Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/119285
Titel: Local coordinates on Lie groups for half-explicit time integration of Cosserat-rod models with constraints
Autor(en): Tumiotto, Denise
Arnold, MartinIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2025
Art: Artikel
Sprache: Englisch
Zusammenfassung: Explicit Runge-Kutta methods are the gold standard of time-integration methods for nonstiff problems in system dynamics since they combine a small numerical effort per time step with high accuracy, error control, and straightforward implementation. For the analysis of beam dynamics, we couple them with a local coordinates approach in a Lie group setting to address large rotations. Stiff shear forces and inextensibility conditions are enforced by internal constraints in a coarse-grid discretization of a geometrically exact beam model. The resulting nonstiff constrained systems are handled by a half-explicit approach that relies on the constraints at velocity level and avoids all kinds of Newton-Raphson iteration. We construct half-explicit Runge-Kutta Lie group methods of order up to five that are equipped with an adaptive step-size strategy using embedded Runge-Kutta pairs for error estimation. The methods are tested successfully for a roll-up maneuver of a flexible beam and for the classical flying-spaghetti benchmark.
URI: https://opendata.uni-halle.de//handle/1981185920/121243
http://dx.doi.org/10.25673/119285
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Multibody system dynamics
Verlag: Springer Science + Business Media B.V
Verlagsort: Dordrecht [u.a.]
Band: 63
Heft: 4
Originalveröffentlichung: 10.1007/s11044-024-10002-8
Seitenanfang: 595
Seitenende: 613
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s11044-024-10002-8.pdf2.74 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen