical solution of these equations
for realistic values of the physical parameters. Besides the need for the development of appropiate
algorithms and codes and the improvement of computers in memory size and computation speed,
there is another difficulty of a more mathematical (as well as practical) nature. The solutions of the
Navier-Stokes equation under realistic conditions are so highly oscillatory (chaotic behavior) that
even if we were able to solve them with a great accuracy we would be faced with too much useless
information. One has to find a way, with some kind of averaging, to compute mean values of the
solutions and the corresponding desired parameters.”(R. Temam [33])
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Frequently Used Notations

a.e. almost every

⇀ weak convergence (in the sense of functional analysis)

IA indicator function for the set A

IN set of strictly positive integers

IR set of real numbers

Λ Lebesgue measure on the interval [0, T ]

(Ω,F , P ) complete probability space

EX mathematical expectation of the random variable X

(Ft)t∈[0,T ] right continuous filtration such that F0 contains all F-null sets

V ∗ dual space of the reflexive Banach space V

〈v∗, v〉 the application of v∗ ∈ V ∗ on v ∈ V

J duality map J : V → V ∗

B(V ) σ-algebra of all Borel measurable sets of V

C([0, T ], V ) space of all continuous functions u : [0, T ] → V

L(V ) space of all linear and continuous operators from the Banach space
V to itself

L2
V [0, T ] space of all B([0, T ])-measurable functions u : [0, T ] → V with

T∫
0

‖u(t)‖2
V dt <∞

L2
V (Ω) space of all F-measurable random variables u : Ω → V with E‖u‖2

V <∞
L2
V (Ω × [0, T ]) space of all F ×B([0, T ])-measurable processes u : Ω × [0, T ] → V that

are adapted to the filtration (Ft)t∈[0,T ] and E
T∫

0

‖u(t)‖2
V dt <∞

L∞
V (Ω × [0, T ]) space of all F ×B([0, T ])-measurable processes u : Ω × [0, T ] → V that

are adapted to the filtration (Ft)t∈[0,T ] and for a.e. (ω, t) bounded

L∞
V (Ω) space of all F-measurable processes u : Ω → V that are bounded

for a.e. ω

DV (Ω × [0, T ]) set of ξ ∈ L∞
V (Ω × [0, T ]) with ξ = vφ, v ∈ V, φ ∈ L∞

IR(Ω × [0, T ])

DV (Ω) set of ξ ∈ L∞
V (Ω) with ξ = vφ, v ∈ V, φ ∈ L∞

IR(Ω)
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∆X(t) notation for exp
{
− b

ν

t∫
0

‖X(s)‖2
V ds

}
, where

(
X(t)

)
t∈[0,T ]

is a V -valued

stochastic process; b, ν are positive constants

T X
M stopping time for the stochastic process

(
X(t)

)
t∈[0,T ]

(for the exact definition

see Appendix B)

Πn orthogonal projection in a Hilbert space

As usual in the notation of random variables or stochastic processes we generally omit the
dependence of ω ∈ Ω.



Chapter 1

Existence and Approximation of the
Solution

In this chapter we use the Galerkin method to prove the existence of the strong solution of the
Navier-Stokes equation. We mean strong solution in the sense of stochastic analysis (see [14],
Definition 4.2, p. 104): a complete probability space and a Wiener process are given in advance and
the equation is defined in the generalized sense over an evolution triple. The techniques that we used
are not the same as in the papers of A. Bensoussan [4], M. Capinski, N. J. Cutland [6], D. Gatarek
[7], A. I. Komech, M. I. Vishik [20], B. Schmalfuß [29], [31], M. Viot [34], because in the above-
mentioned papers one consider weak (statistical) solutions. The Galerkin-type approximations
of the solutions and some a priori estimates allow one to prove compactness properties of the
corresponding probability measures and to obtain a solution of the equation. In the paper of B.
Schmalfuß [30] are considered strong solutions for the equation with an additive noise (the intensity
of the random noise part does not depend on the state). The techniques applied in this dissertation
are different from those used in the papers above. We utilize the properties of stopping times
and some basic convergence principles from functional analysis. An important result is that the
Galerkin-type approximations converge in mean square to the solution of the Navier-Stokes equation
(see Theorem 1.2.7). This we can prove by using the property of higher order moments for the
solution (see Lemma 1.2.3 and Lemma 1.2.6). The Galerkin method is useful to prove the existence
of the solution, but it is complicated for numerical developments because it involves nonlinear terms.
In Section 1.4 we give another approximation method by making use of linear evolution equations
(see equations (P̂n)), which are easier to study. We also prove that the approximations converge
in mean square to the solution of the stochastic Navier-Stokes equation (see Theorem 1.4.5). Since
the approximation method involves linear evolution equations of a special type, we give in Section
1.3 some results concerning this type of equations.

The development and implementation of numerical methods for this type of equations remains
an open problem for further research. For numerical solutions of stochastic differential equations
we refer the reader to the book of P. Kloeden and E. Platen [19].

7
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1.1 Assumptions and formulation of the problem

First we state the assumptions about the stochastic evolution equation that will be considered.

(i) (Ω,F , P ) is a complete probability space and (Ft)t∈[0,T ] is a right continuous filtration such
that F0 contains all F-null sets. (w(t))t∈[0,T ] is a real valued standard Ft-Wiener process.

(ii) (V,H, V ∗) is an evolution triple (see [37], p. 416), where (V, ‖ · ‖V ) and (H, ‖ · ‖) are separable
Hilbert spaces, and the embedding operator V ↪→ H is assumed to be compact. We denote
by (·, ·) the scalar product in H.

(iii) A : V → V ∗ is a linear operator such that 〈Av, v〉 ≥ ν‖v‖2
V for all v ∈ V and 〈Au, v〉 = 〈Av, u〉

for all u, v ∈ V , where ν > 0 is a constant and 〈·, ·〉 denotes the dual pairing.

(iv) B : V × V → V ∗ is a bilinear operator such that 〈B(u, v), v〉 = 0 for all u, v ∈ V and for
which there exists a positive constant b > 0 such that

|〈B(u, v), z〉|2 ≤ b‖z‖2
V ‖u‖‖u‖V ‖v‖‖v‖V .

(v) C : [0, T ] ×H → H is a mapping such that

(a) ‖C(t, u)−C(t, v)‖2 ≤ λ‖u− v‖2 for all t ∈ [0, T ], u, v ∈ H, where λ is a positive constant;

(b) C(t, 0) = 0 for all t ∈ [0, T ];

(c) C(·, v) ∈ L2
H [0, T ] for all v ∈ H.

(vi) Φ : [0, T ] ×H → H is a mapping such that

(a) ‖Φ(t, u)−Φ(t, v)‖2 ≤ µ‖u−v‖2 for all t ∈ [0, T ], u, v ∈ H, where µ is a positive constant;

(b) Φ(t, 0) = 0 for all t ∈ [0, T ];

(c) Φ(·, v) ∈ L2
H [0, T ] for all v ∈ H.

(vii) x0 is a H-valued F0-measurable random variable such that E‖x0‖4 <∞.

Definition 1.1.1
We call a process

(
U(t)

)
t∈[0,T ]

from the space L2
V (Ω × [0, T ]) with E‖U(t)‖2 <∞ for all t ∈ [0, T ]

a solution of the stochastic Navier-Stokes equation if it satisfies the equation:

(U(t), v) +
t∫

0

〈AU(s), v〉ds = (x0, v) +
t∫

0

〈B(U(s), U(s)), v〉ds(1.1)

+
t∫

0

(Φ(s, U(s)), v)ds +
t∫

0

(C(s, U(s)), v)dw(s)

for all v ∈ V , t ∈ [0, T ] and a.e. ω ∈ Ω, where the stochastic integral is understood in the Ito sense.
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Remark 1.1.2
1) Since A is a linear and monotone operator, it follows that it is continuous (see [37], Proposition
26.4, p. 555), i.e., there exists a constant cA > 0 such that for all u ∈ V we have

‖Au‖2
V ∗ ≤ cA‖u‖2

V .

2) From the properties of the operator B we can derive the following relation

〈B(u, v), z〉 = −〈B(u, z), v〉 for all u, v, z ∈ V,

which we will use often in our proofs.
3) The condition C(t, 0) = 0 (for all t ∈ [0, T ]) is given only to simplify the calculations. It can be
omitted, in which case one can use the estimate ‖C(t, u)‖2 ≤ 2λ‖u‖2 +2‖C(t, 0)‖2 that follows from
the Lipschitz condition. The same remark holds for Φ too.

4) If we set n = 2, V = {u ∈
◦
W 1

2 (G) : divu = 0}, H = V̄ L2(G) and

〈Au, v〉 =
∫
G

n∑
i=1

∂u

∂xi

∂v

∂xi
dx, 〈B(u, v), z〉 = −

∫
G

n∑
i,j=1

ui
∂vj
∂xi

zjdx, Φ(t, u) = f(t)

for u, v, z ∈ V, t ∈ [0, T ], then equation (0.1) can be transformed into (1.1); see [32].

For finite dimensional approximations we need some preliminaries. Let h1, h2, . . . , hn, . . . ∈ H be
the eigenvectors of the operator A, for which we consider the domain of definition
Dom(A) = {v ∈ V | Av ∈ H}. These eigenvectors form an orthonormal base in H and they
are orthogonal in V (see [24], p. 110). For each n ∈ IN we consider Hn := sp{h1, h2, . . . , hn}
equipped with the norm induced from H. We write (Hn, ‖ · ‖V ) when we consider Hn equipped
with the norm induced from V . We define by Πn : H → Hn the orthogonal projection of H on Hn

Πnh :=
n∑
i=1

(h, hi)hi.

Let An : Hn → Hn, Bn : Hn ×Hn → Hn, Φn, Cn : [0, T ] ×Hn → Hn be defined respectively by

Anu =
n∑
i=1

〈Au, hi〉hi, Bn(u, v) =
n∑
i=1

〈B(u, v), hi〉hi,

Cn(t, u) = ΠnC(t, u), Φn(t, u) = ΠnΦ(t, u), x0n = Πnx0

for all t ∈ [0, T ], u, v ∈ Hn.

Let
(
X(t)

)
t∈[0,T ]

be a process in the space L2
V (Ω × [0, T ]) and let Xn := ΠnX. Using the

properties of A and of its eigenvectors h1, h2, . . . (λ1, λ2, . . . are the corresponding eigenvalues), we
have

‖Xn(t)‖2
V ≤ ‖X(t)‖2

V , ‖Xn(t)‖2 ≤ ‖X(t)‖2, ‖X(t) −Xn(t)‖2 ≤ ‖X(t)‖2,(1.2)
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ν‖X(t) −Xn(t)‖2
V ≤ 〈AX(t) −AXn(t),X(t) −Xn(t)〉 =

∞∑
i=n

λi(X(t), hi)2(1.3)

≤ 〈AX(t),X(t)〉 ≤ cA‖X(t)‖2
V .

Hence for P × [0, T ] a.e. (ω, t) ∈ Ω × [0, T ] we have

lim
n→∞

‖X(ω, t) −Xn(ω, t)‖2
V = 0.

By the Lebesgue dominated convegence theorem it follows that

lim
n→∞

T∫
0

‖X(t) −Xn(t)‖2
V dt = 0(1.4)

and

lim
n→∞

E

T∫
0

‖X(t) −Xn(t)‖2
V dt = 0.(1.5)

If the process
(
X(t)

)
t∈[0,T ]

has almost surely continuous trajectories in H, then

lim
n→∞

‖X(T ) −Xn(T )‖2 = 0 for a.e. ω ∈ Ω(1.6)

and
lim
n→∞

E‖X(T ) −Xn(T )‖2 = 0.(1.7)

1.2 Existence of the solution of the stochastic

Navier-Stokes equation by Galerkin approximation

We want to prove the existence of the solution of the Navier-Stokes equation (1.1) by approximating
it by means of the Galerkin method, i.e., by a sequence of solutions of finite dimensional evolution
equations (see equations (Pn)). Since we consider the strong solution of the Navier-Stokes equation,
we do not need to use the techniques considered in the case of weak solutions. The techniques
applied in our paper use in particular the properties of stopping times and some basic convergence
principles from functional analysis. An important result is that the Galerkin-type approximations
converge in mean square to the solution of the Navier-Stokes equation (see Theorem 1.2.7).

For each n = 1, 2, 3, . . . we consider the sequence of finite dimensional evolution equations

(Pn) (Un(t), v) +
t∫

0

(AnUn(s), v)ds = (x0n, v) +
t∫

0

(Bn(Un(s), Un(s)), v)ds

+
t∫

0

(Φn(s, Un(s)), v)ds +
t∫

0

(Cn(s, Un(s)), v)dw(s),

for all v ∈ Hn, t ∈ [0, T ] and a.e. ω ∈ Ω.
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Theorem 1.2.1 For each n ∈ IN, equation (Pn) has a solution Un ∈ L2
V (Ω × [0, T ]), which is

unique almost surely and has almost surely continuous trajectories in H.

Proof. We use an analogous method as in [31]. Let
(
χM

)
be a family of Lipschitz continuous

mappings such that

χM (x) =


1 , if 0 ≤ x ≤M,
0 , if x ≥M + 1,
M + 1 − x, if x ∈ (M,M + 1).

For each fixed n ∈ IN we consider the solution Un of equation (Pn) approximated by
(
UMn

)
(M = 1, 2, . . .) which is the solution of the equation

(PMn ) (UMn (t), v) +
t∫

0

(AnU
M
n (s), v)ds = (x0n, v)

+
t∫

0

(χM (‖UMn (t)‖2)Bn(UMn (s), UMn (s)), v)ds

+
t∫

0

(Φn(s, UMn (s)), v)ds +
t∫

0

(Cn(s, UMn (s)), v)dw(s),

for all v ∈ Hn, t ∈ [0, T ], and a.e. ω ∈ Ω. For this equation we apply the theory of finite dimensional
Ito equations with Lipschitz continuous nonlinearities (see [18], Theorem 3.9, p. 289). Hence there
exists UMn ∈ L2

(Hn,‖·‖V )(Ω × [0, T ]) almost surely unique solution of (PMn ) which has continuous
trajectories in H.

We consider the stopping times TM := T UM
n

M (the definition of stopping times is given in Ap-
pendix B). By using (PMn ), the properties of An,Bn, Cn,Φn and Proposition B.2 (for Q := UMn ,
a0 := x0n, k1 := 2ν, k2 := 2

√
µ+ λ, F1 = F2 := 0, F3 := 2Cn) we obtain the following estimate

E sup
t∈[0,T ]

‖UMn (t)‖2 + 2νE
T∫

0

‖UMn (s)‖2
V ds ≤ cE‖x0‖2,(1.8)

where c is a positive constant independent of n and M . From Markov’s inequality, the definition
of TM , and (1.8) we have

P (TM < T ) ≤ P
(

sup
t∈[0,T ]

‖UMn (t)‖2 ≥M
)
≤ c

M
E‖x0‖2.(1.9)

Let ΩM
n be the set of all ω ∈ Ω such that UMn (ω, ·) satisfies (PMn ) for all t ∈ [0, T ], v ∈ Hn and

UMn (ω, ·) has continuous trajectories in H. We denote Ω′ :=
∞⋂

M=1

ΩM
n and have P (Ω′) = 1. We also

consider

Sn :=
∞⋃

M=1

⋃
1≤K≤M

{ω ∈ Ω′|TK = T and ∃ t ∈ [0, T ] : UKn (ω, t) 6= UMn (ω, t)}.



CHAPTER 1. EXISTENCE AND APPROXIMATION OF THE SOLUTION 12

We get P (Sn) = 0, because otherwise there exist two natural numbers M0,K0 with K0 < M0 such
that the set

SnM0,K0
:= {ω ∈ Ω′|TK0 = T and ∃ t ∈ [0, T ] : UK0

n (ω, t) 6= UM0
n (ω, t)}

has the measure P (SnM0,K0
) > 0. We define for each t ∈ [0, T ]

U∗
n(ω, t) :=

 UK0
n (ω, t) , ω ∈ SnM0,K0

UM0
n (ω, t) , ω ∈ Ω′ \ SnM0,K0

.

We see that for all ω ∈ SnM0,K0
there exists t ∈ [0, T ] such that U∗

n(ω, t) 6= UM0
n (ω, t). This

contradicts to the almost surely uniqueness of the solution of (PM0
n ). Consequently, P (Sn) = 0.

Let Ω′′ := Ω′ ∩
( ∞⋃
M=1

{TM = T} \ Sn
)
. Using (1.9) and the definition of S we have

P (Ω′′) = lim
M→∞

P
(
{TM = T} \ Sn

)
= 1 − lim

M→∞
P (TM < T ) = 1.

Let ω ∈ Ω′′. For this ω there exists a natural number M0 such that TM = T for all M ≥M0. Hence
χM (‖UMn (s)‖2) = 1 for all s ∈ [0, T ] and all M ≥M0. Equation (PMn ) implies

(UMn (t), v) +
t∫

0

〈AnU
M
n (s), v〉ds = (x0n, v) +

t∫
0

〈Bn(UMn (s), UMn (s)), v〉ds(1.10)

+
t∫

0

(Φn(s, UMn (s)), v)ds +
t∫

0

(Cn(s, UMn (s)), v)dw(s)

for all M ≥M0 and all t ∈ [0, T ], v ∈ Hn. For this fixed ω ∈ Ω′′ and for each t ∈ [0, T ] we define

Un(ω, t) := UM0
n (ω, t) = lim

M→∞
UMn (ω, t)(1.11)

with respect to the H-norm. This definition is correct because ω /∈ Sn. Then using (1.10) and
(1.11) we obtain

(Un(t), v) +
t∫

0

(AnUn(s), v)ds = (x0n, v) +
t∫

0

(Bn(Un(s), Un(s)), v)ds

+
t∫

0

(Φn(s, Un(s)), v)ds +
t∫

0

(Cn(s, Un(s)), v)dw(s)

for all ω ∈
(
Ω ∩ Ω′′

)
\ Sn, t ∈ [0, T ], v ∈ Hn. The process (Un(t))t∈[0,T ] is Hn-valued, F × B[0,T ]-

measurable, adapted to the filtration (Ft)t∈[0,T ] and has almost surely continuous trajectories in
Hn, because all UMn have this property. Obviously for all t ∈ [0, T ] we have

lim
M→∞

‖UMn (t) − Un(t)‖2 = 0 for a.e. ω ∈ Ω(1.12)
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and

lim
M→∞

T∫
0

‖UMn (s) − Un(s)‖2
V ds = 0 for a.e. ω ∈ Ω.

By using (1.8) we obtain the following estimates

E‖Un(t)‖2 ≤ lim inf
M→∞

E‖UMn (t)‖2 ≤ cE‖x0‖2 for all t ∈ [0, T ]

and

E

T∫
0

‖Un(s)‖2
V ds ≤ lim inf

M→∞
E

T∫
0

‖UMn (s)‖2
V ds ≤

c

2ν
E‖x0‖2.

Therefore Un ∈ L2
V (Ω × [0, T ]).

The uniqueness of the solution can be proved analogously to the case of the stochastic Navier-
Stokes equation (see Theorem 1.2.2).

One of the main results of this chapter is given in the following theorem, in which we state
the existence and almost surely uniqueness of the solution U of the Navier-Stokes equation.

Theorem 1.2.2
The Navier-Stokes equation (1.1) has a solution, which is almost surely unique and has almost
surely continuous trajectories in H.

For the proof of this theorem we need several lemmas.

Lemma 1.2.3
There exists a positive constant c1 (independent of n) such that for all n ∈ IN

E sup
t∈[0,T ]

‖Un(t)‖2 + 2νE
T∫

0

‖Un(t)‖2
V dt ≤ c1E‖x0‖2

and each of the following expressions

E sup
t∈[0,T ]

‖Un(t)‖4, E
( T∫

0

‖Un(t)‖2
V dt

)2

is less or equal to c1E‖x0‖4.

Proof. Let n be an arbitrary fixed natural number. Equation (Pn) (given at the beginning of this
section) can also be written as

(Un(t), hi) +
t∫

0

〈AUn(s), hi〉ds = (x0, hi) +
t∫

0

〈B(Un(s), Un(s)), hi〉ds(1.13)

+
t∫

0

(Φ(s, Un(s)), hi)ds +
t∫

0

(C(s, Un(s), hi)dw(s),
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for all i = 1, . . . , n, t ∈ [0, T ] and a.e. ω ∈ Ω. By the Ito formula and by our hypothesis from
Section 1.1 we have

‖Un(t)‖2 + 2ν
t∫

0

‖Un(s)‖2
V ds ≤ ‖x0‖2 + (2

√
µ+ λ)

t∫
0

‖Un(s))‖2ds+ 2
t∫

0

(C(s, Un(s)), Un(s))dw(s)

for all t ∈ [0, T ] and a.e. ω ∈ Ω. Now we apply Proposition B.2 for Q := Un, k1 := 2ν,
k2 := 2

√
µ + λ, a0 := x0, F1 = F2 := 0, F3 := 2C. Then we obtain the estimates given in the

statement of this lemma.

Lemma 1.2.4

(i) There exist U ∈ L2
V (Ω×[0, T ]), B∗ ∈ L2

V ∗(Ω×[0, T ]), Φ∗, C∗ ∈ L2
H(Ω×[0, T ]), and a subsequence

(n′) of (n) such that for n′ → ∞ we have

Un′ ⇀ U in L2
V (Ω × [0, T ]),

B(Un′ , Un′) ⇀ B∗ in L2
V ∗(Ω × [0, T ]),

Φ(·, Un′(·)) ⇀ Φ∗, C(·, Un′(·)) ⇀ C∗ in L2
H(Ω × [0, T ]),

where ⇀ denotes the weak convergence.

(ii) For all v ∈ V , t ∈ [0, T ] and a.e. ω ∈ Ω the process
(
U(t)

)
t∈[0,T ]

satisfies the equation:

(U(t), v) +
t∫

0

〈AU(s), v〉ds = (x0, v) +
t∫

0

〈B∗(s), v〉ds(1.14)

+
t∫

0

(Φ∗(s), v)ds +
t∫

0

(C∗(s), v)dw(s).

The process
(
U(t)

)
t∈[0,T ]

has almost surely continuous trajectories in H.

(iii) The function U from (ii) satisfies E sup
t∈[0,T ]

‖U(t)‖2 <∞.

Proof. (i) Taking into account the properties of Φ, C, and the estimates from Lemma 1.2.3 it
follows that

(
Φ(·, Un(·))

)
,
(
C(·, Un(·))

)
are bounded sequences in the space L2

H(Ω × [0, T ]). By
using the properties of B we can derive

E

T∫
0

‖B(Un(t), Un(t))‖2
V ∗dt ≤ bE

T∫
0

‖Un(t)‖2
V ‖Un(t)‖2dt ≤ bc1E‖x0‖4,
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so
(
B(Un, Un)

)
is a bounded sequence in the space L2

V ∗(Ω × [0, T ]). Applying Proposition A.1

(see Appendix A), it follows that there exist a subsequence (n′) of (n) and Û ∈ L2
V (Ω × [0, T ]),

B∗ ∈ L2
V ∗(Ω × [0, T ]), Φ∗, C∗ ∈ L2

H(Ω × [0, T ]) such that for n′ → ∞

Un′ ⇀ Û in L2
V (Ω × [0, T ]), B(Un′ , Un′) ⇀ B∗ in L2

V ∗(Ω × [0, T ]),

Φ(·, Un′(·)) ⇀ Φ∗, C(·, Un′(·)) ⇀ C∗ in L2
H(Ω × [0, T ]).

(ii) In (1.13) we take the limit n′ → ∞, use the properties of A, the weak convergences from above
(also Proposition A.2 and Proposition A.3) and obtain

(Û(t), hi) = (x0, hi) −
t∫

0

〈AÛ(s), hi〉ds +
t∫

0

〈B∗(s), hi〉ds(1.15)

+
t∫

0

(Φ∗(s), hi)ds +
t∫

0

(C∗(s), hi)dw(s),

for a.e. (ω, t) ∈ Ω × [0, T ] and i ∈ IN. Since sp{h1, h2, . . . , hn, . . .} is dense in V (because of the
properties of the eigenvectors of A) it follows that (1.15) holds also for all v ∈ V .

There exists a Ft-measurable H-valued process which is equal to Û(t) for P × Λ a.e.
(ω, t) ∈ Ω × [0, T ] and is equal to the right side of (1.15) for all t ∈ [0, T ] and a.e. ω ∈ Ω.
We denote this process by

(
U(t)

)
t∈[0,T ]

. Hence

(U(t), v) +
t∫

0

〈AU(s), v〉ds = (x0, v) +
t∫

0

〈B∗(s), v〉ds +
t∫

0

(Φ∗(s), v)ds +
t∫

0

(C∗(s), v)dw(s)

for all v ∈ V , t ∈ [0, T ] and a.e. ω ∈ Ω; the process
(
U(t)

)
t∈[0,T ]

has in H almost surely continuous

trajectories (see [21], Theorem 3.1, p. 88).
(iii) In (1.14) we apply the Ito formula, use the properties of A and some elementary inequalities.

Then we apply Proposition B.2 for Q := U, a0 := x0, F1 :=
1
ν
‖B∗‖2

V ∗ + ‖Φ∗‖2 + ‖C∗‖2, F2 := 2C∗,
F3 := 0, k1 := ν, k2 := 1.

For each fixed M ∈ IN we consider TM := T U
M , where

(
U(t)

)
t∈[0,T ]

is the process obtained in

Lemma 1.2.4.

Lemma 1.2.5
The following convergences hold

lim
n′→∞

E

TM∫
0

‖U(s) − Un′(s)‖2
V ds = 0 and lim

n′→∞
E‖U(TM ) − Un′(TM )‖2 = 0.
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Proof. For each n ∈ IN let Ũn(t) = ΠnU . From (1.14) and (1.13) we have

(U(t) − Un(t), hi) +
t∫

0

〈AU(s) −AUn(s), hi〉ds =
t∫

0

〈B∗(s) − B(Un(s), Un(s)), hi〉ds

+
t∫

0

(Φ∗(s) − Φ(s, Un(s)), hi)ds +
t∫

0

(C∗(s) − C(s, Un(s)), hi)dw(s)

for all t ∈ [0, T ], i = 1, . . . , n, a.e. ω ∈ Ω. After applying the Ito formula and summing from i = 1
to n, we use the properties of A and obtain

‖Ũn(t) − Un(t)‖2 + 2
t∫

0

〈AŨn(s) −AUn(s), Ũn(s) − Un(s)〉ds

= 2
t∫

0

〈B∗(s) − B(Un(s), Un(s)), Ũn(s) − Un(s)〉ds

+ 2
t∫

0

(Φ∗(s) − Φ(s, Un(s)), Ũn(s) − Un(s))ds

+ 2
t∫

0

(C∗(s) − C(s, Un(s)), Ũn(s) − Un(s))dw(s) +
t∫

0

n∑
i=1

(C∗(s) − C(s, Un(s)), hi)2ds

for all t ∈ [0, T ], i = 1, . . . , n, a.e. ω ∈ Ω. Write

e1(t) = ∆U (t) exp{−(2λ+ 2
√
µ+ 1)t},

where the notation for ∆U is given in the paragraph “Frequently Used Notations”. By the Ito
formula get

e1(t)‖Ũn(t) − Un(t)‖2 + 2
t∫

0

e1(s)〈AŨn(s) −AUn(s), Ũn(s) − Un(s)〉ds(1.16)

= 2
t∫

0

e1(s)〈B∗(s) − B(Un(s), Un(s)), Ũn(s) − Un(s)〉ds −
b

ν

t∫
0

e1(s)‖U(s)‖2
V ‖Ũn(s) − Un(s)‖2ds

− (2λ+ 2
√
µ+ 1)

t∫
0

e1(s)‖Ũn(s) − Un(s)‖2ds+ 2
t∫

0

e1(s)(Φ∗(s) − Φ(s, Un(s)), Ũn(s) − Un(s))ds

+
t∫

0

n∑
i=1

e1(s)(C∗(s) − C(s, Un(s)), hi)2ds+ 2
t∫

0

e1(s)(C∗(s) − C(s, Un(s)), Ũn(s) − Un(s))dw(s)
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for all t ∈ [0, T ], i = 1, . . . , n, a.e. ω ∈ Ω. From the properties of B and those of Ũn (see (1.2) we
see that

〈B(Un(s), Un(s)), Ũn(s) − Un(s)〉 = 〈B(Un(s), Ũn(s)), Ũn(s) − Un(s)〉

= 〈B(Un(s) − Ũn(s), Ũn(s)), Ũn(s) − Un(s)〉 + 〈B(Ũn(s), Ũn(s)), Ũn(s) − Un(s)〉

≤ b

2ν
‖Ũn(s)‖2

V ‖Ũn(s) − Un(s)‖2 +
ν

2
‖Ũn(s) − Un(s)‖2

V + 〈B(Ũn(s), Ũn(s)), Ũn(s) − Un(s)〉

≤ b

2ν
‖U(s)‖2

V ‖Ũn(s) − Un(s)‖2 +
ν

2
‖Ũn(s) − Un(s)‖2

V + 〈B(Ũn(s), Ũn(s)), Ũn(s) − Un(s)〉.

The properties of Φ imply

2
(
Φ∗(s) − Φ(s, Un(s)), Ũn(s) − Un(s)

)
≤ 2

(
Φ∗(s) − Φ(s, U(s)), Ũn(s) − Un(s)

)
+ (1 + 2

√
µ)‖Ũn(s) − Un(s)‖2 + µ‖U(s) − Ũn(s)‖2

and from the properties of C and Ũn we get
n∑
i=1

(
C∗(s) − C(s, Un(s)), hi

)2
= ‖C(s, U(s)) − C(s, Un(s))‖2

Hn

+ 2
(
C∗(s) − C(s, Un(s)), C∗(s) − C(s, U(s))

)
Hn

− ‖C(s, U(s)) − C∗(s)‖2
Hn

≤ 2λ‖U(s) − Ũn(s)‖2 + 2λ‖Ũn(s) − Un(s)‖2 + 2
(
C∗(s) − C(s, Un(s)), C∗(s) − C(s, U(s))

)
Hn

− ‖C(s, U(s)) − C∗(s)‖2
Hn
,

where we write ‖x‖Hn := ‖Πnx‖ and (x, y)Hn := (Πnx,Πny) for x, y ∈ H.
We use these estimates in (1.16) to obtain

Ee1(TM )‖Ũn(TM ) − Un(TM )‖2 + νE

TM∫
0

e1(s)‖Ũn(s) − Un(s)‖2
V ds(1.17)

+ E

TM∫
0

e1(s)‖C(s, U(s)) − C∗(s)‖2
Hn
ds

≤ 2E
TM∫
0

e1(s)〈B∗(s) − B(Ũn(s), Ũn(s)), Ũn(s) − Un(s)〉ds

+ (2λ+ µ)E
TM∫
0

e1(s)‖U(s) − Ũn(s)‖2ds

+ 2E
TM∫
0

e1(s)(Φ∗(s) − Φ(s, U(s)), Ũn(s) − Un(s))ds
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+ 2E
TM∫
0

e1(s)(C∗(s) − C(s, Un(s)), C∗(s) − C(s, U(s)))Hn
ds

where M ∈ IN. Using the properties of B, those of the stopping time TM and the fact that (Ũn) is
the partial sum of the Fourier expansion of U ∈ L2

V (Ω × [0, T ]) (see the properties (1.2) and (1.5)
given in the final part of Section 1.1) we have

E

TM∫
0

e1(s)‖B(U(s), U(s)) − B(Ũn(s), Ũn(s))‖2
V ∗ds

≤ bE

TM∫
0

e1(s)
(
‖U(s)‖V ‖U(s)‖ + ‖Ũn(s)‖V ‖Ũn(s)‖

)
‖U(s) − Ũn(s)‖V ‖U(s) − Ũn(s)‖ds

≤ 2bE
TM∫
0

e1(s)‖U(s)‖V ‖U(s)‖2‖U(s) − Ũn(s)‖V ds

≤ 2bM
(
E

TM∫
0

‖U(s)‖2
V ds

) 1
2
(
E

TM∫
0

‖U(s) − Ũn(s)‖2
V ds

) 1
2

and hence

lim
n→∞

E

TM∫
0

e1(s)‖B(U(s), U(s)) − B(Ũn(s), Ũn(s))‖2
V ∗ds = 0.

We have I[0,TM ]B(U,U),B∗ ∈ L2
V ∗(Ω× [0, T ]). For the subsequence (n′) of (n) we have proved that

Un′ ⇀ U in L2
V (Ω× [0, T ]) and Ũn′ → U in L2

V (Ω× [0, T ]) (see Lemma 1.2.4 and (1.5) from Section
1.1). Consequently,

lim
n′→∞

E

TM∫
0

e1(s)〈B∗(s) − B(Ũn′(s), Ũn′(s)), Ũn′(s) − Un′(s)〉ds

= lim
n′→∞

E

TM∫
0

e1(s)〈B∗(s) − B(U(s), U(s)), Ũn′(s) − Un′(s)〉ds

+ lim
n′→∞

E

TM∫
0

e1(s)〈B(U(s), U(s)) − B(Ũn′(s), Ũn′(s)), Ũn′(s) − Un′(s)〉ds = 0.

It also follows that

lim
n′→∞

E

TM∫
0

e1(s)(Φ∗(s) − Φ(s, U(s)), Ũn′(s) − Un(s))ds = 0.
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Since C(·, Un′(·)) ⇀ C∗ in L2
H(Ω × [0, T ]) and ΠnC∗ − ΠnC(·, U(·)) → C∗ − C(·, U(·)), the following

convergences hold:

lim
n′→∞

E

TM∫
0

e1(s)
(
C∗(s) − C(s, Un′(s)), C∗(s) − C(s, U(s)

)
Hn′

ds

= lim
n′→∞

E

TM∫
0

e1(s)
(
C∗(s) − C(s, Un′(s)),ΠnC∗(s) − ΠnC(s, U(s))

)
ds = 0

and

lim
n′→∞

E

TM∫
0

e1(s)‖C(s, U(s)) − C∗(s)‖2
Hn′ds = E

TM∫
0

e1(s)‖C(s, U(s)) − C∗(s)‖2ds.

In view of these results, we see that by taking the limit n′ → ∞ in (1.17) the right side of this
inequality tends to zero. Therefore

lim
n′→∞

Ee1(TM )‖Ũn′(TM ) − Un′(TM)‖2 = 0, lim
n′→∞

E

TM∫
0

e1(s)‖Ũn′(s) − Un′(s)‖2
V ds = 0

and

E

TM∫
0

e1(s)‖C(s, U(s)) − C∗(s)‖2ds = 0.(1.18)

From the properties of e1 over [0,TM ] and from (1.5) follows that for each fixed M ∈ IN we have

lim
n′→∞

E

TM∫
0

‖U(s) − Un′(s)‖2
V ds = 0 and lim

n′→∞
E‖U(TM ) − Un′(TM)‖2 = 0.(1.19)

Proof of Theorem 1.2.2.
From (1.18) we conclude that

I[0,TM ](s)C(s, U(s)) = I[0,TM ](s)C∗(s) for a.e. (ω, t) ∈ Ω × [0, T ].(1.20)

Because Φ(·, Un′(·)) ⇀ Φ∗ in L2
H(Ω × [0, T ]) and Φ is a continuous mapping, it follows from (1.19)

that
I[0,TM ](s)Φ(s, U(s)) = I[0,TM ](s)Φ

∗(s) for a.e. (ω, t) ∈ Ω × [0, T ].(1.21)

Using (1.19) and the properties of B it can be proved that

lim
n′→∞

E

TM∫
0

〈B(U(s), U(s)) − B(Un′(s), Un′(s)), x(s)〉ds = 0 for all x ∈ DV (Ω × [0, T ]).
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But B(Un′ , Un′) ⇀ B∗ in L2
V ∗(Ω × [0, T ]), so

lim
n′→∞

E

TM∫
0

〈B∗(s) − B(Un′(s), Un′(s)), x(s)〉ds = 0 for all x ∈ DV (Ω × [0, T ]).

Since DV (Ω × [0, T ]) is dense in L2
V (Ω × [0, T ]), it follows that

I[0,TM ](s)B∗(s) = I[0,TM ](s)B(U(s), U(s)) for a.e. (ω, t) ∈ Ω × [0, T ].(1.22)

Using (1.20), (1.21), and (1.22) in (1.14)

(U(t ∧ TM ), v) +
t∧TM∫
0

〈Au(s), v〉ds = (x0, v) +
t∧TM∫
0

〈B(U(s), U(s)), v〉ds(1.23)

+
t∧TM∫
0

(Φ(s, U(s)), v)ds +
t∧TM∫
0

(C(s, U(s)), v)dw(s)

for all v ∈ V, t ∈ [0, T ], and a.e. ω ∈ Ω.
From the properties of the stopping time TM and Proposition B.1 we see that

P
( ∞⋃
M=1

{TM = T}
)

= 1.

Let

Ω′ :=
{
ω ∈ Ω : ω ∈

∞⋃
M=1

{TM = T} and U(ω, t) satisfies (1.23) for all v ∈ V, t ∈ [0, T ]
}
.

Obviously, we have P (Ω′) = 1.
For ω ∈ Ω′ there exists a natural number M0 such that TM (ω) = T for all M ≥ M0. From

(1.23), we obtain

(U(t), v) +
t∫

0

〈AU(s), v〉ds = (x0, v) +
t∫

0

〈B(U(s), U(s)), v〉ds(1.24)

+
t∫

0

(Φ(s, U(s)), v)ds +
t∫

0

(C(s, U(s)), v)dw(s)

for all v ∈ V, t ∈ [0, T ]. Consequently (1.24) holds for all ω ∈ Ω′. This means that the process(
U(t)

)
t∈[0,T ]

satisfies the Navier-Stokes equation (1.1). Taking into account Lemma 1.2.4 it follows

that U has almost surely continuous trajectories in H and we have

E sup
t∈[0,T ]

‖U(t)‖2 <∞.
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Hence
(
U(t)

)
t∈[0,T ]

is a solution of the Navier-Stokes equation (1.1).

(ii) In order to prove the uniqueness we assume that X,Y ∈ L2
V (Ω × [0, T ]) are two solutions

of equation (1.1), which have in H almost surely continuous trajectories. Let

e2(t) = ∆X(t) exp{−(λ+ 2
√
µ)t}

for all t ∈ [0, T ] and a.e. ω ∈ Ω. It follows by the Ito formula that

e2(t)‖X(t) − Y (t)‖2 + 2
t∫

0

e2(s)〈AX(s) −AY (s),X(s) − Y (s)〉ds

= 2
t∫

0

e2(s)〈B(X(s),X(s)) − B(Y (s), Y (s)),X(s) − Y (s)〉ds

− b

ν

t∫
0

e2(s)‖X(s)‖2
V ‖X(s) − Y (s)‖2ds− (λ+ 2

√
µ)

t∫
0

e2(s)‖X(s) − Y (s)‖2ds

+ 2
t∫

0

e2(s)(Φ(s,X(s)) − Φ(s, Y (s)),X(s) − Y (s))ds

+ 2
t∫

0

e2(s)(C(s,X(s)) − C(s, Y (s)),X(s) − Y (s))dw(s) +
t∫

0

e2(s)‖C(s,X(s)) − C(s, Y (s))‖2ds.

In view of the properties of B we can write

2〈B(X(s),X(s)) − B(Y (s), Y (s)),X(s) − Y (s)〉 = 2〈B(X(s) − Y (s),X(s)),X(s) − Y (s)〉

≤ b

ν
‖X(s)‖2

V ‖X(s) − Y (s)‖2 + ν‖X(s) − Y (s)‖2
V .

Now we use the properties of A, Φ, and C to obtain

e2(t)‖X(t) − Y (t)‖2 + ν

t∫
0

e2(s)‖X(s) − Y (s)‖2
V ds

≤ 2
t∫

0

e2(s)(C(s,X(s)) − C(s, Y (s)),X(s) − Y (s))dw(s)

for all t ∈ [0, T ] and a.e. ω ∈ Ω. This implies (using also the ideas from the proof of Proposition
B.2)

Ee2(t)‖X(t) − Y (t)‖2 = 0 for all t ∈ [0, T ]

and hence P
(
X(t) = Y (t)

)
= 1 for all t ∈ [0, T ]. Then for each countable and dense subset

S ⊂ [0, T ] we have
P
(

sup
t∈S

‖X(t) − Y (t)‖ = 0
)

= 1.
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But X and Y have almost surely continuous trajectories in H, so

P
(

sup
t∈[0,T ]

‖X(t) − Y (t)‖ = 0
)

= 1.

This means that (1.1) has an almost surely unique solution.

Lemma 1.2.6
There exists a positive constant c2 (depending only on λ, ν, and T ) such that

E sup
t∈[0,T ]

‖U(t)‖4 +E
( T∫

0

‖U(s)‖2
V ds

)2
≤ c2E‖x0‖4.

The proof of Lemma 1.2.6 is analogous to the proof of Lemma 1.2.3 and makes use of Proposition
B.2.

Another important result of this chapter is the following theorem, in which we state that
the Galerkin approximations (Un) converge in mean square to the solution of the Navier-Stokes
equation.

Theorem 1.2.7
The following convergences hold:

lim
n→∞

E

T∫
0

‖U(s) − Un(s)‖2
V ds = 0

and
lim
n→∞

E‖U(t) − Un(t)‖2 = 0 for all t ∈ [0, T ].

Proof. First we apply Proposition B.3 with T := T , Qn′(T ) :=
T∫

0

‖Un′(s)−U(s)‖2
V ds, use Lemma

1.2.5, Lemma 1.2.3, and Lemma 1.2.6 to obtain

lim
n′→∞

E

T∫
0

‖U(s) − Un′(s)‖2
V ds = 0.

Let t ∈ [0, T ]. Now we apply Proposition B.3 with T := t, Qn′(T ) := ‖Un′(T )−U(T )‖, use Lemma
1.2.5, Lemma 1.2.3, and Lemma 1.2.6 and get

lim
n′→∞

E‖Un′(t) − U(t)‖2 = 0.

Every subsequence of (Un) has a further subsequence which converges in the norm of the space
L2
V (Ω× [0, T ]) to the same limit U , the unique solution of the Navier-Stokes equation (1.1) (because

we can repeat all arguments of the results of Section 1.2 for this subsequence). Applying Proposition
A.1 it follows that the whole sequence (Un) converges in mean square to U . By the same argument
we can prove that for all t ∈ [0, T ] the whole sequence (Un(t)) converges to U(t) in the norm of the
space L2

H(Ω).
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Remark 1.2.8

1) The results of this section also hold if we consider equation (1.1) starting at s with s ∈ [0, T )
(instead of 0) and we assume that x0 is a H-valued Fs-measurable random variable such that
E‖x0‖4 <∞.
2) The results of this section also hold if we consider instead of a mapping Φ, satisfying hypothesis

(vi) from Section 1.1, a process belonging to the space L2
H(Ω × [0, T ]) with E

T∫
0

‖Φ(t)‖4dt <∞.

1.3 A special linear stochastic evolution equation

The results presented in this section prepare the investigations for the linear approximation method
from Section 1.4.

Let X,Y ∈ L2
V (Ω × [0, T ]) be arbitrary processes with almost surely continuous trajectories in

H and
E sup
t∈[0,T ]

‖X(t)‖2 <∞, E sup
t∈[0,T ]

‖Y (t)‖2 <∞.

For each M ∈ IN let TM := min{T X
M ,T Y

M }. From the properties of the stopping times (see
Appendix B) it follows that

lim
M→∞

TM = T for a.e. ω ∈ Ω,(1.25)

as soon as

P (
∞⋃

M=1

{TM = T}) = 1.(1.26)

We define XM (t) := X(t ∧ TM), Y M (t) := Y (t ∧ TM) for all t ∈ [0, T ].

Let G : [0, T ]×H → H be a mapping satisfying hypothesis (v) from Section 1.1 and we assume
that for each t ∈ [0, T ] the mapping G(t, ·) : H → H is linear. Let a0 be a H-valued F0-measurable
random variable with E‖a0‖4 < ∞ and let Ψ ∈ L2

V ∗(Ω × [0, T ]),Γ ∈ L2
H(Ω × [0, T ]). We consider

the linear evolution equation:

(PΨ,Γ) (ZΨ,Γ(t), v) +
t∫

0

〈AZΨ,Γ(s), v〉ds = (a0, v)

+
t∫

0

〈B(X(s), ZΨ,Γ(s)) + B(ZΨ,Γ(s), Y (s)), v〉ds

+
t∫

0

〈Ψ(s), v〉ds +
t∫

0

(G(s, ZΨ,Γ(s)), v)dw(s) +
t∫

0

(Γ(s), v)dw(s)
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for all v ∈ V , t ∈ [0, T ], and a.e. ω ∈ Ω and for each M ∈ IN we consider:

(PMΨ,Γ) (ZMΨ,Γ(t), v) +
t∫

0

〈AZMΨ,Γ(s), v〉ds = (a0, v)

+
t∫

0

〈B(XM (s), ZMΨ,Γ(s)) + B(ZMΨ,Γ(s), YM (s)), v〉ds

+
t∫

0

〈Ψ(s), v〉ds +
t∫

0

(G(s, ZMΨ,Γ(s)), v)dw(s) +
t∫

0

(Γ(s), v)dw(s)

for all v ∈ V , t ∈ [0, T ], and a.e. ω ∈ Ω.

For each n ∈ IN we define Gn : [0, T ] ×Hn → Hn by Gn(t, v) := ΠnG(t, v) and consider

Xn := ΠnX, Yn := ΠnY, a0n := Πna0, XM
n (t) := Xn(t ∧ TM ), YM

n (t) := Yn(t ∧ TM ),

for all t ∈ [0, T ], v ∈ Hn and a.e. ω ∈ Ω.

Let n ∈ IN and ψ ∈ L2
(Hn,‖·‖V )(Ω×[0, T ]), γ ∈ L2

Hn
(Ω×[0, T ]). We consider the finite dimensional

evolution equations

(Pn,ψ,γ) (Zn,ψ,γ(t), v) +
t∫

0

(AnZn,ψ,γ(s), v)ds = (a0n, v)

+
t∫

0

(Bn(Xn(s), Zn,ψ,γ(s)) + Bn(Zn,ψ,γ(s), Yn(s)), v)ds

+
t∫

0

(ψ(s), v)ds +
t∫

0

(Gn(s, Zn,ψ,γ(s)), v)dw(s) +
t∫

0

(γ(s), v)dw(s)

and for each M ∈ IN let

(PMn,ψ,γ) (ZMn,ψ,γ(t), v) +
t∫

0

(AnZ
M
n,ψ,γ(s), v)ds = (a0n, v)

+
t∫

0

(Bn(XM
n (s), Zn,ψ,γ(s)) + Bn(Zn,ψ,γ(s), Y M

n (s)), v)ds

+
t∫

0

(ψ(s), v)ds +
t∫

0

(Gn(s, ZMn,ψ,γ(s)), v)dw(s) +
t∫

0

(γ(s), v)dw(s)

for all t ∈ [0, T ], v ∈ Hn, and a.e. ω ∈ Ω.
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Theorem 1.3.1

(i) For each Ψ ∈ L2
V ∗(Ω× [0, T ]),Γ ∈ L2

H(Ω× [0, T ]) there exists a V -valued, F ×B[0,T ]-measurable

process
(
ZΨ,Γ(t)

)
t∈[0,T ]

adapted to the filtration (Ft)t∈[0,T ], satisfying (PΨ,Γ) and which has

almost surely continuous trajectories in H. The solution is almost surely unique, and there
exists a positive constant c1 (independent of a0,Ψ,Γ) such that

E sup
t∈[0,T ]

∆Y (t)‖ZΨ,Γ(t)‖2 + E

T∫
0

∆Y (t)‖ZΨ,Γ(t)‖2
V ds

≤ c1
[
E‖a0‖2 + E

T∫
0

‖Ψ(s)‖2
V ∗ds+ E

T∫
0

‖Γ(s)‖2ds
]

and if E
T∫

0

‖Ψ(t)‖4
V ∗dt <∞ and E

T∫
0

‖Γ(t)‖4dt <∞, then

E sup
t∈[0,T ]

∆2
Y (t)‖ZΨ,Γ(t)‖4 + E

( T∫
0

∆Y (t)‖ZΨ,Γ(t)‖2
V ds

)2

≤ c1
[
E‖a0‖4 + E

T∫
0

‖Ψ(s)‖4
V ∗ds+ E

T∫
0

‖Γ(s)‖4ds
]
.

(ii) For each ψ ∈ L2
(Hn,‖·‖V )(Ω × [0, T ]), γ ∈ L2

Hn
(Ω × [0, T ]) there exists a V -valued, F × B[0,T ]-

measurable process
(
Zn,ψ,γ(t)

)
t∈[0,T ]

adapted to the filtration (Ft)t∈[0,T ], satisfying (Pn,ψ,γ)

and which has almost surely continuous trajectories in H. The solution is almost surely
unique, and there exists a positive constant c2 (independent of n, a0, ψ, γ) such that

E sup
t∈[0,T ]

∆Y (t)‖Zn,ψ,γ(t)‖2 + E

T∫
0

∆Y (t)‖Zn,ψ,γ(t)‖2
V ds

≤ c2
[
E‖a0‖2 + E

T∫
0

‖ψ(s)‖2ds+ E

T∫
0

‖γ(s)‖2ds
]

and if E
T∫

0

‖ψ(t)‖4dt <∞ and E
T∫

0

‖γ(t)‖4dt <∞, then

E sup
t∈[0,T ]

∆2
Y (t)‖Zn,ψ,γ(t)‖4 + E

( T∫
0

∆Y (t)‖Zn,ψ,γ(t)‖2
V ds

)2

≤ c1
[
E‖a0‖4 + E

T∫
0

‖ψ(s)‖4ds+ E

T∫
0

‖γ(s)‖4ds
]
.
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Proof. (i) Let Ψ ∈ L2
V ∗(Ω × [0, T ]),Γ ∈ L2

H(Ω × [0, T ]). For each n ∈ IN let Ψn :=
n∑
i=1

〈Ψ, hi〉hi,

Γn := ΠnΓ. For the finite dimensional evolution equation (PMn,Ψn,Γn
) we apply the theory of finite

dimensional Ito equations with Lipschitz continuous nonlinearities (see [26], Theorem 5.5, p. 45).
Hence there exists a solution ZMn,Ψn,Γn

∈ L2
(Hn,‖·‖V )(Ω× [0, T ]) of (PMn,Ψn,Γn

), which has almost surely
continuous trajectories in H; this solution is almost surely unique.

For notational simplicity we define ZMn := ZMn,Ψn,Γn
.

Let M,n ∈ IN. From the equation for ZMn and Proposition B.2 we obtain the estimate:

E∆Y M
n

(T )‖ZMn (T )‖2 + E

T∫
0

∆Y M
n

(t)‖ZMn (t)‖2
V dt(1.27)

≤ c
[
E‖a0‖2 + E

T∫
0

‖Ψ(s)‖2
V ∗ds+ E

T∫
0

‖Γ(s)‖2ds
]
,

where c is a positive constant independent of M and n, but it depends on ν, λ, T . We can write

E

T∫
0

‖ZMn (t)‖2
V dt ≤ E∆−1

Y M
n

(T )
T∫

0

∆YM
n

(t)‖ZMn (t)‖2
V dt(1.28)

≤ E

{
exp

{
b

ν

T∫
0

‖Yn(t ∧ TM )‖2
V dt

} T∫
0

∆YM
n

(t)‖ZMn (t)‖2
V dt

}

≤ E

{
exp

{
b

ν

T∫
0

‖Y (t ∧ TM)‖2
V dt

} T∫
0

∆Y M
n

(t)‖ZMn (t)‖2
V dt

}

≤ c exp

{
bM

ν

}[
E‖a0‖2 + E

T∫
0

‖Ψ(t)‖2
V ∗dt+ E

T∫
0

‖Γ(t)‖2dt

]
.

Hence, for fixed M the sequence
(
ZMn

)
is bounded in the space L2

V (Ω× [0, T ]). Consequently, there
exists a subsequence (n′) of (n) and ZM ∈ L2

V (Ω × [0, T ]) such that for n′ → ∞ we have

ZMn′ ⇀ ZM .(1.29)

We want to prove that for n′ → ∞ the weak convergence Bn′(XM
n′ , ZMn′ ) ⇀ B(XM , ZM ) holds

in L2
V ∗(Ω × [0, T ]). Let v ∈ V and vn := Πnv. We see that

(Bn(XM
n , ZMn ), v) = (Bn(XM

n , ZMn ), vn) = 〈B(XM
n , ZMn ), vn〉

= 〈B(XM , v) − B(XM
n , vn), ZMn 〉 + 〈B(XM , v), ZM − ZMn 〉 + 〈B(XM , ZM ), v〉.

Consequently,

〈Bn(XM
n , ZMn ) − B(XM , ZM ), v〉(1.30)

= 〈B(XM , v) − B(XM
n , vn), ZMn 〉 + 〈B(XM , v), ZM − ZMn 〉.
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It holds 1

E

T∫
0

‖B(XM
n (s), vn) −B(XM (s), v)‖2

V ∗ds

≤ bcHV
(
‖v‖2

V E

T∫
0

‖XM (s) −XM
n (s)‖2

V ds+ ‖v − vn‖2
VE

T∫
0

‖XM (s)‖2
V ds

)
.

Since vn and XM
n are the Fourier expansions of v and XM , respectively, it follows that

lim
n→∞

E

T∫
0

‖B(XM
n (s), vn) − B(XM (s), v)‖2

V ∗ds = 0.(1.31)

Using (1.29), (1.31) in (1.30) we get

lim
n′→∞

E

T∫
0

(Bn′(XM
n′ (s), ZMn′ (s)), ξ(s))ds = E

T∫
0

〈B(XM (s), ZM (s)), ξ(s)〉ds

for all ξ ∈ DV (Ω × [0, T ]). Since Bn′(XM
n′ , ZMn′ ),B(XM , ZM ) ∈ L2

V ∗(Ω × [0, T ]) and DV (Ω × [0, T ])
is dense in L2

V (Ω× [0, T ]), we have Bn′(XM
n′ , ZMn′ ) ⇀ B(XM , ZM ) for n′ → ∞. Analogously we can

prove that Bn′(ZMn′ , Y M
n′ ) ⇀ B(ZM , YM ) for n′ → ∞.

We take the limit n′ → ∞ in (PMn′,Ψn′ ,Γn′ ), use the weak convergence (1.29), as soon as the strong

convergences of
(
XM
n

)
to XM and of

(
YM
n

)
to YM in the space L2

H(Ω × [0, T ]) and Proposition
A.3 to obtain

(ZM (t), v) = (a0, v) −
t∫

0

〈AZM(s), v〉ds +
t∫

0

〈B(XM (s), ZM (s)) + B(ZM (s), YM (s)), v〉ds(1.32)

+
t∫

0

〈Ψ(s), v〉ds +
t∫

0

(G(s, ZM (s)), v)dw(s) +
t∫

0

(Γ(s), v)dw(s)

for all v ∈ V and P×Λ a.e. (ω, t) ∈ Ω×[0, T ]. The right side of (1.32) has a continuous modification
(as an H valued process), and this process we identify with

(
ZMΨ,Γ(t)

)
t∈[0,T ]

(see [21], Theorem 3.2,

p. 91). So,
(
ZMΨ,Γ(t)

)
t∈[0,T ]

is a process from the space L2
V (Ω × [0, T ]) which has almost surely

continuous trajectories in H and satisfies (PMΨ,Γ) (identically with (1.32)) for all v ∈ V, t ∈ [0, T ] and
a.e. ω ∈ Ω. By standard methods (see the final part of the proof) we can prove that the solution
of (PMΨ,Γ) is almost surely unique.

1Since V ↪→ H we have ‖v‖2 ≤ cHV‖v‖2
V for all v ∈ V .
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Let ΩK be the set of all ω ∈ Ω such that ZKΨ,Γ(ω, ·) satisfies (PKΨ,Γ) for all t ∈ [0, T ], v ∈ V and

such that ZKΨ,Γ(ω, ·) has continuous trajectories in H. We define Ω′ :=
∞⋂
K=1

ΩK . We also consider

S :=
∞⋃

M=1

⋃
1≤K≤M

{ω ∈ Ω′| TK = T and ∃ t ∈ [0, T ] : ZKΨ,Γ(ω, t) 6= ZMΨ,Γ(ω, t)}.

We have P (S) = 0, because otherwise there exist two natural numbers M0,K0 with K0 < M0 such
that the set

SM0,K0 := {ω ∈ Ω′|TK0 = T and ∃ t ∈ [0, T ] : ZK0
Ψ,Γ(ω, t) 6= ZM0

Ψ,Γ(ω, t)}

has the measure P (SM0,K0) > 0. We define for each t ∈ [0, T ]

Z∗(ω, t) :=

 ZK0
Ψ,Γ(ω, t) , ω ∈ SM0,K0

ZM0
Ψ,Γ(ω, t) , ω ∈ Ω′ \ SM0,K0.

We see that for all ω ∈ SM0,K0 there exists t ∈ [0, T ] such that Z∗(ω, t) 6= ZM0(ω, t). This
contradicts to the almost surely uniqueness of the solution of (PM0

Ψ,Γ). Consequently, P (S) = 0.
We define

Ω′′ :=
∞⋃

M=1

{TM = T}.

Obviously P
(
(Ω′ ∩ Ω′′) \ S

)
= 1 (see also (1.26)). Let ω ∈ (Ω′ ∩ Ω′′) \ S. For this ω there

exists a natural number M0 such that TM(ω) = T for all M ≥ M0. Hence XM (s) = X(s) and
YM (s) = Y (s) for all s ∈ [0, T ] and for all M ≥M0. Equation (PMΨ,Γ) implies

(ZMΨ,Γ(t), v) +
t∫

0

〈AZMΨ,Γ(s), v〉ds = (a0, v)(1.33)

+
t∫

0

〈B(X(s), ZMΨ,Γ(s)) + B(ZMΨ,Γ(s), Y (s)), v〉ds

+
t∫

0

〈Ψ(s), v〉ds +
t∫

0

(G(s, ZMΨ,Γ(s)), v)dw(s) +
t∫

0

(Γ(s), v)dw(s)

for all M ≥M0 and all t ∈ [0, T ], v ∈ V . We have

lim
M→∞

T∫
0

‖ZMΨ,Γ(t) − ZM0
Ψ,Γ(t)‖2

V dt = 0

and
lim
M→∞

‖ZMΨ,Γ(t) − ZM0
Ψ,Γ(t)‖2 = 0 for all t ∈ [0, T ].
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For each t ∈ [0, T ] we define

ZΨ,Γ(ω, t) := ZM0
Ψ,Γ(ω, t) = lim

M→∞
ZMΨ,Γ(ω, t).

This definition is correct because ω /∈ S. Then (1.33) implies

(ZΨ,Γ(t), v) +
t∫

0

(AZΨ,Γ(s), v)ds = (a0, v)(1.34)

+
t∫

0

〈B(X(s), ZΨ,Γ(s)) + B(ZΨ,Γ(s), Y (s)), v〉ds

+
t∫

0

〈Ψ(s), v〉ds +
t∫

0

(G(s, ZΨ,Γ(s)), v)dw(s) +
t∫

0

(Γ(s), v)dw(s)

for all ω ∈
(
Ω ∩ Ω′′

)
\ S, t ∈ [0, T ], v ∈ V . The process (ZΨ,Γ(t))t∈[0,T ] is V -valued, F × B[0,T ]-

measurable, adapted to the filtration (Ft)t∈[0,T ] and has almost surely continuous trajectories in
H, because all ZMΨ,Γ have this properties. For ZMΨ,Γ we can prove an analogous inequality as (1.27).
Thus we get

E∆Y (T )‖ZΨ,Γ(T )‖2 + E

T∫
0

∆Y (t)‖ZΨ,Γ(t)‖2
V dt(1.35)

≤ lim inf
M→∞

{
E∆Y M (T )‖ZMΨ,Γ(T )‖2 + E

T∫
0

∆YM (t)‖ZMΨ,Γ(t)‖2
V dt

}

≤ c
[
E‖a0‖2 +E

T∫
0

‖Ψ(s)‖2
V ∗ds+ E

T∫
0

‖Γ(s)‖2ds
]
,

where c is the same constant as in (1.27). We obtain the other estimate by using in (PΨ,Γ) the Ito
formula and then Proposition B.2.

Now we prove that equation (PΨ,Γ) has an almost surely unique solution. Let

e1(t) := ∆Y (t) exp{−λt}.

We assume that Z̃ and Z are two solutions of (PΨ,Γ) which have almost surely continuous trajec-
tories in H. Then for all t ∈ [0, T ] and a.e. ω ∈ Ω we have
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e1(t)‖Z̃(t) − Z(t)‖2 + 2
t∫

0

e1(s)〈AZ̃(s) −AZ(s), Z̃(s) − Z(s)〉ds

= 2
t∫

0

e1(s)〈B(X(s), Z̃(s) − Z(s)) + B(Z̃(s) − Z(s), Y (s)), Z̃(s) − Z(s)〉ds

−
t∫

0

e1(s)(λ+
b

ν
‖Y (s)‖2

V )‖Z̃(s) − Z(s)‖2ds+
t∫

0

e1(s)‖G(s, Z̃(s)) − G(s, Z(s))‖2ds

+ 2
t∫

0

e1(s)(G(s, Z̃(s)) − G(s, Z(s)), Z̃(s) − Z(s))dw(s).

Taking into account the properties of A, B and G, it follows that for each t ∈ [0, T ] and a.e. ω ∈ Ω

e1(t)‖Z̃(t) − Z(t)‖2 + ν

t∫
0

e1(s)‖Z̃(s) − Z(s)‖2
V ds(1.36)

≤ 2
t∫

0

e1(s)(G(s, Z̃(s)) − G(s, Z(s)), Z̃(s) − Z(s))dw(s).

This implies (we use the same ideas as in the prove of Proposition B.2)

E

T∫
0

∆Y (s)‖Z̃(s) − Z(s)‖2
V ds = 0.

Hence Z̃(ω, t) = Z(ω, t) for P ×Λ a.e. (ω, t) ∈ (Ω× [0, T ]). Using this result and (1.36) we deduce
that

E sup
t∈[0,T ]

∆Y (t)‖Z̃(t) − Z(t)‖2 = 0,

which means that (PΨ,Γ) has an almost surely unique solution.
(ii) The existence, estimation, and (almost surely) uniqueness of the solution Zn,ψ,γ of (Pn,ψ,γ)

can be proved analogously to the proof of (i).

Lemma 1.3.2
We assume that E∆−2

Y (T ) <∞. Let (ψn), (γn) be sequences in L2
V (Ω× [0, T ]) and L2

H(Ω× [0, T ]),
respectively, such that ψn ∈ L2

(Hn,‖·‖V )(Ω × [0, T ]), γn ∈ L2
Hn

(Ω × [0, T ]) for each n ∈ IN . If (Jψn)
converges weakly to Ψ ∈ L2

V ∗(Ω× [0, T ]) and (γn) converges weakly to Γ ∈ L2
H(Ω× [0, T ]), then for

n→ ∞ we have
∆Y Zn,ψn,γn ⇀ ∆Y ZΨ,Γ in L2

V (Ω × [0, T ])

and
∆Y (T )Zn,ψn,γn(T ) ⇀ ∆Y (T )ZΨ,Γ(T ) in L2

H(Ω).
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Proof. Because (Jψn) converges weakly to Ψ ∈ L2
V ∗(Ω × [0, T ]) and (γn) converges weakly to

Γ ∈ L2
H(Ω × [0, T ]), it follows that there exists a constant c3 > 0 such that for all n ∈ IN

E

T∫
0

‖ψn(t)‖2
V dt+ E

T∫
0

‖γn(t)‖2dt ≤ c3.

For simplicity we define Zn := Zn,ψn,γn and ZMn := ZMn,ψn,γn
. Applying Theorem 1.3.1 we obtain

sup
1≤n

{
E∆Y (T )‖Zn(T ) − ZΨ,Γ(T )‖2 + E

T∫
0

∆Y (s)‖Zn(s) − ZΨ,Γ(s)‖2
V ds

}
(1.37)

≤ (c1 + c2)
(
c3 + E‖a0‖2 +E

T∫
0

‖Ψ(s)‖2
V ∗ds+ E

T∫
0

‖Γ(s)‖2ds
)
.

Let ξ ∈ DV ∗(Ω × [0, T ]) be arbitrary, but fixed. We want to prove that

lim
n→∞

E

T∫
0

〈ξ(s), Zn(s) − ZΨ,Γ(s)〉ds = 0.

Since lim
M→∞

TM = T (see (1.25)) for a.e. ω ∈ Ω, E∆−2
Y (T ) <∞ and ξ ∈ DV ∗(Ω × [0, T ]), we get

lim
M→∞

E

T∫
TM

∆−1
Y (s)‖ξ(s)‖2

V ∗ds = 0.(1.38)

Let ε > 0. There exists a natural number K = Kε such that

sup
1≤n

{
E

T∫
0

∆Y (s)‖Zn(s) − ZΨ,Γ(s)‖2
V ds

}
E

T∫
TK

∆−1
Y (s)‖ξ(s)‖2

V ∗ds <
ε2

4
.(1.39)

Relation (1.38) implies

E

T∫
TK

〈ξ(s), Zn(s) − ZΨ,Γ(s)〉ds

≤
(

sup
1≤n

{
E

T∫
0

∆Y (s)‖Zn(s) − ZΨ,Γ(s)‖2
V ds

}
E

T∫
TK

∆−1
Y (s)‖ξ(s)‖2

V ∗ds

)1/2

<
ε

2

for all n ∈ IN.
From the (almost surely) uniqueness of the solutions of (PKΨ,Γ) and (PKn,ψn,γn

), respectively, we
conclude that

E

TK∫
0

‖Zn(s) − ZKn (s)‖2
V ds = E

TK∫
0

‖ZKΨ,Γ(s) − ZΨ,Γ(s)‖2
V ds = 0.

Then for all n ∈ IN we have
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∣∣∣∣E
T∫

0

〈ξ(s), Zn(s) − ZΨ,Γ(s)〉ds
∣∣∣∣(1.40)

≤
∣∣∣∣E

TK∫
0

〈ξ(s), Zn(s) − ZΨ,Γ(s)〉ds
∣∣∣∣ + ∣∣∣∣E

T∫
TK

〈ξ(s), Zn(s) − ZΨ,Γ(s)〉ds
∣∣∣∣

≤
∣∣∣∣E

TK∫
0

〈ξ(s), Zn(s) − ZKn (s)〉ds
∣∣∣∣+ ∣∣∣∣E

TK∫
0

〈ξ(s), ZKn (s) − ZKΨ,Γ(s)〉ds
∣∣∣∣

+
∣∣∣∣E

TK∫
0

〈ξ(s), ZKΨ,Γ(s) − ZΨ,Γ(s)〉ds
∣∣∣∣ + ε

2
=
∣∣∣∣E

TK∫
0

〈ξ(s), ZKn (s) − ZKΨ,Γ(s)〉ds
∣∣∣∣ + ε

2
.

In the following we prove that there exists an nε > 0 such that∣∣∣∣E
TK∫
0

〈ξ(s), ZKn (s) − ZKΨ,Γ(s)〉ds
∣∣∣∣ < ε

2

for all n ≥ nε. Analogous to (1.28) (see the proof of Theorem 1.3.1) we have

E

T∫
0

‖ZKn (s)‖2
V ds ≤ c exp

{
bK

ν

}[
E‖a0‖2 + c3

]
.

Hence (ZKn ) is a bounded sequence from L2
V (Ω × [0, T ]). Consequently, by sequential weak com-

pactness there exists a subsequence (n′) of (n) and ZK ∈ L2
V (Ω × [0, T ]) such that for n′ → ∞ we

have
ZKn′ ⇀ ZK in L2

V (Ω × [0, T ]).(1.41)

As in the proof of Theorem 1.3.1 we can show that Bn′(XK
n′ , ZKn′ ) ⇀ B(XK , ZK) and

Bn′(ZKn′ , Y K
n′ ) ⇀ B(ZK , Y K) in L2

V ∗(Ω× [0, T ]) for n′ → ∞. We take the limit n′ → ∞ in equation
(PKn′,ψn′ ,γn′ ), use the weak convergences given in the hypothesis and in (1.41), then the strong con-

vergences of
(
XK
n′
)

to XK and of
(
Y K
n′
)

to Y K in the space L2
H(Ω × [0, T ]) and Proposition A.3.

Then we obtain

(ZK(t), v) +
t∫

0

〈AZK(s), v〉ds = (a0, v) +
t∫

0

〈B(XK(s), ZK(s)) + B(ZK(s), Y K(s)), v〉ds

+
t∫

0

〈Ψ(s), v〉ds +
t∫

0

(G(s, ZK(s)), v)dw(s) +
t∫

0

(Γ(s), v)dw(s)

for all v ∈ V and P × Λ a.e. (ω, t) ∈ Ω × [0, T ]. The (almost surely) uniqueness of the solution of
equation (PKΨ,Γ) implies that

ZK(ω, t) = ZKΨ,Γ(ω, t) for P × Λ a.e. (ω, t) ∈ Ω × [0, T ].
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Hence
ZKn′ ⇀ ZKΨ,Γ in L2

V (Ω × [0, T ]).

We also see that each weakly convergent subsequence of
(
ZKn

)
converges weakly to the same

limit ZKΨ,Γ. Therefore, the whole sequence
(
ZKn

)
converges weakly to ZKΨ,Γ in L2

V (Ω × [0, T ]) (see
Proposition A.1).

Hence, there exists nε > 0 such that for all n ≥ nε we have

E

TK∫
0

〈ξ(s), ZKn (s) − ZKΨ,Γ(s)〉ds < ε

2
.

Using (1.40) we deduce that

∣∣∣E T∫
0

〈ξ(s), Zn(s) − ZΨ,Γ(s)〉ds
∣∣∣ < ε for all n ≥ nε

and consequently,

lim
n→∞

E

T∫
0

〈ξ(s), Zn(s) − ZΨ,Γ(s)〉ds = 0.

Because DV ∗(Ω × [0, T ]) is dense in L2
V ∗(Ω × [0, T ]) and ∆Y Zn,∆Y ZΨ,Γ ∈ L2

V (Ω × [0, T ]) (we do
not know whether Zn, ZΨ,Γ ∈ L2

V (Ω × [0, T ])) we conclude that for n→ ∞

∆Y Zn ⇀ ∆Y ZΨ,Γ in L2
V (Ω × [0, T ]).(1.42)

We want to prove that for all ξ ∈ DV (Ω) we have

lim
n→∞

E(ZΨ,Γ(T ) − Zn(T ), ξ) = 0.(1.43)

Let ξ = vφ ∈ DV (Ω), ε > 0. There exists an index K ∈ IN such that for all n ∈ IN we get

|E(ZΨ,Γ(T ) − Zn(T ), v)φ| ≤ |E(ZΨ,Γ(T ) − Zn(T ),ΠKv)φ|(1.44)

+ ‖v − ΠKv‖
{
E
(
φ2∆−1

Y (T )
)

sup
1≤n

[
E∆Y (T )‖ZΨ,Γ(T ) − Zn(T )‖2

]}1/2

≤ |E(ZΨ,Γ(T ) − Zn(T ),ΠKv)φ| +
ε

2
.

In the second inequality we have used (1.37). From (Pn,ψn) and (PΨ,Γ) we conclude that
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Eφ(ZΨ,Γ(T ) − Zn(T ),ΠKv) + Eφ

T∫
0

〈AZΨ,Γ(s) −AZn(s),ΠKv〉ds

= Eφ

T∫
0

〈B(X(s), ZΨ,Γ(s)) − B(Xn(s), Zn(s)) + B(ZΨ,Γ(s), Y (s)) − B(Zn(s), Yn(s)),ΠKv〉ds

+ Eφ

T∫
0

〈Ψ(s) − Jψn(s),ΠKv〉ds+ Eφ

T∫
0

(G(s, ZΨ,Γ(s) − Zn(s)),ΠKv)dw(s)

+ Eφ

T∫
0

(Γ(s) − γn(s),ΠKv)dw(s).

In the above equation we take the limit n → ∞, use the weak convergence (1.42) and obtain that
there exists an nε > 0 such that

|E(ZΨ,Γ(T ) − Zn(T ),ΠKv)φ| <
ε

2
for all n ≥ nε.

We use (1.44) to deduce that

|E(ZΨ,Γ(T ) − Zn(T ), v)φ| < ε for all n ≥ nε.

Hence (1.43) yields. Since DV (Ω) is dense in L2
V (Ω) ↪→ L2

H(Ω) and since we have
∆Y (T )Zn(T ),∆Y (T )ZΨ,Γ(T ) ∈ L2

H(Ω) (note, we do not know whether Zn(T ), ZΨ,Γ(T ) ∈ L2
H(Ω))

we conclude that

∆Y (T )Zn(T ) ⇀ ∆Y (T )ZΨ,Γ(T ) in L2
H(Ω).

Remark 1.3.3

Theorem 1.3.1 and Lemma 1.3.2 hold also if G is not a mapping satisfying hypothesis (v) from
Section 1.1, but a stochastic process belonging to the space L2

H(Ω × [0, T ]).

1.4 Linear approximation of the solution of the stochastic
Navier-Stokes equation

In this section we approximate the solution of the Navier-Stokes equation by the solutions of a
sequence of linear equations with additive noise and prove that the approximations

(
un
)

converge
in mean square to the solution of (1.1).
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For each n = 1, 2, 3, . . . we consider the linear evolution equation with additive noise

(P̂n) (un(t), v) +
t∫

0

〈Aun(s), v〉ds = (x0, v) +
t∫

0

〈B(un−1(s),un(s)), v〉ds

+
t∫

0

(Φ(s,un−1(s)), v)ds +
t∫

0

(C(s,un−1(s)), v)dw(s),

for all v ∈ V , t ∈ [0, T ], and a.e. ω ∈ Ω, where u0(t) = 0 for all t ∈ [0, T ] and a.e. ω ∈ Ω.

Remark 1.4.1
1) In equation (P̂n), considering that un−1 is known, the operators A and B depend linearly on un
and the noise is additive with respect to un.
2) The approximation method given in this section holds also, if the sequence of approximations
(un) starts with u0(t) := x0 for all t ∈ [0, T ] and a.e. ω ∈ Ω.

Theorem 1.4.2
For each n ∈ IN equation (P̂n) has an almost surely unique solution un ∈ L2

V (Ω× [0, T ]) with almost
surely continuous trajectories in H.

Proof. We prove the statement by induction. We apply successively Theorem 1.3.1 on ZΨ,Γ := un,
a0 := x0, X := un−1, Y := 0, a0 := x0, Ψ(s) := Φ(s, un−1(s)), Γ := 0, G(s) := C(s, un−1(s)) (for G
we also take into account Remark 1.3.3).

Now we establish some properties for the solutions of the equations (P̂n), n ∈ IN.

Lemma 1.4.3
There exists a positive constant c1 (depending only on λ, µ, ν, and T ) such that each of the
expressions

sup
t∈[0,T ]

E‖un(t)‖4, E
( T∫

0

‖un(s)‖2
V ds

)2

(n = 1, 2, . . .) is less than or equal to c1E‖x0‖4.

Proof. Let n ∈ IN. We define z̃(t) = e−(9λ+5
√
µ)t, t ∈ [0, T ]. Using the Ito formula we have

z̃(t)‖un(t)‖2 + 2
t∫

0

z̃(s)〈Aun(s), un(s)〉ds = ‖x0‖2 + 2
t∫

0

z̃(s)(Φ(s, un−1(s)), un(s))ds

+
t∫

0

z̃(s)‖C(s, un−1(s))‖2ds− (9λ+ 5
√
µ)

t∫
0

z̃(s)‖un(s)‖2ds

+ 2
t∫

0

z̃(s)(C(s, un−1(s)), un(s))dw(s)
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and

z̃(t)‖un(t)‖4 + 4
t∫

0

z̃(s)〈Aun(s), un(s)〉‖un(s)‖2ds

= ‖x0‖4 + 2
t∫

0

z̃(s)‖C(s, un−1(s))‖2‖un(s)‖2ds− (9λ+ 5
√
µ)

t∫
0

z̃(s)‖un(s)‖4ds

+ 4
t∫

0

z̃(s)(Φ(s, un−1(s)), un(s))‖un(s)‖2ds+ 4
t∫

0

z̃(s)(C(s, un−1(s)), un(s))2ds

+ 4
t∫

0

z̃(s)(C(s, un−1(s)), un(s))‖un(s)‖2dw(s).

Using the properties of A, Φ, and C and some elementary calculations, we obtain

2ν
t∫

0

z̃(s)‖un(s)‖2
V ds ≤ ‖x0‖2 + (λ+

√
µ)

t∫
0

z̃(s)‖un−1(s)‖2ds(1.45)

+ 2
t∫

0

z̃(s)(C(s, un−1(s)), un(s))dw(s)

and

z̃(t)‖un(t)‖4 + 4ν
t∫

0

z̃(s)‖un(s)‖2
V ‖un(s)‖2ds+ 2(3λ +

√
µ)

t∫
0

z̃(s)‖un(s)‖4ds(1.46)

≤ ‖x0‖4 + (3λ+
√
µ)

t∫
0

z̃(s)‖un−1(s)‖4ds

+ 4
t∫

0

z̃(s)(C(s, un−1(s)), un(s))‖un(s)‖2dw(s).

Using (1.46) and the ideas from the proof of Proposition B.2 we get

Ez̃(t)‖un(t)‖4 + 2(3λ +
√
µ)E

t∫
0

z̃(s)‖un(s)‖4ds(1.47)

≤ E‖x0‖4 + (3λ +
√
µ)E

t∫
0

z̃(s)‖un−1(s)‖4ds.

By successive application of (1.47), we obtain

Ez̃(t)‖un(t)‖4 + 2(3λ+
√
µ)E

t∫
0

z̃(s)‖un(s)‖4ds ≤
(
1 +

1
2

+ . . .+
1

2n−1

)
E‖x0‖4.
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Consequently, there exists a constant c2 > 0 (independent of n) such that

sup
t∈[0,T ]

E‖un(t)‖4 + 2(3λ+
√
µ)E

T∫
0

‖un(s)‖4ds ≤ c2E‖x0‖4.(1.48)

In (1.45) we square both sides of the inequality. Then we use the properties of the stochastic
integral and those of the Lebesgue integral to obtain

4ν2E
( T∫

0

z̃(s)‖un(s)‖2
V ds

)2
≤ 3E‖x0‖4 + 3(λ+

√
µ)2E

( T∫
0

z̃(s)‖un−1(s)‖2ds
)2

+ 12E
∣∣∣ T∫
0

z̃(s)(C(s, un−1(s)), un(s))dw(s)
∣∣∣2 ≤ 3E‖x0‖4 + c3E

T∫
0

z̃2(s)‖un−1(s)‖4ds

+ E

T∫
0

z̃2(s)‖un(s)‖4ds,

where c3 is a positive constant depending on λ, µ, and T . Taking into account (1.48) and the
properties of z̃, it follows that there exists a constant c4 depending on (λ, µ, ν and T ) such that

E
( T∫

0

‖un(s)‖2
V ds

)2
≤ c4E‖x0‖4.

We define
ẽ(t) = ∆U(t) exp{−(λ+

√
µ)t}

for all t ∈ [0, T ] and a.e. ω ∈ Ω and introduce the following notations:

sN (t) =
N∑
n=1

ẽ(t)‖un(t) − U(t)‖2,(1.49)

SN (t) =
N∑
n=1

ẽ(t)‖un(t) − U(t)‖2
V ,(1.50)

where N is a natural number, t ∈ [0, T ], ω ∈ Ω.

Lemma 1.4.4
The following convergences hold:

lim
n→∞

E

T∫
0

ẽ(s)‖un(s) − U(s)‖2
V ds = 0

and
lim
n→∞

Eẽ(t)‖un(t) − U(t)‖2 = 0 for all t ∈ [0, T ].
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Proof. Let n ∈ IN. Using (1.1), (P̂n) and the Ito formula we obtain

ẽ(t)‖un(t) − U(t)‖2 + 2
t∫

0

ẽ(s)〈Aun(s) −AU(s), un(s) − U(s)〉ds(1.51)

= 2
t∫

0

ẽ(s)〈B(un−1(s), un(s)) − B(U(s), U(s)), un(s) − U(s)〉ds

− b

ν

t∫
0

ẽ(s)‖U(s)‖2
V ‖un(s) − U(s)‖2ds− (λ+

√
µ)

t∫
0

ẽ(s)‖un(s) − U(s)‖2ds

+ 2
t∫

0

ẽ(s)(Φ(s, un−1(s)) − Φ(s, U(s)), un(s) − U(s))ds

+
t∫

0

ẽ(s)‖C(s, un−1(s)) − C(s, U(s))‖2ds

+ 2
t∫

0

ẽ(s)(C(s, un−1(s)) − C(s, U(s)), un(s) − U(s))dw(s),

for all t ∈ [0, T ] and a.e. ω ∈ Ω. From the properties of B we can derive the following estimate:

2〈B(un−1(s), un(s)) − B(U(s), U(s)), un(s) − U(s)〉

= −2〈B(un−1(s) − U(s), un(s) − U(s)), U(s)〉

≤ 2
√
b‖U(s)‖V ‖un−1(s) − U(s)‖

1
2
V ‖un−1(s) − U(s)‖ 1

2‖un(s) − U(s)‖
1
2
V ‖un(s) − U(s)‖ 1

2

≤ ν

2
‖un−1(s) − U(s)‖2

V +
ν

2
‖un(s) − U(s)‖2

V

+
b

2ν
‖U(s)‖2

V ‖un−1(s) − U(s)‖2 +
b

2ν
‖U(s)‖2

V ‖un(s) − U(s)‖2

for all s ∈ [0, T ] and a.e. ω ∈ Ω. Using this estimation and the continuity of C in (1.51), we obtain

ẽ(t)‖un(t) − U(t)‖2 +
3ν
2

t∫
0

ẽ(s)‖un(s) − U(s)‖2
V ds+ (λ+

√
µ)

t∫
0

ẽ(s)‖un(s) − U(s)‖2ds

≤ ν

2

t∫
0

ẽ(s)‖un−1(s) − U(s)‖2
V ds+ 2

t∫
0

ẽ(s)(C(s, un−1(s)) − C(s, U(s)), un(s) − U(s))dw(s)

+
b

2ν

t∫
0

ẽ(s)‖U(s)‖2
V

(
‖un−1(s) − U(s)‖2 − ‖un(s) − U(s)‖2

)
ds
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+ (λ+
√
µ)

t∫
0

ẽ(s)‖un−1(s) − U(s)‖2ds

for all t ∈ [0, T ] and a.e. ω ∈ Ω.
Summing up these relations for n = 1 to an arbitrary natural number N , we get

sN (t) + ν

t∫
0

SN (s)ds+
b

2ν

t∫
0

ẽ(s)‖U(s)‖2
V ‖uN (s) − U(s)‖2ds

+ (λ+
√
µ)

t∫
0

ẽ(s)‖uN (s) − U(s)‖2ds ≤ ν

2

t∫
0

ẽ(s)‖u0(s) − U(s)‖2
V ds

+ (λ+
√
µ)

t∫
0

ẽ(s)‖u0(s) − U(s)‖2ds+
b

2ν

t∫
0

ẽ(s)‖U(s)‖2
V ‖u0(s) − U(s)‖2ds

+ 2
N∑
n=1

t∫
0

ẽ(s)(C(s, un−1(s)) − C(s, U(s)), un(s) − U(s))dw(s)

for all t ∈ [0, T ] and a.e. ω ∈ Ω, where sN and SN are defined in (1.49) and (1.50). Taking the
mathematical expectation we have

EsN (t) + νE

t∫
0

SN (s)ds ≤ ν

2
E

t∫
0

ẽ(s)‖u0(s) − U(s)‖2
V ds

+ (λ+
√
µ)E

t∫
0

ẽ(s)‖u0(s) − U(s)‖2ds+
b

2ν
E

t∫
0

ẽ(s)‖U(s)‖2
V ‖u0(s) − U(s)‖2ds

for all t ∈ [0, T ]. But 0 < ẽ(s) ≤ 1 and u0(s) = 0 for all s ∈ [0, T ], a.e. ω ∈ Ω. Applying Lemma
1.2.6 and Lemma 1.4.3 it follows that there exists a positive constant c, which does not depend on
N , such that

EsN (t) + νE

t∫
0

SN (s)ds ≤ E

T∫
0

(ν
2
‖U(s)‖2

V + (λ+
√
µ)‖U(s)‖2 +

b

2ν
‖U(s)‖2

V ‖U(s)‖2
)
ds ≤ c

for all t ∈ [0, T ] and all natural numbers N . Consequently, for all t ∈ [0, T ] we have

∞∑
n=1

Eẽ(t)‖un(t) − U(t)‖2 + ν
∞∑
n=1

E

t∫
0

ẽ(s)‖un(s) − U(s)‖2
V ds ≤ c

Hence

lim
n→∞

E

T∫
0

ẽ(s)‖un(s) − U(s)‖2
V ds = 0
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and for all t ∈ [0, T ] we have

lim
n→∞

Eẽ(t)‖un(t) − U(t)‖2 = 0.

The main result of this section is the following theorem.

Theorem 1.4.5
The following convergences hold:

lim
n→∞

E

T∫
0

‖un(s) − U(s)‖2
V ds = 0

and
lim
n→∞

E‖un(t) − U(t)‖2 = 0 for all t ∈ [0, T ].

Proof. We take TM := T U
M . From Lemma 1.4.4 it follows that for each fixed natural number

M we have

lim
n→∞

E

TM∫
0

‖un(s) − U(s)‖2
V ds = 0 and lim

n→∞
E‖un(TM ) − U(TM )‖2 = 0.

First we apply Proposition B.3 for T := T , Qn(T ) :=
T∫

0

‖un(s) − U(s)‖2ds, use Lemma 1.4.3 and

Lemma 1.2.6 to obtain

lim
n→∞

E

T∫
0

‖un(s) − U(s)‖2
V ds = 0.

Let t ∈ [0, T ]. Now we apply Proposition B.3 for T := t, Qn(T ) := ‖un(T ) − U(T )‖, use Lemma
1.4.3 and Lemma 1.2.6 to get

lim
n→∞

E‖un(t) − U(t)‖2 = 0.



Chapter 2

Optimal Control

We consider the stochastic Navier-Stokes equation controlled by linear and continuous feedback
controls, respectively, by bounded controls (which are not feedback controls). Since the considered
equation is nonlinear, we are dealing with a nonconvex optimization problem. Our purpose is to
prove in Section 2.2 , Section 2.3 and Section 2.4 the existence of optimal and ε-optimal controls.
In Section 2.5 we investigate a special property for the solution of the stochastic Navier-Stokes
equation, which we assume to be fulfilled in the following sections. In Section 2.6 we calculate the
Gateaux derivative of the cost functional and in Section 2.7 we formulate a stochastic minimum
principle. We complete the statement of the stochastic minimum principle by giving in Section 2.8
the equations for the adjoint processes. In the last three sections we use and adapt the ideas from
A. Bensoussan [3] for the case of the stochastic Navier-Stokes equation.

2.1 Formulation of the control problem

First we consider the stochastic Navier-Stokes equation controlled by linear and continuous
feedback controls. In this case we denote by U the set of all admissible controls, which we
assume to be the set of all functions Φ : [0, T ] × H → H satisfying the following conditions: for
each t ∈ [0, T ] we have Φ(t, ·) ∈ L(H) and

‖Φ(t1, x1) − Φ(t2, x2)‖2 ≤ α|t1 − t2|2 + µ‖x1 − x2‖2 for all t1, t2 ∈ [0, T ], x1, x2 ∈ H

where α, µ > 0 are given constants.
Our purpose is to control the solution UΦ of the Navier-Stokes equation

41
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(UΦ(t), v) +
t∫

0

〈AUΦ(s), v〉ds = (x0, v) +
t∫

0

〈B(UΦ(s), UΦ(s)), v〉ds(2.1)

+
t∫

0

(Φ(s, UΦ(s)), v)ds +
t∫

0

(C(s, UΦ(s)), v)dw(s)

for all v ∈ V , t ∈ [0, T ], a.e. ω ∈ Ω, by the feedback controls Φ ∈ U . We consider the following
cost functional

J (Φ) = E

T∫
0

L[s, UΦ(s),Φ(s, UΦ(s))]ds + EK[UΦ(T )], Φ ∈ U ,(2.2)

where L : [0, T ] ×H ×H → IR+, K : H → IR+ are mappings satisfying the conditions:

(H1) |L(t, x1, y1) − L(t, x2, y2)| ≤ cL
(
‖x1 − x2‖2 + ‖y1 − y2‖2

)
,

|K(x1) −K(x2)| ≤ cK‖x1 − x2‖2

for all t ∈ [0, T ], x1, x2, y1, y2 ∈ H, where cL, cK are positive constants;

(H2) for all x, y ∈ H we assume that L(·, x, y) ∈ L2
H [0, T ].

We denote by (P) the problem of minimizing J among the admissible controls.

Now we consider the stochastic Navier-Stokes equation controlled by bounded controls, which
are not feedback controls. In this case we denote by U b the set of all admissible controls, which we
assume to be the set of all functions Φ ∈ L2

H(Ω × [0, T ]) satisfying the condition:

‖Φ(ω, t)‖ ≤ ρ for P × Λ a.e. (ω, t) ∈ Ω × [0, T ],

where ρ > 0 is a given constant.
In this case the stochastic Navier-Stokes equation has the form

(UΦ(t), v) +
t∫

0

〈AUΦ(s), v〉ds = (x0, v) +
t∫

0

〈B(UΦ(s), UΦ(s)), v〉ds(2.3)

+
t∫

0

(Φ(s), v)ds +
t∫

0

(C(s, UΦ(s)), v)dw(s)

for all v ∈ V , t ∈ [0, T ], a.e. ω ∈ Ω, where Φ ∈ U b. The cost functional is in this case given by

J (Φ) = E

T∫
0

L[s, UΦ(s),Φ(s)]ds + EK[UΦ(T )], Φ ∈ U b,(2.4)

where L and K satisfy (H1) and (H2). We denote by (Pb) the problem of minimizing J , given in
equation (2.4), among the admissible controls of the set Ub.
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Remark 2.1.1
In their paper [1] F. Abergel and R. Temam investigate the deterministic Navier-Stokes equation
by controlling turbulence inside the flow. They give a cost functional which involves the vorticity in
the fluid. For our problem (Pb) this would be L(t, UΦ(t),Φ(t)) := ‖∇×UΦ(t)‖2 + ‖Φ(t)‖2, K := 0.

2.2 Existence of optimal controls

First we prove some properties of the cost functional J .

Lemma 2.2.1

(i) Let (Φn) be a sequence in U and let Φ ∈ U be such that

lim
n→∞

T∫
0

‖Φn(t, ·) − Φ(t, ·)‖2
L(H)dt = 0.

Then lim
n→∞

J (Φn) = J (Φ).

(ii) Let (Φn) be a sequence in U b and let Φ ∈ U b be such that

lim
n→∞

T∫
0

‖Φn(t) − Φ(t)‖2dt = 0.

Then lim
n→∞

J (Φn) = J (Φ).

Proof. (i) Let U := UΦ and e(t) = ∆U(t) exp{−(λ + 2
√
µ + 1)t}. It follows by the Ito formula

that

e(t)‖U(t) − UΦn(t)‖2 + 2
t∫

0

e(s)〈AU(s) −AUΦn(s), U(s) − UΦn(s)〉ds

= 2
t∫

0

e(s)〈B(U(s), U(s)) − B(UΦn(s), UΦn(s)), U(s) − UΦn(s)〉ds

− b

ν

t∫
0

e(s)‖U(s)‖2
V ‖U(s) − UΦn(s)‖2ds− (λ+ 2

√
µ+ 1)

t∫
0

e(s)‖U(s) − UΦn(s)‖2ds

+ 2
t∫

0

e(s)(Φ(s, U(s)) − Φn(s, UΦn(s)), U(s) − UΦn(s))ds

+
t∫

0

e(s)‖C(s, U(s)) − C(s, UΦn(s))‖2ds

+ 2
t∫

0

e(s)(C(s, U(s)) − C(s, UΦn(s)), U(s) − UΦn(s))dw(s).
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In view of the properties of B we can write

2〈B(U(s), U(s)) − B(UΦn(s), UΦn(s)), U(s) − UΦn(s)〉

= 2〈B(U(s) − UΦn(s), U(s)), U(s) − UΦn(s)〉

≤ b

ν
‖U(s)‖2

V ‖U(s) − UΦn(s)‖2 + ν‖U(s) − UΦn(s)‖2
V .

Now we use the properties of A, Φ, C, and those of the stochastic integral to obtain

E sup
s∈[0,t]

e(s)‖U(s) − UΦn(s)‖2 + νE

t∫
0

e(s)‖U(s) − UΦn(s)‖2
V ds

≤ 2E
t∫

0

e(s)‖Φ(s, U(s)) − Φn(s, U(s))‖2ds

+ 4E sup
s∈[0,t]

∣∣∣ s∫
0

e(r)(C(r, U(r)) − C(r, UΦn(r)), U(r) − UΦn(r))dw(r)
∣∣∣

≤ 2E
t∫

0

e(s)‖Φ(s, U(s)) − Φn(s, U(s))‖2ds+ k1E

t∫
0

sup
r∈[0,s]

{
e(r)‖U(r) − UΦn(r)‖2

}
ds

+
1
2
E sup
s∈[0,t]

e(s)‖U(s) − UΦn(s))‖2,

where k1 is a positive constant and t ∈ [0, T ]. By Gronwall’s Lemma we get

E sup
s∈[0,t]

e(s)‖U(s) − UΦn(s)‖2 + 2νE
t∫

0

e(s)‖U(s) − UΦn(s)‖2
V ds

≤ 4e2k1TE
T∫

0

‖Φ(s, U(s)) − Φn(s, U(s))‖2ds,

for all t ∈ [0, T ].
We take t := T U

M . Using the hypothesis and the above inequality it follows that for each fixed
M ∈ IN we have

lim
n→∞

E‖U(T U
M ) − UΦn(T U

M )‖2 = 0, lim
n→∞

E

T U
M∫

0

‖U(s) − UΦn(s)‖2
V ds = 0.
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Applying Proposition B.3 for T := T , TM := T U
M , Qn(T ) := ‖U(T ) − UΦn(T )‖2, respectively,

Qn(T ) :=
T∫

0

‖U(s) − UΦn(s)‖2
V ds, we obtain

lim
n→∞

E‖U(T ) − UΦn(T )‖2 = 0, lim
n→∞

E

T∫
0

‖U(s) − UΦn(s)‖2
V ds = 0.

The continuity properties of L and K imply lim
n→∞

J (Φn) = J (Φ).
(ii) We use the same method as in (i).

Using Lemma 2.2.1 and the generalized Weierstraß Theorem we obtain the following theorem.

Theorem 2.2.2

(i) If the admissible controls are in a compact subset of U , then there exist optimal feedback controls
for the minimization problem (P).

(ii) If the admissible controls are in a compact subset of U b, then there exist optimal controls for
the minimization problem (Pb).

2.3 The existence of optimal feedback controls

It is difficult to guarantee the compactness of the set of admissible controls and therefore it is
useful to derive the existence of optimal controls using other methods. In this section we prove the
existence of optimal feedback controls.

Let (Φn) be a sequence in U .

Lemma 2.3.1
There exist a subsequence (n′) of (n) and a mapping Φ ∈ U such that for all t ∈ [0, T ], x, y ∈ H we
have

lim
n′→∞

(Φn′(t, x), y) = (Φ(t, x), y).(2.5)

Proof. Let {t1, t2, . . .} be a dense subset of [0, T ] and recall that {h1, h2, . . .} is an orthonormal
base in H. The sequence

(
Φn(t1, h1)

)
n∈IN

is a bounded sequence in H. Hence there exists a

subsequence (n1,1
k ) of (n) and an element z1

1 ∈ H such that for all y ∈ H we have

lim
k→∞

(Φn1,1
k

(t1, h1), y) = (z1
1 , y).

The sequence
(
Φn(t1, h2)

)
n∈IN

is a bounded sequence in H. Hence there exists a subsequence (n1,2
k )

of (n1,1
k ) and an element z1

2 ∈ H such that for all y ∈ H we have

lim
k→∞

(Φn1,2
k

(t1, h2), y) = (z1
2 , y).
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This procedure we repeat for all h1, h2, . . . and then we take the “diagonal sequence” (n1,k
k )k∈IN,

which has the property
lim
k→∞

(Φ
n1,k

k
(t1, hi), y) = (z1

i , y)

for all y ∈ H and i ∈ IN. Of course, the subsequence (n1,k
k ) depends on t1. Now we repeat the

procedure from above for t2, t3, . . . and take again the “diagonal sequence” (nk,kk )k∈IN, which we
denote by (n′). For all y ∈ H and i, j ∈ IN, we have

lim
n′→∞

(Φn′(tj , hi), y) = (zji , y),(2.6)

where zji ∈ H.
We want to prove that for each fixed i, j ∈ IN, x ∈ H the sequence

(
Φn′(tj, x), hi)

)
n′∈IN

is
convergent.

Let ε > 0. There exists pε ∈ IN such that

‖x− xpε‖2 <
ε

3
√
µ
,

where xpε = Πpεx. Equation (2.6) implies that there exists n′0 ∈ IN such that for all n′,m′ ≥ n′0∣∣∣(Φn′(tj , xpε), hi) − (Φm′(tj, xpε), hi)
∣∣∣ < ε

3
.

For all n′,m′ ≥ n′0 we have∣∣∣(Φn′(tj, x), hi) − (Φm′(tj , x), hi)
∣∣∣ <

∣∣∣(Φn′(tj, x− xpε), hi)
∣∣∣+ ∣∣∣(Φm′(tj , x− xpε), hi)

∣∣∣
+

∣∣∣(Φn′(tj, xpε), hi) − (Φm′(tj, xpε), hi)
∣∣∣ < ε.

Hence
(
Φn′(tj , x), hi)

)
n′∈IN

is a Cauchy sequence, and we can define the function fi,j : H → IR by

fi,j(x) = lim
n′→∞

(Φn′(tj, x), hi).

Obviously, fi,j is linear. Let p ∈ IN. We have

p∑
i=1

f2
i,j(x) = lim

n′→∞

p∑
i=1

(Φn′(tj , x), hi)2 ≤ lim sup
n′→∞

‖Φn′(tj, x)‖2 ≤ µ‖x‖2 <∞(2.7)

and
p∑
i=1

|fi,j(x) − fi,k(x)|2 = lim
n′→∞

p∑
i=1

(Φn′(tj , x) − Φn′(tk, x), hi)2(2.8)

≤ lim sup
n′→∞

‖Φn′(tj , x) − Φn′(tk, x)‖2 ≤ α|tj − tk|2 <∞

for all j, k ∈ IN, x ∈ H.
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We define Φ : {t1, t2, . . .} ×H → H as follows:

Φ(tj, x) =
∞∑
i=1

fi,j(x)hi, j ∈ IN, x ∈ H.

By (2.7) and (2.8) we see that for each j ∈ IN the mapping Φ(tj, ·) is linear and continuous with

‖Φ(tj, x)‖2 =
∞∑
i=1

f2
i,j(x) ≤ µ‖x‖2 for all x ∈ H,

as soon as for each j, k ∈ IN we have

‖Φ(tj , x) − Φ(tk, x)‖2 =
∞∑
i=1

|fi,j(x) − fi,k(x)|2 ≤ α|tj − tk|2 for all x ∈ H.(2.9)

Now we define Φ : [0, T ] ×H → H. Let t ∈ [0, T ]. There exists a sequence (t̃n) in {t1, t2, . . .} such
that lim

n→∞
t̃n = t, and we put

Φ(t, x) = lim
n→∞

Φ(t̃n, x).

Using (2.9) it can be proved that this definition is independent of the choice of (t̃n). Obviously, we
have

‖Φ(t1, x) − Φ(t2, x)‖2 ≤ α|t1 − t2|2

for all t1, t2 ∈ [0, T ] and all x ∈ H. Consequently, Φ ∈ U and by the construction of Φ we deduce
that it satisfies (2.5).

For convenience, in the following we will denote the subsequence of indices (n′) obtained in
Lemma 2.3.1 by (n).

For n = 1, 2, . . . we consider the evolution equation

(EΦn) (ŨΦn(t), v) +
t∫

0

〈AŨΦn(s), v〉ds = (x0, v) +
t∫

0

〈B(UΦ(s), ŨΦn(s)), v〉ds

+
t∫

0

(Φn(s, UΦ(s)), v)ds +
t∫

0

(C(s, UΦ(s)), v)dw(s)

for all t ∈ [0, T ], v ∈ V and a.e. ω ∈ Ω. By Theorem 1.3.1, applied for ZΨ,Γ := ŨΦn ,X := UΦ,
Y := 0, a0 := x0, Ψ(s) := Φn(s, UΦ(s)), G := 0, Γ(s) := C(s, UΦ(s)) it follows that there exists an
almost surely unique solution ŨΦn ∈ L2

V (Ω × [0, T ]) of (EΦn), which has almost surely continuous
trajectories in H and

E sup
t∈[0,T ]

‖ŨΦn(t)‖4 + E
( T∫

0

‖ŨΦn(s)‖2
V ds

)2
≤ c̃1

[
E‖x0‖4 + E

T∫
0

‖UΦ(s)‖4ds
]
,

where c̃1 > 0 is a constant (independent of n).
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For n = 1, 2, . . . we consider the n-dimensional evolution equation

(En,Φn) (Ũn,Φn(t), v) +
t∫

0

〈AŨn,Φn(s), v〉ds = (x0n, v) +
t∫

0

〈Bn(ΠnUΦ(s), Ũn,Φn(s)), v〉ds

+
t∫

0

(
ΠnΦn(s, UΦ(s)), v

)
ds+

t∫
0

(
ΠnC(s, UΦ(s)), v

)
dw(s)

for all t ∈ [0, T ], v ∈ Hn and a.e. ω ∈ Ω. By Theorem 1.3.1, applied for Zn,ψ,γ := Ũn,Φn ,
Xn := ΠnUΦ, Yn := 0, a0n := x0n, ψ(s) := ΠnΦn(s, UΦ(s)), G := 0, γ(s) := ΠnC(s, UΦ(s)) it follows
that there exists an almost surely unique solution Ũn,Φn ∈ L2

(Hn,‖·‖V )(Ω × [0, T ]) of (En,Φn), which
has almost surely continuous trajectories in H and

E sup
t∈[0,T ]

‖Ũn,Φn(t)‖4 + E
( T∫

0

‖Ũn,Φn(s)‖2
V ds

)2
≤ c̃2

[
E‖x0‖4 + E

T∫
0

‖UΦ(s)‖4ds
]
,

where c̃2 > 0 is a constant (independent of n).

Theorem 2.3.2
The following convergences hold:

lim
n→∞

E

T∫
0

‖UΦ(s) − ŨΦn(s)‖2
V ds = 0, lim

n→∞
E‖UΦ(T ) − ŨΦn(T )‖2 = 0,

lim
n→∞

E

T∫
0

‖UΦ(s) − Ũn,Φn(s)‖2
V ds = 0 and lim

n→∞
E‖UΦ(T ) − Ũn,Φn(T )‖2 = 0.

Proof. We consider the evolution equation

(z(t), v) +
t∫

0

〈Az(s), v〉ds = (x0, v) +
t∫

0

(C(s, UΦ(s)), v)dw(s)(2.10)

for all t ∈ [0, T ], v ∈ V and a.e. ω ∈ Ω. There exists an almost surely unique solution
z ∈ L2

V (Ω × [0, T ]) of (2.10), which has almost surely continuous trajectories in H (see [14],
Theorem 4.1, p. 105). By using the ideas from Proposition B.2 we can prove that the estimate

E sup
t∈[0,T ]

‖z(t)‖2 + 2νE
T∫

0

‖z(s)‖2
V ds ≤ c

[
E‖x0‖2 + E

T∫
0

‖UΦ(s)‖2ds
]

holds, where c is a positive constant depending on λ. From Theorem 1.2.2 we have

E sup
t∈[0,T ]

‖UΦ(t)‖2 <∞, E

T∫
0

‖UΦ(s)‖2
V ds <∞.
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Hence, there exists k(ω) > 0, independent of n, such that for all n ∈ IN and a.e. ω ∈ Ω

sup
t∈[0,T ]

‖Πnz(t)‖2 ≤ sup
t∈[0,T ]

‖z(t)‖2 < k(ω),
T∫

0

‖Πnz(s)‖2
V ds ≤

T∫
0

‖z(s)‖2
V ds < k(ω),(2.11)

sup
t∈[0,T ]

‖ΠnUΦ(t)‖2 ≤ sup
t∈[0,T ]

‖UΦ(t)‖2 < k(ω),
T∫

0

‖ΠnUΦ(s)‖2
V ds ≤

T∫
0

‖UΦ(s)‖2
V ds < k(ω).(2.12)

By the properties of the stochastic integral and by the properties of UΦ (see Lemma 1.2.6) we
see that for all s, t ∈ [0, T ]

E
∥∥∥ t∫
s

C(r, UΦ(r))dw(r)
∥∥∥4

V ∗ ≤ k1E
( t∫
s

‖C(r, UΦ(r))‖2
V ∗dr

)2

≤ k2(t− s)2E sup
r∈[0,T ]

‖UΦ(r)‖4 ≤ c(t− s)2E‖x0‖4

and

E
∥∥∥ t∫
s

ΠnC(r, UΦ(r))dw(r)
∥∥∥4

V ∗ ≤ k1E
( t∫
s

∥∥∥ΠnC(r, UΦ(r))
∥∥∥2

V ∗dr
)2

≤ k2(t− s)2E sup
r∈[0,T ]

‖UΦ(r)‖4 ≤ c(t− s)2E‖x0‖4,

where k1, k2 are positive constants. In the above estimates we need the V ∗-norm, because we will
apply the Dubinsky Theorem (see [35], Theorem 4.1, p. 132).

By the Theorem of Kolmogorov-Centsov (see [18], Theorem 2.8, p. 53; applied for α := 4, β := 1
and a process with values in a Hilbert space) it follows that there exist a random variable χ(ω) and
a positive constant δ such that

∥∥∥ t∫
s

C(r, UΦ(r))dw(r)
∥∥∥2

V ∗ ≤ δ|t− s|2γ ,(2.13)

∥∥∥ t∫
s

ΠnC(r, UΦ(r))dw(r)
∥∥∥2

V ∗ ≤ δ|t− s|2γ ,(2.14)

for γ ∈
(
0,

1
4

)
and for every t, s ∈ [0, T ] with |t− s| < χ(ω) and a.e. ω ∈ Ω.

Let Ω̃ ⊆ Ω with P (Ω̃) = 1 be such that for all ω ∈ Ω̃ we have:
• equations (2.1) and (2.10) hold for all t ∈ [0, T ], v ∈ V ;
• for each n = 1, 2, . . . equations (EΦn) and (En,Φn) hold for all t ∈ [0, T ], v ∈ V ,

respectively v ∈ Hn;
• the inequalities in (2.11), (2.12), (2.13) and (2.14) hold.
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From (EΦn), (2.10), (2.11), (2.12), and the properties of A,B,Φn, it follows that for all ω ∈ Ω̃
we have1

sup
t∈[0,T ]

‖ŨΦn(t) − z(t)‖2 + ν

T∫
0

‖ŨΦn(s) − z(s)‖2
V ds ≤

4
ν

T∫
0

‖B(UΦ(s), z(s))‖2
V ∗ds

+
4µcHV
ν

T∫
0

‖UΦ(s)‖2ds ≤ 2b
ν

sup
t∈[0,T ]

‖UΦ(t)‖2

T∫
0

‖UΦ(s)‖2
V ds

+
2b
ν

sup
t∈[0,T ]

‖z(t)‖2

t∫
0

‖z(s)‖2
V ds +

4µcHV
ν

T∫
0

‖UΦ(s)‖2ds ≤ c1(k2(ω) + k(ω))

where c1 is a positive constant independent of n and ω. Analogously, using (En,Φn) and (2.10) we
have

sup
t∈[0,T ]

‖Ũn,Φn(t) − Πnz(t)‖2 + ν

T∫
0

‖Ũn,Φn(s) − Πnz(s)‖2
V ds

≤ 2b
ν

sup
t∈[0,T ]

‖ΠnUΦ(t)‖2

T∫
0

‖ΠnUΦ(s)‖2
V ds+

2b
ν

sup
t∈[0,T ]

‖Πnz(t)‖2

t∫
0

‖Πnz(s)‖2
V ds

+
4µcHV
ν

T∫
0

‖UΦ(s)‖2ds ≤ c1(k2(ω) + k(ω))

where c1 is the same constant as above.
Hence for all n ∈ IN we have

sup
t∈[0,T ]

‖ŨΦn(t)‖2 + ν

T∫
0

‖ŨΦn(s)‖2
V ds < c2(ω) for all ω ∈ Ω̃(2.15)

and

sup
t∈[0,T ]

‖Ũn,Φn(t)‖2 + ν

T∫
0

‖Ũn,Φn(s)‖2
V ds < c2(ω) for all ω ∈ Ω̃,(2.16)

where c2(ω) is positive, independent of n.
Let ω ∈ Ω̃. For this ω, we consider the sets

S =
{
ŨΦn(ω, ·)

∣∣∣ n = 1, 2, . . .
}
, S̃ =

{
Ũn,Φn(ω, ·)

∣∣∣ n = 1, 2, . . .
}
.

For each of these sets we want to apply the Dubinsky Theorem. By (2.15) and (2.16) we get
that S ⊂ L2

V [0, T ] and S̃ ⊂ L2
V [0, T ] are bounded. We have to verify that S, respectively S̃, are

1Since V ↪→ H we have ‖v‖2 ≤ cHV‖v‖2
V for all v ∈ V .
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equi-continuous in C([0, T ], V ∗). From (EΦn) and the Schwarz inequality we have

‖ŨΦn(t) − ŨΦn(s)‖2
V ∗ ≤ (t− s)

t∫
s

(
‖AŨΦn(r)‖2

V ∗ + ‖B(UΦ(r), ŨΦn(r))‖2
V ∗ + ‖Φn(r, UΦ(r))‖2

V ∗
)
dr

+
∥∥∥ t∫
s

C(r, UΦ(r))dw(r)
∥∥∥2

V ∗

for each t, s ∈ [0, T ], t > s. By (2.13), (2.15), and the properties of A,B,Φn we obtain

‖ŨΦn(t) − ŨΦn(s)‖2
V ∗ ≤ c3(ω)(t− s) + δ(t− s)2γ

for γ ∈
(
0,

1
4

)
and for every t, s ∈ [0, T ] with |t − s| < χ(ω), where c3(ω) > 0 is independent of

n. Consequently, S is equi-continuous in C([0, T ], V ∗). Analogously we can prove that S̃ is equi-
continuous in C([0, T ], V ∗). Now, using the Dubinsky Theorem, it follows that S and S̃ are relatively
compact in L2

H [0, T ] and hence there exists a subsequence (n′) of (n) and Ũ , U∗ ∈ L2
H [0, T ] such

that

lim
n′→∞

T∫
0

‖ŨΦn′ (s) − Ũ(s)‖2ds = 0(2.17)

and

lim
n′→∞

T∫
0

‖Ũn′,Φn′ (s) − U∗(s)‖2ds = 0.(2.18)

We use (EΦn′ ) and (2.1), the generalized chain rule, the properties of A and B to obtain

‖ŨΦn′ (T ) − UΦ(T )‖2 + 2ν
T∫

0

‖ŨΦn′ (s) − UΦ(s)‖2
V ds

≤ 2
T∫

0

(
Φn′(s, UΦ(s)) − Φ(s, UΦ(s)), ŨΦn′ (s) − Ũ(s)

)
ds

+ 2
T∫

0

(
Φn′(s, UΦ(s)) − Φ(s, UΦ(s)), Ũ (s) − UΦ(s)

)
ds.

According to Lemma 2.3.1, (2.17), and the properties of Φn,Φ ∈ U we get

lim
n′→∞

‖ŨΦn′ (T ) − UΦ(T )‖2 = 0, lim
n′→∞

T∫
0

‖ŨΦn′ (s) − UΦ(s)‖2
V ds = 0.(2.19)

Every subsequence of
(
ŨΦn(ω, ·)

)
has a further subsequence, which converges in the space L2

V [0, T ]
to the same limit UΦ(ω, ·) (because we can repeat all arguments of above). Applying Proposition
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A.1, it follows that the whole sequence
(
ŨΦn(ω, ·)

)
converges to UΦ(ω, ·) in the space L2

V [0, T ].

Analogously we conclude that the whole sequence
(
ŨΦn(ω, T )

)
converges to UΦ(ω, T ) in H.

Our arguments from above worked for an arbitrary fixed ω ∈ Ω̃. Hence (2.19) holds for a.e.
ω ∈ Ω and for the whole sequence (n). Taking into consideration that the processes

(
ŨΦn(t)

)
t∈[0,T ]

and
(
UΦ(t)

)
t∈[0,T ]

are uniformly integrable (see Theorem 1.3.1 and Lemma 1.2.6) it follows that

lim
n→∞

E

T∫
0

‖UΦ(s) − ŨΦn(s)‖2
V ds = 0

and
lim
n→∞

E‖UΦ(T ) − ŨΦn(T )‖2 = 0.

Now we prove the convergences for the sequence (Ũn,Φn). We use (En′,Φn′ ) and (2.1), the
generalized chain rule, the properties of A and B to obtain

‖Ũn,Φn(T ) − ΠnUΦ(T )‖2 + ν

T∫
0

‖Ũn,Φn(s) − ΠnUΦ(s)‖2
V ds(2.20)

≤
T∫

0

‖B(ΠnUΦ(s),ΠnUΦ(s)) − B(UΦ(s), UΦ(s))‖2
V ∗ds

+ 2
T∫

0

(
ΠnΦn(s, UΦ(s)) − Φ(s, UΦ(s)), Ũn,Φn(s) − ΠnUΦ(s)

)
ds.

By the properties of B we have

T∫
0

‖B(ΠnUΦ(s),ΠnUΦ(s)) − B(UΦ(s), UΦ(s))‖2
V ∗ds

≤ 2b
(

sup
t∈[0,T ]

‖UΦ(t) − ΠnUΦ(t)‖2

T∫
0

‖UΦ(s)‖2
V ds

)1/2

×
(

sup
t∈[0,T ]

‖UΦ(t)‖2

T∫
0

‖UΦ(s) − ΠnUΦ(s)‖2
V ds

)1/2

and by (1.4) it follows

lim
n′→∞

T∫
0

‖B(Πn′UΦ(s),Πn′UΦ(s)) − B(UΦ(s), UΦ(s))‖2
V ∗ds = 0.(2.21)
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We write
T∫

0

(
ΠnΦn(s, UΦ(s)) − Φ(s, UΦ(s)), Ũn,Φn(s) − ΠnUΦ(s)

)
ds

=
T∫

0

(
Φn(s, UΦ(s)) − Φ(s, UΦ(s)), Ũn,Φn(s) − U∗(s)

)
ds

+
T∫

0

(
Φn(s, UΦ(s)) − Φ(s, UΦ(s)), U∗(s) − UΦ(s)

)
ds

+
T∫

0

(
Φn(s, UΦ(s)) − Φ(s, UΦ(s)), UΦ(s) − ΠnUΦ(s)

)
ds.

By using this equality for n′, as soon as (1.4), (2.12), (2.16), (2.18), the properties of Φn, Φ and
Lemma 2.3.1 we get

lim
n′→∞

T∫
0

(
Πn′Φn′(s, UΦ(s)) − Φ(s, UΦ(s)), Ũn′,Φn′ (s) − Πn′UΦ(s)

)
ds = 0.(2.22)

From (2.21) and (2.22) we obtain that the right side of the inequality in (2.20) tends to zero.
Therefore

lim
n′→∞

‖Ũn′,Φn′ (T ) − Πn′UΦ(T )‖2 = 0, lim
n′→∞

T∫
0

‖Ũn′,Φn′ (s) − Πn′UΦ(s)‖2
V ds = 0.

Hence by (1.4) and (1.6) we have

lim
n′→∞

‖Ũn′,Φn′ (T ) − UΦ(T )‖2 = 0, lim
n′→∞

T∫
0

‖Ũn′,Φn′ (s) − UΦ(s)‖2
V ds = 0.(2.23)

Every subsequence of
(
Ũn,Φn(ω, ·)

)
has a further subsequence, which converges in the space L2

V [0, T ]
to the same limit UΦ(ω, ·) (because we can repeat all arguments of above). Applying Proposition
A.1, it follows that the whole sequence

(
Ũn,Φn(ω, ·)

)
converges to UΦ(ω, ·) in the space L2

V [0, T ],

respectively. Analogously we conclude that the whole sequence
(
Ũn,Φn(ω, T )

)
converges in H to

UΦ(ω, T ).
Our arguments from above worked for an arbitrary fixed ω ∈ Ω̃. Hence (2.23) holds for a.e.

ω ∈ Ω and for the whole sequence (n). Taking into consideration that the processes
(
Ũn,Φn(t)

)
t∈[0,T ]

and
(
UΦ(t)

)
t∈[0,T ]

are uniformly integrable (see Theorem 1.3.1 and Lemma 1.2.6) and using (1.5)

it follows that the conclusions of this theorem hold.

Let Un,Φ be the solution of (Pn) (see Section 1.2) using the feedback control Φn := ΠnΦ. Note
that Un,Φ = Un,ΠnΦ for Φ ∈ U or Φ ∈ U b.
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Theorem 2.3.3
The following convergences hold:

lim
n→∞

E

T∫
0

‖UΦ(s) − UΦn(s)‖2
V ds = 0, lim

n→∞
E‖UΦ(T ) − UΦn(T )‖2 = 0,

lim
n→∞

E

T∫
0

‖UΦ(s) − Un,Φn(s)‖2
V ds = 0 and lim

n→∞
E‖UΦ(T ) − Un,Φn(T )‖2 = 0.

Proof. We write U := UΦ. Let M ∈ IN and let TM := T U
M be the stopping time of U . We write

e(t) = ∆2
U (t) exp{−(2λ + 2

√
µ+ 1)t}.

It follows by the Ito formula that for a.e. ω ∈ Ω we have

e(TM )‖ŨΦn(TM ) − UΦn(TM )‖2 + 2
TM∫
0

e(s)〈AŨΦn(s) −AUΦn(s), ŨΦn(s) − UΦn(s)〉ds(2.24)

= 2
TM∫
0

e(s)〈B(U(s), ŨΦn(s)) − B(UΦn(s), UΦn(s)), ŨΦn(s) − UΦn(s)〉ds

− 2b
ν

TM∫
0

e(s)‖U(s)‖2
V ‖ŨΦn(s) − UΦn(s)‖2ds− (2λ+ 2

√
µ+ 1)

TM∫
0

e(s)‖ŨΦn(s) − UΦn(s)‖2ds

+ 2
TM∫
0

e(s)(Φn(s, U(s) − UΦn(s)), ŨΦn(s) − UΦn(s))ds

+ 2
TM∫
0

e(s)(C(s, U(s)) − C(s, UΦn(s)), ŨΦn(s) − UΦn(s))dw(s)

+
TM∫
0

e(s)‖C(s, U(s)) − C(s, UΦn(s))‖2ds.

In view of the properties of B we can write

2〈B(U(s), ŨΦn(s)) − B(UΦn(s), UΦn(s)), ŨΦn(s) − UΦn(s)〉

= 2〈B(U(s) − UΦn(s), ŨΦn(s) − U(s)), ŨΦn(s) − UΦn(s)〉

+ 2〈B(U(s) − ŨΦn(s), U(s)), ŨΦn (s) − UΦn(s)〉

+ 2〈B(ŨΦn(s) − UΦn(s), U(s)), ŨΦn(s) − UΦn(s)〉
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≤ 2
√
b‖ŨΦn(s) − U(s)‖V ‖U(s) − UΦn(s)‖

1
2
V ‖U(s) − UΦn(s)‖ 1

2

× ‖ŨΦn(s) − UΦn(s)‖
1
2
V ‖ŨΦn(s) − UΦn(s)‖ 1

2

+
2b
ν
‖U(s)‖‖U(s)‖V ‖U(s) − ŨΦn(s)‖V ‖U(s) − ŨΦn(s)‖ + ν‖ŨΦn(s) − UΦn(s)‖2

V

+
2b
ν
‖U(s)‖2

V ‖ŨΦn(s) − UΦn(s)‖2.

Using this estimates in (2.24) and after some elementary calculations, we obtain

Ee(TM )‖ŨΦn(TM ) − UΦn(TM )‖2 + νE

TM∫
0

e(s)‖ŨΦn(s) − UΦn(s)‖2
V ds

≤ 2
√
b

(
E

T∫
0

‖ŨΦn(s) − U(s)‖2
V ds

) 1
2

×
(
E

T∫
0

(
‖U(s) − UΦn(s)‖2

V ‖U(s) − UΦn(s)‖2 + ‖ŨΦn(s) − UΦn(s)‖2
V ‖ŨΦn(s) − UΦn(s)‖2

)
ds

) 1
2

+
2bM
ν

(
E

T∫
0

‖U(s) − ŨΦn(s)‖2
V ds

)1/2(
E sup
t∈[0,T ]

‖U(t) − ŨΦn(t)‖2
)1/2

+ (µ+ 2λ)E
T∫

0

‖U(s) − ŨΦn(s)‖2ds.

Using the above inequalitiy, Theorem 2.3.2 and Lemma 1.2.6 we have

lim
n→∞

E‖U(TM ) − UΦn(TM )‖2 = 0, lim
n→∞

E

TM∫
0

‖U(s) − UΦn(s)‖2ds = 0.

By Proposition B.3, applied on T := T , Qn(T ) := ‖U(T ) − UΦn(T )‖2, respectively

Qn(T ) :=
T∫

0

‖U(s) − UΦn(s)‖2
V ds, we get

lim
n→∞

E

T∫
0

‖U(s) − UΦn(s)‖2
V ds = 0 and lim

n→∞
E‖U(T ) − UΦn(T )‖2 = 0.

Now we prove the convergences for the sequence (Ũn,Φn). It follows by the Ito formula and the
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properties for A that for a.e. ω ∈ Ω we have

e(TM )‖Ũn,Φn(TM ) − Un,Φn(TM )‖2 + 2ν
TM∫
0

e(s)‖Ũn,Φn(s) − Un,Φn(s)‖2
V ds(2.25)

= 2
TM∫
0

e(s)〈B(ΠnU(s), Ũn,Φn(s)) − B(Un,Φn(s), Un,Φn(s)), Ũn,Φn(s) − Un,Φn(s)〉ds

− 2b
ν

TM∫
0

e(s)‖U(s)‖2
V ‖Ũn,Φn(s) − Un,Φn(s)‖2ds

− (2λ+ 2
√
µ+ 1)

TM∫
0

e(s)‖Ũn,Φn(s) − Un,Φn(s)‖2ds

+ 2
TM∫
0

e(s)
(
ΠnΦn(s, U(s) − Un,Φn(s)), Ũn,Φn(s) − Un,Φn(s)

)
ds

+ 2
TM∫
0

e(s)
(
ΠnC(s, U(s)) − ΠnC(s, Un,Φn(s)), Ũn,Φn(s) − Un,Φn(s)

)
dw(s)

+
TM∫
0

e(s)
∥∥∥ΠnC(s, U(s)) − ΠnC(s, Un,Φn(s))

∥∥∥2
ds.

In view of the properties of B and (1.2) we can write

2〈B(ΠnU(s), Ũn,Φn(s)) − B(Un,Φn(s), Un,Φn(s)), Ũn,Φn(s) − Un,Φn(s)〉

= 2〈B(ΠnU(s) − Un,Φn(s), Ũn,Φn(s) − ΠnU(s)), Ũn,Φn(s) − Un,Φn(s)〉

+ 2〈B(ΠnU(s) − Ũn,Φn(s),ΠnU(s)), Ũn,Φn(s) − Un,Φn(s)〉

+ 2〈B(Ũn,Φn(s) − Un,Φn(s),ΠnU(s)), Ũn,Φn(s) − Un,Φn(s)〉

≤ 2
√
b‖Ũn,Φn(s) − ΠnU(s)‖V ‖ΠnU(s) − Un,Φn(s)‖

1
2
V ‖ΠnU(s) − Un,Φn(s)‖ 1

2

× ‖Ũn,Φn(s) − Un,Φn(s)‖
1
2
V ‖Ũn,Φn(s) − Un,Φn(s)‖ 1

2

+
2b
ν
‖U(s)‖‖U(s)‖V ‖ΠnU(s) − Ũn,Φn(s)‖V ‖ΠnU(s) − Ũn,Φn(s)‖

+ ν‖Ũn,Φn(s) − Un,Φn(s)‖2
V +

2b
ν
‖U(s)‖2

V ‖Ũn,Φn(s) − Un,Φn(s)‖2.
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Using this estimates in (2.25) and after some elementary calculations, we obtain

Ee(TM )‖Ũn,Φn(TM ) − Un,Φn(TM)‖2 + νE

TM∫
0

e(s)‖Ũn,Φn(s) − Un,Φn(s)‖2
V ds

≤ 2
√
b

(
E

T∫
0

‖Ũn,Φn(s) − ΠnU(s)‖2
V ds

) 1
2

×
(
E

T∫
0

(
‖ΠnU(s) − Un,Φn(s)‖2

V ‖ΠnU(s) − Un,Φn(s)‖2

+ ‖Ũn,Φn(s) − Un,Φn(s)‖2
V ‖Ũn,Φn(s) − Un,Φn(s)‖2

)
ds

) 1
2

+
2bM
ν

(
E

T∫
0

‖ΠnU(s) − Ũn,Φn(s)‖2
V ds

)1/2(
E sup
t∈[0,T ]

‖ΠnU(t) − Ũn,Φn(t)‖2
)1/2

+ (µ+ 2λ)E
T∫

0

e(s)‖U(s) − Ũn,Φn(s)‖2ds.

Using Theorem 2.3.2 and Lemma 1.2.6 we have

lim
n′→∞

E‖Ũn,Φn(TM ) − Un,Φn(TM )‖2 = 0, lim
n′→∞

E

TM∫
0

‖Ũn,Φn(s) − Un,Φn(s)‖2ds = 0.

By Proposition B.3, applied for T := T , Qn(T ) := ‖Ũn,Φn(T ) − Un,Φn(T )‖2, respectively

Qn(T ) :=
T∫

0

‖Ũn′,Φn′ (s) − Un,Φn(s)‖2
V ds, we get

lim
n→∞

E

T∫
0

‖Ũn,Φn(s) − Un,Φn(s)‖2
V ds = 0 and lim

n→∞
E‖Ũn,Φn(T ) − Un,Φn(T )‖2 = 0.

Now we use Theorem 2.3.2 to obtain the conclusion of this theorem.

The main result of this section is the following theorem, in which we prove that there exists
at least one optimal feedback control for problem (P).

Theorem 2.3.4
Assume for all t ∈ [0, T ], x ∈ H that the mappings L(t, x, ·),K(·) are weakly lower semicontinuous.
Then there exists an optimal feedback control for problem (P).
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Proof. Let (Φn) be a minimizing sequence for problem (P). We apply Lemma 2.3.1 and
Theorem 2.3.3 for this sequence. Therefore there exists a subsequence (n′) of (n) and Φ ∈ U
such that for all t ∈ [0, T ], x, y ∈ H and a.e. ω ∈ Ω it holds

lim
n′→∞

(Φn′(t, UΦn′ (t)), y) = (Φ(t, UΦ(t)), y).

From (H1), (H2), and Theorem 2.3.3 we have

E

T∫
0

L[t, UΦ(t),Φ(t, UΦ(t))]dt ≤ lim inf
n′→∞

E

T∫
0

L[t, UΦ(t),Φn′(t, UΦn′ (t))]dt

≤ lim inf
n′→∞

(
E

T∫
0

L[t, UΦn′ (t),Φn′(t, UΦn′ (t))]dt + cLE

T∫
0

‖UΦ(t) − UΦn′ (t)‖2
V dt

)

≤ lim inf
n′→∞

E

T∫
0

L[t, UΦn′ (t),Φn′(t, UΦn′ (t))]dt

and
EK[UΦ(T )] ≤ lim inf

n′→∞
EK[UΦn′ (T )].

Consequently,
J (Φ) ≤ lim inf

n′→∞
J (Φn′).

But (Φn) is a minimizing sequence for problem (P). Hence

J (Φ) = min
Ψ∈U

J (Ψ)

and therefore Φ ∈ U is an optimal feedback control for problem (P).

Remark 2.3.5

We can not use this method in the case of problem (Pb), because the minimizing sequence (Φn)
then belongs to the space L2

H(Ω×[0, T ]) and we can not find (as in Lemma 2.3.1) a subsequence (n′)
of (n) independent of ω, t such that (Φn′(ω, t)) would converge in H to a process Φ ∈ L2

H(Ω× [0, T ])
for P × Λ a.e. (ω, t) ∈ Ω × [0, T ]. The independence with respect to ω is essential in the proof of
Theorem 2.3.2.

2.4 Existence of ε-optimal feedback controls

For (P) we formulate the corresponding n-dimensional control problem

(Pn)
{

Jn(Φn) → min
Φn ∈ Un
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where

Jn(Φn) = E

T∫
0

L[s, Un,Φn(s),Φn(s, Un,Φn(s))]ds + EK[Un,Φn(T )]

and
Un :=

{
Φn : [0, T ] ×Hn → Hn|Φn = ΠnΦ,Φ ∈ U

}
.

Here Un,Φn is the solution of (Pn) using the feedback control Φn ∈ Un.
Analogously we define the n-dimensional control problem corresponding to (Pb). We denote

this problem by (Pb
n).

Theorem 2.4.1
Let (Φn) be a sequence in U such that Φn ∈ Un for each n ∈ IN. There exists a subsequence (n′) of
(n) such that

lim
n′→∞

E

T∫
0

‖UΦn′ (s) − Un′,Φn′ (s)‖2
V ds = 0 and lim

n′→∞
E‖UΦn′ (T ) − Un′,Φn′ (T )‖2 = 0,

where UΦn′ and Un′,Φn′ are the solutions of (2.1), respectively (Pn′), using the feedback control Φn′.

Proof. First we apply Lemma 2.3.1 on the sequence (Φn). Consequently, there exist a subsequence
(n′) of (n) and Φ ∈ U such that for all t ∈ [0, T ], x, y ∈ H

lim
n′→∞

(Φn′(t, x), y) = (Φ(t, x), y).

By Theorem 2.3.3 it follows that

lim
n′→∞

E

T∫
0

‖UΦn′ (s) − UΦ(s)‖2
V ds = 0, lim

n′→∞
E‖UΦn′ (T ) − UΦ(T )‖2 = 0(2.26)

and

lim
n′→∞

E

T∫
0

‖Un′,Φn′ (s) − UΦ(s)‖2
V ds = 0, lim

n′→∞
E‖Un′,Φn′ (T ) − UΦ(T )‖2 = 0.(2.27)

We see that

E

T∫
0

‖UΦn′ (s) − Un′,Φn′ (s)‖2
V ds ≤ 2E

T∫
0

‖UΦn′ (s) − UΦ(s)‖2
V ds+ 2E

T∫
0

‖UΦ(s) − Un′,Φn′ (s)‖2
V ds.

By using (2.26) and (2.27) we have

lim
n′→∞

E

T∫
0

‖UΦn′ (s) − Un′,Φn′ (s)‖2
V ds = 0.

Analogously we deduce

lim
n′→∞

E‖UΦn′ (T ) − Un′,Φn′ (T )‖2 = 0.
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Theorem 2.4.2
Assume that for sufficiently large n there exists optimal controls for problem (Pn). If Φ∗ ∈ U is an
optimal control for problem (P) and ε > 0 is arbitrary fixed, then there exists nε ∈ IN such that for
all n ≥ nε Φ∗

n ∈ Un is an optimal control for the n-dimensional control problem (Pn) and

|Jn(Φ∗
n) − J (Φ∗)| < ε, J (Φ∗

n) − J (Φ∗) < ε,

hence Φ∗
n is an ε-optimal control for problem (P).

Proof. Let ε > 0 and take
ε∗ :=

ε

2(cL + cK)
,

where cL, cK are that constants that occure in (H1) and (H2) from Section 2.1.
For each m ∈ IN let Φ̃m := ΠmΦ∗. From Theorem 1.2.7 and the properties (1.5) (from Section

1.1) it follows that there exists an mε > 0 such that for all m ≥ mε it holds

E

T∫
0

‖Um,Φ∗(s) − UΦ∗(s)‖2ds +E‖Um,Φ∗(T ) − UΦ∗(T )‖2 < ε∗

and

E

T∫
0

‖Φ̃m(s, Um,Φ∗(s)) − Φ∗(s, UΦ∗(s))‖2ds < ε∗.

Let n ≥ mε and let Φ∗
n be an optimal control for the n-dimensional control problem (Pn). By

Theorem 2.4.1, applied on (Φ∗
n), there exists a subsequence (n′) of (n) and n′ε ≥ mε such that for

all n′ ≥ n′ε we have

E

T∫
0

‖UΦ∗
n′ (s) − Un′,Φ∗

n′ (s)‖
2ds+ E‖UΦ∗

n′ (T ) − Un′,Φ∗
n′ (T )‖2 < ε∗.(2.28)

First case: Jn′(Φ∗
n′) − J (Φ∗) ≥ 0. Then by using the properties of L and K (given in Section

2.1), we have for all n ≥ n′ε

0 ≤ Jn′(Φ∗
n′) −J (Φ∗) ≤ Jn′(Φ̃n′) − J (Φ∗)

≤ cL
(
E

T∫
0

‖Un′,Φ∗(s) − UΦ∗(s)‖2ds+ E

T∫
0

‖Φ̃n′(s, Un′,Φ∗(s)) − Φ∗(s, UΦ∗(s))‖2ds
)

+ cKE‖Un′,Φ∗(T ) − UΦ∗(T )‖2 < (cL + cK)ε∗ <
ε

2
.
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Second case: Jn′(Φ∗
n′) −J (Φ∗) < 0. We write

0 < J (Φ∗) − Jn′(Φ∗
n′) ≤ J (Φ∗

n′) − Jn′(Φ∗
n′)

≤ cLE

T∫
0

‖Un′,Φ∗
n′ (s) − UΦ∗

n′ (s)‖
2ds+ cKE‖Un′,Φ∗

n′ (T ) − UΦ∗
n′ (T )‖2

< (cL + cK)ε∗ <
ε

2
.

Hence for all n′ ≥ n′ε we have for all n′ ≥ n′ε

|Jn′(Φ∗
n′) − J (Φ∗)| < ε

2
< ε.

Using this inequality and (2.28) we get

0 ≤ J (Φ∗
n′) − J (Φ∗) ≤ |J (Φ∗

n′) − Jn(Φ∗
n′)| + |Jn′(Φ∗

n′) − J (Φ∗)|

≤ cLE

T∫
0

‖UΦ∗
n′ (s) − Un′,Φ∗

n′ (s)‖
2ds+ cKE‖UΦ∗

n′ (T ) − Un,Φ∗
n′ (T )‖2 +

ε

2

< (cL + cK)ε∗ +
ε

2
= ε.

The sequence (n′), n′ε ∈ IN and Φ∗
n′ obtained above satisfy the conclusion of the theorem.

2.5 A special property

We will prove a special property for the solution UΦ of the Navier-Stokes equation (2.1) (respectively
(2.3) in the case of bounded controls):

E exp
{
β

T∫
0

‖UΦ(s)‖2
V ds

}
< K <∞(2.29)

where β > 0 satisfies certain conditions and K is a positive constant independent of Φ. We need this
property because of the special structure of the Navier-Stokes equation. If (2.29) is not satisfied,
we have to consider in the cost functional J together with the expression of the state UΦ the
expression ∆UΦ

too (as a discount factor). The computations are in this case more complicated. If

β :=
b

ν
then (2.29) becomes

E∆−1
UΦ

(T ) < K <∞.

We want to show that there exist situations for which (2.29) is satisfied. We formulate some
conditions which assure that (2.29) holds. Of course, these conditions are not the only possible
ones.
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For the stochastic Navier-Stokes equation we assume that the supplementary assumptions hold
(v’) C satisfies assumption (v) from Section 1.1 and

γ := sup
x∈H

t∈[0,T ]

‖C(t, x)‖2 <∞;

(vii’) x0 ∈ H (it does not depend on ω).

Let Φ ∈ U or Φ ∈ U b (we recall the definition of U and U b from Section 2.1). We make the
convention: if Φ ∈ U then we take ρ := 0 and if Φ ∈ U b then we take µ := 0.

We consider the conditions:

(C1)
(ν −√

µcHV)2

2γcHV
> β;

(C2) 1 − 2
√
µT > 0,

2ν(ν −√
µcHV)

γcHV
> β,

ν(1 − 2
√
µγT )2

4γT
> β;

(C3)
ν2e−2

√
µT

γcHV
> β.

A possible interpretation for this conditions in the case β := 4b
ν (which will be used in the

following sections) is given at the end of this section in Remark 2.5.2.

Theorem 2.5.1
Assume that hypotheses (i)-(iv), (v’), (vii’) are fulfilled and Φ ∈ U or Φ ∈ U b. If one of the
conditions (C1), (C2) or (C3) holds, then there exists a positive constant K independent of Φ such
that inequality (2.29) is satisfied.

Proof. Applying the Ito formula for U := UΦ and using the properties of A,B and Φ we obtain

‖U(t)‖2 + 2ν
t∫

0

‖U(s)‖2
V ds ≤ ‖x0‖2 +

ρ2

2ε
+ 2(

√
µ+ ε)

t∫
0

‖U(s)‖2ds(2.30)

+ 2
t∫

0

(C(s, U(s)), U(s))dw(s) +
t∫

0

‖C(s, U(s))‖2ds

with ε > 0.
We assume that (C1) is fulfilled: There exists a sufficiently small ε > 0 such that

(ν −√
µcHV − εcHV)2

2γcHV
≥ β.(2.31)

We find an η > 0 such that
2η(ν −√

µcHV − εcHV − γcHVη) = β.(2.32)
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By (2.30) and assumption (v’) we get

η‖U(t)‖2 + 2ην
t∫

0

‖U(s)‖2
V ds ≤ η‖x0‖2 + ηγT +

ηρ2

2ε
+ 2(

√
µ+ ε)η

t∫
0

‖U(s)‖2ds(2.33)

+ 2η2

t∫
0

(C(s, U(s)), U(s))2ds+ 2η
t∫

0

(C(s, U(s)), U(s))dw(s) − 2η2

t∫
0

(C(s, U(s)), U(s))2ds,

which implies that

η‖U(t)‖2 + 2η(ν −√
µcHV − εcHV − γηcHV)

t∫
0

‖U(s)‖2
V ds ≤ η‖x0‖2 + ηγT +

ηρ2

2ε

+ 2η
t∫

0

(C(s, U(s)), U(s))dw(s) − 2η2

t∫
0

(C(s, U(s)), U(s))2ds.

Hence

E exp
{
2η(ν −√

µcHV − εcHV − γηcHV)
t∫

0

‖U(s)‖2
V ds

}

≤ exp {η‖x0‖2 + ηγT +
ηρ2

2ε

}
× E exp

{
2η

t∫
0

(C(s, U(s)), U(s))dw(s) − 2η2

t∫
0

(C(s, U(s)), U(s))2ds
}
.

By Levi’s inequality (see [12], p. 331) it then follows that

E exp
{
2η(ν −√

µcHV − εcHV − γηcHV)
t∫

0

‖U(s)‖2
V ds

}
≤ exp

{
η‖x0‖2 + ηγT +

ηρ2

2ε

}
.

By using (C1), (2.31) and (2.32), we can find a positive constant K independent of Φ such that

E exp
{
β

t∫
0

‖U(s)‖2
V ds

}
≤ exp

{
η‖x0‖2 + ηγT +

ηρ2

2ε

}
< K <∞.

Now we assume that (C2) is fulfilled: There exists a sufficiently small ε > 0 such that

1 − 2
√
µT − 2εT > 0,

ν(1 − 2
√
µT − 2εT )2

4γT
≥ β.(2.34)

By the Ito formula and the property of B we have

exp{η‖U(t)‖2} + 2η
t∫

0

〈AU(s), U(s)〉 exp{η‖U(s)‖2}ds ≤ exp{η‖x0‖2}
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+ η

t∫
0

(
2(Φ(s, U(s)), U(s)) + ‖C(s, U(s))‖2

)
exp{η‖U(s)‖2}ds

+ 2η
t∫

0

(C(s, U(s)), U(s)) exp{η‖U(s)‖2}dw(s) + 2η2

t∫
0

(C(s, U(s)), U(s))2 exp{η‖U(s)‖2}ds,

with η > 0. Now we use the properties of A,Φ, C to obtain

exp{η‖U(t)‖2} + 2η
( ν
cHV

−√
µ− ε− ηγ

) t∫
0

‖U(s)‖2 exp{η‖U(s)‖2}ds ≤ exp{η‖x0‖2}

+ η
(
γ +

ρ2

2ε

) t∫
0

exp{η‖U(s)‖2}ds + 2η
t∫

0

(C(s, U(s)), U(s)) exp{η‖U(s)‖2}dw(s)

for all t ∈ [0, T ]. We chose η such that ν−√
µcHV−εcHV−ηγcHV > 0 (see (2.38)). Then by Proposition

B.2 (applied for real valued processes) we get

E exp{η‖U(t)‖2} ≤ c exp{η‖x0‖2} for all t ∈ [0, T ],(2.35)

where c > 0 is a constant depending on η, γ, T, ρ, ε. Taking into account the Hölder and the Levi
inequality in (2.33), we have

E exp
{
2ην

T∫
0

‖U(s)‖2
V ds

}
≤ exp

{
η‖x0‖2 + ηγT +

ηρ2

2ε

}
(2.36)

×
(
E exp

{
2ηp

T∫
0

(C(s, U(s)), U(s))dw(s) − 2η2p2

T∫
0

(C(s, U(s)), U(s))2ds
}) 1

p

×
(
E exp

{
2ηq(

√
µ+ ε+ ηγp)

T∫
0

‖U(s)‖2ds

}) 1
q

≤ exp
{
η‖x0‖2 + ηγT +

ηρ2

2ε

}(
E exp

{
2ηq(

√
µ+ ε+ ηγp)

T∫
0

‖U(s)‖2ds

}) 1
q

where p, q > 1,
1
p

+
1
q

= 1 (the exact value of p is given in (2.38)). By Jensen’s inequality we obtain

E exp
{
2ηq(

√
µ+ ε+ ηγp)

T∫
0

‖U(s)‖2ds
}
≤ 1
T
E

T∫
0

exp
{
2ηqT (

√
µ+ ε+ ηγp)‖U(s)‖2

}
ds.(2.37)

We set
η :=

β

2ν
and p =

2
1 − 2

√
µT − 2εT

.(2.38)
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Using (2.34) and (2.38) we write the condition for β as follows:

β ≤ ν
(1 − 2

√
µT − 2εT )p − 1
γTp2

.

This implies
2qT (

√
µ+ ε+ ηγp) ≤ 1.

By applying these estimates in (2.35), (2.36), and (2.37) we get

E exp
{
2ην

T∫
0

‖U(s)‖2
V ds

}
≤ T− 1

q exp
{
η‖x0‖2 + ηγT +

ηρ2

2ε

}( T∫
0

E exp
{
η‖U(s)‖2

}
ds

) 1
q

<∞.

Hence there exists a positive constant K independent of Φ such that (2.29) holds.
We assume that (C3) is fulfilled: There exists a sufficiently small ε > 0 such that

ν2e−2(
√
µ+ε)T

2γcHV
≥ β(2.39)

and η > 0 such that
2ηe−2(

√
µ+ε)T (ν − γcHVη) = β.(2.40)

By the Ito formula and the properties of A,B,Φ we obtain

e−2(
√
µ+ε)t‖U(t)‖2 + 2ν

t∫
0

e−2(
√
µ+ε)s‖U(s)‖2

V ds ≤ ‖x0‖2 +
ρ2

2ε

+ 2
t∫

0

e−2(
√
µ+ε)s(C(s, U(s)), U(s))dw(s) +

t∫
0

e−2(
√
µ+ε)s‖C(s, U(s))‖2ds.

For an arbitrary fixed η > 0 we write

2η(ν − γηcHV)
t∫

0

e−2(
√
µ+ε)s‖U(s)‖2

V ds ≤ η‖x0‖2 + ηγT +
ηρ2

2ε

+ 2η
t∫

0

e−2(
√
µ+ε)s(C(s, U(s)), U(s))dw(s) − 2η2

t∫
0

e−4(
√
µ+ε)s(C(s, U(s)), U(s))2ds.

Hence

E exp
{
2ηe−2(

√
µ+ε)T (ν − γηcHV)

T∫
0

‖U(s)‖2
V ds

}
≤ exp

{
η‖x0‖2 + ηγT +

ηρ2

2ε

}

× E exp
{
2η

T∫
0

e−2(
√
µ+ε)s(C(s, U(s)), U(s))dw(s) − 2η2

T∫
0

e−4(
√
µ+ε)s(C(s, U(s)), U(s))2ds

}
.
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Using Levi’s inequality we have

E exp
{
2ηe−2(

√
µ+ε)T (ν − γηcHV)

t∫
0

‖U(s)‖2
V ds

}
≤ exp

{
η‖x0‖2 + ηγT +

ηρ2

2ε

}
.

By (2.40) it follows that there exists a positive constant K independent of Φ such that

E exp
{
β

t∫
0

‖U(s)‖2
V ds

}
≤ exp

{
η‖x0‖2 + ηγT + η

ρ2

2ε

}
< K <∞.

Remark 2.5.2

1) In the following sections of this chapter we need the condition

E∆−4
UΦ

(T ) = E exp
{
4
b

ν

T∫
0

‖UΦ(s)‖2
V ds

}
< K <∞.(2.41)

By taking β := 4b
ν the conditions mentioned at the beginning of this section become

(C1)
ν(ν −√

µcHV)2

8γcHV
> b;

(C2) 1 − 2
√
µT > 0,

2ν2(ν −√
µcHV)

4γcHV
> b,

ν2(1 − 2
√
µT )2

16γT
> b;

(C3)
ν3e−2

√
µT

4γcHV
> b.

If one of these conditions is fulfilled then (2.41) holds.
2) If Φ ∈ U b, then by the convention from the beginning of this section we have µ := 0 and the
three conditions from above can be written as follows:

(Cb
1)

ν3

8γcHV
> b;

(Cb
2)

ν3

2γcHV
> b,

ν2

16γT
> b;

(Cb
3)

ν3

4γcHV
> b.

If one of these conditions is fulfilled then (2.41) holds.
3) These conditions seem to be very complicate, but they can be interpreted as follows: if ν,
involving the viscosity, is large (we have a “very viscous fluid”) then we can act with large external
forces (µ can be chosen large) and we can have a “strong” influence of the Brownian motion (γ can
be chosen large). The inequality 1 − 2

√
µT > 0 is satisfied if we have large external forces and a

small interval [0, T ] or conversely, a large interval and small external forces.
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2.6 The Gateaux derivative of the cost functional

For the mappings that occur in the expression of the cost functional J (see (2.2)) we will assume
further some supplementary conditions:

(H3) the mappings L(t, ·, ·),K(·) are Fréchet differentiable for each fixed t ∈ [0, T ];

(H4) the mappings Lx(t, ·, ·), Ly(t, ·, ·),K′(·) are Lipschitz continuous and

‖Lx(t, x, y)‖ + ‖Ly(t, x, y)‖ ≤ kL(1 + ‖x‖ + ‖y‖) and ‖K′(x)‖ ≤ kK(1 + ‖x‖)

for all t ∈ [0, T ], x, y ∈ H, where kL, kK are positive constants;

(H5) Lx(·, x, y),Ly(·, x, y) ∈ L2
H [0, T ] for all x, y ∈ H.

For the stochastic Navier-Stokes equation we assume that the supplementary condition holds:

(v”) C satisfies assumption (v) from Section 1.1 and for each t ∈ [0, T ] the mapping C(t, ·) is Fréchet
differentiable and C′(t, x) ∈ L2(H,H), the Fréchet derivative of C(t, ·) at the point x, satisfies

‖C′(t, x)(y)‖ ≤ kC′‖y‖ for all t ∈ [0, T ], x, y ∈ H

where kC′ is a positive constant independent of t and x.

Using the properties of B it can be proved that the mapping x ∈ V 7→ B(x, x) ∈ V ∗ is Fréchet
differentiable and

B′(x)(y) = B(x, y) + B(y, x) for all x, y ∈ V.

We consider the case of bounded controls. Let Φ,Υ ∈ U b such that for sufficiently small
θ > 0 we have Φ + θΥ ∈ U b. We denote by

Xθ :=
UΦ+θΥ − UΦ − θZΥ

θ
.(2.42)

Throughout this section we assume that β, ν, γ, ρ, T are chosen in such a way that

E∆−4
UΦ

(T ) < K <∞.

We recall here the results mentioned in Remark 2.5.2.
Let Υ ∈ L2

H(Ω × [0, T ]). We consider the stochastic evolution equation

(ZΥ(t), v) +
t∫

0

〈AZΥ(s), v〉ds =
t∫

0

〈B′(UΦ(s))(ZΥ(s)), v〉ds(2.43)

+
t∫

0

(Υ(s), v)ds +
t∫

0

(C′(s, UΦ(s))(ZΥ(s)), v)dw(s)

for all v ∈ V , t ∈ [0, T ] and a.e. ω ∈ Ω.
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Lemma 2.6.1
There exists a V -valued, F × B[0,T ]-measurable process

(
ZΥ(t)

)
t∈[0,T ]

adapted to the filtration

(Ft)t∈[0,T ], satisfying (2.43) and which has almost surely continuous trajectories in H. The so-
lution is almost surely unique and there exists a constant c > 0 (independent of Υ) such that

E∆UΦ
(T )‖ZΥ(T )‖2 +E

T∫
0

∆UΦ
(t)‖ZΥ(t)‖2

V dt ≤ cE

T∫
0

‖Υ(t)‖2dt

and

E∆2
UΦ

(T )‖ZΥ(T )‖4 + E

( T∫
0

∆UΦ
(t)‖ZΥ(t)‖2

V dt

)2

≤ cE

T∫
0

‖Υ(t)‖4dt.

Proof. We apply Theorem 1.3.1 onX = Y := UΦ, a0 := 0,Ψ := Υ,Γ := 0,G(s, h) := C′(s, UΦ(s))(h),
ZΨ,Γ := ZΥ.

Lemma 2.6.2

(i) There exists a positive constant c independent of θ such that

E∆2
UΦ

(T )
∥∥∥∥UΦ+θΥ(T ) − UΦ(T )

θ

∥∥∥∥4

+E
( T∫

0

∆UΦ
(s)
∥∥∥∥UΦ+θΥ(s) − UΦ(s)

θ

∥∥∥∥2

V
ds

)2

≤ cE

T∫
0

‖Υ(s)‖4ds

and

lim
θ↘0

1
θ2
E

T∫
0

∆2
UΦ

(s)‖UΦ+θΥ(s) − UΦ(s)‖2
V ‖UΦ+θΥ(s) − UΦ(s)‖2ds = 0.

(ii) The following convergences hold

lim
θ↘0

E‖Xθ(T )‖2 = 0 and lim
θ↘0

E

T∫
0

‖Xθ(s)‖2
V ds = 0,

where Xθ is defined in (2.42).

Proof. For all t ∈ [0, T ] and a.e. ω ∈ Ω let

e1(t) = ∆UΦ
(t) exp{−(2λ+ 1)t}.

(i) We use the Ito formula and the properties of A,B, C to get

e1(t)‖UΦ+θΥ(t) − UΦ(t)‖2 + ν

t∫
0

e1(s)‖UΦ+θΥ(s) − UΦ(s)‖2
V ds(2.44)

≤ θ2

t∫
0

e1(s)‖Υ(s)‖2ds + 2
t∫

0

e1(s)(C(s, UΦ+θΥ(s)) − C(s, UΦ(s)), UΦ+θΥ(s) − UΦ(s))dw(s)
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for all t ∈ [0, T ] and a.e. ω ∈ Ω. Using Proposition B.2 we obatin

E

{
sup
t∈[0,T ]

∆2
UΦ

(t)
∥∥∥∥UΦ+θΥ(t) − UΦ(t)

θ

∥∥∥∥4}
+ ν2E

( T∫
0

∆UΦ
(s)
∥∥∥∥UΦ+θΥ(s) − UΦ(s)

θ

∥∥∥∥2

V
ds

)2

≤ cE

T∫
0

‖Υ(s)‖4ds

where c is a positive constant independent of θ. We write

E

T∫
0

∆2
UΦ

(s)‖UΦ+θΥ(s) − UΦ(s)‖2
V ‖UΦ+θΥ(s) − UΦ(s)‖2ds

≤ θ4
[
E

{
sup
t∈[0,T ]

∆2
UΦ

(t)
∥∥∥∥UΦ+θΥ(t) − UΦ(t)

θ

∥∥∥∥4}
E

( T∫
0

∆UΦ
(s)
∥∥∥∥UΦ+θΥ(s) − UΦ(s)

θ

∥∥∥∥2

V
ds

)2] 1
2

.

Consequently,

lim
θ↘0

1
θ2
E

T∫
0

∆2
UΦ

(s)‖UΦ+θΥ(s) − UΦ(s)‖2
V ‖UΦ+θΥ(s) − UΦ(s)‖2ds = 0.

(ii) By the Ito formula and the properties of A,Φ,Υ we get

e1(T )‖Xθ(T )‖2 + 2ν
T∫

0

e1(s)‖Xθ(s)‖2
V ds

≤ 2
T∫

0

e1(s)〈B(Xθ(s), UΦ(s)) +
1
θ
B(UΦ+θΥ(s) − UΦ(s), UΦ+θΥ(s) − UΦ(s)),Xθ(s)〉ds

− (2λ+ 1)
T∫

0

e1(s)‖Xθ(s)‖2ds − b

ν

T∫
0

e1(s)‖UΦ(s)‖2‖Xθ(s)‖2ds

+ 2
T∫

0

e1(s)
θ

(
C(s, UΦ+θΥ(s)) − C(s, UΦ(s)) − θC′(s, UΦ(s))(ZΥ(s)),Xθ(s)

)
dw(s)

+
T∫

0

e1(s)
θ2

∥∥∥C(s, UΦ+θΥ(s)) − C(s, UΦ(s)) − θC′(s, UΦ(s))(ZΥ(s))
∥∥∥2
ds.

Using the properties of B,Φ,Υ, C, it follows that

Ee1(T )‖Xθ(T )‖2 +
3ν
4
E

T∫
0

e1(s)‖Xθ(s)‖2
V ds
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≤ 4b
νθ2

E

T∫
0

e1(s)‖UΦ+θΥ(s) − UΦ(s)‖2‖UΦ+θΥ(s) − UΦ(s))‖2
V ds

+
2
θ2
E

T∫
0

e1(s)‖C(s, UΦ(s) + θZΥ(s)) − C(s, UΦ(s)) − θC′(s, UΦ(s))(ZΥ(s))‖2ds.

Applying (i), the properties of C and the Lebesgue Theorem we conclude

lim
θ↘0

E∆UΦ
(T )‖Xθ(T )‖2 = 0, lim

θ↘0
E

T∫
0

∆UΦ
(s)‖Xθ(s)‖2

V ds = 0.(2.45)

We see that

E∆2
UΦ

(T )‖Xθ(T )‖4 + E
( T∫

0

∆UΦ
(s)‖Xθ(s)‖2

V ds
)2

(2.46)

≤ 8

[
E∆2

UΦ
(T )

∥∥∥∥UΦ+θΥ(T ) − UΦ(T )
θ

∥∥∥∥4

+ E∆2
UΦ

(T )‖ZΥ(T )‖4

+ E

( T∫
0

∆UΦ
(s)
∥∥∥∥UΦ+θΥ(s) − UΦ(s)

θ

∥∥∥∥2

V
ds

)2

+ E
( T∫

0

∆UΦ
(s)‖ZΥ(s)‖2

V ds
)2
]
.

By using the Schwarz inequality we obtain

E‖Xθ(T )‖2 ≤
(
E∆UΦ

(T )‖Xθ(T )‖2
) 1

2
(
E∆−4

UΦ
(T )

) 1
4
(
E∆2

UΦ
(T )‖Xθ(T )‖4

) 1
4 .

Taking into account (2.45), (2.46), (i), Theorem 1.3.1 and the condition E∆−4
UΦ

(T ) < K < ∞ it
follows that

lim
θ↘0

E‖Xθ(T )‖2 = 0.

Analogously we can prove that

lim
θ↘0

E

T∫
0

‖Xθ(s)‖2
V ds = 0.

Remark 2.6.3

For the proof of (i) in Lemma 2.6.2 we do not need the condition E∆−4
UΦ

(T ) <∞.
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Theorem 2.6.4
The cost functional J is Gateaux differentiable with

dJ (Φ + θΥ)
dθ

∣∣∣∣
θ=0

= E

T∫
0

(
Lx[t, UΦ(t),Φ(t)], ZΥ(t)

)
dt(2.47)

+ E

T∫
0

(
Ly[t, UΦ(t),Φ(t)],Υ(t)

)
dt+ E

(
K′[UΦ(T )], ZΥ(T )

)
.

Proof. We have

K(x) −K(x̃) =
1∫

0

(
K′[x̃+ r(x− x̃))], x − x̃

)
dr(2.48)

and

L(t, x, y) − L(t, x̃, ỹ) =
1∫

0

(
Lx[t, x̃+ r(x− x̃), ỹ + r(y − ỹ)], x− x̃

)
dr(2.49)

+
1∫

0

(
Ly[t, x̃+ r(x− x̃), ỹ + r(y − ỹ)], y − ỹ

)
dr

for all x, x̃, y, ỹ ∈ H, t ∈ [0, T ]. Equation (2.48) implies

K[UΦ+θΥ(T )] −K[UΦ(T )] =
1∫

0

θ
(
K′[UΦ(T ) + rθ(Xθ(T ) + ZΥ(T ))],Xθ(T ) + ZΥ(T )

)
dr.

Using (2.49) we obtain

L[t, UΦ+θΥ(t), (Φ + θΥ)(t)]−L[t, UΦ(t),Φ(t)]

=
1∫

0

{
θ
(
Lx[t, UΦ(t) + rθ(Xθ(t) + ZΥ(t)),Φ(t) + rθΥ(t)],Xθ(t) + ZΥ(t)

)
+

(
Ly[t, UΦ(t) + rθ(Xθ(t) + ZΥ(t)),Φ(t) + rθΥ(t)], θΥ(t)

)
dr

=
1∫

0

θ
{(

Lx[t, UΦ(t) + rθ(Xθ(t) + ZΥ(t)),Φ(t) + rθΥ(t)],Xθ(t) + ZΥ(t)
)

+
(
Ly[t, UΦ(t) + rθ(Xθ(t) + ZΥ(t)),Φ(t) + rθΥ(t)],Υ(t)

)}
dr,

for all t ∈ [0, T ]. Using the properties of L,K, and Lemma 2.6.2 it follows that relation (2.47)
holds.
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Remark 2.6.5

Now we consider the case of feedback controls. Let Φ,Υ ∈ U such that for sufficiently small θ > 0
we have Φ + θΥ ∈ U .

We assume that β, ν, γ, ρ, T are chosen in such a way that

E∆−4
UΦ

(T ) < K <∞.

We recall here the results mentioned in Remark 2.5.2.
Analogously to Theorem 2.6.4 it can be proved that the cost functional J is Gateaux differen-

tiable with

dJ (Φ + θΥ)
dθ

∣∣∣∣∣
θ=0

= E

T∫
0

(
Lx[t, UΦ(t),Φ(t, UΦ(t)], ZΥ(t)

)
dt+(2.50)

+E
T∫

0

(
Ly[t, UΦ(t),Φ(t, UΦ(t)],Υ(t, UΦ(t)) + Φ(t, ZΥ(t))

)
dt+ E

(
K′[UΦ(T )], ZΥ(T )

)
,

where ZΥ is the solution of the evolution equation

(ZΥ(t), v) +
t∫

0

〈AZΥ(s), v〉ds =
t∫

0

〈B′(UΦ)(ZΥ(s)), v〉ds +
t∫

0

(Υ(s, UΦ(s))

+ Φ(s, ZΥ(s)), v)ds +
t∫

0

(C′(s, UΦ(s))(ZΥ(s)), v)dw(s)

for all v ∈ V , t ∈ [0, T ] and a.e. ω ∈ Ω. To establish the existence and almost surely uniqueness of
the solution of this equation we use the same methods as in Theorem 1.3.1.

2.7 A stochastic minimum principle

We will state a stochastic minimum principle in the case of problem (Pb). Let Φ∗ ∈ U b be an
optimal control with E∆−4

UΦ∗ (T ) <∞, Ψ ∈ L2
V ∗(Ω× [0, T ]),Γ ∈ L2

H(Ω× [0, T ]) and let ZΨ,Γ be the
solution of

(ZΨ,Γ(t), v) +
t∫

0

〈AZΨ,Γ(s), v〉ds =
t∫

0

〈B′(UΦ∗(s))(ZΨ,Γ(s)), v〉ds(2.51)

+
t∫

0

〈Ψ(s), v〉ds +
t∫

0

(C′(s, UΦ∗(s))(ZΨ,Γ(s)), v)dw(s) +
t∫

0

(Γ(s), v)dw(s)

for all v ∈ V , t ∈ [0, T ] and a.e. ω ∈ Ω. This equation is (PΨ,Γ) from Section 1.3 applied for
X = Y := UΦ∗ , a0 := 0,G(s, h) := C′(s, UΦ∗(s))(h).
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The mapping

(Ψ,Γ) ∈ L2
V ∗(Ω × [0, T ]) × L2

H(Ω × [0, T ]) 7→

7→ E

T∫
0

(
Lx[t, UΦ∗(t),Φ∗(t)], ZΨ,Γ(t)

)
dt+ E

(
K′[UΦ∗(T )], ZΨ,Γ(T )

)
∈ IR

is linear and continuous, because

(Ψ,Γ) ∈ L2
V ∗(Ω × [0, T ]) × L2

H(Ω × [0, T ]) 7→ ZΨ,Γ ∈ L2
V (Ω × [0, T ])

and
(Ψ,Γ) ∈ L2

V ∗(Ω × [0, T ]) × L2
H(Ω × [0, T ]) 7→ ZΨ,Γ(T ) ∈ L2

H(Ω)

are linear. By using the properties for L,K, UΦ∗ ,Φ∗ and Theorem 1.3.1 we get

∣∣∣E T∫
0

(
Lx[t, UΦ∗(t),Φ∗(t)], ZΨ,Γ(t)

)
dt+ E

(
K′[UΦ∗(T )], ZΨ,Γ(T )

)∣∣∣ ≤ (
E∆−2

UΦ∗ (T )
)1/4

×
{[
E
( T∫

0

‖Lx[t, UΦ∗(t),Φ∗(t)]‖2dt
)2]1/4

+
(
E‖K′[UΦ∗(T )]‖4

)1/4}

×
{(
E

T∫
0

∆UΦ∗ (t)‖ZΨ,Γ(t)‖2dt
)1/2

+
(
E∆UΦ∗ (T )‖ZΨ,Γ(T )‖2

)1/2}

≤ c̃
(
E∆−2

UΦ∗ (T )
)1/4(

E

T∫
0

‖Ψ(t)‖2
V ∗dt+E

T∫
0

‖Γ(t)‖2dt
)1/2

where c̃ is a positive constant independent of Ψ and Γ. By the Riesz Theorem it follows that there
exist in a unique way processes

p ∈ L2
V (Ω × [0, T ]), q ∈ L2

H(Ω × [0, T ])

such that

E

T∫
0

〈Ψ(t), p(t)〉dt + E

T∫
0

(
Γ(t), q(t)

)
dt(2.52)

= E

T∫
0

(
Lx[t, UΦ∗(t),Φ∗(t)], ZΨ,Γ(t)

)
dt+ E

(
K′[UΦ∗(T )], ZΨ,Γ(T )

)
for all Ψ ∈ L2

V ∗(Ω × [0, T ]),Γ ∈ L2
H(Ω × [0, T ]).

Let
H(t, v, ṽ, x, y) := L(t, x, y) + 〈−Ax+ B(x, x), v〉 + (C(t, x), ṽ) + (y, v)

for v, x ∈ V, v, ṽ, y ∈ H.
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Lemma 2.7.1
For all Υ ∈ U b we have

dJ (Φ∗ + θ(Υ − Φ∗))
dθ

∣∣∣∣∣
θ=0

= E

T∫
0

(
Hy[t, p(t), q(t), UΦ∗ (t),Φ∗(t)],Υ(t) − Φ∗(t)

)
dt ≥ 0.(2.53)

Proof. Since U b is convex it follows that Φ∗ + θ(Υ − Φ∗) ∈ U b for all θ ∈ [0, 1]. Equation (2.52)
and Theorem 2.6.4 implies

dJ (Φ∗ + θ(Υ − Φ∗))
dθ

∣∣∣∣∣
θ=0

= E

T∫
0

(
Υ(t) − Φ∗(t), p(t)

)
dt+ E

T∫
0

(
Ly[t, UΦ∗(t),Φ∗(t)],Υ(t) − Φ∗(t)

)
dt.

Since Φ∗ is an optimal control, we have

dJ (Φ∗ + θ(Υ − Φ∗))
dθ

∣∣∣∣∣
θ=0

≥ 0.

Taking into account the definition of H, it follows that (2.53) holds.

The statement of the stochastic minimum principle is contained in the following theorem.

Theorem 2.7.2
If Φ∗ ∈ U b is an optimal control, then for all h ∈ H with ‖h‖ ≤ ρ the inequality(

Ly[t, UΦ∗(t),Φ∗(t)] + p(t), h− Φ∗(t)
)
≥ 0(2.54)

holds for P × Λ a.e. (ω, t) ∈ Ω × [0, T ].

Proof. Let h ∈ H with ‖h‖ ≤ ρ. We denote by

ξ(ω, t) :=
(
Hy[t, p(t), q(t), UΦ∗(t),Φ∗(t)], h − Φ∗(t)

)
, S := {(ω, t) ∈ Ω × [0, T ]|ξ(ω, t) < 0},

and St := {ω ∈ Ω|ξ(ω, t) < 0} for each t ∈ [0, T ]. Obviously, for each t ∈ [0, T ] the set St is
Ft-measurable. We take

Υ(ω, t) =

{
h , ω ∈ St

Φ∗(ω, t) , ω 6∈ St.

We see that Υ ∈ U b and(
Hy[t, p(t), q(t), UΦ∗ (t),Φ∗(t)],Υ(t) − Φ∗(t)

)
= ISt(ω)ξ(ω, t) ≤ 0.(2.55)

From Lemma 2.7.1 and (2.55) it follows

0 ≤ E

T∫
0

(
Hy[t, p(t), q(t), UΦ∗(t),Φ∗(t)],Υ(t) − Φ∗(t)

)
dt

=
∫
S

(
Hy[t, p(t), q(t), UΦ∗(t),Φ∗(t)], h − Φ∗(t)

)
d(P × Λ) =

∫
S

ξ(ω, t)d(P × Λ) ≤ 0.
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Consequently, (P × Λ)(S) = 0 and therefore(
Hy[t, p(t), q(t), UΦ∗(t),Φ∗(t)], h − Φ∗(t)

)
=
(
Ly[t, UΦ∗(t),Φ∗(t)] + p(t), h− Φ∗(t)

)
≥ 0

for P × Λ a.e. (ω, t) ∈ Ω × [0, T ] and all h ∈ H with ‖h‖ ≤ ρ.

2.8 Equation of the adjoint processes

To complete the statement of the stochastic minimum principle, we need to derive the equation
for the processes

(
p(t)

)
t∈[0,T ]

and
(
q(t)

)
t∈[0,T ]

, called adjoint equation. We will use an approx-

imation procedure and we will derive the equation for the approximation processes
(
pn(t)

)
t∈[0,T ]

,(
qn(t)

)
t∈[0,T ]

(n ∈ IN).

In this section we specialize the filtration (Ft)t∈[0,T ] namely by
(
F[w(r):r≤t]

)
t∈[0,T ]

, which is the

filtration generated by the Wiener process
(
w(t)

)
t∈[0,T ]

.

Let n ∈ IN, ψ ∈ L2
(Hn,‖·‖V )(Ω× [0, T ]),Γ ∈ L2

Hn
(Ω× [0, T ]) and let Φ∗ ∈ U b be an optimal control

with E∆−4
UΦ∗ (T ) <∞ (Remark 2.5.2 contains sufficient conditions for this inequality). We consider

Zn,ψ,γ to be the solution of

(Zn,ψ,γ(t), v) +
t∫

0

(AnZn,ψ,γ(s), v)ds =
t∫

0

(B′
n(U

n
Φ∗(s))(Zn,ψ,γ(s)), v)ds(2.56)

+
t∫

0

(ψ(s), v)ds +
t∫

0

(C′
n(s, UΦ∗(s))(Zn,ψ,γ(s)), v)dw(s) +

t∫
0

(γ(s), v)dw(s)

for all v ∈ Hn, t ∈ [0, T ] and a.e. ω ∈ Ω, where B′
n(x)(y) :=

n∑
i=1

〈B′(x)(y), hi〉hi for all x, y ∈

V , UnΦ∗ := ΠnUΦ∗ , C′
n := ΠnC′. This equation is (Pn,ψ,γ) from Section 1.3 applied on a0 := 0,

X = Y := UΦ∗ ,Gn(s, h) := C′
n(s, UΦ∗(s))(h).

The mapping

(ψ, γ) ∈ L2
(Hn,‖·‖V )(Ω × [0, T ]) × L2

Hn
(Ω × [0, T ]) 7→

7→ E

T∫
0

(
Lx[t, UΦ∗(t),Φ∗(t)], Zn,ψ,γ(t)

)
dt+ E

(
K′[UΦ∗(T )], Zn,ψ,γ(T )

)
∈ IR

is linear and continuous (by the same arguments as in the infinite dimensional case from
Section 2.7).
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By the Riesz Theorem it follows that there exist in a unique way processes

pn ∈ L2
(Hn,‖·‖V )(Ω × [0, T ]), qn ∈ L2

Hn
(Ω × [0, T ])

such that

E

T∫
0

(
ψ(t), pn(t)

)
dt + E

T∫
0

(
γ(t), qn(t)

)
dt(2.57)

= E

T∫
0

(
Lx[t, UΦ∗(t),Φ∗(t)], Zn,ψ,γ(t)

)
dt+ E

(
K′[UΦ∗(T )], Zn,ψ,γ(T )

)

for all ψ ∈ L2
(Hn,‖·‖V )(Ω × [0, T ]), γ ∈ L2

Hn
(Ω × [0, T ]).

Let Ψ ∈ L2
V ∗(Ω × [0, T ]),Γ ∈ L2

H(Ω × [0, T ]) and set

Ψn :=
n∑
i=1

〈Ψ, hi〉hi, Γn := ΠnΓ.

We have

E

T∫
0

〈Ψ(t), pn(t)〉dt + E

T∫
0

(
Γ(t), qn(t)

)
dt(2.58)

= E

T∫
0

(
Ψn(t), pn(t)

)
dt+ E

T∫
0

(
Γn(t), qn(t)

)
dt

= E

T∫
0

(
∆−1
UΦ∗ (t)Lx[t, UΦ∗(t),Φ∗(t)],∆UΦ∗ (t)Zn,Ψn,Γn(t)

)
dt

+ E
(
∆−1
UΦ∗ (T )K′[UΦ∗(T )],∆UΦ∗ (T )Zn,Ψn,Γn(T )

)
.

From the properties of the solution of the Navier-Stokes equation (see Lemma 1.2.6) and from the
hypothesis on L and K we can deduce that

∆−1
UΦ∗ (t)Lx[t, UΦ∗(t),Φ∗(t)] ∈ L2

H(Ω × [0, T ]), ∆−1
UΦ∗ (T )K′[UΦ∗(T )] ∈ L2

H(Ω).

We have Ψ = lim
n→∞

Ψn in the space L2
V ∗(Ω × [0, T ]) and Γ = lim

n→∞
Γn in the space L2

H(Ω × [0, T ]).
Now we use Lemma 1.3.2 and (2.52) in (2.58) to obtain
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lim
n→∞

{
E

T∫
0

〈Ψ(t), pn(t)〉dt+E
T∫

0

(
Γ(t), qn(t)

)
dt

}

= E

T∫
0

(
Lx[t, UΦ∗(t),Φ∗(t)], ZΨ,Γ(t)

)
dt+ +E

(
K′[UΦ∗(T )], ZΨ,Γ(T )

)

= E

T∫
0

〈Ψ(t), p(t)〉dt + E

T∫
0

(
Γ(t), q(t)

)
dt,

for all Ψ ∈ L2
V ∗(Ω × [0, T ]),Γ ∈ L2

H(Ω × [0, T ]). Hence, for n→ ∞ we have

pn ⇀ p in L2
V (Ω × [0, T ]) and qn ⇀ q in L2

H(Ω × [0, T ]).(2.59)

In (2.57) we take ψ := pn, γ := qn, use the weak convergence from above and Lemma 1.3.2. Then

lim
n→∞

{
E

T∫
0

‖pn(t)‖2dt + E

T∫
0

‖qn(t)‖2dt
}

= E

T∫
0

(
Lx[t, UΦ∗(t),Φ∗(t)], ZJp,q(t)

)
dt(2.60)

+ E
(
K′[UΦ∗(T )], ZJp,q(T )

)
= E

T∫
0

‖p(t)‖2
V dt+ E

T∫
0

‖q(t)‖2dt.

From (2.59) and (2.60) it follows that the following strong convergences hold:

lim
n→∞

pn = p in L2
V (Ω × [0, T ]) and lim

n→∞
qn = q in L2

H(Ω × [0, T ]).(2.61)

Now we derive the equations for
(
pn(t)

)
t∈[0,T ]

and
(
qn(t)

)
t∈[0,T ]

(n ∈ IN) and then by passing

to the limit obtain the equation for
(
p(t)

)
t∈[0,T ]

and
(
q(t)

)
t∈[0,T ]

.

We consider the following matrices:

Ãn :=
(
〈Ahj , hi〉

)
i,j=1,n

, In :=
(
δi,j
)
i,j=1,n

,

B̃n(s) :=
(
〈B′(UnΦ∗(s))(hj), hi〉

)
i,j=1,n

, C̃n(s) :=
(
(C′(s, UΦ∗(s))(hj), hi)

)
i,j=1,n

.

The last two matrices depend on s and ω and are Fs-measurable.
For each natural number n we introduce the n× n matrix processes(

Xn(t)
)
t∈[0,T ]

=
((
Xi,j
n (t)

)
i,j=1,n

)
t∈[0,T ]

,
(
Yn(t)

)
t∈[0,T ]

=
((
Y i,j
n (t)

)
i,j=1,n

)
t∈[0,T ]

as the solutions of the stochastic matrix equations

Xn(t) +
t∫

0

ÃnXn(s)ds = In +
t∫

0

B̃n(s)Xn(s)ds+
t∫

0

C̃n(s)Xn(s)dw(s)(2.62)
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and

Yn(t) −
t∫

0

Yn(s)Ãn(s)ds = In −
t∫

0

Yn(s)B̃n(s)ds+
t∫

0

Yn(s)C̃n(s)C̃n(s)ds−
t∫

0

Yn(s)C̃n(s)dw(s)(2.63)

for all t ∈ [0, T ] and a.e. ω ∈ Ω. To prove the existence and (almost surely) uniqueness of the
solution of (2.62) and (2.63), respectively, we consider the above equations as linear evolution
equations with the unknown variable Xn, respectively Yn. Their coeficients may depend on ω and
s (see B̃n, C̃n). We use the same techniques as in the investigation of equations (PΨ,Γ), (Pn,ψ,γ) in
Section 1.3. For each i, j ∈ {1, . . . , n} the process

(
Y i,j
n (t)

)
t∈[0,T ]

has continuous trajectories in IR.

Using the Ito formula we obtain

Yn(t)Xn(t) = In for all t ∈ [0, T ], a.e. ω ∈ Ω(2.64)

and hence
Xn(t)Yn(t) = In for all t ∈ [0, T ], a.e. ω ∈ Ω.(2.65)

If M :=
(
Mi,j

)
i,j=1,n

is a matrix of real numbers and h ∈ Hn, then we write

Mh :=
n∑

i,j=1

Mi,j(h, hj)hi.

We write M̂ for the transposed matrix of M .

Theorem 2.8.1
The processes

(
p(t)

)
t∈[0,T ]

and
(
q(t)

)
t∈[0,T ]

satisfy the adjoint equation

(K′[UΦ∗(T )] − p(t), v) −
T∫
t

〈Av, p(s)〉ds

= −
T∫
t

〈B(UΦ∗(s), v) + B(v, UΦ∗(s)), p(s)〉ds −
T∫
t

(Lx[s, UΦ∗(s),Φ∗(s)], v)ds

−
T∫
t

(C′(s, UΦ∗(s))(v), q(s))ds +
T∫
t

(q(s), v)dw(s),

for all t ∈ [0, T ], v ∈ V and a.e. ω ∈ Ω. The processes
(
p(t)

)
t∈[0,T ]

and
(
q(t)

)
t∈[0,T ]

are uniquely

characterized by this equation.

Proof. Let ψ ∈ DV (Ω × [0, T ]), γ ∈ DH(Ω × [0, T ]) and we define for each K ∈ IN the stopping
time

T n
K := min{T Y i,j

n
K : 1 ≤ i, j ≤ n}
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and we take
ψK := I[0,T n

K
]ψ, γK := I[0,T n

K
]γ.

We consider the Hn-valued process

WK
n (t) := Yn(t)Zn,ψK ,γK

(t)

where the process
(
Zn,ψK ,γK

(t)
)
t∈[0,T ]

is the solution of (2.56) (with ψK and γK instead of ψ and

γ). Using (2.65) we obtain for all t ∈ [0, T ] and a.e. ω ∈ Ω that

Zn,ψK ,γK
(t) = Xn(t)WK

n (t).(2.66)

Using (2.56), (2.63), and the Ito formula it follows that the process
(
WK
n (t)

)
t∈[0,T ]

satisfies

(WK
n (t), h) =

t∫
0

(Yn(s)ψK(s), h)ds −
t∫

0

(Yn(s)C̃n(s)γK(s), h)ds +
t∫

0

(Yn(s)γK(s), h)dw(s)(2.67)

for all t ∈ [0, T ], h ∈ Hn and a.e. ω ∈ Ω.
We use (2.57) and (2.66) to obtain

E

T∫
0

(
ψK(t), pn(t)

)
dt+ E

T∫
0

(
γK(t), qn(t)

)
dt(2.68)

= E

T∫
0

(
Lx[t, UΦ∗(t),Φ∗(t)], Zn,ψK ,γK

(t)
)
dt+ E

(
K′[UΦ∗(T )], Zn,ψK ,γK

(T )
)

= E

T∫
0

(
X̂n(t)Lnx[t, UΦ∗(t),Φ∗(t)],WK

n (t)
)
dt+ E

(
X̂n(T )K′

n[UΦ∗(T )],WK
n (T )

)
where Lnx(t, x, y) := ΠnLx(t, x, y),K′

n(x) := ΠnK′(x), t ∈ [0, T ], x, y ∈ H. Let us define the Hn-
valued random variable

ξn = X̂n(T )K′
n[UΦ∗(T )] +

T∫
0

X̂n(t)Lnx[t, UΦ∗(t),Φ∗(t)]dt,(2.69)

and the Hn-valued process

ζn(t) = −
t∫

0

X̂n(t)Lnx[t, UΦ∗(t),Φ∗(t)]dt+ E(ξn|Ft)(2.70)

for all t ∈ [0, T ] and a.e. ω ∈ Ω. By the representation theorem of Levy (see [18], Theorem 4.15,
p. 182 and Problem 4.17, p. 184) we have

E(ξn|Ft) = Eξn +
t∫

0

Gn(s)dw(s)(2.71)
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for all t ∈ [0, T ] and a.e. ω ∈ Ω where Gn ∈ L2
Hn

(Ω × [0, T ]). Without loss of generality

we can assume that the process
(
ζn(t)

)
t∈[0,T ]

has continuous trajectories in H. We see that

ζn(T ) = X̂n(T )K′
n[UΦ∗(T )] for a.e. ω ∈ Ω.

By using (2.69), (2.70), and (2.71) we deduce by Ito’s calculus that

E
(
ζn(T ),WK

n (T )
)

= −E
T∫

0

(
X̂n(t)Lnx[t, UΦ∗(t),Φ∗(t)],WK

n (t)
)
dt

+E
T∫

0

{
(ζn(t), Yn(t)ψK(t) − Yn(t)C̃n(t)γK(t)) + (Gn(t), Yn(t)γK(t))

}
dt.

Here we have omitted to write explicitly an intermediate step: To consider stopping times for Gn.
After taking the mathematical expectation in the above relation (with T Gn

M instead of T ) we let
these stopping times to tend to T and use the almost surely continuity of the trajectories of ζn and
WK
n . Then we obtain the above equality.
Hence,

E
(
X̂n(T )K′

n[UΦ∗(T )],WK
n (T )

)
+ E

T∫
0

(
X̂n(t)Lnx[t, UΦ∗(t),Φ∗(t)],WK

n (t)
)
dt

= E

T∫
0

(
Ŷn(t)ζn(t), ψK(t)

)
dt+ E

T∫
0

(
Ŷn(t)Gn(t) − ̂̃Cn(t)Ŷn(t)ζn(t), γK(t)

)
dt.

The processes ψ, γ were arbitrary fixed, and by (2.57) and (2.66) it follows that

I[0,T n
K

](t)pn(t) = I[0,T n
K

](t)Ŷn(t)ζn(t) for P × Λ a.e. (ω, t) ∈ Ω × [0, T ](2.72)

and

I[0,T n
K ](t)qn(t) = I[0,T n

K ](t)
(
Ŷn(t)Gn(t) − ̂̃Cn(t)Ŷn(t)ζn(t)) = I[0,T n

K ](t)
(
Ŷn(t)Gn(t) − ̂̃Cn(t)pn(t))

for P × Λ a.e. (ω, t) ∈ Ω × [0, T ]. Since lim
K→∞

T n
K = T for a.e. ω ∈ Ω (see Proposition B.1) and by

using (2.72) we have

0 = lim
K→∞

E

T n
K∫

0

‖pn(t) − Ŷn(t)ζn(t)‖dt = E

T∫
0

‖pn(t) − Ŷn(t)ζn(t)‖dt.

This implies
pn(t) = Ŷn(t)ζn(t) for P × Λ a.e. (ω, t) ∈ Ω × [0, T ].

Analogously we obtain

qn(t) = Ŷn(t)Gn(t) − ̂̃Cn(t)pn(t)) for P × Λ a.e. (ω, t) ∈ Ω × [0, T ].
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We can identify
(
pn(t)

)
t∈[0,T ]

with a process which has continuous trajectories in H. Then for

all t ∈ [0, T ] we have

pn(t) = Ŷn(t)ζn(t) for all t ∈ [0, T ] and pn(T ) = K′
n[UΦ∗(T )] for a.e ω ∈ Ω.

By using the equations for
(
Ŷn(t)

)
t∈[0,T ]

and
(
ζn(t)

)
t∈[0,T ]

it follows by the Ito calculus that(
pn(t)

)
t∈[0,T ]

satisfies for all t ∈ [0, T ] and a.e. ω ∈ Ω the n-dimensional evolution equation

pn(T ) − pn(t) −
T∫
t

̂̃Anpn(s)ds = −
T∫
t

{̂̃Bn(s)pn(s) + Lnx[s, UΦ∗(s),Φ∗(s)]
}
ds(2.73)

−
T∫
t

̂̃Cn(s)qn(s)ds+
T∫
t

qn(s)dw(s)

with pn(T ) = K′
n[UΦ∗(T )]. Equation (2.73) can be written equivalently as

(pn(T ) − pn(t), v) −
T∫
t

〈Av, pn(s)〉ds

= −
T∫
t

〈B(UnΦ∗(s), v) + B(v, UnΦ∗(s)), pn(s)〉ds −
T∫
t

(Lnx [s, UΦ∗(s),Φ∗(s)], v)ds

−
T∫
t

(
C′(s, UΦ∗(s))(v), qn(s)

)
ds+

T∫
t

(qn(s), v)dw(s),

for all t ∈ [0, T ], v ∈ Hn and a.e. ω ∈ Ω. In this equation we take the limit for n → ∞, use (2.61),
and obtain

(K′[UΦ∗(T )] − p(t), v) −
T∫
t

〈Av, p(s)〉ds(2.74)

= −
T∫
t

〈B(UΦ∗(s), v) + B(v, UΦ∗(s)), p(s)〉ds −
T∫
t

(Lx[s, UΦ∗(s),Φ∗(s)], h)ds

−
T∫
t

(
C′(s, UΦ∗(s))(v), q(s)

)
ds +

T∫
t

(q(s), v)dw(s),

for P × Λ a.e. (ω, t) ∈ Ω × [0, T ] and all v ∈ V . We can identify
(
p(t)

)
t∈[0,T ]

with a process which

has continuous trajectories in H and satisfies (2.74) for all t ∈ [0, T ] and a.e. ω ∈ Ω.
In order to show that (2.74) characterize in a unique way the adjoint processes

(
p(t)

)
t∈[0,T ]

and
(
q(t)

)
t∈[0,T ]

, let us take any processes
(
p(t)

)
t∈[0,T ]

and
(
q(t)

)
t∈[0,T ]

which satisfy (2.74). Let
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Ψ ∈ L2
V ∗(Ω × [0, T ]), Γ ∈ L2

H(Ω × [0, T ]) and let ZΨ,Γ be the solution of (2.51). Then we have

E
(
p(T ), ZΨ,Γ(T )

)
= E

T∫
0

{
〈AZΨ,Γ(t), p(t)〉−〈B′(UΦ∗(t))(ZΨ,Γ(t)), p(t)〉

−
(
Lx[t, UΦ∗(t),Φ∗(t)], ZΨ,Γ(t)

)
−
(
C′(t, UΦ∗(t))(ZΨ,Γ(t)), q(t)

)
− 〈AZΨ,Γ(t), p(t)〉

+ 〈B′(UΦ∗(t))(ZΨ,Γ(t)), p(t)〉 + 〈Ψ(t), p(t)〉 +
(
C′(t, UΦ∗(t))(ZΨ,Γ(t)), q(t)

)
+ (Γ(t), q(t))

}
dt.

Hence for all Ψ ∈ L2
V ∗(Ω × [0, T ]),Γ ∈ L2

H(Ω × [0, T ]) we get

E
(
K′[UΦ∗(T )], ZΨ,Γ(T )

)
+ E

T∫
0

(
Lx[t, UΦ∗(t),Φ∗(t)], ZΨ,Γ(t)

)
dt

= E

T∫
0

〈Ψ(t), p(t)〉dt + E

T∫
0

(Γ(t), q(t))dt.

Therefore,
(
p(t)

)
t∈[0,T ]

and
(
q(t)

)
t∈[0,T ]

must be the processes that are uniquely defined

in (2.52).



Chapter 3

About the Dynamic Programming
Equation

In Section 3.1 of this chapter we prove that the solution of the stochastic Navier-Stokes equation
is a Markov process (see Theorem 3.1.1). In Section 3.2 we illustrate the dynamic programming
approach (called also Bellman’s principle) and we give a formal derivation of Bellman’s equation.
Bellman’s principle turns the stochastic control problem into a deterministic control problem of
a nonlinear partial differential equation of second order (see equation (3.11)) involving the in-
finitesimal generator. To round off the results of Chapter 2 we give a sufficient condition for an
optimal control (Theorem 3.2.3 and Theorem 3.2.4). This condition requires a suitably behaved
solution of the Bellman equation and an admissible control satisfying a certain equation. In this
section we consider the finite dimensional stochastic Navier-Stokes equation, i.e., the equations
(Pn) used in the Galerkin method in Section 1.2. The approach would be very complicate for the
infinite dimensional case, because in this case it is difficult to obtain the infinitesimal generator.
M.J. Vishik and A.V. Fursikov investigated in Chapter 11 of [35] the inverse Kolmogorov equations,
which give the inifinitesimal generator of the process being solution of the considered equation, only
for the case of n = 2 for (0.1). We take into account ideas and results on optimal control of Markov
diffusion processes from the book of W.H. Fleming and R.W. Rishel [9] and adapt them for our
problem.

3.1 The Markov property

An important property used in the dynamic programming approach is the Markov property of the
solution of the Navier-Stokes equation. We will prove this property in this section.

Let us introduce the following σ-algebras

σ[U(s)] := σ{U(s)}, σ[U(r):r≤s] := σ{U(r) : r ≤ s}

and the event
σ[U(s)=y] := {ω : U(s) = y}.
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We define for the solution U := UΦ of the Navier-Stokes equation (2.1), where Φ ∈ U , the
transition function

P̄ (s, x, t, A) := P (U(t) ∈ A|σ[U(s)=x])

with s, t ∈ [0, T ], s < t, x ∈ H,A ∈ B(H). In the following theorem we prove that the solution of
the Navier-Stokes equation is a Markov process. This means that the state U(s) at time s
must contain all probabilistic information relevant to the evolution of the process for times t > s.

Theorem 3.1.1

(i) For fixed s, t ∈ [0, T ], s < t,A ∈ B(H) the mapping

y ∈ H 7→ P̄ (s, y, t, A) ∈ IR

is measurable.

(ii) The following equalities hold

P (U(t) ∈ A|Fs) = P (U(t) ∈ A|σ[U(s)])

and
P
(
U(t) ∈ A

∣∣∣σ[U(r):r≤s]
)

= P
(
U(t) ∈ A

∣∣∣σ[U(s)]

)
for all s, t ∈ [0, T ], s < t, y ∈ H,A ∈ B(H).

Proof. (i) Let s, t ∈ [0, T ], s < t, y ∈ H. We denote by
(
Ũ(t, s, y)

)
t∈[s,T ]

the solution of the

Navier-Stokes equation starting in s with the initial value y, i.e. Ũ(s, s, y) = y for a.e. ω ∈ Ω.
Let A ∈ B(H). Without loss of generality we can consider the set A to be closed. Let (an) be

a sequence of continuous and uniformly bounded functions an : H → IR, n ∈ IN such that

lim
n→∞

‖an(y) − IA(y)‖ = 0 for all y ∈ H.(3.1)

By the uniqueness of the solution of the Navier-Stokes equation and from the definition of the
transition function we have

P̄ (s, y, t, A) = E
(
IA(U(t))

∣∣∣σ[U(s)=y]

)
= E

(
IA(Ũ (t, s, y))

)
.

We consider an arbitrary sequence (yn) in H such that lim
n→∞

‖yn − y‖ = 0. Using the same
method as in the proof of Lemma 2.2.1 we can prove that

lim
n→∞

E‖Ũ (t, s, yn) − Ũ(t, s, y)‖2 = 0.(3.2)

Therefore
(
Ũ(t, s, yn)

)
converges in probability to Ũ(t, s, y). Using (3.2) and the Lebesgue Theorem

it follows that for all k ∈ IN

lim
n→∞

Eak
(
Ũ(t, s, yn)

)
= Eak

(
Ũ(t, s, y)

)
.
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We conclude that for each k ∈ IN the mapping

y ∈ H 7→ Eak
(
Ũ(t, s, y)

)
∈ IR

is continuous. Hence it is measurable. By the Lebesgue Theorem and (3.1) we deduce that for all
y ∈ H

lim
k→∞

Eak
(
Ũ(t, s, y)

)
= EIA

(
Ũ(t, s, y)

)
.

Consequently, P̄ (s, ·, t, A) = EIA
(
Ũ(t, s, ·)

)
is measurable, because it is the pointwise limit of

measurable functions.

(ii) First we prove that for each fixed s, t ∈ [0, T ], s < t, y ∈ H the random variable Ũ(t, s, y)
(considered as a H-valued random variable) is independent of Fs. By relation (1.12) from Section
1.2 we have

lim
M→∞

‖ŨMn (t, s, y) − Ũn(t, s, y)‖ = 0 for each n ∈ IN and a.e. ω ∈ Ω,(3.3)

and by Theorem 1.2.7 it follows that there exists a subsequence (n′) of (n) such that

lim
n′→∞

‖Ũn′(t, s, y) − Ũ(t, s, y)‖ = 0 for a.e. ω ∈ Ω(3.4)

where
(
ŨMn (t, s, y)

)
t∈[s,T ]

and
(
Ũn(t, s, y)

)
t∈[s,T ]

are the solutions of (PMn ) and (Pn), respectively,

if we start in s with the initial value y (see Section 1.2). Since for fixed n,M the random variable
ŨMn (t, s, y) is approximated by Picard-iteration and each Picard-approximation is independent of
Fs (as a H-valued random variable), it follows by Proposition B.4 that Ũn(t, s, y) is independent
of Fs. Using (3.3), (3.4), and Proposition B.4 we conclude that Ũ(t, s, y) is independent of Fs.

Let A ∈ B(H). Now we apply Proposition B.5 for F̂ := Fs, f(y, ω) := IA
(
Ũ(t, s, y)

)
,

ξ(ω) := U(s). Hence

E

(
IA
(
Ũ(t, s, U(s))

)∣∣∣Fs) = E

(
IA
(
Ũ(t, s, U(s))

)∣∣∣σ[U(s)]

)
.(3.5)

Since the solution of the Navier-Stokes equation is (almost surely) unique it follows that

Ũ(t, s, U(s)) = U(t) for all t ∈ [s, T ] and a.e. ω ∈ Ω.

Then relation (3.5) becomes

E

(
IA
(
U(t)

)∣∣∣Fs) = E

(
IA
(
U(t)

)∣∣∣σ[U(s)]

)
.

Consequently,
P
(
U(t) ∈ A

∣∣∣Fs) = P
(
U(t) ∈ A

∣∣∣σ[U(s)]

)
.(3.6)

We know
σ[U(s)] ⊆ σ[U(r):r≤s] ⊆ Fs.
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Taking into account the properties of the conditional expectation and (3.6) we deduce that

P
(
U(t) ∈ A

∣∣∣σ[U(r):r≤s]
)

= E

(
E
(
U(t) ∈ A

∣∣∣Fs)∣∣∣σ[U(r):r≤s]

)
= E

(
E
(
U(t) ∈ A

∣∣∣σ[U(s)]

)∣∣∣σ[U(r):r≤s]

)
= P

(
U(t) ∈ A

∣∣∣σ[U(s)]

)
.

Corollary 3.1.2 ([11], Chapter 3, Section 9, pp. 59)

(i) For fixed s, t ∈ [0, T ], s < t, y ∈ H the mapping

A ∈ B(H) 7→ P̄ (s, y, t, ·) ∈ IR

is a probability measure.

(ii) The Chapman-Kolmogorov equation

P̄ (s, y, t, A) =
∫
H
P̄ (r, x, t, A)P̄ (s, y, r, dx)

holds for any r, s, t ∈ [0, T ], s < r < t, y ∈ H,A ∈ B(H).

Remark 3.1.3
1) We have the autonomous version of the stochastic Navier-Stokes equation if for t ∈ [0, T ],
h ∈ H we have C(t, h) = C(h) and Φ(t, h) = Φ(h) for Φ ∈ U . In this case

(
UΦ(t)

)
t∈[0,T ]

is a

homogeneous Markov process, i.e., we have

P̄ (0, y, t− s,A) = P̄ (s, y, t, A)(3.7)

for all s, t ∈ [0, T ], s < t, y ∈ H,A ∈ B(H).

We prove the above property for Φ ∈ Ua, where Ua is the set of all autonomous feedback
controls. Let s, t ∈ [0, T ], s < t, y ∈ H. The solution UΦ of the Navier-Stokes equation, which
starts in s with the initial value y satisfies

(UΦ(t), v) +
t∫
s

〈AUΦ(r), v〉dr = (y, v) +
t∫
s

〈B(UΦ(r), UΦ(r)), v〉dr

+
t∫
s

(Φ(UΦ(r)), v)dr +
t∫
s

(C(UΦ(r)), v)dw(r)

for all v ∈ V and a.e. ω ∈ Ω. We take Ũ(r) = UΦ(s+ r), w̃(r) := w(s + r) − w(s) for r ∈ [0, t− s].
Then for Ũ(t− s) we have

(Ũ (t− s), v) +
t−s∫
0

〈AŨ(r), v〉dr = (y, v) +
t−s∫
0

〈B(Ũ (r), Ũ(r)), v〉dr

+
t−s∫
0

(Φ(Ũ(r)), v)dr +
t−s∫
0

(C(Ũ (r)), v)dw̃(r)
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for all v ∈ V and a.e. ω ∈ Ω. Since
(
w̃(r)

)
r∈[0,t−s]

and
(
w(r)

)
r∈[s,t]

have the same distribution and

because of the uniqueness of the solution of the Navier-Stokes equation, it follows that Ũ(t − s)
and UΦ(t) have the same distribution. Hence (3.7) holds.
2) The Galerkin approximations (the solutions of the equations (Pn) from Section 1.2) of the
Navier-Stokes equation are also Markov processes.

3.2 Bellman’s principle and Bellman’s equation for the

finite dimensional stochastic Navier-Stokes equation

Before we illustrate the dynamic programming approach (also called Bellman’s principle) for our
control problem, we need the definition of the infinitesimal generator associated to a process. This
infinitesimal generator is a partial differential operator of second order (see Lemma 3.2.2) and it
occurs in Bellman’s equation.

Definition 3.2.1

Let
(
X(t)

)
t∈[0,T ]

be a process in the space L2
H(Ω×[0, T ]) and let t ∈ [0, T ]. The function F : H → IR

is said to belong to the domain DAX(t) of the infinitesimal generator AX of
(
X(t)

)
t∈[0,T ]

if the

limit
AX(t)F (y) := lim

θ↘0

1
θ

[
E
(
F (X(t+ θ))

∣∣∣σ[X(t)=y]

)
− F (y)

]
,(3.8)

exists and is finite for all y ∈ H.

We define C2(H) to be the set of all mappings F : H → IR which are twice continuously Fréchet
differentiable in each point of H and which satisfy the conditions:
(i) F,F ′, F ′′ are locally bounded;
(ii) for each h ∈ H

‖F ′(h)‖ ≤ cF (1 + ‖h‖),
∣∣∣(F ′′(h)h1, h2

)∣∣∣ ≤ cF ‖h1‖‖h2‖(1 + ‖h‖),

where cF is a positive constant.

We define C1,2([0, T ] ×H) to be the set of all mappings G : [0, T ] ×H → IR such that
(i) for each fixed t ∈ [0, T ] we have G(t, ·) ∈ C2(H);
(ii) there exists the partial derivative Gt which is assumed to be continuous on [0, T ] and

|Gt(t, x)| ≤ cG‖x‖

for all t ∈ [0, T ] and x ∈ H.
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In this section we consider the n-dimensional stochastic Navier-Stokes equation

(Pn) (Un,Φ(t), v) +
t∫

0

(AnUn,Φ(s), v)ds = (x0, v) +
t∫

0

(Bn(Un,Φ(s), Un,Φ(s)), v)ds

+
t∫

0

(Φ(s, Un,Φ(s)), v)ds +
t∫

0

(Cn(s, Un,Φ(s)), v)dw(s),

for all v ∈ Hn, t ∈ [0, T ] and a.e. ω ∈ Ω, controlled by feedback controls Φ ∈ Un (we proceed
analogously in the case Φ ∈ U bn), where the set Un (respectively U bn) is defined in Section 2.4. We
denote by

Et,y(·) := E
(
·
∣∣∣σ[Un,Φ(t)=y]

)
where t ∈ [0, T ], y ∈ H.

We assume that the mappings C(·, x),L(·, x, y) are continuous on [0, T ] for each x, y ∈ H.
The formula of the infinitesimal generator for the process

(
Un,Φ(t)

)
t∈[0,T ]

is given in the following

lemma.

Lemma 3.2.2
The infinitesimal generator of

(
Un,Φ(t)

)
t∈[0,T ]

satisfies

AUn,Φ
(s)G(s, y) = Gt(s, y) +

(
Gx(s, y),−Any + B(y, y) + Φ(s, y)

)
+

1
2

(
Gxx(s, y)Cn(s, y), Cn(s, y)

)
for all s ∈ [0, T ], y ∈ Hn, G ∈ C1,2([0, T ] ×Hn),Φ ∈ Un.
In the autonomous version of problem (Pn) the infinitesimal generator of

(
Un,Φ(t)

)
t∈[0,T ]

satisfies

AUn,Φ
F (y) =

(
Fx(y),−Any + B(y, y) + Φ(y)

)
+

1
2

(
Fxx(y)Cn(y), Cn(y)

)
for all y ∈ Hn, F ∈ C2(Hn),Φ ∈ Uan.

Proof. Let G ∈ C1,2([0, T ] ×Hn). We write Φ(r) instead of Φ(r, Un,Φ(r)). By the Ito formula it
follows that

G(s+ h,Un,Φ(s+ h)) −G(s, Un,Φ(s))

=
s+h∫
s

Gt(r, Un,Φ(r)) +
(
Gx(r, Un,Φ(r)),−AnUn,Φ(r) + Bn(Un,Φ(r), Un,Φ(r)) + Φ(r)

)
dr

+
1
2

s+h∫
s

(
Gxx(r, Un,Φ(r))Cn(r, Un,Φ(r)), Cn(r, Un,Φ(r))

)
dr

+
s+h∫
s

(
Gx(r, Un,Φ(r)), Cn(r, Un,Φ(r))

)
dw(r),
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for each h, s ∈ [0, T ] with s + h ≤ T . In the above relation we take the conditional expectation
Es,y. We obtain

1
h

[
Es,y

(
G(s+ h,Un,Φ(s+ h))

)
−G(s, y)

]
= Es,y

{
1
h

s+h∫
s

Gt(r, Un,Φ(r)) +
(
Gx(r, Un,Φ(r)),−AnUn,Φ(r) + Bn(Un,Φ(r), Un,Φ(r)) + Φ(r)

)
dr

}

+
1
2
Es,y

{
1
h

s+h∫
s

(
Gxx(r, Un,Φ(r))Cn(r, Un,Φ(r)), Cn(r, Un,Φ(r))

)
dr

}
.

We take h ↘ 0, use the properties of the process
(
Un,Φ(t)

)
t∈[0,T ]

(see Theorem 1.2.1 and Lemma

1.2.3) and those of G,Φ, Cn. Then, for each t ∈ [0, T ], y ∈ Hn we have

AUn,Φ
(s)G(s, y) = Gt(s, y) +

(
Gx(s, y),−Any + B(y, y) + Φ(s, y)

)
+

1
2

(
Gxx(s, y)Cn(s, y), Cn(s, y)

)
.

We proceed similarly in the autonomous case.

We consider the cost functional

J (s, y,Φ) := Es,y

{ T∫
s

L[r, Un,Φ(r),Φ(r, Un,Φ(r))]dr + K[Un,Φ(T )]
}

where s ∈ [0, T ], y ∈ Hn and the feedback control Φ ∈ Un.

To illustrate the dynamic programming approach we give a formal derivation of Bellman’s
equation, our arguments are of heuristic nature. Bellman’s principle turns the stochastic control
problem (Pn) into a problem about a nonlinear differential equation of second order (see equation
(3.11)).

In dynamic programming the optimal expected system performance is considered as a function
of the initial data

W (s, y) = inf
Φ∈Un

J (s, y,Φ).

If W ∈ C1,2([0, T ] ×Hn), then by using (Pn), the Ito formula, and Lemma 3.2.2, it follows that

Es,yW (t, Un,Φ(t)) −W (s, y) = Es,y

t∫
s

(
Wt(r, Un,Φ(r)) + AUn,Φ

(r)W (r, Un,Φ(r))
)
dr.(3.9)

Suppose that the controller uses Φ for times s ≤ r ≤ t and uses an optimal control Φ∗ after time
t. His expectet performance cannot be less than W (s, y). Thus for all y ∈ Hn let

Φ̃(r, y) =

{
Φ(r, y) for s ≤ r ≤ t

Φ∗(r, y) for t < r ≤ T.
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By the Chapman-Kolmogorov equation (see Corollary 3.1.2) and the properties of the conditional
expectation we have

J (s, y, Φ̃) = Es,y

t∫
s

L[r, Un,Φ(r),Φ(r, Un,Φ(r))]dr + Es,yJ (t, Un,Φ∗(t),Φ∗).

Because Φ∗ ∈ Un is an optimal control, then for all t ∈ [0, T ], y ∈ Hn we have

W (t, Un,Φ∗(t)) = J (t, Un,Φ∗(t),Φ∗), W (s, y) ≤ J (s, y,Φ)

and

W (s, y) ≤ Es,y

t∫
s

L[r, Un,Φ(r),Φ(r, Un,Φ(r))]dr + Es,yW (t, Un,Φ∗(t))(3.10)

In (3.10) we have equality if an optimal control Φ := Φ∗ is used during [s, t]. By (3.9) and (3.10)
we obtain

0 ≤ Es,y

t∫
s

{
L[r, Un,Φ(r),Φ(r, Un,Φ(r))] +Wt(r, Un,Φ(r)) + AUn,Φ

(r)W (r, Un,Φ(r))
}
dr.

In the above inequality we divide by t−s, take t↘ s, use the continuity properties of
(
Un,Φ(t)

)
t∈[0,T ]

(see Theorem 1.2.1 and Lemma 1.2.3) and those of W,AUn,Φ
,L. Thus

0 ≤ L[s, y,Φ(s, y)] +Wt(s, y) + AUn,Φ
(s)W (s, y).

Equality holds above, if Φ = Φ∗. For W we have derived formally the continuous-time dy-
namic programming equation of optimal stochastic control theory, also called Bellman’s
equation

0 = Wt(s, y) + min
Φ∈Un

{
L[s, y,Φ(s, y)] + AUn,Φ

(s)W (s, y)
}

s ∈ [0, T ], y ∈ Hn(3.11)

with the boundary condition
W (T, y) = K(y), y ∈ Hn.

The main result of this section is a sufficient condition for a minimum (Theorem 3.2.3 and for
the autonomous case Theorem 3.2.4). The sufficient condition requires a suitably behaved solution
W of the Bellman equation (3.11) and an admissible control Φ∗ satisfying (3.14). Such a result is
called verification theorem.

Theorem 3.2.3
Let W be the solution of Bellman’s equation

0 = Wt(s, y) + inf
Φ∈Un

{
L[s, y,Φ(s, y)] + AUn,Φ

(s)W (s, y)
}

(3.12)

for all (s, y) ∈ [0, T ] ×Hn, satisfying the boundary condition

W (T,Un,Φ(T )) = K(Un,Φ(T )) for all Φ ∈ U .(3.13)

If W ∈ C1,2([0, T ] ×Hn), then:
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(i) W (s, y) ≤ J (s, y,Φ) for any Φ ∈ Un, s ∈ [0, T ], y ∈ Hn.

(ii) If Φ∗ ∈ Un is a feedback control such that

L[s, y,Φ∗(s, y)] + AUn,Φ∗ (s)W (s, y) = min
Φ∈Un

{
L[s, y,Φ(s, y)] + AUn,Φ

(s)W (s, y)
}

(3.14)

for all s ∈ [0, T ] and y ∈ Hn, then W (s, y) = J (s, y,Φ∗) for all s ∈ [0, T ], y ∈ Hn. Thus
Φ∗ is an optimal feedback control.

Proof. (i) Let Φ ∈ Un, s ∈ [0, T ], y ∈ Hn. From (3.12) it follows that

0 ≤Wt(r, Un,Φ(r)) + L[r, Un,Φ(r),Φ(r, Un,Φ(r))] + AUn,Φ
(r)W (r, Un,Φ(r)), r ∈ [0, T ].

We integrate from s to T , use (3.9), take the conditional expectation Es,y and have

W (s, y) ≤ Es,yW (T,Un,Φ(T )) +Es,y

T∫
s

L[r, Un,Φ(r),Φ(r, Un,Φ(r))]dr.

Now we use the boundary condition (3.13) and hence

W (s, y) ≤ J (s, y,Φ).

(ii) We use the same arguments as above. Instead of Φ we take Φ∗, and instead of ≤ we
take =.

Let us state a corresponding verification theorem for the autonomous version of the problem,
formulated at the end of Section 3.1. The cost functional is given by

J (y,Φ) = Ey

{ T∫
0

L[Un,Φ(r),Φ(Un,Φ(r))]dr + K[Un,Φ(T )]
}
,

with y ∈ Hn,Φ ∈ Uan (see Remark 3.1.3) and Ey(·) = E
(
·|σ[Un,Φ(0)=y]

)
. The mapping L that occurs

in the expression of the cost functional does not depend on r ∈ [0, T ] and satisfies the conditions
(H1) and (H2) from Section 2.1.

Analogously to Theorem 3.2.3 we can prove the following verification theorem.

Theorem 3.2.4
Let W be the solution of Bellman’s equation

0 = inf
Φ∈Ua

n

{
L[y,Φ(y)] + AUn,Φ

W (y)
}

for all y ∈ Hn

with the boundary condition

W (Un,Φ(T )) = K(Un,Φ(T )) for all Φ ∈ U .

If W ∈ C2(Hn), then:
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(i) W (y) ≤ J (y,Φ) for any Φ ∈ Uan and any initial data y ∈ Hn.

(ii) If Φ∗ ∈ Uan is a feedback control such that

L[y,Φ∗(y)] + AUn,Φ∗W (y) = min
Φ∈Ua

n

{
L[y,Φ(y)] + AUn,Φ

W (y)
}

for all y ∈ Hn,

then W (y) = J (y,Φ∗) for all y ∈ Hn. Thus Φ∗ is an optimal feedback control.



Appendix A

Basic Convergence Results

For the convenience of the reader we recall some basic convergence results.

Proposition A.1 ([36], Proposition 10.13, p. 480).
Let (xn) be a sequence in a Banach space S. Then the following assertions hold:

(i) If S is reflexive and (xn) is bounded, then (xn) has a weakly convergent subsequence. If, in
addition, every weakly convergent subsequence of (xn) has the same limit x ∈ S, then (xn)
converges weakly to x.

(ii) If every subsequence of (xn) has a subsequence which converges strongly to the same limit
x ∈ S, then xn → x.

Proposition A.2 ([37], Proposition 21.27, p.261).
Let S1 and S2 be Banach spaces and let L : S1 → S2 be a continuous linear operator. If (xn) is a
sequence in S1 such that xn ⇀ x (where x ∈ S1), then L(xn) ⇀ L(x).

Proposition A.3
If S is a Banach space and if (xn) is a sequence from L2

S(Ω × [0, T ]) which converges weakly to
x ∈ L2

S(Ω × [0, T ]), then for n→ ∞ the following assertions are true:

(i)
t∫

0

xn(s)dw(s) ⇀
t∫

0

x(s)dw(s) and

t∫
0

xn(s)ds ⇀
t∫

0

x(s)ds in L2
S(Ω × [0, T ]);

(ii)
T∫

0

xn(s)dw(s) ⇀
T∫

0

x(s)dw(s) and

T∫
0

xn(s)ds ⇀
T∫

0

x(s)ds in L2
S(Ω).

Proof. We apply Proposition A.2 on S1 = S2 := L2
S(Ω×[0, T ]), L : L2

S(Ω×[0, T ]) → L2
S(Ω×[0, T ]),

where

L(x) :=
t∫

0

x(s)dw(s).
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Obviously, is L a linear mapping. By the properties of the stochastic integral we have

‖L(x)‖2
L2

S(Ω×[0,T ]) = E

T∫
0

∥∥∥ t∫
0

x(s)dw(s)
∥∥∥2

S
dt ≤ TE sup

t∈[0,T ]

∥∥∥ t∫
0

x(s)dw(s)
∥∥∥2

S

≤ 4TE
T∫

0

‖x(t)‖2
Sdt = 4T‖x‖2

L2
S(Ω×[0,T ]).

Hence L is continuous and we can apply Proposition A.2. The other convergences are proved
analogously.



Appendix B

Stopping Times

Let
(
Q(t)

)
t∈[0,T ]

be a V -valued process with

T∫
0

‖Q(s)‖2
V ds <∞ and sup

t∈[0,T ]
‖Q(t)‖2 <∞

for a.e. ω ∈ Ω. For each M ∈ IN we introduce the following stopping times

T̃ Q
M =


T , if sup

t∈[0,T ]
‖Q(t)‖2 < M

inf
{
t ∈ [0, T ] : ‖Q(t)‖2 ≥M

}
, otherwise,

T̂ Q
M =


T , if

T∫
0

‖Q(s)‖2
V ds < M

inf
{
t ∈ [0, T ] :

t∫
0

‖Q(s)‖2
V ds ≥M

}
, otherwise.

We define
T Q
M := min{T̃ Q

M , T̂
Q
M }.

We see that for all t ∈ [0, T ] and a.e. ω ∈ Ω we have

‖Q(t ∧ T Q
M )‖2 ≤M,

t∧T Q
M∫

0

‖Q(s)‖2
V ds ≤M.
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Proposition B.1
The following convergences hold:

lim
M→∞

P (T Q
M < T ) = 0

and
lim
M→∞

T Q
M = T for a.e. ω ∈ Ω.

Proof. Using some elementary inequalities we obtain

lim
M→∞

P (T Q
M < T ) ≤ lim

M→∞
P (T̃ Q

M < T ) + lim
M→∞

P (T̂ Q
M < T )

≤ lim
M→∞

P
(

sup
t∈[0,T ]

‖Q(t)‖2 ≥M
)

+ lim
M→∞

P
( T∫

0

‖Q(s)‖2
V ds

)
≥M

)

≤ P
( ∞⋂
M=1

{
sup
t∈[0,T ]

‖Q(t)‖2 ≥M
})

+ P
( ∞⋂
M=1

{ T∫
0

‖Q(s)‖2
V ≥M

})
= 0.

The sequence
(
T − T Q

M

)
is monotone decreasing (for a.e. ω ∈ Ω). We have proved above that it

converges in probability to zero. Therefore it converges to zero for almost every ω ∈ Ω.

Proposition B.2
We assume that the following assumptions are fulfilled:
(1) k1, k2 > 0 are real numbers;
(2) a0 is a H-valued F0-measurable random variable with E‖a0‖4 <∞;
(3) F1 ∈ L1

IR(Ω × [0, T ]), F2 ∈ L2
H(Ω × [0, T ]).

(4) F3 : [0, T ]×H → H is a mapping such that for all t ∈ [0, T ], x ∈ H we have ‖F3(t, x)‖ ≤ kF3‖x‖
with kF3 a positive constant and F3(·, x) ∈ L2

H [0, T ] for all x ∈ H;

(5)
(
Q(t)

)
t∈[0,T ]

is a V -valued process with

T∫
0

‖Q(s)‖2
V ds <∞ and sup

t∈[0,T ]
‖Q(t)‖2 <∞ for a.e. ω ∈ Ω,

satisfying the inequality

‖Q(t)‖2 + k1

t∫
0

‖Q(s)‖2
V ds ≤ ‖a0‖2 + k2

t∫
0

‖Q(s)‖2ds

+
t∫

0

|F1(s)|ds+
t∫

0

(F2(s) + F3(s,Q(s)), Q(s))dw(s)



APPENDIX B. STOPPING TIMES 97

for all t ∈ [0, T ] and a.e. ω ∈ Ω. Then there exists a positive constant c (depending on k1, k2, kF3 , T )
such that

E sup
t∈[0,T ]

‖Q(t)‖2 + E

T∫
0

‖Q(s)‖2
V ds ≤ c

[
E‖a0‖2 + E

T∫
0

|F1(s)|ds+ E

T∫
0

‖F2(s)‖2ds
]

(B.1)

and if E
T∫

0

|F1(s)|2ds <∞, E

T∫
0

‖F2(s)‖4ds <∞ then

E sup
t∈[0,T ]

‖Q(t)‖4 + E
( T∫

0

‖Q(s)‖2
V ds

)2
≤ c

[
E‖a0‖4 + E

T∫
0

|F1(s)|2ds+ E

T∫
0

‖F2(s)‖4ds
]
.(B.2)

Proof. We consider the stopping times TM := T Q
M , M ∈ IN. Using (5) it follows that for all

t ∈ [0, T ]

sup
s∈[0,t∧TM ]

‖Q(s)‖2 + k1

t∧TM∫
0

‖Q(s)‖2
V ds ≤ 2‖a0‖2 + 2k2

t∧TM∫
0

‖Q(s)‖2ds

+ 2
t∧TM∫
0

|F1(s)|ds + 2 sup
s∈[0,t∧TM ]

∣∣∣ s∫
0

(F2(r) + F3(r,Q(r)), Q(r))dw(r)
∣∣∣.

and

sup
s∈[0,t∧TM ]

‖Q(s)‖4 + k2
1

( t∧TM∫
0

‖Q(s)‖2
V ds

)2
≤ 16‖a0‖4 + 16k2

2

( t∧TM∫
0

‖Q(s)‖2ds
)2

+ 16
( t∧TM∫

0

|F1(s)|ds
)2

+ 16 sup
s∈[0,t∧TM ]

∣∣∣ s∫
0

(F2(r) + F3(r,Q(r)), Q(r))dw(r)
∣∣∣2.

Now we use the Burkholder inequality (see [18], p. 166) and the Schwarz inequality to obtain

E sup
s∈[0,t∧TM ]

‖Q(s)‖2 + k1E

t∧TM∫
0

‖Q(s)‖2
V ds ≤ 2E‖a0‖2 + 2k2E

t∧TM∫
0

‖Q(s)‖2ds

+ 2E
t∧TM∫
0

|F1(s)|ds +
1
2
E sup
s∈[0,t∧TM ]

‖Q(s)‖2 + c1E

t∧TM∫
0

‖F2(s) + F3(s,Q(s))‖2ds

and

E sup
s∈[0,t∧TM ]

‖Q(s)‖4 + k2
1E
( t∧TM∫

0

‖Q(s)‖2
V ds

)2
≤ 16E‖a0‖4 + 16k2

2TE

t∧TM∫
0

‖Q(s)‖4ds

+ 16TE
t∧TM∫
0

|F1(s)|2ds +
1
2
E sup
s∈[0,t∧TM ]

‖Q(s)‖4 + c2E

t∧TM∫
0

‖F2(s) + F3(s,Q(s))‖4ds
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for all t ∈ [0, T ], where c1, c2 are positive constants. Consequently, for all t ∈ [0, T ], we have

E sup
s∈[0,t]

I[0,TM ](s)‖Q(s)‖2 + 2k1E

t∫
0

I[0,TM ](s)‖Q(s)‖2
V ds ≤ 4E‖a0‖2

+ 4(k2 + c1kF3)E
t∫

0

sup
r∈[0,s]

I[0,TM ](r)‖Q(r)‖2dr + 4E
T∫

0

|F1(s)|ds + 4c1E
T∫

0

‖F2(s)‖2ds

and

E sup
s∈[0,t]

I[0,TM ](s)‖Q(s)‖4 + 2k2
1E
( t∫

0

I[0,TM ](s)‖Q(s)‖2
V ds

)2
≤ 32E‖a0‖4

+ (32k2
2T + 16c2kF3)E

t∫
0

sup
r∈[0,s]

I[0,TM ](r)‖Q(r)‖4dr + 32TE
T∫

0

|F1(s)|2ds+ 16c2E
T∫

0

‖F2(s)‖4ds.

By Gronwall’s Lemma it follows that there exists a positive constant c∗ (independent of M) such
that

E sup
s∈[0,T∧TM ]

‖Q(s)‖2 + 2k1E

T∧TM∫
0

‖Q(s)‖2
V ds ≤ c∗

[
E‖a0‖2 + E

T∫
0

|F1(s)|ds+ E

T∫
0

‖F2(s)‖2ds
]

and

E sup
s∈[0,T∧TM ]

‖Q(s)‖4 + 2k2
1E
(
E

T∧TM∫
0

‖Q(s)‖2
V ds

)2
≤ c∗

[
E‖a0‖4 + E

T∫
0

|F1(s)|2ds+ E

T∫
0

‖F2(s)‖4ds
]
.

Now we use Proposition B.1, take the limit M → ∞ in the above inequalities to obtain (B.1) and
(B.2).

Proposition B.3
Let (TM ) and T be stopping times, such that

lim
M→∞

P (TM < T ) = 0.

Let (Qn) be a sequence of processes from the space L2
IR([0, T ] × Ω) such that for each fixed M we

have
lim
n→∞

E|Qn(TM )| = 0

and there exists a positive constant c independent of n such that

E|Qn(T )|2 < c for all n ∈ IN.

Then
lim
n→∞

E|Qn(T )| = 0.
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Proof. Let ε, δ > 0. There exists M0 ∈ IN such that

P (TM0 < T ) ≤ ε

2
.

By the hypothesis it follows that for this M0 we have lim
n→∞

E|Qn(TM0)| = 0. Consequently, there
exists n0 ∈ IN such that

1
δ
E|Qn(TM0)| ≤

ε

2
for all n ≥ n0. We write

P
(
|Qn(T )| ≥ δ

)
≤ P

(
TM0 < T

)
+ P

(
{TM0 = T } ∧

{
|Qn(T )| ≥ δ

})
≤ ε

2
+ P

(
|Qn(TM0)| ≥ δ

)
≤ ε

2
+

1
δ
E|Qn(TM0)| <

ε

2
+
ε

2
= ε

for all n ≥ n0. Hence for all δ > 0 we get lim
n→∞

P
(
|Qn(T )| ≥ δ

)
= 0. Therefore, the sequence(

|Qn(T )|
)

converges in probability to zero. From the hypothesis it follows that this sequence is
uniformly integrable (with respect to ω ∈ Ω). Hence it converges also in mean to zero

lim
n→∞

E|Qn(T )| = 0.

Proposition B.4
Let F̂ ⊆ F be a σ-algebra, (Qn) be a sequence of H-valued random variables which converges for
a.e. ω ∈ Ω to Q. If each random variable Qn is independent of F̂ , then Q is independent of F̂ .

Proof. The random variable Q is independent of F̂ if

P ({‖Q‖ < x} ∩A) = P (‖Q‖ < x)P (A)(B.3)

for all x ∈ IR, A ∈ F̂ . The hypothesis implies that the sequence
(
‖Qn‖

)
converge in probability to

‖Q‖. Therefore, the sequence of their distribution functions is convergent

lim
n→∞

F‖Qn‖(x) = F‖Q‖(x)(B.4)

for each x ∈ IR which is continuity point of F‖Q‖.
Let x ∈ IR, A ∈ F̂ , δ > 0. First we consider that F‖Q‖ is continuous in x. Then using the

hypothesis and (B.4) we get

lim
n→∞

P ({‖Qn‖ < x} ∩A) = lim
n→∞

P (‖Qn‖ < x)P (A) = P (‖Q‖ < x)P (A).(B.5)

We write

P ({‖Q‖ < x− δ} ∩A) ≤ P ({‖Q‖ < x− δ} ∩ {‖Qn‖ < x} ∩A)

+ P ({‖Q‖ < x− δ} ∩ {‖Qn‖ ≥ x} ∩A)

≤ P ({‖Qn‖ < x} ∩A) + P
(∣∣∣‖Q‖ − ‖Qn‖

∣∣∣ > δ
)
.
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Analogously we have

P ({‖Qn‖ < x} ∩A) ≤ P ({‖Q‖ < x+ δ} ∩A) + P
(∣∣∣‖Q‖ − ‖Qn‖

∣∣∣ > δ
)
.

Consequently,

P ({‖Q‖ < x− δ} ∩A) − P
(∣∣∣‖Q‖ − ‖Qn‖

∣∣∣ > δ
)
≤ P (‖Qn‖ < x)P (A)

≤ P ({‖Q‖ < x+ δ} ∩A) + P
(∣∣∣‖Q‖ − ‖Qn‖

∣∣∣ > δ
)
.

In the inequalities above we take the limit n→ ∞ and use (B.5) to obtain

P ({‖Q‖ < x− δ} ∩A) ≤ P (‖Q‖ < x)P (A) ≤ P ({‖Q‖ < x+ δ} ∩A).

Let δ ↘ 0 in the inequalities above. Then

P ({‖Q‖ ≤ x} ∩A) ≤ P (‖Q‖ < x)P (A) ≤ P ({‖Q‖ ≤ x} ∩A).

Since x is a point of continuity for F‖Q‖ we have

P ({‖Q‖ ≤ x} ∩A) = P ({‖Q‖ < x} ∩A).

Consequently, (B.3) holds and Q is independent of F̂ .
Now we consider that x is not a point of continuity of F‖Q‖. Let (xn) be a monotone increasing

sequence of continuity points of F‖Q‖ which converges to x. Then

lim
n→∞

F‖Q‖(xn) = F‖Q‖(x),

and because xn is a point of continuity for F‖Q‖, we have

P ({‖Q‖ < xn} ∩A) = P (‖Q‖ < xn)P (A).

Now we take the limit n→ ∞ and conclude that (B.3) holds. Hence Q is independent of F̂ .

Proposition B.5
Let F̂ ⊆ F be a σ-algebra, f : H × Ω → H be a mapping such that for each x ∈ H the random
variable f(x, ·) is bounded, measurable and independent of F̂ . Let ξ be a H-valued F̂-measurable
random variable. Then

E(f(ξ, ω)|F̂) = E(f(ξ, ω)|σ[ξ]),

where σ[ξ] is the σ-algebra generated by the random variable ξ.

This Proposition can be proved analogously to Lemma 1, p. 63 in [11].
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APPROXIMATION UND OPTIMALE

STEUERUNG DER STOCHASTISCHEN

NAVIER-STOKES-GLEICHUNG

Dipl.-Math. Hannelore Inge Breckner

Zusammenfassung der Dissertationsschrift

vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen Fakultät
der Martin-Luther-Universität Halle-Wittenberg

1. In der Hydromechanik hat die Navier-Stokes-Gleichung wichtige Anwendungen. Sie be-
schreibt das Verhalten eines inkompressiblen Strömungsfeldes in einem gegebenen Strömungsgebiet.
Äußere zufällige Einflüsse sowie die innere Brownsche Bewegung beeinflussen das Verhalten der
Flüssigkeit. Daher enthalten realistischere Modelle auch stochastische Terme und die Lösung der
Gleichung ist ein stochastischer Prozeß. Die Behandlung solcher Gleichungen bettet sich in die
Theorie der stochastischen Evolutionsgleichungen ein.

Die vorliegende Arbeit ist der Untersuchung der Eigenschaften der stochastischen Navier-
Stokes-Gleichung gewidmet: Es werden Existenz- und Eindeutigkeitssätze für die Lösung bewiesen,
Approximationsmethoden angegeben sowie Aussagen zur optimalen Steuerung der Gleichung be-
züglich des Einflusses der äußeren Kräfte hergeleitet.

Die Arbeit besteht aus den Kapiteln: ”Existenz und Approximation der Lösung“, ”Optimale
Steuerung“, ”Zur Gleichung der dynamischen Optimierung“.

2. In der Arbeit wird der starke Lösungsbegriff (im Sinne der stochastischen Analysis) der
stochastischen Navier-Stokes-Gleichung zugrundegelegt, und die Gleichung wird im verallge-
meinerten Sinne als eine Evolutionsgleichung über einem Evolutionstripel(
(V, ‖ · ‖V ), (H, ‖ · ‖H ), (V ∗, ‖ · ‖V ∗)

)
betrachtet. Die zufälligen Variablen sind auf einem gegebenen

vollständigen Wahrscheinlichkeitsraum (Ω,F , P ) definiert, (Ft)t∈[0,T ] ist eine rechtsstetige Filtra-

tion, und es wird ein reellwertiger Ft-Wiener-Prozeß
(
w(t)

)
t∈[0,T ]

als gegeben vorausgesetzt. Wir

nennen den zur Filtration (Ft)t∈[0,T ]-adaptierten, V -wertigen stochastischen Prozeß
(
U(t)

)
t∈[0,T ]

Lösung der stochastischen Navier-Stokes-Gleichung, wenn E
T∫

0

‖U(t)‖2
V dt <∞, E‖U(t)‖2

H <∞ für



alle t ∈ [0, T ], und

(U(t), v)H +
t∫

0

〈AU(s), v〉ds = (x0, v)H +
t∫

0

〈B(U(s), U(s)), v〉ds(2.6)

+
t∫

0

(Φ(s, U(s)), v)Hds+
t∫

0

(C(s, U(s)), v)Hdw(s)

für alle t ∈ [0, T ], v ∈ V und fast alle ω ∈ Ω.
Der Operator A : V → V ∗ ist linear, symmetrisch und koerzitiv, x0 ist eine H-wertige F0-

meßbare Zufallsgröße mit E‖x0‖4 < ∞. Der bilineare Operator B : V × V → V ∗ erfüllt die
Bedingungen 〈B(u, v), v〉 = 0 und |〈B(u, v), z〉|2 ≤ b‖z‖2

V ‖u‖H‖u‖V ‖v‖H‖v‖V für alle u, v, z ∈ V (b
ist eine positive Konstante). Die Abbildungen Φ, C : [0, T ] ×H → H sind lipschitzstetig bezüglich
der zweiten Variablen, und es werden solche Voraussetzungen gewählt, daß die deterministischen
Integrale und das stochastische Integral (im Sinne von Ito) in (2.6) existieren.

3. Als eigenständiges Resultat wurde die Existenz der Lösung von (2.6) mit Hilfe der Galerkin-
Methode bewiesen. Die Lösung des unendlichdimensionalen Problems ergibt sich als Grenzwert im
quadratischen Mittel der Galerkin-Approximationen, indem man a priori Abschätzungen für die
Galerkin-Approximationen herleitet, Stoppzeiten für stochastische Prozesse einführt und Konver-
genzprinzipien der Funktionalanalysis anwendet. Es wird auch die Eindeutigkeit (mit Wahrschein-
lichkeit 1) der Lösung von (2.6) bewiesen.

4. Die Galerkin-Approximationen sind ebenfalls Lösungen von nichtlinearen Gleichungen, und
diese sind für numerische Simulationen aufwendig. Dabei wurde eine neue Linearisierungsmethode
entwickelt. Für jede natürliche Zahl n sei der Prozeß

(
un(t)

)
t∈[0,T ]

Lösung der folgenden linearen

Evolutionsgleichung

(P̂n) (un(t), v)H +
t∫

0

〈Aun(s), v〉ds = (x0, v)H +
t∫

0

〈B(un−1(s), un(s)), v〉ds

+
t∫

0

(Φ(s, un−1(s)), v)Hds+
t∫

0

(C(s, un−1(s)), v)Hdw(s)

für alle t ∈ [0, T ], v ∈ V und fast alle ω ∈ Ω, wobei u0 := 0 ist. Es werden die Existenz und
Eindeutigkeit der Lösung dieser Gleichungen untersucht und folgende Konvergenzeigenschaften
bewiesen:

lim
n→∞

E

T∫
0

‖un(t) − U(t)‖2
V dt = 0

und für alle t ∈ [0, T ]
lim
n→∞

E‖un(t) − U(t)‖2
H = 0.



5. Im zweiten Teil der Arbeit wird das Verhalten des Strömungsfeldes untersucht, wenn ver-
schiedene äußere Kräfte Φ als Steuerungen wirken, wobei sowohl lineare und stetige
Rückkopplungssteuerungen als auch beschränkte Steuerungen als zulässige Steuerungen betrachtet
werden. Das Problem der optimalen Steuerung besteht in der Minimierung des Kostenfunktionals

J (Φ) = E

T∫
0

L[t, UΦ(t),Φ(t, UΦ(t))]dt+ EK[UΦ(T )],

bezüglich der eingeführten zulässigen Steuerungen, wobei L : [0, T ] × H × H → IR+,
K : H → IR+ bestimmte Stetigkeits- bzw. Differenzierbarkeitsbedingungen erfüllen. Es gelang,
die Existenz von optimalen und ε-optimalen Rückkopplungssteuerungen zu beweisen, wobei die
Kompaktheitseigenschaft der Menge der zulässigen Steuerungen in diesen Fällen nicht vorausge-
setzt werden muß.

6. Eine notwendige Optimalitätsbedingung für das Problem der optimalen Steuerung wird in
Form eines stochastischen Minimumprinzips hergeleitet. Dazu wird die Ableitung im Sinne von
Gateaux des Kostenfunktionals berechnet. Weiterhin werden Gleichungen für die adjungierten
Prozesse hergeleitet und Näherungen durch endlichdimensionale Approximationen ermittelt.

7. Um die Aussagen für das Steuerproblem abzurunden, wurde die Bellmansche Funktional-
gleichung für die endlichdimensionalen Galerkin-Approximationen hergeleitet. Der unendlichdi-
mensionale Fall kann nur in Spezialfällen behandelt werden, da die Existenz des infinitesimalen Ge-
nerators vorausgesetzt werden muß. Durch das Bellmansche Prinzip wird das stochastische Steuer-
problem in ein deterministisches Steuerproblem bezüglich einer nichtlinearen partiellen
Differentialgleichung zweiter Ordnung überführt. Die Bellmansche Funktionalgleichung liefert hier
eine hinreichende Bedingung für die Existenz optimaler Steuerungen.

8. Es wird auch bewiesen, daß die Lösung der Gleichung (2.6) und die zugehörigen Galerkin-
Approximationen die Markov-Eigenschaft besitzen.

9. Im Anhang der Arbeit werden Aussagen der Funktionalanalysis sowie der stochastischen
Analysis angegeben und ein Teil davon auch bewiesen.
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inhaltlich anderen Werken entnommene Stellen habe ich als solche kenntlich gemacht.

Hannelore Breckner

Halle, d. 17.03.1999



Lebenslauf

Name Hannelore Inge Breckner

Geburtsdatum 19. August 1971

Geburtsort Cluj-Napoca (Rumänien)

Schulbesuch 1978-1990 in Cluj-Napoca

Juni 1990: Abitur

Studium 1990-1995 Studium der Mathematik an der
BabeCs-Bolyai Universität in Cluj-Napoca

Juni 1995: Erwerb des Diploms in Mathematik mit
der Abschlußnote 10 (sehr gut)

Weitere Tätigkeiten Oktober 1995 - Juli 1996: Stipendiatin des DAAD
am FB Mathematik und Informatik der
Martin-Luther-Universität Halle-Wittenberg
unter der Betreuung von Prof. Dr. W. Grecksch

September 1996 - Mai 1999: Promotionsstipendium des
Landes Sachsen-Anhalt

Dezember 1998: Verleihung des DAAD-Preises für
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