Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/36455
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorLi, Fenfang-
dc.contributor.authorCima, Igor-
dc.contributor.authorVo, Jess Honganh-
dc.contributor.authorTan, Min-Han-
dc.contributor.authorOhl, Claus-Dieter-
dc.date.accessioned2021-04-29T11:37:20Z-
dc.date.available2021-04-29T11:37:20Z-
dc.date.issued2020-
dc.date.submitted2020-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/36687-
dc.identifier.urihttp://dx.doi.org/10.25673/36455-
dc.description.abstractDeformability is shown to correlate with the invasiveness and metastasis of cancer cells. Recent studies suggest epithelial-to-mesenchymal transition (EMT) might enable cancer metastasis. However, the correlation of EMT with cancer cell deformability has not been well elucidated. Cellular deformability could also help evaluate the drug response of cancer cells. Here, we combine hydrodynamic stretching and microsieve filtration to study cellular deformability in several cellular models. Hydrodynamic stretching uses extensional flow to rapidly quantify cellular deformability and size with high throughput at the single cell level. Microsieve filtration can rapidly estimate relative deformability in cellular populations. We show that colorectal cancer cell line RKO with the mesenchymal-like feature is more flexible than the epithelial-like HCT116. In another model, the breast epithelial cells MCF10A with deletion of the TP53 gene are also significantly more deformable compared to their isogenic wildtype counterpart, indicating a potential genetic link to cellular deformability. We also find that the drug docetaxel leads to an increase in the size of A549 lung cancer cells. The ability to associate mechanical properties of cancer cells with their phenotypes and genetics using single cell hydrodynamic stretching or the microsieve may help to deepen our understanding of the basic properties of cancer progression.eng
dc.description.sponsorshipDFG-Publikationsfonds 2020-
dc.language.isoeng-
dc.relation.ispartofhttp://www.mdpi.com/journal/micromachines/-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectCancer metastasiseng
dc.subjectDeformabilityeng
dc.subjectEpithelial to mesenchymal transitioneng
dc.subjectTP53 geneseng
dc.subjectMicrofluidic hydrodynamic stretchingeng
dc.subjectMicrosieveeng
dc.subject.ddc530-
dc.titleSingle cell hydrodynamic stretching and microsieve filtration reveal genetic, phenotypic and treatment-related links to cellular deformabilityeng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-366873-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleMicromachines-
local.bibliographicCitation.volume11-
local.bibliographicCitation.issue5-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend13-
local.bibliographicCitation.publishernameMDPI-
local.bibliographicCitation.publisherplaceBasel-
local.bibliographicCitation.doi10.3390/MI11050486-
local.openaccesstrue-
dc.identifier.ppn1701015528-
local.bibliographicCitation.year2020-
cbs.sru.importDate2021-04-29T11:32:55Z-
local.bibliographicCitationEnthalten in Micromachines - Basel : MDPI, 2010-
local.accessrights.dnbfree-
Enthalten in den Sammlungen:Fakultät für Naturwissenschaften (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Li et al._Single cell_2020.pdfZweitveröffentlichung1.94 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen