Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/120152Langanzeige der Metadaten
| DC Element | Wert | Sprache |
|---|---|---|
| dc.contributor.author | Pesovski, Ivica | - |
| dc.contributor.author | Jolakoski, Petar | - |
| dc.contributor.author | Trajkovik, Vladimir | - |
| dc.contributor.author | Kubincova, Zusana | - |
| dc.contributor.author | Herzog, Michael A. | - |
| dc.date.accessioned | 2025-07-30T08:35:28Z | - |
| dc.date.available | 2025-07-30T08:35:28Z | - |
| dc.date.issued | 2025-05-30 | - |
| dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/122111 | - |
| dc.identifier.uri | http://dx.doi.org/10.25673/120152 | - |
| dc.description.abstract | Peer influence is a significant determinant in shaping students' academic performance, yet it is often overlooked in traditional educational strategies. The ability to analyze peer influence and collaboration is an important piece in personalizing student educational experiences. | - |
| dc.description.sponsorship | DEAL Elsevier | - |
| dc.language.iso | eng | - |
| dc.publisher | Elsevier, Amsterdam | - |
| dc.relation.isversionof | https://doi.org/10.1016/j.caeai.2025.100430 | - |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
| dc.subject | Personalized learning | - |
| dc.subject | Peer nomination | - |
| dc.subject | Student network centrality | - |
| dc.subject | AI for learning | - |
| dc.subject.ddc | 006.3 | - |
| dc.title | Predicting student achievement through peer network analysis for timely personalization via generative AI | - |
| dc.type | Artikel | - |
| local.versionType | publishedVersion | - |
| local.openaccess | true | - |
| dc.identifier.ppn | 1932079521 | - |
| cbs.publication.displayform | Amsterdam : Elsevier, 2025 | - |
| local.bibliographicCitation.year | 2025 | - |
| cbs.sru.importDate | 2025-07-30T08:30:47Z | - |
| local.bibliographicCitation | Enthalten in Computers and education: artificial intelligence - Amsterdam : Elsevier, 2020 | - |
| local.accessrights.dnb | free | - |
| Enthalten in den Sammlungen: | Fachbereich Wirtschaft | |
Dateien zu dieser Ressource:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| 1-s2.0-S2666920X25000700-main.pdf | Zweitveröffentlichung | 1.9 MB | Adobe PDF | ![]() Öffnen/Anzeigen |
