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Optimal estimates from below for Green functions of higher
order elliptic operators with variable leading coefficients
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Abstract. Estimates from above and below by the same positive proto-
type function for suitably modified Green functions in bounded smooth
domains under Dirichlet boundary conditions for elliptic operators L of
higher order 2m ≥ 4 have been shown so far only when the principal
part of L is the polyharmonic operator (−Δ)m. In the present note, it is
shown that such kind of result still holds when the Laplacian is replaced
by any second order uniformly elliptic operator in divergence form with
smooth variable coefficients. For general higher order elliptic operators,
whose principal part cannot be written as a power of second order op-
erators, it was recently proved that such kind of result becomes false in
general.
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1. Introduction. In a series of works [3,4,6,7,9,13], Dall’Acqua, Meister, Pulst,
Robert, Sweers, and the present author have studied the question whether
(suitably modified) Green functions in bounded smooth domains Ω ⊂ R

n

under Dirichlet boundary conditions for elliptic operators L of higher order
2m ≥ 4 may be estimated from above and below by the same positive proto-
type function. Such kind of result may be considered as a kind of substitute
or relaxation of the maximum principle which in its strong form is true only
for second order operators. Employing perturbative and blow-up arguments,
all these works are based on Boggio’s explicit formula for the polyharmonic
Green function under Dirichlet boundary conditions in balls (see [2, p. 126]
and also [5, Lemma 2.27]) and similarly in half spaces (see [5, Remark 2.28]).
This does not only show its positivity in these special domains but does also
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allow for precise estimates from above and below, see [5, Theorem 4.6] and
Remark 2(a) below.

In order to keep this note short and as simple as possible, I shall consider
only the (simplest) generic case

n > 2m.

The “small” dimensions n = 2, . . . , 2m require more effort, but related results
will also hold there. The most general class of operators, which could be treated
so far, was considered by Pulst [13]. He could show that in general bounded
smooth domains the estimate (2) below holds for operators of the form

L = (−Δ)m +
m−1∑

j=0

∑

|α|=|β|=j

Dα(aαβ( · )Dβ),

where the coefficients obey symmetry, smoothness, and coercivity conditions.
The goal here is to show that the same estimates can be proved for a

principal part with variable coefficients, as long as this stays in the class of
powers of second order elliptic operators.

Theorem 1. For n,m ∈ N with

n > 2m,

let Ω ⊂ R
n be a bounded C∞-smooth domain and L be a uniformly elliptic

symmetric operator of the form

L =

⎛

⎝−
n∑

i,j=1

∂i (aij( · )∂j)

⎞

⎠
m

.

For the coefficients, we assume that

aij( · ) = aji( · ) ∈ C∞(Ω)

and that there exist numbers

0 < λ ≤ Λ : ∀x ∈ Ω, ∀ξ ∈ R
n : λ|ξ|2 ≤

n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2.

Let GΩ,L denote the Green function in Ω for the following Dirichlet problem

Lu = f in Ω, u = |∇u| = · · · = |∇mu| = 0 on ∂Ω. (1)

Then there exist constants c1 ≥ 0, c2 > 0, depending on the domain Ω
and the elliptic operator L, such that we have the following Green function
estimate:

c−1
2 HΩ(x, y) ≤ GΩ,L(x, y) + c1dΩ(x)mdΩ(y)m ≤ c2 HΩ(x, y) (2)

for all x, y ∈ Ω, where

HΩ(x, y) := |x − y|2m−n min
{

1,
dΩ(x)mdΩ(y)m

|x − y|2m

}
(3)

and

dΩ(x) := dist(x, ∂Ω).
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Remark 2. (a) If L = (−Δ)m and Ω is a ball or a half space in R
n, (2)

holds true with c1 = 0. This follows from Boggio’s formula as already
mentioned at the beginning of the introduction.

Since n > 2m, one has a unique Green function even in the whole
space and this is given by the positive fundamental solution
G(−Δ)m,Rn(x, y) = cm,n|x−y|2m−n with a suitable positive normalisation
constant cm,n > 0.

(b) The existence of a Green function is in the case of a principal part with
nonconstant coefficients by no means obvious and is due to Krasovskĭı
[11, Theorem 3.3]. Thanks to the symmetry of the operator L, this is
symmetric, i.e. GΩ,L(x, y) = GΩ,L(y, x).

(c) Krasovskĭı’s work requires high regularity of the coefficients of L and of
the domain. To keep the exposition as simple as possible, I just assume
everything to be C∞-smooth.

(d) The estimate from above follows from [4,10,11], see also [6], so that only
the estimate from below has to be proved here.

(e) With the techniques used here and developed in the mentioned works,
one may admit also lower order terms as long as symmetry and coercivity
assumptions are obeyed.

(f) As it was investigated in [8], the situation becomes completely different
when L is a general uniformly elliptic operator (even with constant co-
efficients), which cannot be written as a composition of second order
operators, and when the dimension is large, i.e. n ≥ 2m + 2. Here, in
general, even the fundamental solution is sign changing near its singu-
larity. This means that close to its singularity the negative part of any
corresponding Green function becomes unbounded of the same order of
magnitude as the positive part.

(g) For implications of two-sided estimates as in Theorem 1, one may see
[14–16].

An interesting consequence of Theorem 1 is a uniform local positivity result,
which was shown in the mentioned works before for the more special class of
operators.

Theorem 3. Let the assumptions of Theorem 1 be satisfied. Then there exist a
constant rΩ,L > 0 such that

GΩ,L(x, y) > 0 for all x, y ∈ Ω with |x − y| < rΩ,L. (4)

2. Local estimates from below.

Lemma 4. Suppose that the assumptions of Theorem 1 are satisfied. Then for
each x0 ∈ Ω, there exists a radius r = rx0 > 0 and a constant C = Cx0 > 0
such that for all x, y ∈ Ωx0,r := Ω ∩ Br(x0), x 	= y, one has

GΩ,L(x, y) ≥ CHΩ(x, y), (5)

where HΩ is defined in (3).
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Proof. We assume by contradiction that no such positive numbers exist such
that (5) is satisfied. This means that we may find sequences (xk)k∈N, (yk)k∈N ⊂
Ω with

xk 	= yk, xk, yk → x0 (6)
and

GΩ,L(xk, yk) <
1
k

HΩ(x, y). (7)

We shall rescale the domain and the Green function such that |xk−yk| becomes
the new length unit. In the scaling limit, we shall end up with a Green function
for a constant coefficient elliptic operator in the half space or in the whole
space which is known to enjoy an estimate like (5) so that we end up with
a contradiction. This key argument relies on knowing the Green functions in
these prototype situations explicitly, see Remark 2(a) above.

To this end, we need to distinguish the cases whether the xk, yk are as close
together as to the boundary or much closer.

First case: The sequence dΩ(xk)/|xk − yk| remains bounded.
This means that there exists a constant c3 > 0 such that

dΩ(xk)
|xk − yk| ≤ c3. (8)

Thanks to the triangle inequality dΩ(yk) ≤ dΩ(xk) + |xk − yk|, we also have

dΩ(yk)
|xk − yk| ≤ c3 + 1. (9)

This yields in view of (6) that

dΩ(xk), dΩ(yk) → 0 and x0 ∈ ∂Ω

and due to our assumption (7) that

GΩ,L(xk, yk) <
1
k

dΩ(xk)mdΩ(yk)m

|xk − yk|n . (10)

Without loss of generality, we may assume that x0 = 0 and that the first
unit vector �e1 is the exterior unit normal to ∂Ω at x0.

For k large enough, we may define x̃k ∈ ∂Ω as the closest boundary point
to xk. We introduce the rescaled Green functions

Gk(ξ, η) := |xk − yk|n−2mGΩ,L(x̃k + |xk − yk|ξ, x̃k + |xk − yk|η)

for

ξ, η ∈ Ωk :=
1

|xk − yk| (−x̃k + Ω) .

These belong to the elliptic operators

Lk =

⎛

⎝−
n∑

i,j=1

∂i

(
a
(k)
ij ( · )∂j

)
⎞

⎠
m

with
a
(k)
ij (ξ) := aij(x̃k + |xk − yk|ξ) (11)
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in Ωk. This can be seen as follows. For smooth v : Ωk → R, we define

u : Ω → R, u(x) := v

(
x − x̃k

|xk − yk|
)

,

and find

∂i (aij(x)∂ju(x)) =
1

|xk − yk|2 ∂i

(
a
(k)
ij ( · )∂jv( · )

) (
x − x̃k

|xk − yk|
)

,

Lu(x) =
1

|xk − yk|2m
(Lkv)

(
x − x̃k

|xk − yk|
)

.

Since x̃k → x0 = 0, the exterior unit normal at ∂Ω converges to the first unit
vector and so we conclude that

Ωk → H := {x : x1 < 0} locally uniformly for k → ∞.

In order to understand the limit of the Gk, we observe first that Krasovskĭı’s
estimates [11, Theorem 3.3] yield uniformly in k that

|Gk(ξ, η)| ≤ C|ξ − η|2m−n.

Employing local elliptic estimates [1], we find a limit

G : H × H → R ∪ {∞}
in L1

loc and locally uniformly in H×H\{(ξ, ξ) : ξ ∈ H}. This is symmetric, i.e.
G(ξ, η) = G(η, ξ), obeys homogeneous Dirichlet boundary conditions on ∂H,
and satisfies

|G(ξ, η)| ≤ C|ξ − η|2m−n. (12)
We introduce the limit operator

L∞ =

⎛

⎝−
n∑

i,j=1

∂i

(
a∞

ij ∂j

)
⎞

⎠
m

with the constant coefficients

a∞
ij = aij(x0).

One should observe that this operator can easily be transformed by means of
a linear transformation into the polyharmonic (−Δ)m. To be more precise, let
C1 ∈ SO(n) diagonalise

(
a∞

ij

)
i,j=1,...,n

. We then introduce a diagonal dilation

matrix C2 with positive diagonal entries such that (C1 · C2)
T · (a∞

ij

)
i,j=1,...,n

·
(C1 · C2) becomes the n-dimensional identity matrix. Finally we introduce a
further “rotation” C3 ∈ SO(n) such that C := C1 · C2 · C3 : H → H maps
again the half space onto itself. Using this transformation, we find that

GH,L∞(ξ, η) = det(C)GH,(−Δ)m(C · ξ, C · η).

The latter is given by Boggio’s formula

GH,(−Δ)m(ξ, η) = km,n|ξ − η|2m−n

|ξ∗−η|/|ξ−η|∫

1

(v2 − 1)m−1v1−n dv,
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where km,n > 0 is a suitable constant and ξ∗ = (−ξ1, ξ2, . . . , ξn). So we con-
clude from [5, Theorem 4.6] that

GH,L∞(ξ, η) ≥ c4HH(ξ, η) (13)

with a strictly positive constant c4. HH is as in (3) with dH(ξ) = |ξ1|. Since
Boggio’s formula has the same form in H as in the ball, (13) is deduced in
H in the same way as in the ball. Moreover, as explained in [6,7], GH,L∞ is
unique under the assumption

|GH,L∞(ξ, η)| ≤ C|ξ − η|2m−n.

In order to conclude that G = GH,L∞ , we only need to show that

L∞G(ξ, · ) = δξ( · ) (14)

in the distributional sense. To this end, we consider any function ψ ∈ C∞
0 (H)

and find from the fact that Gk is the Green function for Lk that one has for
any ξ ∈ H and k large enough,

ψ(ξ) =
∫

H
Gk(ξ, η)(Lkψ)(η) dη.

The smoothness assumptions on the coefficients yield that a
(k)
ij → a∞

ij in
C2m−1

loc (H) and hence

Lkψ → L∞ψ

uniformly in C0
0 (H). We come up with

ψ(ξ) =
∫

H
G(ξ, η)(L∞ψ)(η) dη.

This shows that G is a Green function for L∞ in H, which in view of its
uniqueness explained above yields that

G = GH,L∞ .

Defining

ξk :=
xk − x̃k

|xk − yk| , ηk :=
yk − x̃k

|xk − yk| ,

on the one hand, the assumption gives via (10) that

Gk(ξk, ηk) = |xk − yk|n−2mGΩ,L(xk, yk) <
1
k

dΩ(xk)mdΩ(yk)m

|xk − yk|2m
. (15)

On the other hand, we have

|ξk| =
dΩ(xk)

|xk − yk| ≤ c3, |ξk − ηk| = 1.

After passing to a further subsequence, we find ξ, η ∈ H with ξ = limk→∞ ξk,
η = limk→∞ ηk. In view of the local smooth convergence of Gk to the Green
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function GH,L∞ , we see from (13) that there exists a positive constant c5 > 0
such that for k large enough,

Gk(ξk, ηk) ≥ c5dΩk
(ξk)mdΩk

(ηk)m = c5

(
dΩ(xk)

|xk − yk|
)m (

dΩ(yk)
|xk − yk|

)m

= c5
dΩ(xk)mdΩ(yk)m

|xk − yk|2m
.

This contradicts (15) and the proof of the lemma is complete in the first case.

Second case: The sequence dΩ(xk)/|xk − yk| becomes unbounded.
The reasoning here is similar to the first case and I outline only the main steps.
After passing to a subsequence, we may assume that

dΩ(xk)
|xk − yk| → ∞.

This also implies that
dΩ(yk)

|xk − yk| ≥ dΩ(xk)
|xk − yk| − 1 → ∞.

We obtain from the assumption (7) that in this case

GΩ,L(xk, yk) <
1
k

|xk − yk|2m−n. (16)

We rescale again such that |xk − yk| becomes the new length unit; however,
here it is the xk which become the new origins.

Gk(ξ, η) := |xk − yk|n−2mGΩ,L(xk + |xk − yk|ξ, xk + |xk − yk|η)

for

ξ, η ∈ Ωk :=
1

|xk − yk| (−xk + Ω) .

These belong to the elliptic operators

Lk =

⎛

⎝−
n∑

i,j=1

∂i

(
a
(k)
ij ( · )∂j

)
⎞

⎠
m

with
a
(k)
ij (ξ) := aij(xk + |xk − yk|ξ) (17)

in Ωk. In view of the assumptions in this case, we conclude that

Ωk → R
n.

For the sequence Gk, we find a limit in L1
loc and locally uniformly in R

n ×R
n \

{(ξ, ξ) : ξ ∈ R
n}, which is symmetric and decays like (ξ, η) → |ξ − η|2m−n at

infinity. Thanks to the uniqueness of such kind of Green function, we conclude
that in the sense just described we have

Gk( · , · ) → GRn,L∞( · , · ), (18)

where the constant coefficient operator L∞ is obtained precisely as in the first
part. I emphasise that here the assumption n > 2m simplifies the proof a lot
because the uniqueness conclusion follows directly from Liouville’s theorem for
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polyharmonic operators, cf. e.g. [12, p. 19]. Observe that a linear transforma-
tion changes L∞ into the polyharmonic operator.

Defining

ηk :=
yk − xk

|xk − yk| ,

our assumption gives via (16) that

Gk(0, ηk) = |xk − yk|n−2mGΩ,L(xk, yk) <
1
k

. (19)

Thanks to |ηk| = 1, we may pass to a subsequence and find ηk → η∞ with
|η∞| = 1 and

GRn,L∞(0, η∞) ≤ 0.

We proceed now precisely as explained in some detail above in the first case.
After applying a linear transformation, we may change L∞ into (−Δ)m whose
Green function in R

n is given by the fundamental solution with zero boundary
conditions at infinity, i.e. a positive multiple of (ξ, η) → |ξ − η|2m−n. We
conclude that GRn,L∞(0, η∞) > 0 and achieve a contradiction. So the proof of
the lemma is complete also in this case. �

3. Proof of the main results: a compactness argument.

3.1. Proof of Theorem 1. Applying a compactness argument to

Ω =
⋃

x0∈Ω

Ωx0,rx0/2,

we see that there exist positive numbers r > 0, c6 > 0, such that |x − y| ≤ r
implies that GΩ,L(x, y) ≥ c6HΩ(x, y). If |x − y| ≥ r, we take from [4,11], cf.
also [5], that GΩ,L(x, y) ≥ −c7HΩ(x, y) so that

GΩ,L(x, y) + 2c7HΩ(x, y) ≥ c7HΩ(x, y).

Since HΩ(x, y) ≤ |x − y|−ndΩ(x)mdΩ(y)m ≤ r−ndΩ(x)mdΩ(y)m, we end up
with

GΩ,L(x, y) + c8dΩ(x)mdΩ(y)m ≥ c7HΩ(x, y)

and positive constants c7, c8 > 0. The proof of Theorem 1 is complete. �

3.2. Proof of Theorem 3. This theorem was proved for L = Δ2 in [6] when
n ≥ 3 and in [5, Theorem 6.15] when n = 2. See also [7, Theorem 2] for a
unified and simpler proof, which I shall adapt to the present situation.

Case I: dΩ(x)dΩ(y) ≤ |x − y|2. For this situation, we have

HΩ(x, y) = |x − y|−ndΩ(x)mdΩ(y)m. (20)

Then there is c > 0 such that we find c−1
2 HΩ(x, y) ≥ 2c1dΩ(x)mdΩ(y)m for

|x − y| < c.

Case II: dΩ(x)dΩ(y) > |x − y|2. Now we have

HΩ(x, y) = |x − y|2m−n. (21)
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Since n > 2m by assumption and since dΩ(x)dΩ(y) is bounded on Ω, one finds
a constant c > 0 such that c−1

2 HΩ(x, y) ≥ 2c1dΩ(x)mdΩ(y)m for |x − y| < c.
The proof of Theorem 3 is complete. �
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[11] Krasovskĭı, J.P.: Isolation of singularities in Green’s function (Russian). Izv.

Akad. Nauk SSSR Ser. Mat. 31, 977–1010 (1967). (English translation in: Math.

USSR Izv. 1, 935–966 (1967))

[12] Nicolesco, M.: Les Fonctions Polyharmoniques. Hermann, Paris (1936)

[13] Pulst, L.: Dominance of positivity of the Green’s function associated to a per-

turbed polyharmonic Dirichlet boundary value problem by pointwise estimates.

PhD thesis, Otto-von-Guericke-Universität Magdeburg (2014)

[14] Schnieders, I., Sweers, G.: A biharmonic converse to Krein–Rutman: a maximum

principle near a positive eigenfunction. Positivity 24, 677–710 (2020)

[15] Schnieders, I., Sweers, G.: Note on a sign-dependent regularity for the polyhar-

monic Dirichlet problem. J. Differential Equations 279, 1–9 (2021)

[16] Schnieders, I., Sweers, G.: Classical solutions up to the boundary to some higher

order semilinear Dirichlet problems. Nonlinear Anal. 207, 112265 (2021)

Hans-Christoph Grunau
Fakultät für Mathematik
Otto-von-Guericke-Universität
Postfach 4120
39016 Magdeburg
Germany
e-mail: hans-christoph.grunau@ovgu.de

Received: 1 December 2020

Revised: 9 February 2021

Accepted: 22 February 2021.

https://doi.org/10.1007/s00208-020-02015-3

	Optimal estimates from below for Green functions of higher order elliptic operators with variable leading coefficients
	Abstract
	1. Introduction
	2. Local estimates from below
	3. Proof of the main results: a compactness argument
	3.1. Proof of Theorem 1
	3.2. Proof of Theorem 3

	Acknowledgements
	References




