Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/120228
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPavlov, Pavel A.-
dc.contributor.authorBukharkina, Tatiana V.-
dc.contributor.authorBystrova, Nataliya A.-
dc.contributor.authorGorunova, Olga N.-
dc.contributor.authorOshchepkov, Maxim S.-
dc.contributor.authorKochetkov, Konstantin A.-
dc.contributor.authorOshchepkov, Alexander S.-
dc.date.accessioned2025-08-05T07:38:32Z-
dc.date.available2025-08-05T07:38:32Z-
dc.date.issued2025-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/122187-
dc.identifier.urihttp://dx.doi.org/10.25673/120228-
dc.description.abstractScientific and medical advancements demand higher compound purity, safer production, and greener methods. For the first time, a detailed investigation of the reduction reaction of 2′,4′,4-trinitrobenzanilide under microfluidic conditions in organic/water solvents was conducted. The study revealed that the heterogeneity of the starting materials significantly affects reaction efficiency. A comparative analysis between microfluidic and conventional batch reactors demonstrated that the microfluidic approach enhances reaction performance, leading to a 5.26-fold increase in product formation per unit time. It was established that the reaction rate is influenced not only by reagent concentrations but also by the dissolution rate of the starting material, particle size, and mixing intensity. The microfluidic system, characterized by improved mass transfer and enhanced energy input, facilitated faster substrate dissolution and reaction kinetics compared to conventional batch methods. Additionally, optimization of reaction parameters resulted in a maximum product yield of 97 % under mild conditions in aqueous solutions (acetone, methanol, or ethanol). These findings highlight the potential of microfluidic technology for sustainable and efficient organic synthesis, aligning with the principles of green chemistry.eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc540-
dc.titleMicrofluidic dithionate reduction : a step forward in effective green chemistryeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleResults in engineering-
local.bibliographicCitation.volume26-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend6-
local.bibliographicCitation.publishernameElsevier-
local.bibliographicCitation.publisherplaceAmsterdam-
local.bibliographicCitation.doi10.1016/j.rineng.2025.105602-
local.openaccesstrue-
dc.identifier.ppn1932490248-
cbs.publication.displayform2025-
local.bibliographicCitation.year2025-
cbs.sru.importDate2025-08-05T07:38:11Z-
local.bibliographicCitationEnthalten in Results in engineering - Amsterdam : Elsevier, 2019-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
1-s2.0-S259012302501672X-main.pdf1.32 MBAdobe PDFThumbnail
View/Open