Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/120837Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Michael, Philipp | - |
| dc.contributor.author | Elgabarty, Hossam | - |
| dc.contributor.author | Sebastiani, Daniel | - |
| dc.contributor.author | Binder, Wolfgang H. | - |
| dc.date.accessioned | 2025-10-15T11:44:55Z | - |
| dc.date.available | 2025-10-15T11:44:55Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/122792 | - |
| dc.identifier.uri | http://dx.doi.org/10.25673/120837 | - |
| dc.description.abstract | The force-dependent activation of a latent mechanocatalyst based on polymeric Cu(I)-biscarbene complexes is demonstrated in solution by applied ultrasound, underscoring a mechanochemical activation pathway via an external acoustic field. Systematic experiments via ultrasound mediated activation of the Cu(I)-complex prove a chain length dependent cleavage, favored when longer polymer chains (Mn = 4750; 8900; 17200 g mol−1) are attached to the Cu(I)-biscarbene-complex, displaying an subsequent reaction/deactivation pathway with increased ultrasound energy. A different decomposition pathway is observed via purely thermal activation, based on a direct scission of the polymeric chain from the N-heterocyclic carbene, thus prohibiting the formation of the desired catalytically active species. Quantum chemical calculations together with experimental investigations support that splitting one carbene residue from a biscarbene-Cu(I)-center is favored mechanochemically at a force of around 900 pN, in turn lowering the activation energy significantly in comparison to the purely thermal activation pathway. | eng |
| dc.language.iso | eng | - |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
| dc.subject.ddc | 540 | - |
| dc.title | Mechanochemical and thermal cleavage of polymer linked copper (I)-biscarbene complexes | eng |
| dc.type | Article | - |
| local.versionType | publishedVersion | - |
| local.bibliographicCitation.journaltitle | Polymer | - |
| local.bibliographicCitation.volume | 335 | - |
| local.bibliographicCitation.pagestart | 1 | - |
| local.bibliographicCitation.pageend | 9 | - |
| local.bibliographicCitation.publishername | Elsevier Science | - |
| local.bibliographicCitation.publisherplace | Oxford | - |
| local.bibliographicCitation.doi | 10.1016/j.polymer.2025.128816 | - |
| local.openaccess | true | - |
| dc.identifier.ppn | 1933370688 | - |
| cbs.publication.displayform | 2025 | - |
| local.bibliographicCitation.year | 2025 | - |
| cbs.sru.importDate | 2025-10-15T11:44:32Z | - |
| local.bibliographicCitation | Enthalten in Polymer - Oxford : Elsevier Science, 1960 | - |
| local.accessrights.dnb | free | - |
| Appears in Collections: | Open Access Publikationen der MLU | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 1-s2.0-S003238612500802X-main.pdf | 5.41 MB | Adobe PDF | ![]() View/Open |
