Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/120152
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorPesovski, Ivica-
dc.contributor.authorJolakoski, Petar-
dc.contributor.authorTrajkovik, Vladimir-
dc.contributor.authorKubincova, Zusana-
dc.contributor.authorHerzog, Michael A.-
dc.date.accessioned2025-07-30T08:35:28Z-
dc.date.available2025-07-30T08:35:28Z-
dc.date.issued2025-05-30-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/122111-
dc.identifier.urihttp://dx.doi.org/10.25673/120152-
dc.description.abstractPeer influence is a significant determinant in shaping students' academic performance, yet it is often overlooked in traditional educational strategies. The ability to analyze peer influence and collaboration is an important piece in personalizing student educational experiences.-
dc.description.sponsorshipDEAL Elsevier-
dc.language.isoeng-
dc.publisherElsevier, Amsterdam-
dc.relation.isversionofhttps://doi.org/10.1016/j.caeai.2025.100430-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectPersonalized learning-
dc.subjectPeer nomination-
dc.subjectStudent network centrality-
dc.subjectAI for learning-
dc.subject.ddc006.3-
dc.titlePredicting student achievement through peer network analysis for timely personalization via generative AI-
dc.typeArtikel-
local.versionTypepublishedVersion-
local.openaccesstrue-
dc.identifier.ppn1932079521-
cbs.publication.displayformAmsterdam : Elsevier, 2025-
local.bibliographicCitation.year2025-
cbs.sru.importDate2025-07-30T08:30:47Z-
local.bibliographicCitationEnthalten in Computers and education: artificial intelligence - Amsterdam : Elsevier, 2020-
local.accessrights.dnbfree-
Enthalten in den Sammlungen:Fachbereich Wirtschaft

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-s2.0-S2666920X25000700-main.pdfZweitveröffentlichung1.9 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen