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Summary 
 
The establishment of a framework for the online modeling, monitoring and optimization of 
bioprocesses is presented. The modeling and monitoring schemas comprise a mathematical 
formulation of the microbial system through neural network-based hybrid models. Under the 
concept of hybrid model is understood a set of non linear differential equations and neural 
network or neuro-fuzzy models, which are incorporated to account exclusively for key kinetic 
parameters, as the specific growth or specific production rate. The set of differential equations 
describes the mass balance relationships of the biotechnical process. Three different microbial 
cultivations were carried out, two of them comprising recombinant strains of the bacteria 
Escherichia coli and another a recombinant strain of the yeast Kluyveromyces lactis. The first 
part of this work describes the hybrid modeling of specific kinetic rates in a multi-substrate batch 
cultivation of Escherichia coli B pUBS520 p12023. The method takes advantage of available a 
priori knowledge and theoretical considerations found in specialized literature. After 
experimental evidence gain, the reduction of the data demanded for training purposes is 
demonstrated. The use of neural network-based techniques is established as milestone for model 
development. In these applications in particular, the neural networks are used as “black box” 
model components. These black-box models associate certain known and measurable process 
input variables to other output variables of the process, whose values are usually not known or 
not measureable. A complex relationship between them is supposed to occur, but would be only 
described by the neural network after a proper training procedure. The second part describes the 
off-line modeling and optimization of the production of the viral capsid complex VP1-DHFR 
using a strain of Escherichia coli BL21 under fed-batch conditions. The optimization task is 
fulfilled using an evolutionary procedure: first actualization of a model based on available 
information and a priori knowledge; the actualized approach was used in a model-based 
optimization; a control experiment is performed to test the correctness of the model’s 
assumptions, supplying additional data for model’s improvement. It is demonstrated how this 
technique enables the estimation of key unmeasured variables for the process, like the specific 
growth rate. This formulation not only improves the description and understanding of the 
biological system, but also allows a model-based optimization of the operating conditions of the 
cultivation. The last two parts of this work are dedicated exclusively to the online 
implementation of all the aforementioned modeling, monitoring and optimization techniques. 
The first of these sections describes the on-line neuro-fuzzy modeling and optimization of the 
production of VP1-DHFR. It is proved here how this method can effectively deal with changing 
environments and that increased productivities were obtainable, as compared to optimizations 
employing conventional approaches. Although off-line training of neural network systems is 
usually a straightforward matter, online training of hybrid models confirmed its ability to 
circumvent slow convergence problems caused by the training phase. Moreover, validated at the 
optimized production of recombinant protein complex GAL80/HIS-TAG with Kluyveromyces 
lactis, the real-time estimation and monitoring of bioprocesses’ profits through a soft-sensor is 
presented. The approach demonstrates the inherent plasticity of the neural network-based 
approach to infer complex kinetic rates, using exclusively control variables like temperature and 
process correlated measurements available online. Finally, being the reduction of the invested 
time for developing and improving a given process a fundamental demand in today’s 
biotechnology, the developed online framework improved the gain of process knowledge at high 
learning rates. Such a methodology can be viewed either as an alternative or as an intermediary 
evolution step between pure empirical towards full formal mechanistic approaches. 
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Zusammenfassung 
 
Die Festlegung eines Bezugssystems und der Rahmenbedingungen für die online Modellierung, 
Beobachtung und Optimierung von Bioprozessen wird hier dargestellt. Die Modellierungs- und 
Beobachtungsschemata beinhalteten eine auf hybriden Modellen basierende mathematische 
Formulierung des mikrobiellen Systems. Unter dem Begriff „hybride Modelle“ versteht man die 
Zusammenstellung einer Reihe von nicht-linearen Differentialgleichungen und verschiedener 
„black-box“ Modelle. Während die Kinetik bzw. die spezifischen Wachstums- und 
Produktionsraten mit Hilfe künstlicher neuronaler Netze oder neuro-fuzzy Ansätzen dargestellt 
wurden, beschrieben die Differentialgleichungen die Massenbilanzen des Bioreaktors. Unter 
batch bzw. fed-batch Bedingungen wurden 3 verschiedene Mikroorganismenstämme kultiviert; 2 
davon waren rekombinante Escherichia coli–Stämme. Zur Validierung der Ergebnisse wurde ein 
rekombinanter Stamm der Hefe Kluyveromyces lactis eingesetzt. Der erster Teil dieser Arbeit 
umfasst die hybride Modellierung einer multi-Substrat batch-Kultivierung von Escherichia coli 
B pUBS520 p12023 (MAK-33). Im Modell, wurde die spezifische Wachstumsrate durch einen 
neuronalen Netzansatz formuliert. Bei der Modellierungsprozedur wurde nachgewiesen, wie das 
verfügbare a priori-Prozesswissen systematisch genutzt werden kann und wie sich die 
Datenmenge für Trainingszwecke reduzieren läßt.  Da im Voraus keine Daten über spezifische 
Substrataufnahmeraten zur Verfügung standen, wurden die Parameter des hybriden Modells 
indirekt mit Hilfe eines „Random Search“-Verfahrens identifiziert. In zweitem Teil der Arbeit 
werden die off-line Modellierung und Optimierung der Produktion des viralen 
Hüllproteinskomplex VP1-DHFR durch einen rekombinanten Escherichia coli BL21 Stamm 
präsentiert. Zur Optimierung der Prozessführung wurde eine evolutionäre Methodik genutzt: ein 
Modell wurde unter Verwendung des verfügbaren Wissens und vorhandener Datensätzen 
aktualisiert; dieses aktualisierte Modell wurde zur Optimierung des Prozesses eingesetzt; dann 
erfolgte ein Kontrollexperiment, um die Richtigkeit der Modellannahmen zu bestätigen bzw. um 
Daten zur weiteren Verbesserung des Modells zu gewinnen. Weil keine Daten über der Kinetik 
verfügbar waren, wurde die spezifische Wachstumsrate mit Hilfe eines künstlichen neuronalen 
Netzes beschrieben. Die letzten Teile dieser Arbeit sind der online-Anwendung der 
verschiedenen Techniken zur Modellierung, Beobachtung und Optimierung gewidmet. Bei der 
Produktion der Protein VP1-DHFR wurde eine neuro-fuzzy-Modellierung angewendet, die auf 
wechselnde Bedingungen reagieren kann, so das im Vergleich zu klassischen 
Optimierungsansätzen, höhere Produktivitäten erzielt werden konnten. Probleme wie die 
langsame Konvergenz des Identifizierungsverfahrens, die beim off-line-Training künstlicher 
neuronaler Netze auftreten, werden durch die online Training von hybride Modelle deutlich 
vermindert. Am Beispiel der Produktion des rekombinanten Proteinkomplexes GAL80/HIS-
TAG durch die Hefe Kluyveromyces lactis, wurde ein soft-Sensor vorgestellt, der die 
Echtzeitschätzung und die Beobachtung von Profitfunktionen bzw. die Beurteilung der Leistung 
eines Prozesses erlaubte. Gezeigt wurde auch die inhärente Plastizität eines neuronalen Netzes, 
die komplexe Kinetik eines Prozesses nur auf der Basis online gemessener prozesskorrelierter 
Variablen zu charakterisieren. Mit Hilfe hybrider Modelle kann das vorgestellte Bezugssystem 
selbst komplexe Prozesse in einer geringen Anzahl von Optimierungsschritten verbessern. Die 
Methodik kann dazu verwendet werden, schnell und kostengünstig, d. h. mit geringem 
experimentellen Aufwand, die optimale Führung bei der Prozessentwicklung zu erzielen oder 
laufende Produktionsprozesse zu optimieren. 
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1.1 Recombinant protein production systems 
 
The importance of applied biotechnology using recombinant microorganisms is increasing 
more and more, especially in the production of biologicals for human and veterinary 
pharmaceutical purposes. Based on recombinant technology, a multibillion dollar industry 
was born with the potential to affect our lives, being the production of recombinant proteins 
the most commercially important (Swartz, 1996). The most successful application of 
recombinant DNA (rDNA) technology has taken place on the Escherichia coli bacteria: 
considering the combination of a profound knowledge of the physiology and genetic, a well 
developed ability to alter the microorganism and rapidly determine the consequences of these 
alterations, the cultivation of recombinant Escherichia coli bacteria strains has presented 
advantageous features for enabling the production of recombinant protein products at low 
costs (Swartz, 1996). Additionally, since the bacteria have rapid growth rates and the ability 
to rapidly metabolize substrates as well as to produce heterologous proteins from relatively 
simple cultivation media, higher productivities can be achieved, as compared with other 
expression systems. Regarding all recombinant products available from this novel industry, 
human pharmaceuticals play the predominant role concerning their production and marketing. 
Concerning the production process, where the most important goal is to attain an effective 
production of high levels of recombinant proteins, the organism may be subjected to stressful 
situations. Efficient production is usually obtained by growing the culture quickly to a high 
cell density, e. g., 30 to 50 g (dry weight)/liter culture or higher, and then inducing product 
formation (Yee and Blanch, 1992). Under these circumstances, the maximum oxygen 
assimilation rate of the microorganism can exceed or take to the limit the fermentor’s oxygen 
delivery capacity. Therefore, in order to avoid oxygen depletion, it is common to limit the 
carbon and energy source while entering the protein production phase. Commonly, glucose is 
used simultaneously as carbon and energy source and its limitation results in a decrease of the 
specific growth rate. 
The production phase is a demanding and arduous process for the cells, especially when the 
induction of the recombinant protein expression through a promoter occurs. With this action, 
a complex internal process is accomplished, initiating a metabolic demand for the protein 
production. The ideal promoter may be regulated for a minimal protein expression during the 
high cell density cultivation phase and be capable of rapid transcription after the induction 
takes place, without affecting other metabolic processes. This situation requires an accurate 
process optimization strategy to enhance process performance, which is usually the 
improvement of the protein production. Especially in the case of the recombinant protein 
production phase, the metabolic resources should be concentrated towards the protein 
expression. Figure 1.1 depicts an idealized picture of the features for high cell density 
cultures. 
Process optimization strategies search basically for the cell’s most adequate environmental 
conditions for product formation. Temperature and pH for high density bacterial growth may 
not be optimal for recombinant protein production (Kopetski et al., 1989). For some products, 
it has been shown that lower temperatures often favors the production of valuable soluble 
proteins (native proteins). It is suspected that such low temperatures displace the equilibrium 
between the native product and its inactive counterpart, protein in inclusion bodies (Tsai et 
al., 1995). Additionally, slow metabolic rates can lead also to less cytoplasmic aggregation 
(inclusion bodies formation) and, therefore, reduce the requirement of later protein folding. 
Finally, low temperature production phases have also been used as an alternative to 
diminished rDNA protein degradation, problem that, otherwise, can be solved by creating 
fusion complex proteins that may be more resistant to proteolysis.  
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Figure 1.1 Schematic representation of the idealized growth and production kinetics for high-cell 

density cultures (Swartz, 1996).  
 
 
 
1.2 Model-based design of bioprocesses  
 
Modeling is understood as a quantitative exploitable formulation of our current knowledge 
about the process under consideration. It takes a lot of effort and is thus justified only when it 
does help to solve open questions of significant importance (Lübbert, 2000). In the model-
based design of bioprocesses, process improvement is the main goal to be achieved through 
accurate long term prediction of the state of the biological system. This technique is generally 
used to enhance, in a systematic and optimized way, the quantitative production, the product 
quality or to reduce the operating costs of a fermentation system through manipulating the 
fermentation process variables. 
Considering the current developments in science and technology, challenging problems in the 
monitoring, modeling and optimization of bioprocess require the use of advanced tools to be 
solved. As stated by Kim and Lewis (1998), today, an important goal is to formalize human-
like decision making, behavior and performance into a rigorous system theory. According to 
this concept, artificial neural network, linguistic fuzzy logic techniques and experts systems 
can be considered under such novel techniques. 
Development of rigorous models for a given biological reaction mechanism on a physical and 
chemical basis is still a costly procedure for the industry. This is mainly due to the complex 
nonlinear dynamic behavior and, in some cases, the incomplete knowledge about the structure 
of the kinetics involved in such systems. Some innovations performed in recent years are 
notable, with respect to modeling and optimizing bioprocesses. 
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The first significant innovation is that the a priori knowledge needs not necessarily be 
represented by classical mathematical models based on the mass balances and kinetic 
expressions of the Monod-type. It was shown that those parts of these models that are not 
completely understood, e.g. models for the process’ kinetics, may be better represented in a 
data-driven form, e.g., by artificial neural networks, while the well known mass balances are 
still formulated by differential equation systems (Psichogios and Ungar, 1992; Schubert et al., 
1994; Van Can et al., 1997). Then, the synergism between the different complementing single 
approaches is used to tackle the complex problem of modeling.  
Artificial neural networks by themselves have been successfully utilized for system modeling 
in biotechnology (Lübbert and Simutis, 1994; Montague and Morris, 1994). In these 
applications in particular, the neural networks are used as "black box" model components. 
These black-box models associate certain known and measurable process input variables to 
other output variables of the process, whose values are usually not known or not measurable. 
A complex relationship between them is supposed to occur, but would be only described by 
the neural network after a proper training procedure. Lübbert and Simutis (1994) as well as 
Montague and Morris (1994) reported that such stand-alone neural network models require 
extended data records for the training of such systems. 
As stated before, it is possible to combine data-driven models (black-box) with first principles 
descriptions in so called hybrid models. A hybrid model for a given process contemplates a 
set of non linear differential equations combined with neural or neuro-fuzzy representations. 
While the differential equations set describes the mass balances relationships, the neural 
network and/or the neuro-fuzzy models are used as numerically exploitable representations of 
key kinetic variables like the specific growth or specific production rate. As with stand-alone 
systems, a proper learning process is required to train the hybrid model. 
Finally, another noteworthy innovation to consider in the field of bioprocess engineering is 
the evolutionary process optimization procedure proposed by Galvanauskas et al. (1998). This 
technique iteratively improves the process description while approaching the optimal feeding 
profile, or more generally, control profiles in fed-batch cultivation processes. The 
methodology guarantees a quick approximation to optimal process control profiles. 
 
 
1.3 General objectives 
 
The establishment of a framework for the online modeling, optimization and monitoring of 
bioprocesses is the main objective of the present work. It focuses principally on the 
development of such methods for improving recombinant protein production systems. 
Under this scope, the employment of neural network-based hybrid models to represent 
biotechnological processes is to be considered. A hybrid model consists in set of differential 
equations describing the mass balance for the bio-process complemented with artificial neural 
network or neuro-fuzzy components that describe the corresponding kinetics. As with all data-
driven procedures, the need to validate the neural network-based representation will be 
considered. This can be done employing the experimental evidence obtained when an 
optimization of the process is carried out using the hybrid approach. However, a main goal of 
this work is to reduce, as far as possible, the amount of experimental data required for proper 
model identification. It may be shown, that even when the data available for model 
identification is essentially very small, compared to that used by stand-alone neural network 
implementations, the obtained results are quite satisfactory when using a hybrid model. The 
last scenario implies then to bring down the number of experiments to an essential minimum. 
This situation can be attractive for the industrial application: the use of these methods 
involves a decrease in the research and development costs through the reduction of the 
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experimental effort involved in time and expendables. This applies either for the improvement 
of some old process strategies or for the establishment of new processes. 
The development of the framework is conceived as an evolutionary process. The first step is 
the establishment of a process model for a real microbial fermentation system. This is used 
then to run a model-based mathematical optimization (offline optimization), where the time 
profiles of some control variables is computed. Afterwards, a validation of the accuracy of the 
model is accomplished. The validation is carried out after analyzing and comparing the 
experimental evidence obtained in a real fermentation process against the model’s prediction. 
The acceptance, refinement or total modification of the model is determined by its suitability 
to accurately describe the process under consideration. As can be inferred, the technique takes 
advantage of the accumulative knowledge gained through the systematic approach of optimal 
process regimes. However, it is presumed that this learning and development process can be 
further enhanced, if the modeling and optimization procedures were performed online. 
Online modeling and optimization would be of high benefit in situations where unexpected 
changes in the normal course of a process come into play. Such an optimization tool may be 
able to confront alterations that may not have been considered (like temperature control or 
feed pump failures) and where it is necessary to react also optimally. Under these 
circumstances, a very important subject is to validate the online optimization system 
performance. This can be accomplished inducing in an artificial manner some changes in the 
process environment and then monitoring of the responses of the performance index and 
penalty functions. Main idea behind is to carry out the validation using an independent soft 
sensor and additionally to verify its proper functioning on another microbial system. The 
essential innovation on the development of such alternative soft-sensor systems is that they 
are exclusively based and trained on common online measured or correlated process variables. 
The most substantial advantage of using neural network components in hybrid models is the 
online incorporation of process knowledge at high learning rates. This methodology 
overcomes the common slow convergence problem during the initial training stages allowing 
a careful monitoring of optimized recombinant protein production processes. 
 
 
1.4 Outline of the thesis 
 
The present thesis is organized in 7 chapters.  
 
In chapter 1 (actual chapter), the motivations and objectives of this work are presented 
together with some introductory theoretical background and concepts that will be used later in 
the rest of the chapters. Focused on the importance to produce high valuable pharmaceuticals, 
a brief description of the general characteristics and the application of recombinant protein 
production processes using Escherichia coli is depicted. Furthermore, the usefulness of the 
model-based design of bioprocesses is highlighted. This is a systematic mathematical tool that 
can be employed to improve the performance of such systems. The particular use of neural 
network-based techniques is established as milestone of the work. 
 
In chapter 2 the Materials and Methods are presented. Three different microbial cultivations 
were performed, two of them comprising recombinant strains of the bacterium Escherichia 
coli and another, a recombinant strain of the yeast Kluyveromyces lactis. Together with the 
composition of the culture media, two mathematical algorithms, the quasi-Newton and the 
chemotaxis techniques are presented, too. Model parameter identification and model-based 
optimization was performed in this work using the HybNet software package (Oliveira et al., 
1996) where the aforementioned algorithms are available. 
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Chapter 3 addresses the hybrid modeling of a multi-substrate batch cultivation process. The 
first phase of the procedure was the establishment of a hybrid model for the process. Data 
obtained from a deterministic model (taken from literature) was used to pre-train the hybrid 
model. This data was supposed to roughly describe the main features of the real process. It 
was considered that this procedure would simplify the identification procedure of the hybrid 
model when confronted to experimental data. To validate the hybrid model, the modeling 
technique was demonstrated at the batch cultivation of an Escherichia coli B pUBS520 
p12023 strain growing on glucose, lactose and glycerol. The structure of the hybrid models 
was split into the mass balance, expressed as a system of differential equations and several 
neural network sub-units describing the specific consumption rates of the different substrates. 
The specific growth rate was calculated from the single specific consumption rates. The 
technique serves as general core for the hybrid modeling present in the following chapters. 
 
Chapter 4 describes the off-line modeling and optimization of the production of VP1-DHFR 
with a strain of Escherichia coli BL21 utilized as host system. A fundamental demand in 
today’s biotechnology is the reduction of the invested time for development and improvement 
of a given process. The present optimization method makes use of the modeling technique 
described in chapters 3 to achieve this goal. As the data records from the process under 
consideration were very scarce at the beginning of such a development, the initial stages 
considered classical Monod-type model representations supposed to roughly describe the 
main features of the real process. This model was then transformed into a hybrid approach, 
which was used to optimize the control variables of the process. The hybrid approach 
combined a priori knowledge and information from the available process data. The 
consequent optimization experiments were also used to validate the model’s accuracy. This 
optimization strategy is in concordance with the evolutionary process optimization procedure 
described by Galvanauskas et al. (1998). The procedure improved the process description 
while approaching the optimal feeding profile, or more generally, control profiles in fed-batch 
cultivation processes. The technique guarantees a quick approach to optimal process control 
profiles. 
 
Chapter 5 describes the online neuro-fuzzy modeling and optimization of the production of 
the VP1-DHFR with Escherichia coli BL21 as host system. Here the techniques used in 
chapters 3 and 4 were combined in the development of an online application. Concerning the 
specific growth rate, it was mathematically formulated via a feed forward neural network 
model. This neural network acts essentially as an adaptive system able to learn from the 
online measured process variables. The training of the neural network component of the 
hybrid model occurred exclusively online. That situation improved the gain of process 
knowledge at high learning rates, overcoming the slow convergence during the initial training 
stages. Moreover, already available heuristic knowledge about the protein development was 
incorporated by means of a simple neuro-fuzzy expert system. The corresponding kinetic was 
included with simple linguistic rules-of-thumb. The main advantage of this type of fuzzy 
representation is that the results of the training can be made more transparent to the process 
engineer. Using this approach, it can be shown that increased productivities are obtainable 
with the online-identified hybrid model, as compared to optimizations employing 
conventional off-line approaches. 
 
Chapter 6 describes the monitoring of bioprocesses through their performance indexes using a 
neural network-based soft sensor. This is an online application and was tested in two different 
recombinant microbial systems: the bacteria Escherichia coli and the yeast Kluyveromyces 
lactis. Both cultivations are run under optimal feeding strategies. For the case of the 
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Kluyveromyces lactis cultivation a specific growth rate control strategy is applied with 
constant temperature conditions. However, the Escherichia coli cultivation runs under 
artificially induced temperature shifts. Monitoring the changes of process performance index 
and penalty functions related to these environmental alterations allows the development of 
high performance control and quality strategies for the pharmaceutical industry. The approach 
is essentially able to characterize the kinetics of the bioprocess making use of process 
correlated variables available online like the optical density of the broth, its oxygen 
consumption rate and the carbon dioxide evolution rate. The core of the monitoring lies in the 
estimation of the key variable of the process, the specific growth rate, which is formulated via 
a feed forward neural network. 
 
Finally, chapter 7 presents the general conclusions for this work.  
 
 
1.5 References 
 
1. Galvanauskas, V., Simutis, R., Volk, N., Lübbert, A. Model based design of a biochemical 

cultivation process. Bioprocess Engineering, 18 (1998) 227-234 
2. Kim, Y. H.; Lewis, F. L.: High-level feedback control with neural networks, World 

Scientific Publishing Co. Pte. Ltd. (1998) 
3. Kopetski, E.; Schumacher, G.; Buckel, P.: Control of formation of active soluble or 

inactive insoluble baker’s yeast alpha-glucosidase PI in Escherichia coli by induction and 
growth conditions. Mol. Gen. Genet. 216 (1989) 149-155 

4. Lübbert, A.; Simutis, R.: Adequate use of measuring data in bioprocess modeling and 
control. In: Trends in Biotechnology 12 (1994) 304-311 

5. Lübbert, A.: Bubble Column Bioreactors in Bioreaction Engineering (Modeling and 
Control), Schügerl, K. and Bellgardt, K.-H. (Eds.).. Springer-Verlag Berlin Heidelberg 
(2000) 247-273 

6. Montague, G.; Morris, J.: Neural-network contributions in biotechnology. Trends in 
Biotechnology 12 (1994) 312-324 

7. Oliveira, R.; Simutis, S.; Lübbert, A.: HYBNET, a new tool for advanced process 
modeling. Proceedings of the 1st European Symposium on Biochemical Engineering 
Science, Dublin, Ireland, pp. 182-183 (1996) 

8. Psichogios, D. C.; Ungar, L. H.: A hybrid neural network – first principles approach to 
process modeling. AIChE J. 38 (1992) 1499-1511 

9. Schubert, J.; Simutis, R.; Dors, M.; Havlik, I.; Lübbert, A.: Bioprocess optimization and 
control: Application of hybrid modeling. J. Biotechnology. 35 (1994) 51-68 

10. Swartz, J. R.: Escherichia coli recombinant DNA technology. In: Escherichia coli and 
Salmonella. Cellular and Molecular Biology. 2nd Edition. ASM Press, Washington, D. C. 
(1996) 1693-1711 

11. Tsai, A. M.; Betenbaugh, M. J.; Shiloach, J.: The kinetics of RCC1 inclusion body 
formation in Escherichia coli. Biotech. & Bioeng. 48 (1995) 715-718 

12. Van Can, H. J. L.; Te Braake, H. A. B.; Hellinga, C.; Luyben, K. C. A. M.; Heijnen, J. J.: 
An efficient model development for bioprocesses based on neural networks in 
macroscopic balances. Biotech. & Bioeng. 54 (1997) 549-566 

13. Yee, L. and Blanch, H. W.: Recombinant protein expression in high density fed-batch 
cultures of Escherichia coli. Bio/Technology 10 (1992) 1550-1556 

 



2. MATERIALS AND METHODS 

 8 

 
Chapter  2 

 
 
 
 
 
 
 
 
 
 
 
 
 

Materials and methods



2. MATERIALS AND METHODS 

 9 

 
Three different microbial cultivations were carried out during this work, two of them 
comprising recombinant strains of the bacteria Escherichia coli and another one with a 
recombinant strain of the yeast Kluyveromyces lactis.  
 
 
2.1 Microorganisms and media culture composition 
 
 
2.1.1 Multi substrate batch cultivation of Escherichia coli. 
 
A multi substrate cultivation was carried out with a strain of E. coli B pUBS520 p12023 under 
batch conditions. All experiments were performed in 0.5 L fermentation units of a multi-
fermenter system SIXFORS (INFORS GmbH). The pH was controlled at 7 during the entire 
course of the fermentation using a 1M solution of H3PO4 and a 25% solution of NH4OH. 
Excessive foam formation was suppressed with a 1M silicon-based anti-foam emulsion. 
Temperature was also maintained constant at 37°C during the fermentations. 
The medium for the pre-culture and the fermentation had the following composition: Na2SO4 
2.0 g L-1, NH4Cl 0.5 g L-1, KH2PO4 14.6 g L-1, (NH4)2SO4 2.468 g L-1, NaH2PO4 . H2O 3.6 g 
L-1, (NH4)2-H-Citrat 1.0 g L-1 and 2 mL L-1 trace elements solution. This trace elements 
solution was constituted by CoCl2 . 6H2O 0.18 g L-1,  MnSO4  

. H2O 0.1 g L-1, CuSO4 . 5H2O 
0.16 g L-1, Na2-EDTA 20.1 g L-1, ZnSO4 . 7H2O  0.18 g L-1, FeCl2 . 6H2O 16.7 g L-1 
CaCl2·2H2O 0.5 g L-1. Glucose, lactose and glycerol were used as carbon sources. The 
inoculum was prepared in shaking flasks at a temperature of 37°C. It consisted of 2 mL of the 
main bacterial suspension (prior stored at -72°C) within 100 mL of culture medium with a 
glucose concentration of 5 g L-1. 1 mg mL-1 of ampicillin and 50 mg mL-1 of canamycin were 
added. After an incubation time of 4 h, the flasks were centrifuged and the cells were re-
suspended in sterile tap water.  
Measurements of the concentrations of biomass, glucose, lactose and glycerol were performed 
off line. The dry biomass concentration was estimated via its correlation with the optical 
density of the culture at a wavelength of 600 nm. The analysis was carried out with a UV 
scanning photometer (UV-2102 PC, Shimadzu Corp.). Glucose concentrations were measured 
with an enzymatic glucose analyzer YSI Model 2700 (Yellow Springs Instrument Co. Inc., 
USA). Afterwards, the present lactose was hydrolyzed with β-galactosidase. The glucose 
concentration of the sample was measured again. The lactose concentration was estimated 
from the difference between the original and the resultant glucose concentration coming from 
the hydrolyzed lactose. Glycerol was measured using the enzymatic measurement kit for 
glycerol from Boehringer (UV-Test 148 270, Boehringer Mannheim GmbH, Mannheim, 
Germany), which is based on the UV-measurement of the quantity of NADH, equivalent to 
the quantity of glycerol present in the sample. 
 
 
2.1.2 Production of the virus capsid protein construct VP1-DHFR with Escherichia 

coli BL21 
 
The production of the protein complex VP1-DHFR was carried out with a strain of 
Escherichia coli BL21 under batch and fed-batch conditions. The product is a genetic 
construct from the fusion of the viral capsid protein of the murine polyoma virus (VP1) and 
the enzyme dihydrofolate reductase (DHFR, EC 1.5.1.3). The microorganism contains an 
ampicillin resistant plasmid pBR322, responsible for expressing the viral capsid protein under 
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the control of the tac-promoter. The over-expression of the recombinant protein is induced 
employing 1.5 mmol of IPTG (Isopropyl β-D-Thiogalactopyranosidase). All experimental 
runs took place in a 10 L fermenter, Biostat C+ (B. Braun Biotech International). The pH was 
controlled during the whole course of the fermentation using a 1M solution of H3PO4 and a 
25% solution of NH4OH. Foam formation was suppressed with a 1M silicon anti-foam 
emulsion.  
The medium for the pre-culture and the fermentation had the following composition: KH2PO4 
13,3 g L-1, (NH4)2HPO4 4 g L-1, citric acid 1,7 g L-1, EDTA 8,4 mg L-1, CoCl2 . 6H2O 2,5 mg 
L-1,  MnCl2  

. 4H2O 15 mg L-1, CuCl2 . 2H2O 1,5 mg L-1, H3BO3 3 mg L-1, Na2MoO4 . 2H2O 
2,5 mg L-1, ZnSO4 . 7H2O  2 mg L-1, FeSO4 . 7H2O 200 mg L-1 and 2 mL L-1 trace elements 
solution. This trace elements solution was constituted by CaCl2·2H2O 0.5 g L-1, ZnSO4·7H2O 
0.18 g L-1, MnSO4·H2O 0.1g L-1, Na2-EDTA 20.1g L-1, FeCl3·6H2O 16.7g L-1, CuSO4·5H2O 
0.16 g L-1, CoCl2·6H2O 0.18 g L-1.  Glucose was used as sole carbon source. 
The inoculum was prepared in shaking flasks at a temperature of 37°C. It consisted of 2 mL 
of the main bacterial suspension (stored at -72°C) within 100 mL of culture medium with a 
glucose concentration of 5 g L-1. 1 mmol of ampicillin was added. After an incubation time of 
4 h, the flasks were centrifuged and the cells were re-suspended in sterile tap water. 
Measurements of the concentrations of the most important state variables, biomass, glucose 
and the product activity were performed off line. The estimation of the biomass concentration 
was made based on the correlation between dry biomass weight and the optical density of its 
corresponding suspension at a wavelength of 600 nm. The analysis was carried out in a UV 
scanning photometer (UV-2102 PC, Shimadzu Corp.). In the case of glucose, its 
concentrations were estimated with the enzymatic glucose analyzer YSI Model 2700 (Yellow 
Springs Instrument Co., Inc. , USA). 
The enzymatic activity of the DHFR was utilized to estimate the product concentration. To 
apply this method, any probe taken from the bio-system should contain the same amount of 
biomass. Therefore, the volume of the sample (in mL) varies from sample to sample and is 
calculated from the reciprocal of the sample’s measured optical density at a wavelength of 
600 nm and then multiplied with a factor of 10 (VSAMPLE = 10/OD600). The sediment obtained 
after centrifugation of the probe was frozen at –72°C. Later, the cells were disrupted with 
glass pearls (0.5 g, 0.4 mm diameter) in an oscillating mill (Retsch Type MM2; Hann, 
Germany). The enzymatic activity of DHFR of the raw enzymatic extract was determined 
with the method reported by Ginkel et al. (1997). The measurement was corrected considering 
also the NADPH-Oxidase activity. A unit of activity is equal to 1 µmol of transformed 
substrate per minute. 
Besides temperature, head pressure and culture weight, on line measurements of O2 and CO2 
in the vent line were performed. The O2 concentration was measured with a paramagnetic 
analyzer (OXOR 610, Maihak), while for CO2 an infrared absorption analyzer (UNOR 610, 
Maihak) was used. 
 
 
2.1.3 Production of the recombinant protein complex GAL80/HIS-TAG with 

Kluyveromyces lactis RUL 1888 D80ZR-pEAHG80 
 
The yeast Kluyveromyces lactis RUL 1888 D80ZR-pEAHG80 was grown aerobically on 
glucose as only carbon source. The product, the recombinant protein GAL80 (Zenke et al., 
1999) is merged with a HIS-TAG and was constitutively expressed by an ADG promoter. The 
fermentation was run under fed-batch in a 10 L fermenter, Biostat C+ (B. Braun Biotech 
International). The pH was controlled during the entire course of the fermentation using a 1M 
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solution of H3PO4 and a 25% solution of NH4OH. Foam formation was diminished with a 1M 
silicon anti-foam emulsion. 
For the cultivation of Kluyveromyces lactis, two different culture media were prepared. The 
pre-culture (Culture medium I) was prepared with a yeast-based complex medium, being 
slightly changed for the feeding solution. Culture medium II corresponded to the cultivation 
medium used in the fed-batch production process. 
 
 
Culture medium I 
 
To prepare 1 L of cultivation media for the pre-culture, 6.7 g Yeast Nitrogen Base (Bacto 
Yeast Nitrogen Base w/o Amino Acids, Fa. DIFCO) were diluted in 850 ml distillated water 
and later sterilized in an  autoclave. 50 mL of an amino acid solution were then added. The 
amino acid solution consisted of 625 ml distillated water containing the following amino 
acids: Adenine 140 mg, Histidine 480 mg, Tryptophane 480 mg, Arginine 480 mg, 
Methionine 480 mg, D/L Leucine 720 mg, D/L Isoleucine 720 mg, Tyrosine 180 mg, 
Phenylalanine 600 mg, D/L Valine 720 mg, D/L Threonine 720 mg. After the preparation the 
yeast nitrogen base solution resulted in the following composition: (NH4)2SO4 5g L-1, H2PO4 
1g L-1, MgSO4 7H20 0.5g L-1; ZnSO4 7H2O 0.0004 g L-1; CuS04 5H2O 0.0004g L-1, 
CaCl2 2H2O 0.1g L-1, Na2MoO4 2H2O 0.0002 g L-1; H3BO3 0.0005g L-1, KI 0.0001g L-1; 
NaCl 0.1g L-1; FeCl 0.0002g L-1; MnSO4 H2O 0.0004g L-1. The media also contained the 
following vitamins: Biotin 0.002 mg L-1; Calcium Pantothenate 0.4 mg L-1; Thiamin HCl 0.4 
mg L-1; Prydoxine HCl 0.4 mg L-1; Para-amino Benzoic Acid 0.2 mg L-1; Folic Acid 0.002 
mg L-1; Inositol 2 mg L-1; Niacin 0.4 mg L-1; Riboflavin 0.2 mg L-1. The substrate 
concentration was adjusted in a separate solution. This was also separately autoclaved and 
after cooling added to the yeast-based complex solution. 
 
 
Culture medium II 
 
To prepare 1 L of this medium, 1.7 g of yeast nitrogen base (Bacto Yeast Nitrogen Base w/o 
Amino Acids and Ammonium Sulfate, Fa. DIFCO) and 5g of (NH4)2SO4 were dissolved in 
850 ml of distilled water and autoclaved. 50 ml of the amino acid solution used for the 
preparation of the culture media I, were also added. The substrate concentration was adjusted 
with a separate solution prepared with the required amount of glucose in enough distilled 
water to complete 100 g of solution. This was also separately autoclaved and after cooling 
added to the yeast nitrogen base solution. 
 
 
Feeding solution 
 
A solution containing 20 g L-1 of a yeast-based complex medium (Bacto Yeast Nitrogen Base 
w/o Amino Acids and Ammonium Sulfate, Fa. DIFCO) and 5 g L-1 (NH4)2SO4 was 
autoclaved. Later, 133 mL of the amino acid solution used for the preparation of the culture 
medium I, were also added. A separate solution was prepared with the required amount of 
glucose in enough distilled water to fix the concentration in 100 or 200 g L-1 of glucose. This 
was also separately autoclaved and after cooling added to the yeast nitrogen base solution. 
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2.2 Identification and optimization algorithms 
 
Model parameter identification and model-based optimization was performed in this work 
using the HybNet program (Oliveira et al., 1998). Two algorithms contained in this 
application were used for model identification and for model-based optimization. In the 
particular case, the model parameters of the multi-substrate cultivation of E. coli were 
identified using the quasi-Newton algorithm. The chemotaxis algorithm was used in the case 
of the cultivation processes with E. coli for producing the VP1-DHFR recombinant protein 
and in the case of the production process of the GAL80/HIS-TAC recombinant protein using 
Kluyveromyces lactis. In both cases, the chemotaxis algorithm was used for the identification 
of the model parameters, the weights of the neural network component describing the specific 
growth rate and for the identification of the weights of the neuro-fuzzy component 
representing the specific protein production rate. 
Moreover, chemotaxis was also used to estimate the optimal induction time and to train the 
weights of the feed-forward neural network used to calculate feeding profiles in the model-
based optimization of the E. coli BL21 cultivation and the model parameters of the soft-sensor 
of the Kluyveromyces lactis fermentation. 
 
 
2.2.1 Quasi-Newton algorithm 
 
The quasi-Newton algorithm (Bronstein et al., 1999) is a gradient-based iterative optimization 
technique. It considers the general minimization problem: 
 
 ƒ ( θθθθ ) = min!   for θθθθ ∈ nℜ       (2.1) 
 
where ƒ ( θθθθ ) is a given differentiable function with the parameter set θθθθ. The solution to the 
problem is to find an approximation parameter set θθθθ* that minimizes equation 2.1. Beginning 
with a first guess  θθθθ1 ∈ nℜ , the parameter set is changed iteratively according to: 
 
 θθθθ k+1 = θθθθ k + α k d k  ( k = 1, 2, ... )     (2.2) 
 
where d k ∈ nℜ  is the directional vector and α k  the so-called gain parameter. For the specific 
case of the quasi-Newton algorithm, the directional vector is given by: 
 
 d k = - Mk∇ƒ ( θθθθ k )   ( k = 1, 2, ... )     (2.3) 
 
Mk is a symmetric, positive matrix that approximates, in an iterative form, the inverse 
Hessian-matrix. The first guess is usually done defining M1 = I (the identity matrix) and 
applying the following matrix correction: 
 
 Mk  = Mk -1 + (v k v k T)/(v k T v k) – [(Mk -1 w k)(Mk -1 w k)T]/w k T M k w k (2.4) 
 
where,  v k =  θθθθ k - θθθθ k –1 and  w k =  ∇ƒ ( θθθθ k ) - ∇ƒ ( θθθθ k –1 ) for ( k = 1, 2, ... ). The gain factor is 
calculated from the minimization of: 
 
 ƒ ( θθθθ  - α Mk∇ƒ ( θθθθ k )) = min  α ≥ 0     (2.5) 
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2.2.2 Chemotaxis algorithm 
 
The chemotaxis algorithm is an iterative random-search optimization technique. The 
following description is referred to the calculation of the parameters (weights and biases) of 
feed-forward neural networks. It considers the general minimization problem presented in 
equation 2.1 with the profit function, ƒ(θθθθ). The technique can be resumed as follows: 
 
1) Begin with a first parameter guess  θθθθ1 ∈ nℜ . According to the chemotaxis algorithm, a 

mutation in the parameters must be done randomly choosing an increment in the 
parameters, ∆θθθθ. The parameter set is changed iteratively according to: 

 
θθθθ k+1 = θθθθ k + ∆ θθθθ = θθθθ k + γ  θθθθ k   (k = 1, 2, ..., M)   (2.6) 

 
where γ  is the so-called mutation parameter.  

2) Calculate a new profit function, ƒ(θθθθk+1). Calculations must be done until ƒ(θθθθ k+1) ≠ ƒ(θθθθk) 
3) Calculate the function ε according to: 
 
 ε =  ƒ(θθθθ k+1) - ƒ(θθθθ k)    (k = 1, 2, ..., M)   (2.7) 
 
4) To minimize the profit function, a decision must be made to continue calculations. 

a) If ε = 0 after a predefined maximal number of iterations M is exceeded, then change 
randomly the mutation parameter and continue from step 2 again. 

b) If ε > 0, then go to step 1, change the first parameter guess θθθθ1, and initiate the 
procedure again. 

c) If ε < 0, then continue with the calculations using Equation 2.6 until a predefined 
minimization criteria for the profit function ƒ(θθθθ) is reached or a number of predefined 
maximal iterations steps M is exceeded. 
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Hybrid modeling of a 
multi-substrate fermentation 

 
 
 
 
 
 
 
 
 
 
ABSTRACT 
 
A hybrid modeling approach to describe a multi-substrate fermentation is presented here. The 
model consists of a system of differential equations describing the mass balance of the 
process. Complementary to the mass balance, the kinetics variables of the biological system 
are represented by neural network sub-models. All these components are combined to form a 
network-structured global hybrid model. Main objective of this study is to provide a reliable 
model for a complex bio-technical process. The method is tested and validated on the batch 
multi-substrate cultivation of a recombinant strain of Escherichia coli. The role played by the 
structure of the neural network models and their the different activation functions in the 
modeling performance of the hybrid model is also investigated. A comparison between the 
different kinetic sub-models is presented and set against the off-line measurements to asses 
the modeling accuracy of the different sub-models. A screening process for selecting the most 
appropriate models is also considered. Typical non-linearities present in these kind of 
bioprocesses, like diauxic growth, are adequately represented through this kind of approach. 
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3.1 Introduction 
 
Design, development, optimization and control of bioprocesses have been lately successfully 
accomplished utilizing model-based methods. These require an accurate mathematical model 
for the microbial system under consideration. The biological phenomena involved in such 
processes, specially the kinetics, are highly complex and nonlinear. As regards to this, much 
attention has been paid to neural network systems as an alternative to represent the kinetics of 
bioprocesses. The motivation for using neural networks is based on their ability to learn from 
any complex data set and to filter noisy signals. In the present chapter, several hybrid models 
of a multi-substrate fermentation were tested to determine their overall performance to 
describe the bioprocess. The structure of the hybrid models was split into the mass balance, 
expressed as a system of differential equations and several neural network sub-units 
describing the specific consumption rates of the different substrates. The specific growth rate 
is inferred from these variables, i. e. it is considered the result of the individual specific 
growth rates for each single substrate. 
The first phase of the modeling procedure was the establishment of a hybrid model for the 
process. Data obtained from a deterministic model (taken from literature) was used to pre-
train the hybrid model. This data was supposed to roughly describe the main features of the 
real process. It was considered that this “pre-training” would simplify the identification 
procedure of the hybrid model considering that only a few real data were available. To 
validate the hybrid model, the modeling technique was demonstrated and validated at the 
optimized batch cultivation of an Escherichia coli B pUBS520 p12023 strain growing on 
glucose, lactose and glycerol. The optimization goal of this cultivation was the maximization 
of the biomass concentration at the end of the batch fermentation. The different substrates 
were supposed to be consumed sequentially. The experimental data acquired was used for the 
refinement, retraining and validation of the hybrid models. 
 
 
3.2 Hybrid modeling of the process 
 
The proposed hybrid model consisted of a system of differential equations describing the 
mass balance of the system in batch operation modus. The mass balance considered the 
components biomass (CX) and the substrates glucose (S1), lactose (S2) and glycerol (S3) 
concentrations. Biomass was considered unsegregated. The mass balance was given by: 
 

dCX/dt = µ CX         (3.1) 
 
dS1/dt = - ρ1 CX        (3.2) 
 
dS2/dt = - ρ2 CX        (3.3) 
 
dS3/dt = - ρ3 CX        (3.4) 

 
The specific growth rate (µ) was regarded as the result of the superposition of the single 
specific growth rates (µSi) for each substrate,  
 

µ = µS2 + µS2 + µS3  = Y X/S1 ρ1 + Y X/S2 ρ2 + Y X/S3 ρ3   (3.5) 
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Concerning the different specific substrate uptake rates (ρ i), they were described by artificial 
neural networks (ANNs). The ANN is an adaptive kinetic process module for the estimation 
of the specific substrate uptake rates ρ i during the whole cultivation process. It was supposed 
that interactions like catabolite repression and limitation of growth by substrates are 
considered within the different ANN units. For that purpose, the different state variables of 
the system were considered as input to the neural network sub-models. The variable time was 
also included as input of the neural network. Figure 3.1 depicts a schema of the basic general 
hybrid model structure. 
In the Figure 3.1, the kinetic block delineates a single or a combination of artificial neural 
networks accounting for the substrates consumption rates (ρi). Many sub-models can 
represent the kinetic of the process, but only 8 of them were selected to be tested. 
 
 

 
 
Figure 3.1 General schematic representation of the hybrid model for the multi-substrate 

fermentation.  
 
 
The selected 8 models proceeded from 4 basic model structures. To formulate a given neural 
network sub-model, some theoretical aspects or interactions between the biomass and the 
substrates could be considered. The structure of the model was explicitly defined once the 
possible interactions were defined. 
As example of these interactions, the reported repression of the lactose consumption in the 
presence of glucose was considered for the first model structure (Bellgardt, 1991). 
Additionally, the possible repression of glycerol consumption in the presence of glucose was 
also taken into account. In the same manner, the model considered any possible interaction 
between lactose and glycerol too. 
Once the possible interactions were established, the input for the neural network sub-models 
were precisely the variables associated in the aforementioned interactions. In the case of the 
first model, multiple possible interactions between all associated variables were considered. 
Therefore, time, biomass and all the substrate concentrations were taken as inputs of the 
neural network sub-model. The output of the model are the different specific consumption 
rates for each substrate. Table 3.1 resumes the basic model structures considered in this work. 
The associated function and the interaction considered in their formulation are also indicated. 
 
 
 
 
 
 
 

KINETIC 
 

ANN (t, CX, S1, S2, S3) 

PROCESS 
DYNAMICS 

 
dX/dt = f (t, X) Xn 

tn 

ρ1, n 

ρ2, n 

ρ3, n 

Xn+1 
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Basic model 
structure Representation Interactions considered 

1 ρ 1,2,3 = f (t, CX, S1, S2, S3) 
• The single specific consumption rates consider multiple 

interactions between all variables 

2 
ρ 1 = f (t, CX, S1) 
ρ 2 = f (t, CX, S2) 
ρ 3 = f (t, CX, S3) 

• The single specific consumption rates depend only on the 
biomass concentration and the substrate considered 

3 

ρ 1 = f (t, CX, S1) 
 

ρ 2 = f (t, CX, S1, S2) 
 

ρ 3 = f (t, CX, S1, S3) 

• The specific consumption rate for glucose is only 
dependent on the biomass and the glucose concentration 

• The specific consumption rate for lactose is dependent on 
the biomass and the possible interactions between the 
glucose and lactose concentration 

• The specific consumption rate for glycerol is dependent 
on the biomass and the possible interactions between the 
glucose and glycerol concentration 

4 
ρ 1 = f (t, CX, S1) 

 
ρ 2,3 = f (t, CX, S1, S2, S3) 

• The specific consumption rate for glucose is only 
dependent on the biomass and the glucose concentration 

• The specific consumption rates for lactose and glycerol is 
dependent on the biomass and the possible interactions 
between the glucose, lactose and glycerol concentration 

 
Table 3.1 Basic model structures and the interactions considered for their formulation.  
 
 
Regarding the activation function of the neural network models, some continuous non-linear 
functions were used, specifically the sigmoid, the hyperbolic tangent and the radial basis 
functions (Kim and Lewis, 1998). Two types of neural networks were tested, the so-called 
standard neural network and the general neural network (Oliveira et al., 1996). The first 
utilized exclusively sigmoid activation functions on all layers, while the later can support a 
combination of different activation functions per layer. 
The 8 models that were tested in this work, were derived from the 4 basic model structures 
presented in Table 3.1. To each structure corresponded 2 different models. The input/output 
structure itself was maintained, but the activation function and the number of inner layers 
used was different for each model. The nomenclature and architecture of all kinetic neural 
network sub-models is detailed in Table 3.2. Their corresponding activation functions, layers 
and number of nodes per each layer are also presented. 
The first phase of the modeling procedure was the establishment of a hybrid model for the 
process. Data obtained from a deterministic model (taken from literature) was used to pre-
train the hybrid model. As information source for training the hybrid model, 15 sets of 
simulated data from the deterministic model (see Appendix A1) were built. 10 of these sets 
were used for model training and 5 for independent model validation. 
Afterwards, data sets from 3 different experiment runs were used for the refinement of the 
hybrid model. Points from all experimental sets were randomly chosen for training and 
validation of the model. For data partitioning, a ratio of 75/25 for Training/Validation was 
fixed, i. e. ¾ of the total of the available data was used for training while the rest ¼ was used 
for validation. 
 
 



3. HYBRID MODELING OF A MULTI - SUBSTRATE CULTIVATION 

 18 

 
The training of the hybrid models was carried out using the quasi-Newton algorithm (see 
Materials and methods, section 2.2.1) provided in the HybNet software (Oliveira et al., 1996). 
The initial value guess for the weights of the neural network models was made randomly. The 
learning process minimized the overall least squared error between modeled and measured 
state variables. The model identification objective function (J IDEN) considered was: 
 

 J IDEN (y, Y) ≡ ∑∑
= =










 −M

j

N

i jj

ii Yy
1 1

2

KN
→ min!      (3.6) 

 
where y are the measured state variables; Y are the simulated state variables; i is referred to 
the number of N available data; j is referred to the state variables under consideration and KN 
are pseudo-norms for the M single state variables. The introduction of a pseudo-norm was 
done to constrict the influence of the single terms (weighting technique), because their real 
values lie in different numerical ranges. The values of these pseudo-norms were determined 
empirically. 
 
 

Structure Model Functionality  representation  and  structure 
of  the  neural  networks 

M1s ρ 1,2,3 = f (t, CX, S1, S2, S3)   ⇒   ANN (IN = 5{Sig}, HN = 9{Sig}, ON = 3{Sig})  
1 

M1g ρ 1,2,3 = f (t, CX, S1, S2, S3)   ⇒   ANN (IN = 5{Sig}, HN1 = 4{HT}, HN2 = 4{RB}, ON = 3{Sig})  

M2s 
ρ 1= f (t, CX, S1)   ⇒  ANN1 (IN = 3{Sig}, HN = 3{Sig}, ON = 1{Sig})  
ρ 2 = f (t, CX, S2)   ⇒  ANN2 (IN = 3{Sig}, HN = 3{Sig}, ON = 1{Sig})  
ρ 3 = f (t, CX, S3)   ⇒   ANN3 (IN = 3{Sig}, HN = 3{Sig}, ON = 1{Sig})  

2 

M2g 
ρ 1 = f (t, CX, S1)   ⇒  ANN1 (IN = 3{Sig}, HN1 = 3{HT}, HN2 = 3{RB}, ON = 1{Sig})  
ρ 2 = f (t, CX, S2)   ⇒   ANN2 (IN = 3{Sig}, HN1 = 3{HT}, HN2 = 3{RB}, ON = 1{Sig})  
ρ 3 = f (t, CX, S3)   ⇒   ANN3 (IN = 3{Sig}, HN1 = 3{HT}, HN2 = 3{RB}, ON = 1{Sig})  

M3s 
ρ 1 = f (t, CX, S1)    ⇒   ANN1 (IN = 3 {Sig}, HN = 3 {Sig}, ON = 1 {Sig})  

ρ 2 = f (t, CX, S1, S2)   ⇒   ANN2 (IN = 4 {Sig}, HN = 4 {Sig}, ON = 1 {Sig})  
ρ 3 = f (t, CX, S1, S3)    ⇒   ANN3 (IN = 4 {Sig}, HN = 4 {Sig}, ON = 1 {Sig})  

3 

M3g 
ρ 1 = f (t, CX, S1)    ⇒   ANN1 (IN = 3{Sig}, HN1 = 3{HT}, HN2 = 3{RB}, ON = 1{Sig})  

ρ 2 = f (t, CX, S1, S2)    ⇒   ANN2 (IN = 4{Sig}, HN1 = 4{HT}, HN2 = 2{RB}, ON = 1{Sig})  
ρ 3 = f (t, CX, S1, S3)    ⇒   ANN3 (IN = 4{Sig}, HN1 = 4{HT}, HN2 = 2{RB}, ON = 1{Sig})  

M4s ρ 1 = f (t, CX, S1)    ⇒   ANN1 (IN = 3{Sig}, HN = 3{Sig}, ON = 1{Sig})  
ρ 2,3 = f (t, CX, S1, S2, S3)    ⇒   ANN2 (IN = 5{Sig}, HN = 5{Sig}, ON = 2{Sig})  

4 
M4g ρ 1 = f (t, CX, S1)    ⇒   ANN1 (IN = 3{Sig}, HN1 = 3{HT}, HN2 = 3{RB}, ON = 1{Sig})  

ρ 2,3 = f (t, CX, S1, S2, S3)    ⇒   ANN2 (IN = 5{Sig}, HN1 = 5{HT}, HN2 = 2{RB}, ON = 2{Sig})  

 
Table 3.2 Nomenclature and architecture of the hybrid models. M1s model corresponds to the 

Model structure 1 Standard ANN, while M3g corresponds to the Model structure 3 
General ANN. IN: Input Nodes; HNi: Nodes in the ith Hidden Layer; ON: Output Nodes; 
Sig: Sigmoid activation function; HT: Hyper Tangent activation function; RB: Radial 
Basis activation function.  
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3.3 Results 
 
 
3.3.1 Training and validation on artificially simulated process data 
 
Table 3.3 shows the least squared errors from each model after 30 cycles of pre-training using 
the deterministic model-generated data-sets (see Appendix A1 for model). The training of 
hybrid models with general neural network units was more difficult than that of the standard 
neural networks. In general, the invested computational time was approximately 1.5 times 
greater for the general  neural network models. 
Additionally, standard neural networks seemed to perform better in the hybrid models than 
the more complex general approaches. Due to this, the general neural network models were 
omitted for further training. Moreover, it should be also noted that, until this step, none of the 
proposed models have properly modeled the theoretical diauxic growth phenomena described 
by the deterministic model (data not showed). 
 
 

Model Training statistics Validation statistics Objective function 

M1s 

Biomass = 0.004018 
Glucose = 0.002938 
Lactose = 0.005181 
Glycerol = 0.002760  

Biomass = 0.025436 
Glucose = 0.002976 
Lactose = 0.030871 
Glycerol = 0.030844 

1.4629 E-2 

M1g 

Biomass = 0.007017 
Glucose = 0.006784 
Lactose = 0.008684 
Glycerol = 0.004692 

Biomass = 0.023833 
Glucose = 0.007436 
Lactose = 0.028900 
Glycerol = 0.028246 

4.8941 E-2 

M2s 

Biomass = 0.006888 
Glucose = 0.004637 
Lactose = 0.009795 
Glycerol = 0.004656 

Biomass = 0.026288 
Glucose = 0.005085 
Lactose = 0.029964 
Glycerol = 0.030546 

4.4926 E-2 

M2g 

Biomass = 0.007248 
Glucose = 0.004725 
Lactose = 0.008278 
Glycerol = 0.004644 

Biomass = 0.028160 
Glucose = 0.004813 
Lactose = 0.034496 
Glycerol = 0.031264 

4.1085 E-2 

M3s 

Biomass = 0.004547 
Glucose = 0.002564 
Lactose = 0.005883 
Glycerol = 0.004196 

Biomass = 0.024919 
Glucose = 0.002623 
Lactose = 0.030023 
Glycerol = 0.030281 

1.9761 E-2 

M3g 

Biomass = 0.004891 
Glucose = 0.004109 
Lactose = 0.005647 
Glycerol = 0.003275 

Biomass = 0.026618 
Glucose = 0.004494 
Lactose = 0.031093 
Glycerol = 0.031443 

2.1446 E-2 

M4s 

Biomass = 0.003511 
Glucose = 0.002935 
Lactose = 0.004667 
Glycerol = 0.002328 

Biomass = 0.025071 
Glucose = 0.002130 
Lactose = 0.030288 
Glycerol = 0.031189 

1.2203 E-2 

M4g 

Biomass = 0.007095 
Glucose = 0.008518 
Lactose = 0.009129 
Glycerol = 0.004995 

Biomass = 0.025267 
Glucose = 0.009800 
Lactose = 0.028180 
Glycerol = 0.028976 

6.0142 E-2 

 
Table 3.3 Hybrid models performance after 30 cycles of training. 
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3.3.2 Training and validation on experimental process data 
 
As planned, 3 experimental runs were carried out, twice each. The data was made available 
for further training of the hybrid models that exhibited better performance, in this case, only 
for the standard type. For validation and training, random points were sorted out from the 
experimental data-sets, who appeared to be noisy. A ratio of 75/25 for Training/Validation 
was fixed. Table 3.4 shows the least squared errors from each selected standard model. It 
seems that the accumulated knowledge obtained first by pre-training the models, helps 
considerably the new training procedure with the experimental data. A higher value for the 
minimum is reached (compared to the pre-trained), but in a very fast procedure (only 10 
cycles). The diauxic growth after the retraining procedure was modeled quite accurate too.  
All alternative standard models revealed to be able to represent very good the experimental 
data (see Figures 3.2-3.5). Therefore, in the lack of experimental evidence, this seemed to be a 
good principle for training a hybrid model. Consequence of this approach is a faster training, 
because some historical data is incorporated to improve the description of the actual situation 
of the system. As shown in Table 3.3, after retraining the model that gave better results was 
M3s_exp.  
As enumerated before, a good description of diauxic growth was successfully achieved by all 
of the four chosen hybrid models. Figure 3.2 depicts the modeled and measured biomass for 
one of the experimental assays. Two phases of growth can be clearly distinguished, the first of 
them from the begin of the cultivation and finishing at about 2.6 h. The second from 2.6 h 
until the end of the fermentation. As can be seen in Figure 3.3 the first substrate to be 
consumed is glucose followed by lactose (Figure 3.4). The consume of the late remains 
reppressed while glucose is present in the reactor, but was activated after 2.6 h, precisely the 
time when there was no more glucose remaining in the system. The diauxic growth 
phenomenon is described accurately through the expected sequential consumption of the two 
substrates, which is elsewhere detailed (Bellgardt, 1991). As can be stated, the four models 
give a good description of these states variables. 
 
 

Model Training statistics Validation statistics Objective 
function 

M1s_exp 

Biomass = 0.028045 
Glucose = 0.016581 
Lactose = 0.047170 
Glycerol = 0.061395 

Biomass = 0.040405 
Glucose = 0.016385 
Lactose = 0.040616 
Glycerol = 0.054187 

1.822087 E-1 

M2s_exp 

Biomass = 0.028524 
Glucose = 0.008667 
Lactose = 0.048160 
Glycerol = 0.060940 

Biomass = 0.039465 
Glucose = 0.011287 
Lactose = 0.043897 
Glycerol = 0.048595 

1.789387 E-1 

M3s_exp 

Biomass = 0.029588 
Glucose = 0.008539 
Lactose = 0.045587 
Glycerol = 0.060279 

Biomass = 0.039737 
Glucose = 0.012050 
Lactose = 0.035053 
Glycerol = 0.047925 

1.721528 E-1 

M4s_exp 

Biomass = 0.027455 
Glucose = 0.017637 
Lactose = 0.046619 
Glycerol = 0.062545 

Biomass = 0.066791 
Glucose = 0.056241 
Lactose = 0.088586 
Glycerol = 0.109199 

1.844107 E-1 

 
Table 3.4 Hybrid models performance after retraining with experimental data. 
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Figure 3.2 Experimental ( ) and simulated courses for biomass concentration for the different 

hybrid models: M1s_exp ( ), M2s_exp (---), M3s_exp (—), M4s_exp (— —). 
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Figure 3.3 Experimental ( ) and simulated courses for glucose concentration for the different hybrid 

models: M1s_exp ( ), M2s_exp (---), M3s_exp (—), M4s_exp (— —). 
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Figure 3.4 Experimental ( ) and simulated courses for lactose concentration for the different hybrid 

models: M1s_exp ( ), M2s_exp (---), M3s_exp (—), M4s_exp (— —). 
 
 
However, in the case of glycerol, no evident and explicit interpretation of its results can be 
expressed, as compared to those for glucose and lactose. Even when the hybrid models seem 
to be able to describe the general tendency of the glycerol concentration, it is suspected that 
the glycerol concentration data was treated as a noisy signal and its influence removed. 
Simutis and Lübbert (1997) already described the role played for a non-relevant variable in 
the modeling performance a given hybrid model. The negative effect of this variable on the 
modeling efficiency is usually filtrated by the artificial neural network contained in the model. 
Nevertheless, in some most extreme cases this variable can even affect critically the overall 
modeling performance of the neural network. 
Figure 3.5 presents the simulated and measured concentration of glycerol for the E. coli 
cultivation and for the different hybrid models. As can be seen, the glycerol was almost 
constant all over the fermentation duration and no clues indicating its consume could be 
determined from these data.  
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Figure 3.5 Experimental ( ) and simulated courses for glycerol concentration for the different 

hybrid models: M1s_exp ( ), M2s_exp (---), M3s_exp (—), M4s_exp (— —). 
 
 
Core of the hybrid model, was the determination of the individual specific substrate uptake 
rates for glucose (ρ 1), lactose (ρ 2) and glycerol (ρ 3). As stated before, the training procedure 
was performed adjusting the neural network weights to produce a reliable kinetics estimator. 
Even when the training was a pure numerical fitting of the state variables, the obtained results 
appear to have a good agreement with some theoretical and experimental evidence, therefore 
a brief discussion of them will follow. 
Figure 6 shows the modeled and measures of the glucose uptake rate (ρ 1). It is clear that for 
three of the four models (exception is model 1), a common typical behavior is achieved. The 
specific consumption rate for glucose is almost constantly high until the glucose concentration 
rapidly decreases to a level near zero at about 2.6 h (see Figure 3.3). Such a comportment is 
described in detail by Bellgardt (1991) for the case of an E. coli cultivation with glucose and 
lactose as substrates, which are consumed sequentially. Bellgardt also points out that on this 
phase the cells reach their maximum growth rate possible under the provided conditions for 
glucose. 
The last statement is confirmed when considering that the main influence to the specific 
growth rate (Equation 3.5) in this stage is given precisely by the specific consumption rate for 
glucose, ρ 1. At the time when the glucose is exhausted, the contribution of the glucose uptake 
rate (ρ 1) to the specific growth rate is no longer important. So it can be stated here, that the 
first phase of the cultivation is accurately and exclusively described by the specific glucose 
consumption rate contribution, as was originally meant by the formulation of the majority of 
the models. Unfortunately, in the case of model 1, the situation can not be likely explained. 
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Figure 3.6 Experimental ( , ) and simulated courses for the glucose uptake rate (ρ 1) for the 

different hybrid models: M1s_exp ( ), M2s_exp (---), M3s_exp (—), M4s_exp (— —). 
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Figure 3.7 Experimental ( , ) and simulated courses for the lactose uptake rate (ρ 2) for the 

different hybrid models: M1s_exp ( ), M2s_exp (---), M3s_exp (—), M4s_exp (— —). 
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In reference to the lactose uptake rate (ρ 2), similar explanations can be raised as those for 
glucose. Figure 3.7 depicts the modeled and measured data for the lactose uptake rate. It 
seems that after a period of repression (due to the presence of glucose), the lactose 
consumption is activated after the cells adapted themselves to consume this new carbon 
source. This adaptation goes through a acceleration phase until an apparently second 
maximum growth rate is reached. No measurable contribution to the growth rate is given 
during the glucose-repressed period for lactose, even when some of the models predict such a 
situation. When lactose becomes limiting, the contribution of the lactose uptake rate (ρ 2) to 
the specific growth rate begins to decay. Again, as in the case of glucose, the main influence 
to the growth rate in this stage is given by the specific consumption rate for lactose,  ρ 2.  
No discussion about the specific consumption rate for glycerol is made here, because, as 
stated before, there was no experimental evidence of glycerol consumption.  
Finally, Figure 3.8 presents the measured and modeled specific growth rate (µ) for each of  
the models. Three of them evidence a similar behavior with the exception of model 1. The 
consistency of these results is based on the particular contributions coming from the different 
specific substrate uptake rates. The results also manifested the advantage of the inclusion of 
available theoretical knowledge. Between all the proposed and retrained models, model 2 and 
3 can be highlighted as the best suited among all, not only because of their better performance 
(see Table 3.4), but also due to their well defined structure based in previous theoretical 
works. 
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Figure 3.8 Experimental ( , ) and simulated data for the specific growth rate (µ) for the different 

hybrid models: M1s_exp ( ), M2s_exp (---), M3s_exp (—), M4s_exp (— —). 
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3.4 Conclusions 
 
Transfer of knowledge from a theoretical deterministic model into a hybrid model is of great 
advantage in the formulation of the latter. To describe a real process, the approximation of an 
artificial neural network as adaptive non-linear estimator of bioprocess kinetics has been used 
before (Montague and Morris, 1994). However, some clear advantages are acquired while 
coupling first principles balances and black box models, like the presented here. The first of 
these advantages is the easiness to set down the kinetics of the model by means of a relative 
simple neural network. A second advantage is the direct inclusion of the possible interactions 
between the states as part of the model’s structure. The results also showed how flexible such 
models can be: in the case of noisy signals, they can even be filtered out at no evident cost in 
the model accuracy.  
 
 
3.5 Nomenclature 
 
CX  Biomass concentration   [g L-1] 
S1  Glucose concentration  [g L-1] 
S2  Lactose concentration   [g L-1] 
S3  Glycerol concentration  [g L-1] 
µ  Specific growth rate   [h-1] 
ρ 1  Specific glucose uptake rate  [g g-1 h-1] 
ρ 2  Specific lactose uptake rate  [g g-1 h-1] 
ρ 3  Specific glycerol uptake rate  [g g-1 h-1] 
YX/S1  Glucose yield coefficient  [g g-1] 
YX/S2  Lactose yield coefficient  [g g-1] 
YX/S3  Glycerol yield coefficient  [g g-1] 
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Chapter  4 

 
 
 
 
 
 

Hybrid model-based 
optimization of the production of the 

 viral capsid fusion protein VP1-DHFR 
 
 
 
 
 
 
 
ABSTRACT 
 
A key requirement during the development of new production processes for recombinant 
proteins is to reduce the development time as far as possible. This obliges to bring the number 
of experiments to a minimum and to make most efficient use of a priori knowledge and the 
data from the remaining experiments. This chapter presents an approach that is based on 
hybrid process models for the fermentation part of these systems that optimally combine a 
priori knowledge and information from the available process data. Additionally, making used 
of the aforementioned model, an evolutionary model-based optimization technique is 
presented. The method is tested and validated on the production of the native fusion protein 
VP1-DHFR with E. coli as host microorganism. The optimization is essentially an 
information driven procedure: it uses all current available knowledge to formulate a 
mathematical representation of the bio-system which is used later to maximize the total 
amount of the viral protein complex at the end of the fermentation, optimizing the fed-batch 
working variables. The use and effectiveness of a hybrid model as a suitable convenient 
mathematical formulation for the bio-process is demonstrated too. Choosing a batch 
fermentation as reference and considering that both processes were run under the same 
optimization constrains. The amount of recombinant protein obtained by using this strategy, 
increased almost five-fold compared to the optimized conventional batch culture. 
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4.1 Introduction 
 
The reduction of the invested time for developing and improving a given process is a 
fundamental demand in today’s biotechnology being also a critical issue in biochemical 
industries, in particular in connection with processes in which new recombinant proteins are 
to be produced. Direct consequence of this challenge is the search for optimal solutions that 
allow, at the same time, a diminution in the number of expensive experiments too. Here it is 
considered the transfer of the product formation part of these processes from the biochemical 
or microbiological laboratory into a pilot scale fermenter. In the industry, this development is 
usually performed on a trial-and-error base, where a considerable number of experiences is 
indispensable to develop an efficient cultivation process. In order to reduce the development 
expenditure (time and cost) the number of such experiments must be kept as small as possible. 
This is only possible by systematic exploitation of all available knowledge about the process, 
careful design of the necessary experiments and exhaustive analysis of the data obtained 
therein. 
The determination of optimal strategies has been carried out in different ways to improve fed-
batch bio-processes. If a mathematical model of the system is available, all these processes 
can be optimized employing the method of Pontryagin (Pontryagin et al., 1962). The 
application of the maximum principle is mainly restricted by the complexity of the model and 
the constrains of the process. Its application is specially complicated when considering the 
case of microbial systems with highly non-linear dynamics.  
Two developments performed in recent years are notable respecting optimizing bio-processes. 
The first is that the a priori knowledge needs not necessarily be represented by classical 
mathematical models based on the mass balances and kinetic expressions of the Monod-type. 
It was shown that those parts of these models that are not completely understood, e.g. models 
for the process’ kinetics, may be better represented in a data-driven form, e.g., by artificial 
neural networks, while the well known mass balances are still formulated by differential 
equation systems (Psichogios and Ungar, 1992; Schubert et al., 1994; Van Can et al., 1997). 
Such hybrid models, however, are believed to need extended data records for the training of 
their neural network components. 
Artificial neural networks by themselves have been lately utilized with relatively high success 
for system modeling in biotechnology (Lübbert and Simutis, 1994; Montague and Morris, 
1994). These black-box models associate certain known and measurable process input 
variables to other output variables of the process, whose values are usually not known or not 
measurable. A complex relationship between them is supposed to occur, but would be only 
described by the neural network after a proper training procedure. 
The second development is the evolutionary process optimization procedure proposed by 
Galvanauskas et al. (1998). This procedure iteratively improves the process description while 
approaching the optimal feeding profile, or more generally, control profiles in fed-batch 
cultivation processes. As the data records from the process under consideration are very 
scarce at the beginning of such a development, this method was based on classical model 
approaches. This technique guarantees a quick approximation to optimal process control 
profiles. 
In the present case, a model based optimization technique is applied to the production of a 
recombinant native protein. It consist in an iterative sequence of model identification and/or 
improvement followed by an optimization of the control variables using the identified model. 
This sequence is in agreement with the EOT (Estimation-Optimization-Task) methodology 
founded by Loeblein et al. (1999) and with the aforementioned experimental design of bio-
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processes proposed by Galvanauskas et al. (1998). However, the main difference lays in the 
core of the approach, which uses a hybrid model to describe the bio-system. 
As discussed before, the so called hybrid models are those based on a combination of a neural 
system and first principle formulations. The mass balance, in form of a differential equation 
system, can be complemented with a neural network that characterizes a badly known or, in 
some cases, very complex and high non-linear kinetic aspects of the bio-system. It is a 
common practice to use real data to validate the hybrid model ability to replicate the process 
under consideration. Validation is done presenting the hybrid model a dataset not used for 
identification purposes and later to evaluate its performance under this situation. Hybrid 
models were shown to be particularly useful in describing detailed interrelationships between 
variables that influence the profit of the production process. From this point of view, it would 
be of advantage to use hybrid models to extend the classical Monod-based approaches. The 
question is whether such hybrid models can be used from the beginning of such a 
development, i.e. even when only fairly scarce data are available. This problem is discussed in 
this work and the results are demonstrated on the example of a system producing the 
recombinant virus capsid fusion protein VP1. 
Virus particles are considered interesting vectors for gene transfer. Most parts of the 
envelopes of virus particles are made from proteins, the capsid proteins. Such capsids can be 
produced artificially using appropriate recombinant protein expression systems. The example 
considered in this work is the fusion protein VP1. The protein is formed by the viral capsid 
protein 1 (VP1) and the dihydrofolate reductase (DHFR), which is inserted in the DE-loop of 
the protein. The fusion protein was expressed by E. coli bacteria. Such a fusion protein has the 
additional convenience that the concentration of the capsid protein can be measured via the 
activity of the attached enzyme. Measuring the enzymatic activity of the insert gives 
quantitative evidence of the expression of the native VP1 fusion protein, that serves to 
investigate the influence of the insert in the formation of pentamers (Braun et al., 1999). 
 
 
4.2 Model-based optimization and process description 
 
The optimal estimation of control trajectories is a subject of crucial importance for the 
effective and economical operation of fed-batch fermentations. Such an estimation is specially 
desired for those cases where the operator can directly influence the process performance. The 
amount of product, its quality or even the reduction of fermentation duration are process 
variables subsceptible to be enhanced. Usually, the associated dynamical optimization 
problem can be solved with different methods coming from the optimal control (Wu et al., 
1982; Ponnuswamy et al., 1987; Takamatsu et al., 1988; Chang and Lai, 1992; Denbrigh, 
1968; Edgar and Lapidus, 1972; San and Stephanopoulos, 1989; Lee and Ramirez,  1996). In 
general, it can be considered that the determination of optimal control is a constrained 
optimization problem. However, the solution of this problem is a very difficult task, mainly 
due to the complex kinetics and non-linear dynamics correlated with the growth of the living 
microorganisms. Additionally, in most of the cases, the profit functional defining the 
optimization task is also a complex function.  
Moreover, the use of classical methods like dynamical programming or Pontryagin’s 
maximum principle is commonly restricted to simple models (Pontryagin et al., 1962; Park 
and Ramirez, 1988). Such a restriction arises mainly due to the mathematical expenditures 
required for its implementation. However, the description of biotechnological processes and 
their associated constraints problem has been done using highly non-linear complex models. 
This is the main reason why numerical optimization, based on a process model, is employed 
regularly to estimate the optimal trajectories of control variables. The accomplishment of the 
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optimization task is done by transforming the problem into an algebraic system. After this 
transformation, the state and control variables are parameterized and therefore, suited to be 
solved numerically. Concerning the adjoined problem in the identification of parameters, 
random search techniques are gaining more and more attention, because they have proved to 
be fairly reliable and easy to implement, due to their uncomplicated evolution concept. 
Simutis and Lübbert (1997) compared different random search methods applied to the 
optimization of the working conditions in technical bio-processes. Fundamental in these 
methods is that trajectories of the control variables can be formulated via a general 
mathematical function, like a polynomial representation. The free parameters of the 
representation can be varied in a random fashion until a predefined optimization criterion is 
fulfilled.  
The described general model-based technique leads to an optimization scheme, which consists 
mainly of two parts. In the first step, a model for the process is established. This is done either 
through the identification of its parameters or through the modification of its structure after 
analyzing the available information. In the second part, the actualized model is considered 
adequate for numerical optimization of the control variable trajectories. As an example of this 
procedure, the sequence of identifying a model and optimizing the fed-batch conditions of a 
chemical process is reported by Loeblein et al. (1999). This strategy is known as Estimation-
Optimization-Task (EOT) and its conceptual frame is presented in Figure 4.1. 
The depicted EOT method, when applied and validated in an iterative manner, gives an 
approximation of the optimum state of the process. However, it should be taken into account 
that the actualized model is considered appropriate within a given working domain and it is 
extended for the actual optimization step. Resuming, the EOT method considers the 
accumulated knowledge from previous experiments and the information concerning the actual 
optimization domain. This technique is in accordance with the experimental design of bio-
processes proposed by Galvanauskas et al. (1998), which utilizes a process design method, 
but oriented to the performance of the process itself. 
Following essential aspects of the delineated procedures can be highlighted: 
 

1. The choice of an experimental domain where the process can be enhanced. Its basis 
is a predefined profit function inside the optimization framework. 

2. Existance of a model’s accurancy criterium. The fulfillement of this criterium is 
basic to assure accurate long term prediction. 

3. Cyclical calculation of optimal control trajectories. This strategy fulfills the moving 
horizon principle of the model predictive control (Garcia et al., 1989) and can be 
applied for fed-batch processes with the additional reduction of the total process 
development time. 

 
The EOT technique is also applicable in some situations that require the use of black-box 
models. However, it can be easily extended to cases where black-box representations are only 
single components of a more general model, like for example hybrid approaches. The 
numerical solution of the optimization problem produces a long term prediction for the 
process course. It supplies additionally an important criterium for the evaluation of the 
accurancy of the black-box or hybrid model. 
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Figure 4.1 Schematization of the Estimation-Optimization-Task (EOT) by Loeblein et al. (1999). 
 
 
To investigate the application of the described optimization techniques in a fermentation, the 
production of polyomavirus-like particles was taken as example. This is an already well-
characterized system (Salunke et al., 1986; Eckhart, 1991), established as a model system to 
investigate the gene transfer. Murine polyomavirus is a subspecies of the papovaviridae 
family which are non-enveloped, double-stranded DNA viruses with circular genomes of 5.3 
kb in size. The crystal structures of VP1 in the virus shell as well as a proteolytically 
truncated form of pentameric VP1 have been reported recently (Stehle et al., 1994; Stehle and 
Harrison, 1997). In vitro studies demonstrated that purified VP1 can form virus-like particles 
consisting of 72 pentamers (Salunke et al., 1986). This feature makes the protein attractive for 
in vitro packaging of DNA (Slilaty et al., 1982) and gene transfer experiments (Forstova et 
al., 1995). The capsomer VP1 can be produced in recombinant form in Escherichia coli cells. 
In the present case, Escherichia coli BL21 was utilized as host system. The microorganism 
contains an ampicillin resistant plasmid pBR322, responsible for the expression of a viral 
capsid protein using a tac-promotor. The over-expression of the recombinant protein was 
induced employing 1.5 mmol of IPTG (Isopropyl β-D-Thiogalactopyranosidase). After 
induction, the viral capsid protein of the murine polyomavirus (VP1) is fused with the enzyme 
dihydrofolate reductase (DHFR, EC 1.5.1.3). The native recombinant protein complex 
(VP1+DHFR) possesses a measurable enzymatic activity, which can be taken as a mass 
equivalent of the product. Therefore, any essay directed towards the determination of the 
DHFR activity should be interpreted as a quantitative description of the produced protein 
amount and that is why, the product amount is characterized hereon in units of activity (U). 
Regarding the optimization, Galvanauskas et al. (1998) proposed to proceed iteratively. In 
each cycle one makes use of the available knowledge about the process under consideration. 
This knowledge is taken into account to propose an optimal set of control profiles and to 
predict the behavior of the process. The control profiles are immediately applied in a 
subsequent experiment, in order to validate the assumptions formulated in the model. 

Fermentation 

Model identification (Estimation) 

Process control trajectory 
(Optimization) 

uncertanty / disturbances 

past and present inputs 

future inputs 

Estimation  Optimization  Task  (EOT) 
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The first optimization step was based on a classical unstructured model for the batch 
production of VP1-DHFR proposed by Volk et al. (1998). The model consisted of a mass 
balance for the different state variables of the system (biomass, substrate and product activity) 
complemented by classical Monod-like growth kinetics with temperature dependence. The 
protein production rate term was described by a Moser-like kinetic term correlated with the 
specific growth rate and the specific protein activity. The protein production rate and the 
specific protein activity were also complex functions of the temperature (see Appendix A2). 
Volk et al. (1998) showed that the induction time (tI) and the temperature after the induction 
with IPTG were the most important optimization variables to enhance the productivity of the 
system. 
In the present case, the fermentations were carried out under fed-batch conditions trying to 
avoid effects of substrate inhibition and to bring an additional increment in the productivity 
by means of an optimal substrate feeding function. Optimization goal (JOPT) was thus to 
produce as much of the native protein as possible within a predefined cultivation time, tf:  
 
 JOPT =  P(tf) W(tf) → max       (4.1) 
 
where P(tf) is the product activity per weight and W(tf) the culture weight. The key 
operational variables were the feeding rate F(t) and the initial concentrations of substrate and 
biomass. Since the development of the particular product required the addition of the inducer 
IPTG, one extra variable to be optimized is the induction time, tI. 
Also, due to their capability to properly describe complex non-linear relationships, an 
artificial neural network was employed to compute the optimal feeding profile. In this case, 
the neural network generated a complex time function F(t) that maximized the profit function 
described by Equation 4.1. The complete mathematical description of the bio-system working 
under fed-batch conditions is detailed in the Appendix A2. 
To determine the optimal feeding profile an evolutionary technique was used: the chemotaxis 
algorithm (San and Stephanopoulus, 1989; Simutis and Lübbert, 1997). This was 
implemented for training the neural network that defines the feeding function. The training 
was carried out on the HybNet Software (Oliveira et al., 1996; Oliveira et al., 1998) and a 
description of the method can be found in the Materials and Method chapter, section 2.2.2.  
The optimal induction time (tI) was also determined with the chemotaxis algorithm (see 
Figure 4.2). The parameter initial guess was defined as the half of the total fermentation time 
(0.5 • tf). The parameter could be changed in the interval, tI ∈ [0,tf].  
A temperature profile consisting of two phases was chosen for the cultivation (see Figure 4.2). 
Before induction, the temperature was maintained constant at 37°C, i.e. at the temperature of 
the maximal specific growth rate (µmax|37°C) for E. coli. After induction and until the end of the 
fermentation, the temperature descended linearly from 37°C to 25°C. 
The optimization variables found with the described methodic are presented in Figure 4.2. An 
experimental fed-batch fermentation run was carried out using these profiles. The results are 
depicted in Figure 4.3, where modeled variables, biomass and glucose, together with their 
measured counterparts can be seen. 
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Figure 4.2 Optimal induction point and temperature-, feeding rate trajectories for the fed-batch 

production of VP1-DHFR. 
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Figure 4.3 Predicted () and measured (•) values for biomass (A) and glucose (B) concentration, 

after the first fed-batch optimization. 
 



4. HYBRID MODEL-BASED OPTIMIZATION OF THE PRODUCTION OF THE 
VIRAL CAPSID FUSION PROTEIN VP1-DHFR 

 34 

 
 
 
Concerning the model, an apparent deviation between predicted and experimental 
measurements was constated. The model was obviously not able to adequately describe the 
features of the fed-batch fermentation and should be improved. Especial attention was paid to 
the specific growth rate term, which was suspected to play the key role of this discrepancy. 
However, in agreement with the results reported by Volk et al. (1998), the induction time was 
situated at the end part of the fermentation. Both optimization experiences exhibited long 
lasting pre-inductive phase with unrestricted growth of biomass on the substrate. After the 
induction with IPTG, the product was formed mainly as native protein. It is suspected that the 
decreasing temperature displaces the equilibrium between the native product and its inactive 
counterpart, protein in inclusion bodies (Tsai et al., 1995). It seemed that the proposed 
optimization procedure favored the accumulation of the native fusion protein. 
Moreover, the experimental run supplied some additional useful information coming from the 
analysis of the exhaust gases, oxygen and carbon dioxide. These process data has been 
traditionally used for the dynamic indirect measurement of the specific growth rate, making 
use of relevant correlated variables like the Oxygen Uptake Rate, OUR and the Carbon 
dioxide Production Rate, CPR (Chéruy and Flaus, 1994). Therefore, it was advisable that any 
modification of the model towards the improvement of its prediction capabilities, should also 
include the information delivered by the gas analysis of the outflow fermentation gases. One 
alternative method to do this, was the so called “hybrid modeling”, discussed in the next 
section. 
 
 
4.3 Hybrid modeling of the production of the fusion protein 
 
As stated by some authors (Psichogios and Ungar, 1992; Schubert et al., 1994; Van Can et al., 
1997), the main feature of the so called hybrid modeling approach is the combination of  
“white box” models (containing the available knowledge usually in form of mass balance 
equations) and “black box” models like ANN (describing the unknown or very complex 
aspects like bio-system kinetic). The resulting hybrid model can be structured either in a 
parallel or in a serial architecture, the last of them, to be used in this work, is represented in 
Figure 4.4. 
 

 
 
Figure 4.4 Serial architecture for a hybrid model consisting on two components: a “black-box” 

model (neural network) and a “white-box” model (mass balance equations). 
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One of the advantages using the hybrid modeling technique was the easiness to incorporate all 
available information (state and on-line measured correlated variables) into a robust “black-
box” component that can completely replace the formulation for the specific growth rate (see 
Appendix, Eq. A2.10). This component was a feed-forward neural network with a single 
hidden layer (6 nodes with sigmoid activation functions), that was thought to be able to 
improve the actual estimation of the specific growth rate, µ. The approach makes use of all 
those variables which presented a significant influence in the estimation of specific growth 
rate in a direct or indirect manner. Following variables were tested as the most important 
input elements of the ANN (see Nomenclature): t, CX, S, P, pO2, T(t) and F(t). 
OUR and CPR can be measured as well as modeled. The specific growth rate can be 
formulated also as an indirect function of the measured OUR, CPR and viceversa. Such kind 
of formulations are usually described as software sensors or shorter, soft-sensors. As 
described by Chéruy and Flaus (1994), the specific growth rate can be dynamically 
determined based on OUR and CPR measurements from the expressions: 
 

OUR (t) = β1 µ CX + β2 CX      (4.2) 

CPR (t) = γ1 µ CX + γ2 CX      (4.3) 

 
The basic idea in use of these soft-sensors was to force convergence of in the estimation of the 
specific growth rate. This can be done including the influence of the model to measurement 
error of OUR and CPR into the identification procedure for the specific growth rate. This 
function is consistent insofar the modeling error of the states variables and those of the OUR 
and CPR tend to be minimal. 
The identification procedure of the hybrid model consists on estimating the specific growth 
rate function that minimizes a given modeling error criterion. This criterion can be 
mathematically defined by: 
 

 J IDEN (y, Y) ≡ ∑∑
= =










 −M

j

N

i jj

ii Yy
1 1

2

KN
→ min!      (4.4) 

 
where y are the measured OUR, CPR and state variables; Y are the simulated OUR, CPR and 
state variables; i is referred to the number of N available data; j is referred to the state 
variables under consideration and KN are pseudo-norms for the M single state variables 
together with OUR and CPR. The introduction of a pseudo-norm was done to constrict the 
influence of the single terms (weighting technique), because their real values lie in different 
numerical ranges. The values of these pseudo-norms were determined empirically.  
The chemotaxis algorithm was also used to identify the parameters of the neural network and 
those of the modeled OUR and CPR. The data used for calculating the identification criteria 
were the measured data coming from the fed-batch optimization. The whole identification 
procedure is depicted in Figure 4.5. 
Estimated and measured variables obtained after the identification of the hybrid model are 
shown in Figure 4.6. As can be asserted, the results were satisfactory and much better than the 
case of the Monod-type approach of the specific growth rate. The figure exhibits the high 
accuracy achieved in the estimations of the specific growth rate and the correspondent state 
variables CX, S and P.  
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As pointed out before, the computations to be performed during the optimization did not only 
led to improved control profiles for the key parameters, they also provided an enhanced 
dynamic process model. This could not only be used to estimate the state variables during the 
off-line optimization. It also forms the base for on-line state estimation and software sensors 
for various other variables.  
An example is provided in Figure 4.7. Here a software sensor for the current oxygen uptake 
rate and for the partial pressure of dissolved oxygen is displayed. This example was chosen 
since the oxygen uptake rate can also be calculated from the off-gas analysis, therefore it was 
possible to compare the accuracy that could be obtained with the software sensors. The same 
accuracy of an indirect measurement was also achieved for the variable CPR (not showed). 
Hence, it was possible to monitor these variables during the production process quite 
accurately. 
 
 

 
 
Figure 4.5 Schematic representation of the identification procedure of the hybrid model. 
 

Noise 

Process 

Balance 
equations 

Neural 
network 

Modeling 
error 

+ 
_ 

Y 

y 

J IDEN → min 
Identification 

method 

u 

x 
µ 

HYBRID MODEL 



4. HYBRID MODEL-BASED OPTIMIZATION OF THE PRODUCTION OF THE 
VIRAL CAPSID FUSION PROTEIN VP1-DHFR 

 37 

0 1 2 3 4 5 6 7 8 9 10
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DC

BA

Sp
ec

ifi
c 

gr
ow

th
 ra

te
 (h

-1
)

Time (h)
0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

Time (h)

Bi
om

as
s (

g 
kg

-1
)

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Time (h)

Su
bs

tra
te

 (g
 k

g-1
)

0 1 7 8 9 10
0

200
400
600
800

1000
1200
1400
1600
1800

Time (h)

Pr
ot

ei
n 

ac
tiv

ity
 (U

 k
g-1

)

 
Figure 4.6 Identified () and measured (•) values for the specific growth rate function (A) and its 

state correlated variables: biomass (B) and substrate (C) concentration, and protein (D) 
activity. 
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Figure 4.7 Modeled (- - - ) and measured () oxygen uptake rate (A) and pO2 (B) variables. 
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4.4 Optimization using a hybrid model 
 
To justify the use of a hybrid model as an alternative to classical models, once the model was 
identified, it was considered to be suited to optimize the operating conditions of the 
bioprocess. Just like it was described before, the substrate feed rate and the induction point 
were optimized, but this time using the identified hybrid model. The temperature profile is a 
function of the optimized induction time. Figure 4.8 presents a schematic representation of 
this optimization cycle procedure.  
After calculation, the new optimized variables were set up in a fermentation (see Fig. 4.9) and 
the experimental data obtained was used for independent validation of the hybrid approach. In 
this new optimization cycle, the induction time was displaced towards the end of the 
fermentation. As consequence, longer pre-inductive phases were obtained in comparison to its 
former two optimized fermentations. It seemed that with the use of the hybrid model the 
accumulation of biomass in the pre-inductive phase of the fermentation was forced . 
Regarding the substrate concentration and especially its high concentration at the end of the 
fermentation, the phenomenon can be explained through the defined optimization task 
(Equation 4.1). As stated before, the optimization task was to maximize the total amount of 
product at a given predefined time, but not considering the presence of substrate at the end of 
the fermentation. A future optimization cycle may then consider the simultaneous 
optimization of the substrate concentration on the post-inductive phase. 
Concerning the use of the aforementioned evolutionary optimization strategy, Figure 4.10 
compares the different time trajectories obtained for the profit function from batch to fed-
batch working conditions (using a classical model) and, under fed-batch conditions, from 
using a classical to a hybrid approach. The increase in the process performance from the 
referred optimized batch fermentation to the first optimized fed-batch was about a factor of 
2.6, while an improvement of about 1.8 was obtained from one fed-batch experiment to the 
next. 

 
 
Figure 4.8 Single optimization cycle making use of an identified hybrid model. 
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Figure 4.9 Recalculated optimal induction point and temperature-, feeding rate trajectories for the 

fed-batch production of VP1-DHFR based on a hybrid model approach. 
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Figure 4.10 Comparison of the time trajectories for the profit function with the sequential 

optimization steps from the evolutionary optimization strategy. 
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Just like in the first optimization step, a validation of the current model was necessary. This 
could be done employing the results coming from the optimization using the hybrid approach, 
which are depicted in Figure 4.11. The predicted values for the most important state variables 
of the process achieved good accuracy when compared to their experimental counterparts. 
This was especially clear in the case of substrate concentration trajectory. In the case of the 
rest of the product concentration there existed a process-model mismatch between the 
measurement and estimation. This situation was thought to be caused by a small error trend in 
biomass prediction at the end of the fermentation, precisely where the post-inductive phase 
took place. 
The described information-driven optimization can be brought into play in an iterative fashion 
towards the establishment or improvement of any given bio-process. Each cycle consisted on 
the following steps: 
 

1. Actualization of the model of the bio-system. This is done either modifying the 
structure of the model or adjusting its parameters using available a priori knowledge 
and concrete process data.  

2. The actualized model may be set up for optimization purposes. In the present case, 
the optimization goal was to achieve a maximal amount of protein at the end of the 
fermentation. 

3. Carry out a validation experiment. This would be used to independently validate the 
accuracy of the model approach. The collected data is also suited for improvement of 
the model in a new optimization cycle. 

 
Usually only a few of these optimization cycles were needed to establish a proper and faithful 
model structure. If necessary, for the most part of the applications some later improvements 
can be reached only by re-identification of the model’s parameters. 
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Figure 4.11 Predicted () and measured (•) values for the specific growth rate (A) and its correlated 

state variables biomass (B) and substrate (C) concentration, and protein(D) activity for 
the fed-batch optimization using a hybrid model approach. 

 
 
4.5 Conclusions 
 
Exemplified on the production of the recombinant protein complex VP1-DHFR with E. coli, 
it was demonstrated that with the use of an information driven optimization, it can be possible 
to reduce the number of experiments and human effort required for optimizing a fermentation. 
This evolutionary optimization procedure bases its functioning principle in the recurrent 
incorporation of knowledge into a formulation that serves to model the bio-system under       
consideration. In the present case, the optimization task was to maximize the final amount of 
the native form of the VP1-DHFR protein complex. This was done manipulating the process 
working conditions through control variables that affect directly the protein expression. To 
integrate the available information, artificial neural networks were utilized to formulate the 
specific growth rate. The neural network unit (representing only the high non-linear kinetics) 
was part of a more general hybrid model of the fed-batch fermentation. Optimized were the 
substrate feed rate and the induction time for expressing the protein. A linear temperature 
profile as function of the induction time was also utilized to optimize the fed-batch process. 
The hybrid approach was demonstrated to be suited for the proposed model-based 
optimization. An additional advantage in the use of hybrid models is the reduction of the 
amount of information required for proper training, in comparison with stand-alone neural 
network models. Random search algorithms were used in the identification of the hybrid 
model and in the estimation of the control variables. No apparent numerical instabilities or 
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restrictions in the number of these control variables or their complexity seemed to be present 
using these methods. The performance of the system was rapidly increased with just a few 
experiments following sequential optimization steps. Each new optimization cycle was used 
simultaneously as validation criterion for the accuracy of the current model approach. 
Resuming, during the proposed procedure the process model was improved in an evolutionary 
way. This means that:  
 

1) The model was changed using currently available knowledge and validated on the 
collected measurement data.  

2) The model able to describe the actual available data set, was selected to: 

a) Form the base of an accurate bio-process description.  

b) Propose the optimal control profiles for the next validation experiment and thus 
to improve the process performance. 

 
 
4.6 Nomenclature 
 
 
CPR  Carbon dioxide Production Rate   [mg kg-1 h-1] 
CX  Biomass concentration    [g kg-1] 
F  Feed rate      [kg h-1] 
J IDEN  Identification criteria 
J MOD  Optimization goal     [Units of activity] 
OUR  Oxygen Uptake Rate     [mg kg-1 h-1] 
P  Product concentration     [Units kg-1] 
pO2  Partial  pressure of dissolved oxygen   [%] 
r  Vector of kinetic variables 
S  Substrate concentration    [g kg-1] 
t  Time       [h] 
tF  Time at the end of fermentation   [h] 
tI  Induction time      [h] 
T  Temperature      [°C] 
u  Vector of input/control variables 
W  Liquid reaction weight    [kg] 
x  Vector of state variables 
y  Vector of modeled outputs variables  
Y  Vector of measured outputs variables 
YX/S  Yield coefficient Biomass/Substrate   [g g-1] 
 
Greek symbols 
 
β1  Model constant for CPR    [mg g-1] 
β2  Model constant for CPR    [mg g-1 h-1] 
γ1  Model constant for OUR    [mg g-1] 
γ2  Model constant for OUR    [mg g-1 h-1] 
µ  Specific growth rate     [h-1] 
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Chapter  5 

 
 
 
 
 
 
 

Online modeling and optimization 
 of the production of the viral capsid 

 protein VP1-DHFR using a neuro-fuzzy approach 
 
 
 
 
 
 
 
 
 
 
ABSTRACT 
 
A hybrid model to describe the production of the viral capsid protein VP1-DHFR is presented. 
This consists in set of differential equations describing the mass balance for the bio-process 
complemented with artificial neural network or neuro-fuzzy components that describe the 
corresponding kinetics. Considering the specific growth rate as the key variable for the 
process, this was mathematically formulated with a feed forward neural network. This model 
acts essentially as a dynamical adaptive system, able to learn from the online measured 
process variables. This kind of online learning method improves the gain of knowledge at 
high learning rates, overcoming slow convergence during the initial training stages. Heuristic 
knowledge about the complex protein production was formulated through a neuro-fuzzy 
expert system using a set of simple rules-of-thumb. Using this approach it can be shown that 
increased productivities are obtainable with the online-identified hybrid model, as compared 
to optimizations employing conventional approaches. These results exhibit the potential for 
application in the biochemical industry. Furthermore, the generality of this method can be also 
extended to a variety of processes and products. 
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5.1 Introduction 
 
The use of recombinant protein systems for producing new drugs in the pharmaceutical 
industry has gained much attention in the last time. Particularly, evolutionary model 
supported process design has been applied recently in an increasing number of such 
production processes. In the early stages of the development, simple heuristic kinetic 
approaches, like Monod formulations, meet the initial accuracy requirements to roughly 
describe the kinetics of the process. However, when further development proceeds, it is usual 
that simple extensions to inhibitions or repression terms do not suffice. Under this 
consideration, instead of going into a long term theoretical investigation of the metabolism of 
the bioprocess, the alternative of a reliable data driven procedure is chosen. This procedure is 
advantageous in terms of reducing the development time and also by increasing the 
benefit/cost ratio. 
The kinetic expressions for the biochemical conversion rates within the balance equations 
system are thus modeled by an artificial neural network. In order to incorporate already 
available heuristic knowledge about the protein development, the corresponding kinetic 
component is complemented with heuristic rules-of-thumb formulated by means of a simple 
neuro-fuzzy expert system. The parameters of the neuro-fuzzy kinetic model were identified  
within the environment of the entire balance equation system by means of a random search 
procedure, the chemotaxis algorithm. The main advantage of this type of network 
representation is that the results of the training can be made more transparent to the process 
engineer. The modeling procedure is illustrated at the example of the viral capsid protein 
construct (VP1-DHFR), which is expressed in recombinant E. coli. This construct is formed 
by the viral capsid protein 1 (VP1) and the insert dihydrofolate reductase (DHFR). The 
production process consists of two phases: a pre-inductive stage, where the biomass is 
maximized and a post-inductive phase, where the over-expression of the native recombinant 
protein is induced employing IPTG (Isopropyl β-D-thiogalactopyranosidase). The process is 
run in fed-batch operation modus and under optimized induction time, substrate feeding rate 
and temperature conditions. 
 
 
 
5.2 Online state estimation of the bioprocess 
 
The identification procedure of the system was based on the estimation of one of the key 
variables for the bioprocess, i.e. the specific growth rate, µ. For that purpose, the specific 
growth rate was mathematically formulated via a feed forward neural network with 4 inputs 
(the modeled state variables biomass, substrate, protein and temperature) and a single hidden 
layer. The neural network model was complemented with a lag phase term. The neural model 
acts essentially as an adaptive system able to learn from the online measured process variables 
mentioned before. Concerning the specific protein production rate, available heuristic 
knowledge was incorporated in form of five rules-of-thumb implemented through a fuzzy 
artificial neural network system. The complete hybrid model of the system was formed by 
coupling the neural network and the neuro-fuzzy sub-models into the mass balance equation 
system of the bioreactor. Figure 5.1 depicts the structure of the hybrid model. 
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Figure 5.1 Schematic representation of the hybrid model for the production of the viral capsid 

protein. The vector u represents the on-line measured or control variables (temperature, 
CO2, etc.), the vector x  represents the modeled state variables and the vector y, the output 
variables of the system after integration. 

 
 
The training of the neural network component of the hybrid model occurred exclusively 
online. This was possible because data from the sampling/measuring procedure of three state 
variables (biomass, substrate and weight) were available at regular intervals during the course 
of the fermentation. This online training improved the gain of process knowledge at high 
learning rates, overcoming the slow convergence during the initial training stages (Kim and 
Lewis, 1998). Therefore, the methodology presented the further benefit of reducing the 
process development time and increasing the benefit/cost ratio. 
A random search technique, the chemotaxis algorithm (Simutis and Lübbert, 1997), was used 
to identify the weights of the neural network model representing the specific growth rate. The 
fitting routine tunes the parameters each time an identification cycle is activated. This process 
minimizes the overall least squared error between modeled and measured state variables, i. e. 
the kinetics was inferred through the appropriate fit of the modeled state variables. The 
objective function (J IDEN) considered was: 
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where the y are the online measured data for biomass and substrate concentration, and broth 
weight; Y are the simulated data for the aforementioned variables; i is referred to the number 
of N available data; j is referred to the state variables under consideration and KN are pseudo-
norms for the M single state variables. The introduction of a pseudo-norm was done to 
constrict the influence of the single terms (weighting technique), because their real values lie 
in different numerical ranges. The values of these pseudo-norms are determined empirically.  
Moreover, except for the case of the cultivation broth weight, the experimental measurements  
of the state variables were available at regular intervals but not continuously. That is, the 
frequency at which the biomass and glucose concentration measurements were made, was 50 
times smaller than that of the true on-line measurements like the pH, temperature and the 
weight measurement itself. To overcome the problem of non synchronous data, an 
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interpolation of the state variables with the same frequency of the online measurements was 
necessary. The interpolation procedure was very simple: the values of the off-line measured 
variables was kept constant until a new measurement was done. The new data was again kept 
constant until another measurement was available and so on.  The result of this interpolation  
technique is a kind of step-like profile for the rendered pseudo-on-line biomass and glucose 
concentration variables (see Fig. 5.2). 
 

Figure 5.2 Schematic representation of the on-line identification and optimization procedure. 
 
 
Moreover, consistency between measurements and calculations was checked during the 
process. This was done through the on-line monitoring of the mass balance for carbon. The 
identification procedure is stopped after a predefined error criterion between measured and 
modeled state variables was achieved. Data of the measure of certainty (r2) and the variance 
(σ2) between modeled and measured variables for biomass and glucose concentration were 
used as dynamical fitting criterion and dynamical modeling performance. Based on these 
variables the training convergence of the model was supervised. 
Finally, the specific protein production rate was described by a fuzzy artificial neural network. 
The specific protein production rate was set equal to zero before induction took place and 
represented by the neuro-fuzzy system after induction occurred. Off-line training was 
employed for the case of the fuzzy component, mainly due to the lack of on-line 
measurements for the protein activity. The specific protein production rate was correlated 
with the specific growth rate, the biomass and the specific protein activity by means of a set 
of 5 fuzzy rules presented in Table 5.1. The fuzzy expert system basically correlates the 
interest variables in form of conditional “if ... then” linguistic rules. The domains for these 
variables is expressed with “fuzzy” linguistic terms as “low”, “medium” and “big”. Both, 
rules and domains are determined empirically. This representation was chosen to integrate the 
available heuristic knowledge gained in previous experiments (Franco-Lara et al., 2000) and 
simultaneously to improve the description of the kinetic data (equation A2.13). The resulting 
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model allows the user to incorporate semi-quantitative information into a flexible 
mathematical representation. The complete model can be found in the Appendix A2. 
 
 

1. IF (µ = LOW, P/CX = BIG, CX = BIG) THEN  π  = LOW 
2. IF (µ = LOW, P/CX = BIG, CX = MEDIUM) THEN π  = LOW 
3. IF (µ = MEDIUM, P/CX = MEDIUM, CX = MEDIUM) THEN π = MEDIUM 
4. IF (µ = MEDIUM, P/CX = MEDIUM, CX =LOW) THEN π  = BIG 
5. IF (µ = BIG, P/CX = LOW, CX = LOW) THEN π  = BIG 

 
Table 5.1 Set of fuzzy rules for the modeling the specific production rate, π = f (µ, CX, P/CX). 
 
 
5.3 Online optimization of the bioprocess 
 
Volk et al. (1998) showed that the induction time (tI) and the temperature after the induction 
were the most important optimization variables to enhance the productivity of the VP1-DHFR 
system under batch operation modus. Furthermore, Franco-Lara et al. (2000) applied, under 
fed-batch operation, an evolutionary off-line optimization strategy using first a Monod-like.  
Later, the model was extended to a hybrid approach containing a feed forward neural network 
representation for the specific growth rate and a Pirt-like model for the specific protein 
production rate. The feeding rate profile and the induction point were also the optimized 
variables that maximized the total amount of native protein. 
However, in the present case, during the fermentation process each model adjustment 
(identification) was followed by an optimization step. The performance index considered two 
objectives for the process optimization. The first aim was to maximize of the total amount of 
native protein at the end of the fermentation. The second objective was closed control of the 
substrate concentration in the post-inductive phase. This was included in the form of a hard 
constrain in the performance index (Patkar et al., 1993). In the post-inductive phase the 
glucose concentration should not be greater than 1 g kg-1. The optimization performance 
index (J OPT) to be maximized was given by:  
 

J OPT =  P (tF)  W (tF) - f C (t)       (5.2) 
 
where, 
 

fC (t) = KC ( )∑ 21.0 - )( tS   if   t > t I  and  S (t) > 1.0   (5.3) 
 
P(tF) and W(tF) are the protein concentration and cultivation broth weight at the end of the 
fermentation time (tF). fC(t) is a constrain function that penalizes glucose concentrations 
bigger than 1 g L-1 after induction. KC is a constant that can be set to control the influence of 
the constrain function on the optimization profit function. 
Explorative experiments performed in the run-up to the process design in order to determine 
pH and temperature influences on the production of the desired protein showed that the 
temperature which is optimal for biomass growth is not the best for protein production after 
induction. Product development is preferred at lower temperatures. Hence, it is of advantage 
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to decrease the temperature after induction. A temperature profile consisting of two phases 
was chosen for the cultivation. Before induction, the temperature was maintained constant at 
37°C, i.e. at the temperature of the maximal specific growth rate (µmax|37°C) for E. coli. After 
induction and until the end of the fermentation, the temperature descended linearly from 37°C 
to 25°C. This procedure, when applied in an iterative manner, led to the approximation of the 
optimal state of the system. Figure 5.2 exemplifies the general concept of the sequential on-
line identification and optimization procedure. 
As stated before, in the pre-inductive phase the model adjustment routine was let to run until a 
predefined model error criterion is fulfilled. From that point on, the induction time and the 
feeding profile were optimized. The induction time, tI, was included as parameter in the mass 
balance unit of the hybrid model and marked the start of the production phase. The value for 
the induction time defined the moment at which the protein expression was optimally 
promoted. Because induction occurs only once in the whole process, its optimization could 
only be set up once too. Therefore, the induction time was calculated several times and 
monitored until no evident change in its value was reached and only then, set in function. The 
optimal induction time (tI) was also determined with the chemotaxis algorithm. The parameter 
initial guess was defined as the half of the total fermentation time (0.5 • tf). The parameter 
could be changed in the interval, tI ∈ [0,tf]. Concerning the form of the temperature profile 
after induction, this is also determined once the optimal induction is estimated. 
In contrast to the induction time, the optimization and usage of the feeding rate covered the 
whole time range of the fermentation. The feeding profile was represented by a simple feed-
forward neural network. The activation function used in all layers was the exponential 
sigmoid function (Hilera and Martinez, 1995; Simutis et al., 1995). The structure of the neural 
network was fixed and consisted on three layers: the input layer with one input node, the 
hidden layer with 5 nodes and the output layer with just one node. The initial values for the 
neural network weights were chosen randomly and the chemotaxis algorithm was used again 
to identify them. 
 
 
5.4 Results and discussions 
 
In all experimental runs, the typical behavior of the specific growth rate, three different stages 
could be distinguished: an adaptation period at the start of the cultivation (lag phase), then the 
presence of a plateau corresponding to the maximum specific growth rate followed finally by 
an abrupt descend after induction took place. As can be seen in Figure 5.3, the hybrid 
approach modeled quite accurately the pattern of the specific growth rate during the course of 
the recombinant E. coli cultivation. The lag-phase lasted about 3 hours, followed by a 5 hours 
period of maximal growth rate. The post-induction period, with a duration of about 6 hours, 
was mainly characterized by low growth rates, caused by the descending temperature and the 
glucose substrate limitation. 
Figure 5.4 presents the time trajectories for biomass and glucose concentrations. A proper 
description of the state variables was achieved by the hybrid model. Just like with specific 
growth rate, some phases were also distinguishable for the biomass and glucose 
concentrations. The first of these phases was the growth of the bacteria under batch operation 
in a period of about 4 hours. The temperature during this phase was maintained at 37°C, 
where the growth of E. coli achieved its highest value. At this point, the on-line feeding 
optimization strategy was activated. To avoid possible inhibition through high substrate 
concentrations, the feed maintained the glucose level under 15 g kg-1. Besides, the feeding 



5. ONLINE MODELING AND OPTIMIZATION OF THE PRODUCTION  OF THE 
VIRAL CAPSID PROTEIN VP1-DHFR USING A NEURO-FUZZY APPROACH 

 51 

strategy supplied enough fresh substrate that prolonged unlimited growth until the induction 
point. This occurred 7.9 hours after the begin of the cultivation. 
From the induction point on, glucose concentration was kept low to limit the bacterial growth. 
The substrate limitation was reflected in the biomass concentration behavior. After a 7.9 hours 
period of unlimited growth on glucose, biomass stopped to grow exponentially. The gradual 
deceleration of the specific growth rate in the post-inductive phase confirmed also this 
observation (see Figure 5.3). These phenomena are the combined results of both, the glucose 
limitation in the system and the temperature fall that occurred after induction with IPTG (see 
Figure 5.5). Even under these circumstances, high biomass concentrations in the order of 50 
to 60 g kg-1 were obtained. 
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Figure 5.3 Measured ( ) and estimated () trajectory of the specific growth rate.  
 
 
Figure 5.5 presents the on-line optimized trajectories of the variables feed rate and 
temperature. The time at which the induction took place is also indicated. The stepwise form 
of the feed rate function is a consequence of the iterative optimization process, that actualizes 
the feeding profile cyclically. After being activated, the feeding profile supplied enough 
substrate to maintain the aforementioned unlimited growth during the pre-inductive phase, but 
preventing the possible substrate inhibition by maintaining the glucose concentration under 
the level of 15 g kg-1. 
From the induction point on, the pattern of the feed profile changed drastically to eliminate 
the negative influence of the constraint function (Equation 5.3) on the optimization 
performance index (Equation 5.2). During the post-inductive phase, this could be only 
achieved by keeping the glucose concentration under 1.0 g kg-1. The on-line optimization 
procedure fulfilled this task properly, as can be seen in Figure 5.4. The feed rate pattern was 
kept up around 600 g h-1, slightly increasing only at the end of the fermentation.  
 



5. ONLINE MODELING AND OPTIMIZATION OF THE PRODUCTION  OF THE 
VIRAL CAPSID PROTEIN VP1-DHFR USING A NEURO-FUZZY APPROACH 

 52 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

5

10

15

20

25

30

35

40

45

50

55
Bi

om
as

s, 
G

lu
co

se
 (g

 k
g-1

)

Time (h)

 
Figure 5.4 On-line optimized trajectories for biomass and glucose concentrations. Symbols represent 

the measurements while lines account for the modeled variables. 
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Figure 5.5 On-line optimized trajectories for temperature () and feed rate (). At the optimized 

induction point, temperature descends linearly until the end of the fermentation. 
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Consistency between measurements and calculations was also checked during the whole 
cultivation through the on-line monitoring of the mass balance for carbon. As inlet to the 
system was considered all carbon introduced to the system. It considered the initial substrate 
and biomass concentration in the bioreactor as well as the carbon from the feed. The balance 
was completed taking into account the outlet in form of evolved CO2, samples and carbon 
converted to glucose and biomass in the bioreactor. Figure 5.6 presents the trajectories of the 
aforementioned components together with the index of recovery, i.e. the ratio between 
introduced and converted carbon and its transient behavior. The index of recovery was given 
by: 
 
 Recovery (%) = (Carbon IN/Carbon OUT) * 100    (5.4) 
 
The index of recovery is an indicator for the mismatch in carbon balance. Values lying over 
95 %, considering the whole cultivation, indicate an acceptable mass balance of the system. 
Furthermore, the reliability of the proposed hybrid model was one of the most important 
subjects to be tested during the identification procedure. As described before, real-time 
estimation of the specific growth rate was based on a pseudo-on-line measurement of biomass 
and glucose concentrations. For this reason, accuracy and performance of the hybrid model to 
describe these state variables was also continuously monitored. The model’s reliability was 
tested through the monitoring of following statistical variables: 
 

1. The measure of certainty (r2) of measured to modeled state variables 
2. The empirical standard deviation (σi) between model and measurements 
3. The dynamical convergence of r2 or σi 
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Figure 5.6 Mass balance trajectories for carbon and its corresponding index of recovery. 
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In the case of the measure of certainty (r2), it was used as a criterion of the linear dependence 
between the modeled and measured state variables. If these variables were consistent, i. e. if 
the model reflects the real behavior of the cultivation, then they could be described with a 
linear model between each other. The model should have also a normal standard deviation 
(Wolf, 1994; Weihs and Jessenberger, 1999). A more detailed description of the measure of 
certainty can be found in the Appendix A3. 
The measure of certainty and its time derivative, the dynamical fitting coefficient, can also be 
used for statistical control of the modeling quality and for supervision of the process 
identification and optimization.  
The idea behind is to implement some features of these variables as optimal switches for the 
identification process. For example, if a predefined fitting criteria is fulfilled during long 
periods, then there is no need of frequent training. The identification process can be enhanced 
by reducing the number of identification cycles or by reducing the required identification 
time. Concerning the reduction of the identification time, in some cases it is advisable to 
change from a high reliable, but time-consuming, to a more simple and faster identification 
procedure. For that purpose, some of the techniques coming from the statistical control of 
process can be set up. 
Figure 5.7 depicts two examples of this technique. The graphics present the measurement of 
certainty and the dynamical fitting coefficient as function of the training time. Furthermore, 
some help indicators are included: the warning and control lines. They are used for the 
supervision of the process’ variability, that is, to keep under surveillance the natural 
oscillations of the process (Weihs and Jessenberger, 1999). 
For the process identification monitoring, the measurement of certainty was a more sensitive 
criterion than the dynamical fitting coefficient. In Figure 5.7, the measurement of certainty 
and the dynamical fitting coefficient are presented with a single warning and a single control 
limit. Due to their asymmetry, only the worsening of the process is controlled and supervised. 
That is, only changes diminishing the value of the measurement of certainty or changes 
towards negative values in the dynamical fitting coefficient produce a warning or a control 
call. The warning criteria to be attended are the following: if the warning limit of the 
measurement of certainty for the process is exceeded, then attention must be paid to the 
identification procedure; if the control limit is exceeded, the identification must be reinforced. 
This can be done either by augmenting the number of training cycles or, in some cases, 
varying the mutation factor of the method (e.g. chemotaxis). On the other hand, if the warning 
limit of the dynamical fitting coefficient for the process is exceeded, again, the identification 
must be reinforced, augmenting the number of training or varying the mutation factor of the 
method; but if the control limit is exceeded, the identification method itself must be changed 
for another alternate method. The main advantage of this switching is the acquirement of a 
fully automatic system for monitoring and controlling the bioprocess model’s accuracy. 
As criterion of model performance, values of the measure of certainty higher than 0.95 were 
considered as “very good”. Values higher than 0.9, but smaller than 0.95 were only “good”. 
Table A3.1 (see Appendix A3) presents a more detailed description of this goodness criterion. 
In the present example, the measure of certainty went beyond the warning limit twice and the 
control limit only once. 
Concerning the dynamical fitting coefficient, it went only once beyond its corresponding 
warning limit, exactly at the moment when the control limit for the measurement of certainty 
was exceeded. The correcting action taken was to increase the number of identification cycles 
of the identification procedure. This action enhanced the process description performance 
evidently and no further similar operations were necessary. 
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Figure 5.7 Time trajectories for the measurement of certainty and its time derivative, the dynamical 

fitting coefficient and their corresponding warning and control limits. 
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Figure 5.8 Fitness between modeled and measured biomass concentration . 
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Figure 5.9 Time dependent trajectory of the model to measurement variance for the biomass 

concentration as function of the training time. 
 
 
Figure 5.8 shows the agreement between the modeled and measured biomass concentration. 
Its time dependent model to measurement variance is depicted in Figure 5.9. It can be stated 
that the hybrid model describes with high accuracy the process variable. 
Concerning the variance for the biomass concentration, except for the period between 8 and 
10 h (after induction), it increases in a constant manner, stabilizing at the end of the 
cultivation. The sudden increase was explained by the change in the specific growth rate 
estimation after induction: the hybrid model had to adapt itself to this new situation at 
expenses of its accuracy. The phenomenon could also be confirmed in the change on the 
pattern of the measure of certainty for the same period of time (see Fig. 5.7). 
On the other hand, the specific protein production rate was formulated by a fuzzy artificial 
neural network with a set of five heuristic rules-of-thumb. After training the neuro-fuzzy 
system with raw data of the specific production rate, a non-normal distribution of the model to 
measurement residuals was obtained (data not shown). This indicated the presence of outliers 
or systematic error trends and therefore, an inter-quartile range (IQR) analysis was applied to 
the experimental data of the specific product production rate.  
The IQR analysis is used to describe the distribution characteristics of a given population and 
to identify extreme features belonging to this population. An outlier in a population may be 
the result of a data entry error, a poor measurement or a change in the system that generated 
the data. 
Formally, an outlier is any sample that exceeds more than 1.5 times the populations’ inter-
quartile range away from the top or the bottom of a notched Box-plot  (Weihs and 
Jessenberger, 1999; The MathWorks, 1999). The notches in a Box-plot are graphic confidence 
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intervals about the median of a given population. A more detailed description of the IQR and 
the notched Box-plot analysis can be found in Appendix A3. 
After the statistical analysis of the quartile, the residuals’ outliers of the specific protein 
production rate were eliminated and the neuro-fuzzy model was re-trained again, in order to 
confront it with the treated data. Figure 5.10 compares the measured and modeled values for 
the specific protein production rate from different experiments. The model delivered 
apparently a more compact distribution than that of their corresponding measurements. 
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Figure 5.10 Measured ( ) and modeled ( ) specific protein production rates.  
 
 
The resulting re-trained model presented, as expected after the IRQ analysis, a normal 
distribution in the residuals of the estimations to measurements, as can be seen in Figure 
5.11.A. Furthermore, Figure 5.11.B displays statistical data and a Gaussian fit for the resulting 
residuals distribution. 
Another facet that can be highlighted in the neuro-fuzzy approach was its apparent ability to 
filter noisy data. As stated before, the model estimations of the specific protein production 
rate presented a more compact distribution than that of their corresponding measurements.  
Figure 5.12 delineates actually the results obtained in the corresponding validation 
experiment. As performed with the described off-line optimization procedure, an independent 
experimental validation is also required for the online optimization. This was done using the 
re-trained hybrid model obtained after the IRQ analysis, which was considered to be suited for 
optimization purposes. 
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Figure 5.11 A) Residuals of model to measurements for the specific production rate. B) Distribution 

of residuals model to measurements, statistical data and gaussian fit for the residuals. 
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Figure 5.12 Time trajectories for protein activity and its corresponding specific protein production 

rate. Symbols represent repeated measurements, while lines are the model estimates. 
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Figure 5.12 depicts the trajectories for the product activity and its respective specific protein 
production rate. The main features and tendencies in the estimation of the product activity 
were well described by the hybrid model. Moreover, a good agreement seemed to prevail in 
the description of the trajectory of the specific protein production rate with the neuro-fuzzy 
approach. 
Only a few on-line optimization runs were needed to improve the results obtained by the off-
line procedure (see Chapter 4). It is worth noting, that these last two off-line optimizations 
made use of a Pirt-like formulation for the specific protein production rate, in contrast to the 
actual neuro-fuzzy formulation. Figure 5.13 shows the profit function development obtained 
with two experiments using the on-line technique compared to the referenced off-line method 
(Franco-Lara et al., 2000; Franco-Lara et al., 2001). An exploratory off-line optimized batch 
run following the technique of Volk et al. (1998) is compared too. This batch fermentation 
was chosen as reference, considering that both processes were run under the physical 
optimization constrains (same maximum volume fixed for the batch process, X(t = 0), etc.) 
except for the feeding rate.  
The increase in the performance index obtained with the on-line procedure is about 2 to 3.5 
times that of the best off-line optimized experiment. This can be explained not only based on 
the more reliable specific protein production rate estimation, performed by the neuro-fuzzy 
kinetic model, but also based on the implicit closer control of the specific growth rate after 
induction. Compared to the off-line optimization, the on-line model adjustment is capable to 
predict the state variables in a more reliable form. The availability of an actualized and 
trustworthy model also allowed an enhancement in the performance index of the bioprocess 
using the described on-line optimization procedure. 
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Figure 5.13 Time trajectories for protein activity and its corresponding specific protein production 
rate. Symbols represent the measurements, while lines are the model estimates. 
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5.5 Conclusions 
 
A hybrid model for the production of the construct VP1-DHFR has been developed. This 
consists in set of differential equations describing the mass balance for the bio-process 
complemented with artificial neural network and neuro-fuzzy components that describe the 
corresponding kinetics. A feed forward neural network described the specific growth rate, 
while a neuro-fuzzy component characterized the specific protein production rate formulated 
via a set of five fuzzy rules. The main advantage of this type of neuro-fuzzy representation is 
that the results can be made more transparent to the process engineer: it can integrate the 
available heuristic knowledge gained in previous experiments and simultaneously improved 
the description of the kinetic data. This bioprocess representation was developed as an on-line 
application. The approach was able to cope with tasks such as process modeling, supervision 
and optimization. Main characteristics of this method is the robustness of the system to 
successfully filter noisy signals due to poor measurements. Another remarkable aspect of this 
approach was its high speed learning feature, which improves the gain of process knowledge 
through the on-line training of the neural network. The neural component represented the key 
variable of the process: the specific growth rate. The on-line training resulted in further 
benefits as the reduction of the process design and development time. Mainly because this 
methodology is a data-driven type, the investment in long term theoretical investigations of 
the metabolism of the bioprocess can be partially avoided. 
 
 
 
5.6 Nomenclature 
 
 
CX  Biomass concentration    [g kg-1] 
f C  Constraint function     [Units of activity] 
J IDEN  Identification criteria 
J OPT  Optimization goal     [Units of activity] 
KC1,2  Constants for the constrain function   [U h kg g-1] 
P  Product activity     [U kg-1] 
r  Vector of kinetic variables 
r2  Measure of certainty 
S  Substrate concentration    [g kg-1] 
SF  Substrate concentration in fresh feeding  [g kg-1] 
t  Time       [h] 
tF  Time at the end of fermentation   [h] 
tI  Induction time      [h] 
T  Temperature      [°C] 
u  Vector of input/control variables 
W  Liquid reaction weight    [kg] 
x  Vector of state variables 
y  Vector of modeled outputs variables  
Y  Vector of measured outputs variables 
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Greek symbols 
 
µ  Specific growth rate     [h-1] 
π  Specific production rate    [U g-1 h-1] 
σi  Empirical standard deviation 
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Chapter  6 

 
 
 
 
 
 
 
 

Online monitoring of performance indexes 
 employing a neural network-based soft-sensor 

 
 
 
 
 
 
 
 
 
 
ABSTRACT 
 
A soft-sensor approach for monitoring of recombinant protein production systems is 
presented. This technique is based on a hybrid model that consist of a system of differential 
equations describing the mass balances of the system and a feed forward neural network 
component. The neural network accounts for the specific growth rate, which is exclusively 
inferred from online measured and estimated variables. The hybrid model is used to monitor 
and estimate the state variables and the performance indexes of the process. The approach is 
tested on two different recombinant microbial systems: the bacteria Escherichia coli and the 
yeast Kluyveromyces lactis. Both fermentations are run under optimal feeding strategies. 
Additionally, the Escherichia coli cultivation was carried out under artificially induced 
temperature shifts. Monitoring the changes of process performance index and penalty 
functions related to these environmental alterations allows the development of high 
performance control and quality strategies for the pharmaceutical industry. 
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6.1 Introduction 
 
The requirement of high performance control constitutes a great challenge in the production 
of recombinant products in today’s pharmaceutical industry. This is done with strict 
documented norms and quality strategies. However, the availability of only few sensors 
capable of providing reliable, direct monitoring of bioprocess variables (biomass, substrate 
and product concentration, etc.) has always be another challenge problem. The present work 
addresses this problematic through the design of a neural network based soft sensor, capable 
of substituting the lack of instrumental sensors just mentioned before. This approach is 
essentially able to characterize the kinetics of the bioprocess making use of process 
measurements available online like the optical density of the broth and the temperature. 
Variables like the biomass specific oxygen consumption rate and the biomass specific carbon 
dioxide evolution rate are defined here and utilized in the soft sensor. The methodology is 
applied in two fermentations with recombinant microorganisms: the optimized production of 
the construct VP1-DHFR in Escherichia coli and the optimized production of the complex 
formed by the protein GAL80 in Kluyveromyces lactis. Both microorganisms grew 
aerobically on glucose in fed-batch operation modus. 
 
 
6.2 Recombinant protein production systems 
 
 
6.2.1 Escherichia coli cultivation 
 
The polyomavirus-like particles are a well-characterized system, established as a model for 
gene transfer studies. In vitro studies demonstrated that purified VP1 can form virus-like 
particles consisting of 72 pentamers (Salunke et al. 1986). This feature makes the protein 
attractive for in vitro packaging of DNA and gene transfer experiments. The polyomavirus-
like particles VP1 can be produced in recombinant Escherichia coli bacteria. 
In the present case, Escherichia coli BL21 was utilized as host system to produce a genetic 
construct. The construct was made of the viral capsid protein of the murine polyomavirus 
fused with the enzyme dihydrofolate reductase (DHFR, EC 1.5.1.3). In addition, this construct 
contained an ampicillin resistant plasmid pBR322, necessary for the expression of the viral 
capsid protein under control of a tac-promotor. The over-expression of the recombinant 
protein was induced by using 1.5 mmol of IPTG (isopropyl β-D-thiogalactopyranosidase). 
The native recombinant protein complex (VP1+DHFR) possesses a measurable enzymatic 
activity, which was proportional to the product concentration.  
The production process of the recombinant viral capsid protein VP1 with E. coli consisted of 
two phases: a pre-inductive stage, where the main objective was to maximize the biomass 
production and a post-inductive phase, where the over-expression of the native recombinant 
protein was induced by adding IPTG.  
Under fed batch conditions the phase before induction is characterized by the growth of the 
biomass at 37°C. Fresh substrate is added to the system following an optimized profile 
calculated for the feed rate. At an optimized induction point, IPTG is introduced to the 
system. This chemical induces the expression of the recombinant protein. Simultaneously to 
the induction, the temperature begins to decrease along a linear profile, from 37°C to 25°C. 
The recombinant product is formed as a native intracellular protein complex. The concrete 
performance index for the process is amount of native protein at a given predefined time (tF). 
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Optimization goal (JOPT) was thus to produce as much of the native protein as possible within 
a predefined cultivation time, tf:  
 
 JOPT =  P(tf) W(tf) → max       (6.1) 
 
where P(tf) is the product activity per weight and W(tf) the liquid reaction weight. A more 
detailed description of the kinetics of the process can be found in the Chapter 4, Section 4.3 
and in the Chapter 5, Section 5.2. 
However, to examine the performance of the employed online optimization under 
disturbances, the present process was run under artificially introduced temperature 
perturbation in the pre-inductive phase. The influence of these disturbances on the estimated 
process performance index was to be evaluated and monitored during the whole course of the 
fermentation. 
 
 
6.2.2 Kluyveromyces lactis cultivation 
 
The yeast Kluyveromyces lactis RUL 1888 D80ZR-pEAHG80 was grown aerobically on 
glucose as only carbon source. The product, the recombinant protein GAL80 (Zenke et al., 
1999) is merged with a HIS-TAG and was constitutively expressed by an ADG promoter. The 
fermentation was run under fed-batch modus where an optimized feeding profile was 
proposed for controlling the specific growth rate. A mathematical model for the system was 
adjusted cyclically and, based on it, an optimization was performed (Volk et al., 2001). With 
this model, the best results were achieved by controlling the specific growth rate in order to 
decrease the intracellular metabolic overflow during the fermentation. The fermentation 
process was described by a bottleneck kinetics, similar to the yeast model proposed by 
Sonnleitner et al. (1986). 
In the case of the product concentration P(t), a linear correlation was established with the 
biomass concentration (Volk et al., 2001): 
 

P (t) = α CX (t)        (6.2) 
 
where α was a parameter to be identified.  
The optimization task was to maximize the amount of biomass (CX) per fermentation time (tF) 
under fed-batch culture conditions. The optimization profit function J´OPT, can be described 
by: 
 

J´OPT = CX/tF - f ´C (t) = P/(α tF) - f ´C (t) →  max   (6.3) 
 
Where f  ´C is the general penalization function: 
 

f ´C (t) = f C1 (t) + f C2 (t) + f C3 (t)       (6.4) 
 
f C1 (t) is the constraint function that penalizes deviations from the specific growth set point, 
µSET (t) at which the fermentation was controlled. f C2 (t) and f C3 (t) are functions that 
penalize, respectively, any situation in which the physical limits for the feeding function or 
for the OUR may be exceeded. The single constraint functions f  C1 ,2 ,3  are given by, 
 

f C1 (t) = K´C1 ( )∑ 2
SET 0.13 - )(  tµ   if   µSET ≠ 0.13 h-1   (6.5) 
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f C2 (t) = K´C2 ( )∑ 20.8 - )( tF  if  F (t) > 0.8 kg h-1  (6.6) 
 
f C3 (t) = K´C3 ( )∑ 212.0 - )( tOUR  if  OUR (t) > 12.0 g kg-1 h-1 (6.7) 

 
The K´C1,2,3 are constants that were determined empirically to manipulate the influence of the 
single penalty function on the optimization profit function. 
In this particular case, the feeding function was calculated from: 
 

F (t) = 
) - (S

    
Y F

X
X/S

SET

S
WC ⋅⋅

µ
       (6.8) 

 
where the state variables biomass (CX) and glucose (S) concentration, and culture broth 
weight (W) were calculated online using the method proposed by Claes and Van Impe (1999). 
YX/S and SF represent the yield coefficient and the glucose concentration in the fresh medium 
stream, respectively. 
 
 
6.3 Online monitoring of the bioprocess performance indexes 
 
The core of the monitoring procedure was based on the on-line estimation of the key variable 
for the bioprocess, the specific growth rate. For that purpose, the specific growth rate is 
formulated via a feed forward neural network with a single hidden layer and a single hidden 
node. The neural network model for the specific growth rate was complemented with a lag 
time term. 
For both microbial systems, the Oxygen Uptake Rate (OUR) and the Carbon dioxide 
Production Rate (CPR) were estimated online. When these variables are expressed as a 
function of the total biomass present in the bioreactor, two new useful correlations can be 
defined: the biomass specific oxygen consumption rate, qXO2  and the biomass specific 
carbon dioxide evolution rate, qXCO2. 
The biomass specific oxygen uptake rate, qXO2 is given by: 
 

qXO2  =  
)(  )(X tWtC

OUR         (6.9) 

 
where OUR is the oxygen uptake rate, CX(t) is the online estimated biomass concentration and 
W(t) is the measured broth weight. 
For the case of the biomass specific carbon dioxide production rate, qXCO2 it is estimated 
from: 
 

qXCO2  =  
)(  )(X tWtC

CPR        (6.10) 

 
where CPR is the carbon dioxide production rate. 
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Four on-line available variables were considered as input of the neural network model for the 
specific growth rate. The optical density (OD), the biomass specific oxygen consumption rate 
(qXO2) and the biomass specific carbon dioxide evolution rate (qXCO2) were common for the 
estimation of the specific growth rate of both microorganisms. However, the fourth variable 
was different for each of the microbial system considered. In the case of the Escherichia coli 
cultivation the fourth variable was the temperature. For the Kluyveromyces lactis cultivation 
the forth variable was the pO2. 
 
 
6.3.1 Online training of the soft sensor 
 
As with all online learning systems, the motivation and benefits for applying this procedure 
was the reduction in the process developing time and costs. In fact, as pointed out by Kim and 
Lewis (1998), the training of any neural network system should occur ideally online. This 
online training would result in high speed learning rates. It can use any initial set of 
parameters and assures good generalization properties. As modeling fitting criterion, the 
minimization of the overall least squared error between modeled and measured state variables 
defined in Equation 5.1 was taken into account.  
However, the off-line measured data of the biomass and substrate concentration were 
available at regular intervals but not continuously. That is, the frequency at which the biomass 
and glucose concentration measurements were made, was 50 times smaller than that of the 
true on-line measurements like the pH, temperature and weight. To overcome the problem of 
non synchronous data, an interpolation of the state variables with the same frequency of the 
online measurements was necessary. This was done in the following manner (see Figure 6.1): 
 

1. With the exception of the last available measurement point, all off-line data were 
linearly interpolated between each other (segment interpolation). 

2. The last available data was kept constant until a new data came and then, also 
linearly interpolated with its previous counterpart. 

 
The embodied data were used to identify in an online fashion the parameters of the neural 
network that minimize the identification criterion defined by Equation 5.1. 
The chemotaxis algorithm was used to estimate the parameters of the neural network and 
those of the system of differential equations that describe the dynamics of the model of the 
system (see Appendixes A2 and A4). 
Consistency between measurements and calculations was also checked during the whole 
cultivation through the on-line monitoring of statistical variables, like the measurement of 
certainty (for more details, see Section 5.4). This monitoring was extended to the performance 
indexes and, in the case of the Kluyveromyces lactis cultivation, to the penalty terms 
(Equations 6.5, 6.6 and 6.7). They were monitored during the fermentation as functions of the 
aforementioned training cycle time. 
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Figure 6.1 Procedure for incorporating off-line measurements into the online database. 
 
 
6.4 Results and discussion 
 
 A sensitivity analysis was performed for the soft sensor (Simutis and Lübbert, 1997). This 
examination showed that the variables temperature/pO2, and OD were basic entities necessary 
for the proper functioning of the soft sensor. 
Furthermore, the biomass specific oxygen consumption rate (qXO2) and biomass specific 
carbon dioxide evolution rate (qXCO2) complemented the inputs of the soft sensor. These 
variables may be used always in conjunction and not separately. The removal of one of these 
variables from the soft sensor improves the accuracy for estimating some of the state 
variables, but at expenses of worsening the estimation of others. 
For both microbial systems, it was found that the biomass specific oxygen consumption rate 
was closely related with the accurate estimation of the biomass concentration. However, when 
used as single input for the soft sensor it provided a poor description of the substrate 
concentration. In contrast, the biomass specific carbon dioxide evolution rate accounted for 
high precision in the estimation of the substrate concentration. Nevertheless, it delivered a 
quite unsatisfactory estimation of the biomass concentration when it was used as single input 
for the soft sensor.  
Compared with the classical soft sensors based on off-gas analysis (Chéruy and Flaus, 1994), 
the present approach exhibited the additional advantage of the easiness to incorporate 
temperature or pO2 dependence in its formulation.  
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6.4.1 Escherichia coli cultivation 
 
Figure 6.2 shows the measured temperature trajectory and the estimation of the expected final 
total protein activity (Equation 6.1). This estimation was done employing the soft sensor and 
is presented as function of the time. Every experimental point corresponds to a training cycle 
of the soft sensor. The data depicts the prediction of the expected final state for the total 
protein activity. The additional upper circle represents the expected protein activity without 
disturbances (optimal expected performance index). The lower circle represents the measured 
protein activity at the end of the fermentation, but after the disturbances took place. 
As stated before, two different temperature drops were artificially introduced to test the 
performance of the online optimization. As can be seen in Figure 6.2, the temperature 
disturbances caused an alteration in the estimation of the expected protein activity. This 
estimation experienced abrupt changes in its value, which were additionally delayed in 
relation to the moments where the temperature drops took place. 
After induction, the prediction of the final total protein activity presented a shift in its 
behavior, incrementing from around 9000 to 17000 Units of activity. It remained around this 
value with relative constant behavior. The upper circle in Figure 6.2 depicts the expected 
protein activity without temperature disturbances in the process (31500 Units). This is a 
prediction obtained using the hybrid model reported in Chapter 5, without considering any 
disturbance. The lower circle represents the total protein activity measured at the end of the 
fermentation (15800 Units) after the temperature disturbances occurred. In comparison, the 
soft sensor delivered a final estimation for the protein activity of about 16300 Units.  
Even when an alternative optimization course for a disturbed process could be performed, it 
may be stated that the faithfulness in the estimation of the re-optimized performance index is 
strongly correlated with the accuracy of the model used, as will be discussed later. 
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Figure 6.2 Artificially disturbed temperature trajectory and online estimation of the final expected 

protein activity determined with the soft-sensor. 
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Figure 6.3 shows the results obtained for the measure of certainty in the estimation of biomass 
and substrate concentrations (see Chapter 5 for more details). As can be seen, the swift in the 
expected protein activity prediction seemed to be correlated not only to the temperature 
changes, but also to the accurate estimation of the substrate concentration variable. Inaccurate 
estimations of the performance index were prevalent when the measure of certainty for the 
substrate trespassed its warning limit. 
The estimation of the biomass concentration was very reliable compared with that of the 
substrate concentration. In a period of about 4 h (from the 4th to the 8th fermentation hour), the 
control limit for good fitting (see Appendix 3, Table A3.1 for more details) was trespassed for 
the substrate concentration. From the 9th hour and on, both, the control and the warning limit 
for fitting were not violated anymore. This coincided with the aforementioned swift and 
stabilization of the profit function prediction. Then, in the particular case, the long term 
prediction capability of the soft-sensor was strongly affected by the accuracy of the substrate 
concentration estimation. 
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Figure 6.3 Measure of certainty trajectories for the biomass (- -) and substrate (- -) concentration 

variables. 
 
 
 
Finally, Figure 6.4 shows the estimated and measured biomass and substrate concentrations. 
The corresponding specific growth rate is also depicted. Symbols represent the measurements, 
while continuos lines account for the simulated values. The current estimation is actually the 
last calculation obtained on-line. As can be seen, the modeling of the specific growth rate by 
the neural network soft sensor provided very accurate final estimations of the state variables 
biomass and glucose concentrations.  
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Figure 6.4 Time trajectories of the concentration of biomass, substrate and the specific growth rate. 

Lines account for simulated values while symbols represent the measurements. 
 
 
 
6.4.2 Kluyveromyces lactis cultivation 
 
The fed-batch cultivation of Kluyveromyces lactis was run under specific growth rate-
controlled conditions. The optimization goal was to maximize the biomass production per 
total fermentation time. The control of the specific growth rate was done mainly to avoid 
problems with the intracellular metabolic overflow during the fermentation. Figure 6.5 depicts 
the modeled and measured state variables, biomass, glucose and recombinant protein 
concentration, as well as the corresponding specific growth rate. As can be seen, the neural 
network-based soft sensor was able to properly describe the variables with high accuracy, 
even in the absence of measured data for a period of 9 h (from the 8th to the 17th fermentation 
hour). 
In the cultivation, as described by Volk et al. (2001), the state variables of the process were 
adjusted cyclically.  After every adjustment cycle an on-line re-optimization was performed 
by adjusting the feeding profile. The specific growth rate obtained is presented in Figure 6.5. 
As can be seen, the optimal set-point for the specific growth rate, µ=0.13 h-1 was only 
partially fulfilled. However the modeling of the specific growth rate can be considered 
satisfactory. 
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Figure 6.5 Time trajectories of the concentration of biomass, glucose, recombinant protein and their 

correlated variable, the specific growth rate. Lines account for simulated values while 
symbols represent the measurements. 
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Figure 6.6 Time trajectory of the expected performance index. The line represents the measured 

performance index at the end of the fermentation. 
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Figure 6.6 compares the expected values of the profit function using the neural network-based 
soft-sensor with the final measured total protein content per fermentation time. After a period 
of adaptation lasting about 20 h, the trajectory of the simulation for the expected performance 
index showed an almost constant trend in its prediction. The prediction also showed good 
agreement with the final measurement of the performance index obtained for the cultivation.  
It was discussed that the optimization was constrained by controlling the specific growth  rate 
at the set point, µ=0.13 h-1 (see Equation 6.4). Figure 6.7 presents the different time 
trajectories for the penalties of the performance index, described by Equations 6.4, 6.5 and 
6.6. As can be seen, the penalties for maximal OUR and feeding rate, went to zero at the end 
of the cultivation, because the performance index is taken into its optimal limits concerning 
the OUR and feeding rate variables. 
Contrasting to them, the penalty of the controlled specific growth rate did not vanished and 
actually increased in the final part of the fermentation. It is worth to remark, that an apparent 
relationship between the estimated performance index (see Figure 6.6) and the vanishing of 
the feeding constraint may be established.  
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Figure 6.7 Time trajectories for the optimization goal penalties. The penalty accounting for the 

maximal OUR disappeared from the 26th hour of cultivation time, while that of maximal 
feeding rate from the 34th hour. 

 
 
6.5 Conclusions 
 
A neural network-based soft-sensor was presented and tested for monitoring the performance 
index of two different microbial systems. The approach presented different operating 
characteristics, depending on the particularities of the process and microbial system under 
consideration. In the case of the E. coli cultivation, the soft-sensor presented a rather 
satisfactory modeling performance. To examine the efficiency of the proposed online 
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optimization subjected to disturbances, the process was run under artificially introduced 
temperature perturbations. The prediction performance was highly dependent on the accuracy 
of the state variables estimation. In the present case, the substrate concentration estimation 
was very poor during the initial phase of the fermentation. Nevertheless, the modeling 
procedure was able to rectify in an online fashion, erroneous trends in the identification 
process of the state variables, improving its prediction ability. In the case of the 
Kluyveromyces lactis cultivation, the hybrid approach showed an excellent prediction and 
modeling capacity. In contrast with the E. coli cultivation, the yeast fermentation was growth 
at low rates and with no temperature changes. This situation facilitated the estimation of the 
specific growth rate for the process. Under such circumstances, a reliable extrapolation 
feature of the soft sensor was recognize, because missing data did not seem to affected the 
modeling performance of the approach. Moreover, the tracking of the performance index 
during the fermentation enhanced the comprehension of the dynamical relationships between 
the state and process variables. 
 
 
6.6 Nomenclature 
 
 
CPR  Carbon dioxide production rate   [g kg-1h-1] 
CX  Biomass concentration    [g kg-1] 
f ‘C  Constraint function     [Units of activity] 
F   Feeding rate of fresh media    [kg h-1] 
J ’IDEN  Identification criteria 
J ’OPT  Optimization goal     [Units of activity] 
K’C1,2,3  Constants for the constrain function   [Variable] 
OUR  Oxygen uptake rate     [g kg-1h-1] 
OD  Optical density 
P  Product concentration     [g kg-1] 
pO2  Partial  pressure of dissolved oxygen   [%] 
qXO2  Biomass specific oxygen uptake rate   [mg g-1 kg-1h-1] 
qXCO2  Biomass specific carbon dioxide production rate [mg g-1kg-1h-1] 
r2  Measure of certainty 
S  Substrate concentration    [g kg-1] 
SF  Substrate concentration in fresh feeding  [g kg-1] 
t  Time       [h] 
tF  Time at the end of fermentation   [h] 
T  Temperature      [°C] 
W  Liquid reaction weight    [kg] 
y  Vector of modeled outputs variables  
Y  Vector of measured outputs variables 
YX/S  Yield coefficient Biomass/Substrate   [g g-1] 
 
 
Greek symbols 
 
α  Yield coefficient Product/Biomass   [g g-1] 
µ  Specific growth rate     [h-1] 
µ SET  Specific growth rate set-point   [h-1] 
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7.1 General Conclusions 
 
The establishment of a framework for the online modeling, monitoring and optimization of 
bioprocesses has been investigated. The utilization of neural network-based hybrid models 
was considered the backbone for process description. Under the concept of hybrid model is 
contemplated a set of non linear differential equations and neural network or neuro-fuzzy 
models. The differential equations set were used to described the mass balances relationships. 
The neural network models were incorporated to describe exclusively key kinetic aspects like 
the specific growth or specific product production rate. 
In these applications in particular, the neural networks are used as "black box" model 
components. These black-box models associate certain known and measurable process input 
variables to other output variables of the process, whose values are usually not known or not 
measurable. A complex relationship between them is supposed to occur, but would be only 
described by the neural network after a proper training procedure. This kind of approaches 
offer some inherent advantages presented in the stand-alone neural network application, like 
the modeling of specific kinetic rates without using some a priori function relationships 
and/or model structure. There are several advantages in the employment of hybrid models that 
could be highlighted throughout the development of this investigation effort: 
 

1. They permit the biochemical engineer to use extended data records and/or 
incorporate relevant heuristic knowledge of process dynamics in a single 
mathematical representation. 

2. In contrast with the use of stand-alone neural network approaches, the data demand 
for training purposes can be reduced. 

3. They can deal effectively with changing environments because of their flexibility in 
the description of nonlinear relationships (like microbial kinetics) and their model-
free design. 

4. Although off-line training of neural network systems is usually a straightforward 
matter, online training of hybrid models improves the process description 
circumventing the long time consuming and slow convergence of the training 
algorithm. 

5. They permit the simulation of key unmeasured variables: the formulation not only 
improves the description and understanding of the biological system, but also allows 
a model-based optimization of the operating conditions of the system. Thus, in this 
way, partially avoiding the costly alternative of long term investigations of the 
biological and transport processes of the microbial systems. 

 
The use of neural network-based techniques, established as milestone of this work, was tested 
at three different recombinant microbial systems either for modeling, monitoring and/or 
optimization purposes. Real-time estimation and monitoring of the specific growth and 
specific production rate, based on an pseudo-online measurements of biomass and substrate 
concentration was validated on several fed-batch fermentations. Being the reduction of the 
invested time for developing and improving a given process a fundamental demand in today’s 
biotechnology, the presented online modeling method improved the gain of process 
knowledge at high learning rates. Such a methodology can be viewed as an intermediary 
evolution step between pure empirical towards full formal mechanistic approaches. 
Concerning the online optimization, it could be shown that increased productivities were 
obtainable, as compared to optimizations employing conventional approaches.  
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At last, monitoring of bioprocesses and their performance indexes through a soft-sensor 
showed the inherent plasticity of the neural network-based approach to infer complex kinetic 
rates. They used exclusively control variables like temperature and process correlated 
measurements available online, like the optical density of the broth, its biomass specific 
oxygen consumption rate and the biomass specific carbon dioxide evolution rate.  
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Appendix 1 
 
 
 
 
 
 
 
 
 
 
 
 

Model for the multi substrate 
 cultivation of Escherichia coli (MAK-33) 
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The model consist of a system of differential equations describing the mass balance in batch 
operation modus. The mass balance considers the components biomass (CX) and the substrates 
glucose (S 1), lactose (S 2) and glycerin (S 3). The uptake kinetics are described through a diauxic 
mechanism relating the three substrates under consideration. Biomass is considered unsegregated: 
 

X
X  C

dt
dC µ=           (A1.1) 

 
The model for the substrates consumption is described by the equations (A1.2) to (A1.4): 
 

 X1
1  C

dt
dS ρ−=           (A1.2) 

 

 X2
2  C

dt
dS ρ−=           (A1.3) 

 

 X3
3  C

dt
dS ρ−=           (A1.4) 

 
The kinetic relationships are derived in a heuristic way, taking into consideration basic 
correlations in a mechanistic form. Starting point is the consideration that the specific growth rate 
(µ) is a result of the superposition of the additive growth rates (µSi) of each single substrate,  
 

33/22/11/321 SSXSSXSSXSSS YYY ρρρµµµµ ++=++=     (A1.5) 
 
The substrate limitations were described by a Monod relationship, while that of the catabolite 
repression by a Haldane expression. Theoretically, the following interactions can take place: 
 

• Catabolite repression of glucose consumption though glycerin 
• Catabolite repression of lactose consumption though glucose 
• Catabolite repression of lactose consumption though glycerin 
• Catabolite repression of glycerol consumption though glucose 
• Catabolite repression of glycerol consumption though lactose 

 
Glucose uptake kinetics 
 
The uptake of glucose represses the uptake of lactose. However, catabolite repression through 
glycerin must be taken into account and was expressed in the model with a Haldane term, while 
the  glucose consumption is represented with a Monod term. 
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Lactose uptake kinetics 
 
The catabolite repression of lactose consumption through glucose and glycerin is considered here. 
When present, glucose represses the activation of enzymes responsible for lactose consumption. 
After glucose is consumed, a lag time of 1.5 h in lactose consumption has been observed. The 
kinetics expresses the lactose limitation with a Monod term. The lactose repression, on the other 
hand, was represented with a lag-phase term coupled to a Haldane-type expression considering 
the blocking of the responsible enzyme for lactose consumption, due to the presence of glucose 
and glycerin. The lag-phase term is given by: 
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The repression of the enzyme responsible for lactose consumption (Haldane-type for glucose and 
glycerin) is multiplied with the lag-phase term to give the total lactose uptake rate: 
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Glycerin uptake kinetics 
 
Glycerol consumption can be modeled with a Monod approach, augmented with Haldane-type 
repression terms for glucose and lactose: 
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All parameters used in the partial models can be found in the Table A1.1 
 
 
Table A1.1 Parameters of the heuristic model for the multi-substrate cultivation of E. coli 
 

 
Parameter 

 
Symbol Value 

 
Units 

Max. spec. uptake rate (Glucose) ρmax1 1.82 g g-1 h-1 

Max. spec. uptake rate (Lactose) ρmax2 0.6 g g-1 h-1 

Max. spec. uptake rate (Glycerin) ρmax3 0.62 g g-1 h-1 

Yield coefficient (Glucose) YX/S1 0.4 g g-1 

Yield coefficient (Lactose) YX/S2 0.62 g g-1 

Yield coefficient (Glycerin) YX/S3 0.4 g g-1 

Saturation coefficient (Glucose) KS1 0.01 g L-1 

Saturation coefficient (Lactose) KS2 0.01 g L-1 

Saturation coefficient (Glycerin) KS3 0.01 g L-1 

Inhibition coefficient (Gluc←Glyc) Ki13 100 g L-1 

Inhibition coefficient (Lac←Gluc) Ki21 100 g L-1 

Inhibition coefficient (Lac←Glyc) Ki23 100 g L-1 

Inhibition coefficient (Glyc←Gluc) Ki31 100 g L-1 

Inhibition coefficient (Glyc←Lac) Ki32 100 g L-1 

Constant kp 300  

Lag-time tLag 1.5 h 

Limit concentration SGrenz 0.1 g L-1 
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Appendix 2 

 
 
 
 
 
 
 
 
 
 
 
 
 

Model for the fed-batch 
 production of the native protein 

 complex VP1-DHFR using Escherichia coli BL21. 
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The model is based on the formulation of Volk et al. (1998) for a batch process. 
 
 

XX
X  C

W
FC

dt
dC −= µ         (A2.1) 

 

)FS( X S
W
FC

dt
dS −+−= σ        (A2.2) 

 

P
W
FC

dt
dP −= X π         (A2.3)  

 

) *( OUR 22
2 OOak

dt
dO

L −+−=       (A2.4) 

 

sampleF
dt

dW  - =         (A2.5) 

 
where, 
 

evapFFFFF   -          AntifoamBaseAcidMediumFresh +++=     (A2.6) 
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with: 
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The kLa coefficient is a function of the airflow (A) and the stirrer speed (N): 
 

2 

1 

1 θN

θAK ⋅=akL         (A2.9) 

 
being θ1,2 two adjustable parameters to be identified. 
 
The kinetics are given by: 
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where the last term describes the lag phase. 
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For the specific substrate uptake rate: 
 

X/SY
µσ =          (A2.11) 

 
For the specific production rate, if  t < tI , then π = 0, else: 
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In the case of a neuro-fuzzy representation of the specific production rate, if  t < tI , then 
π = 0, else: 
 

π FUZZY = f (µ, CX, P/CX)       (A2.13) 
 
where π FUZZY is a function described by a fuzzy artificial neural network and a set of 5 fuzzy 
rules. 
 
 
Parameters taken from Volk et al. (1998): 
 
µmax|37°C = 0.532  h-1 
α1 = 0.54  h-1 
α2 = 0.0825  °C-1 
KS = 0.01 g kg-1 
YXS = 0.43 g g-1 
kP = 92.86 U g-1 h-1 
Kpµ = 0.602 h-1 
PX max = 92.6 (-0.0096344 T2 + 0.5386 T – 6.1123)  Units g-1 
KSPX = 0.62 (-0.0484 T + 2.26)  Units g-1 
 
 
NOMENCLATURE 
 
A  Airflow into the system    [kg h-1] 
CX  Biomass concentration    [g kg-1] 
evap  Evaporation rate     [kg h-1] 
F  Total feed rate      [kg h-1] 
F Fresh media Feed rate of fresh media    [kg h-1] 
F Acid  Feed rate of acid     [kg h-1] 
F Base  Feed rate of base     [kg h-1] 
F Antifoam Feed rate of antifoam     [kg h-1] 
kLa  Volume specific mass transfer coefficient  [h-1] 
K1  Proportionality constant for kLa   [h-1] 
KS  Monod constant     [g kg-1] 
KSPX  Saturation constant for product   [Units g-1] 
kP  Maximal specific production rate   [Units g-1 h-1] 
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KPµ  Saturation constant for growth rate   [h-1] 
N  Stirrer speed      [rev min-1] 
OUR  Oxygen Uptake Rate     [mg kg-1 h-1] 
O2  Concentration of dissolved oxygen   [mg kg-1] 
O2*  Maximal concentration of dissolved oxygen  [mg kg-1] 

Input
Gas   2O   % of oxygen at the gas inlet    [%] 

Output
Gas   2O  % of oxygen at the gas outlet    [%] 
Input

Gas   2CO  % of carbon dioxide at the gas inlet   [%] 
Output

Gas   2CO  % of carbon dioxide at the gas outlet   [%] 
P  Product concentration     [Units kg-1] 
P X max  Maximal specific product concentration  [Units g-1] 
S  Substrate concentration    [g kg-1] 
SF  Substrate concentration in fresh feeding  [g kg-1] 
sample  Sampling rate      [kg h-1] 
t  Time       [h] 
tF  Time at the end of fermentation   [h] 
tI  Induction time      [h] 
T  Temperature      [°C] 
V  Liquid reaction volume    [L] 
W  Liquid reaction weight    [kg] 
YX/S  Yield coefficient Biomass/Substrate   [g g-1] 
 
Greek symbols 
 
α1  Termical constant 
α2  Termical constant     [°C-1] 
β1  Model constant for CPR    [mg g-1] 
β2  Model constant for CPR    [mg g-1 h-1] 
γ1  Model constant for OUR    [mg g-1] 
γ2  Model constant for OUR    [mg g-1 h-1] 
µ  Growth rate      [h-1] 
µmax|37°C Maximal specific growth rate at 37°C  [h-1] 
θ1,2   Exponential parameters for estimating kLa 
σ  Substrate consumption rate    [h-1] 
τ  Lag phase time     [h] 
π  Protein production rate    [h-1] 
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Appendix  3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Statistical estimation of fitness for linear 
 models and interquartile range analysis (IQR) 
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Statistical estimation of fitness for linear model  
 
The measure of certainty is given by: 
 

 r2 = 
( )

( )
2

1

2

1

y
  1

∑

∑
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=

−

−
−

N

i
i
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i
ii

Y

yY
        (A3.1) 

 
Where N is the number of measures, Yi are the measured state variables, yi the modeled state 
variables and y the mean of all measured state variables, given by: 
 

 y  = ∑
=

N

i

Y
N 1

i  1          (A3.2) 

 
The empirical variance, σY

2 is given by: 
 

 σY
2 = ( )

2

1

y
1 - 

1 ∑
=

−
N

i
iY

N
       (A3.3) 

 
The empirical standard deviation, σY by: 
 

 σY  =  ( )
2

1
y

1 - 
1 ∑

=

−
N

i
iY

N
       (A3.4) 

 
 
Table A4.1 present a numerical magnitude reference for the goodness of the measurement of 
certainty, r2 (Wolf, 1994). 
 
 

Table A4.1 Goodness for the measurement of certainty 
 

r2 Goodness 

0 
≥ 0.8 
≥ 0.9 
≥ 0.95 

1.0 

   No functional relationship 
   Satisfactory 
   Good 
   Very good 
   Strong functional relationship 
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Box-Plot and interquartile range analysis (IQR) 
 
The interquartile range analysis is used to describe the distribution characteristics of a given 
population and to identify extreme features belonging to this population. An outliner in a 
population may be the result of a data entry error, a poor measurement or a change in the 
system that generated the data. 
 

An α-Quartile qα, where α ∈ (0, 1), is a number that builds the 100 α % 
of the population’s feature smaller or equal to it,  being also 100 (1-α) % 
of the population bigger or equal to it. The 0.5-Quartile, q0.5 is called 
median; the 0.25-Quartile, q0.25 is called the lower quartile and the 0.75-
Quartile, q0.75 is called the upper quartile. The difference between lower 
and upper quartiles, qd := q0.75 – q0.25, is called the quartile difference. 

 
The Box-Plot is a graphical representation of three quartiles: q0.25, median and q0.75. Its 
analysis proportionate information about the form, the situation and dispersion of population’s 
distribution. Additionally, it helps to identify outliners in a given population. 
 

A box- (and whisker-) Plot is formed by a box having as vertical limits 
the lower quartile q0.25 and upper quartile q0.75 and an inner line 
representing the median. It present also additional lines called whiskers 
coming from the quartiles and including outer values that are: 
• Not bigger than   q0.75 + 1.5 (q0.75 – q0.25)  , and 
• Not smaller than   q0.25 - 1.5 (q0.75 – q0.25) . 
All individuals from the population that are situated out of these ranges 
are designated as outliners. In the case of a population with normal 
distribution, the outliners build up to 0.7%  of the total population. 
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Appendix  4 

 

 
 
 
 
 
 
 
 
 
 
 
 

Model for the fed-batch 
 production of the native protein 

 complex GAL80/HIS-TAC, using the yeast 
Kluyveromyces lactis RUL 1888 D80ZR-pEAHG80. 
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The model considers the mass balances for biomass (CX), substrate (S) and broth weight (W) 
with an additional algebraic description of the product (P): 
 
 

XX
X  C

W
FC

dt
dC −= µ         (A4.1) 

 

)FS( X S
W
FC

dt
dS −+−= σ        (A4.2) 

 
X CP α=          (A4.3)  

 

sampleF
dt
dW  - =         (A4.4) 

 
where, 
 

evapFFFFF   -          AntifoamBaseAcidMediumFresh +++=     (A4.5) 
 
 
The kinetics are given by: 
 




⋅= τ/-e - 1ANN 
tµµ        (A4.6) 

 
where the last term describes the lag phase and being, 
 
 µ ANN =  f (qXO2, qXCO2, OD, pO2)      (A4.7) 
 
a function described by a single feed forward artificial neural network. 
 

X/SY
µσ =          (A4.8) 

 
 
NOMENCLATURE 
 
CX  Biomass concentration    [g kg-1] 
evap  Evaporation rate     [kg h-1] 
F  Total feed rate      [kg h-1] 
F Fresh media Feed rate of fresh media    [kg h-1] 
F Acid  Feed rate of acid     [kg h-1] 
F Base  Feed rate of base     [kg h-1] 
F Antifoam Feed rate of antifoam     [kg h-1] 
OD  Optical density 
P  Product concentration     [Units kg-1] 
pO2  Partial  pressure of dissolved oxygen  [%] 
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qXCO2  Biomass specific carbon dioxide production rate [mg g-1 kg-1 h-1] 
qXO2   Biomass specific oxygen uptake rate   [mg g-1 kg-1 h-1] 
S  Substrate concentration    [g kg-1] 
SF  Substrate concentration in fresh feeding  [g kg-1] 
sample  Sampling rate      [kg h-1] 
t  Time       [h] 
W  Liquid reaction weight    [kg] 
YX/S  Yield coefficient Biomass/Substrate   [g g-1] 
 
Greek symbols 
 
α  Proportionality constant    [g g-1] 
µ  Specific growth rate     [h-1] 
µ ANN  Specific growth rate described by an ANN  [h-1] 
σ  Substrate consumption rate    [h-1] 
τ  Lag phase time     [h] 
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