Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/119212
Titel: Optimizing the Location of 5G Network Base Stations Taking into Account Intra-System Interference
Autor(en): Siden, Serhii
Tsarоv, Roman
Salim, Mohammed Jamal
Shulakova, Kateryna
Talha, Saad Malik
Bodnar, Liliia
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-04-26
Umfang: 1 Online-Ressource (7 Seiten)
Sprache: Englisch
Zusammenfassung: This work is devoted to the structural optimization of 5G networks, specifically addressing the problem of base station (BS) placement optimization in indoor network deployment. A method is proposed for determining the number and optimal spatial coordinates of BSs in indoor environments, such as shopping malls or telemedicine centers, under random user distribution to ensure maximum coverage and network throughput while explicitly accounting for intra-system interference. The problem is characterized by dynamic environmental conditions, high user density, heterogeneous service demands, and the requirement for guaranteed network quality indicators, as well as the need to ensure reliable coverage in complex indoor layouts. As a result, the BS placement task is formulated as a nonlinear NP-complete integer programming problem. A genetic algorithm was employed to solve it, incorporating adaptive selection, crossover, and mutation operators. The fitness function was mathematically formulated to maximize the average user data rate while including penalty terms for BS overload, excessive BS proximity, and violations of minimum quality of service (QoS) thresholds. Numerical simulations demonstrate the effectiveness of the proposed approach, confirming that the developed method allows for structural optimization of 5G networks through intelligent base station placement under the influence of intra-system interference.
URI: https://opendata.uni-halle.de//handle/1981185920/121170
http://dx.doi.org/10.25673/119212
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-4-ICAIIT_2025_13(1).pdf1.14 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen