Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/120224
Titel: Translation and validation of a geographic search filter to identify studies about Germany in Embase (Ovid) and MEDLINE(R) ALL (Ovid)
Autor(en): Pachanov, Alexander
Muente, Catharina
Hirt, JulianIn der Gemeinsamen Normdatei der DNB nachschlagen
Pieper, DawidIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2025
Art: Artikel
Sprache: Englisch
Zusammenfassung: We developed a geographic search filter for retrieving studies about Germany from PubMed. In this study, we aimed to translate and validate it for use in Embase and MEDLINE(R) ALL via Ovid. Adjustments included aligning PubMed field tags with Ovid’s syntax, adding a keyword heading field for both databases, and incorporating a correspondence address field for Embase. To validate the filters, we used systematic reviews (SRs) that included studies about Germany without imposing geographic restrictions on their search strategies. Subsequently, we conducted (i) case studies (CSs), applying the filters to the search strategies of the 17 eligible SRs; and (ii) aggregation studies, combining the SRs’ search strategies with the ‘OR’ operator and applying the filters. In the CSs, the filters demonstrated a median sensitivity of 100% in both databases, with interquartile ranges (IQRs) of 100%–100% in Embase and 93.75%–100% in MEDLINE(R) ALL. Median precision improved from 0.11% (IQR: 0.05%–0.30%) to 1.65% (IQR: 0.78%–3.06%) and from 0.19% (IQR: 0.11%–0.60%) to 5.13% (IQR: 1.77%–6.85%), while the number needed to read (NNR) decreased from 893.40 (IQR: 354.81–2,219.58) to 60.44 (IQR: 33.94–128.97) and from 513.29 (IQR: 167.35–930.99) to 19.50 (IQR: 14.66–59.35) for Embase and MEDLINE(R) ALL, respectively. In the aggregation studies, the overall sensitivities were 98.19% and 97.14%, with NNRs of 83.29 and 33.34 in Embase and MEDLINE(R) ALL, respectively. The new Embase and MEDLINE(R) ALL filters for Ovid reliably retrieve studies about Germany, enhancing search precision. The approach described in our study can support search filter developers in translating filters for various topics and contexts.
URI: https://opendata.uni-halle.de//handle/1981185920/122183
http://dx.doi.org/10.25673/120224
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Research synthesis methods
Verlag: Cambridge University Press
Verlagsort: Cambridge
Band: 16
Originalveröffentlichung: 10.1017/rsm.2025.10016
Seitenanfang: 688
Seitenende: 700
Enthalten in den Sammlungen:Open Access Publikationen der MLU