Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/120249
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRebitschek, Felix G.-
dc.contributor.authorCarella, Alessandra-
dc.contributor.authorKohlrausch-Pazin, Silja-
dc.contributor.authorZitzmann, Michael-
dc.contributor.authorSteckelberg, Anke-
dc.contributor.authorWilhelm, Christoph-
dc.date.accessioned2025-08-06T06:51:16Z-
dc.date.available2025-08-06T06:51:16Z-
dc.date.issued2025-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/122208-
dc.identifier.urihttp://dx.doi.org/10.25673/120249-
dc.description.abstractLarge language models (LLMs) are used to seek health information. Guidelines for evidence-based health communication require the presentation of the best available evidence to support informed decision-making. We investigate the prompt-dependent guideline compliance of LLMs and evaluate a minimal behavioural intervention for boosting laypeople’s prompting. Study 1 systematically varied prompt informedness, topic, and LLMs to evaluate compliance. Study 2 randomized 300 participants to three LLMs under standard or boosted prompting conditions. Blinded raters assessed LLM response with two instruments. Study 1 found that LLMs failed evidence-based health communication standards. The quality of responses was found to be contingent upon prompt informedness. Study 2 revealed that laypeople frequently generated poor-quality responses. The simple boost improved response quality, though it remained below required standards. These findings underscore the inadequacy of LLMs as a standalone health communication tool. Integrating LLMs with evidence-based frameworks, enhancing their reasoning and interfaces, and teaching prompting are essential. Study Registration: German Clinical Trials Register (DRKS) (Reg. No.: DRKS00035228, registered on 15 October 2024).eng
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.ddc610-
dc.titleEvaluating evidence-based health information from generative AI using a cross-sectional study with laypeople seeking screening informationeng
dc.typeArticle-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitlenpj digital medicine-
local.bibliographicCitation.volume8-
local.bibliographicCitation.publishernameMacmillan Publishers Limited-
local.bibliographicCitation.publisherplace[Basingstoke]-
local.bibliographicCitation.doi10.1038/s41746-025-01752-6-
local.openaccesstrue-
dc.identifier.ppn1931861676-
cbs.publication.displayform2025-
local.bibliographicCitation.year2025-
cbs.sru.importDate2025-08-06T06:50:56Z-
local.bibliographicCitationEnthalten in npj digital medicine - [Basingstoke] : Macmillan Publishers Limited, 2016-
local.accessrights.dnbfree-
Appears in Collections:Open Access Publikationen der MLU

Files in This Item:
File Description SizeFormat 
s41746-025-01752-6.pdf587.61 kBAdobe PDFThumbnail
View/Open