Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/120249
Titel: | Evaluating evidence-based health information from generative AI using a cross-sectional study with laypeople seeking screening information |
Autor(en): | Rebitschek, Felix G.![]() Carella, Alessandra Kohlrausch-Pazin, Silja Zitzmann, Michael ![]() Steckelberg, Anke ![]() Wilhelm, Christoph |
Erscheinungsdatum: | 2025 |
Art: | Artikel |
Sprache: | Englisch |
Zusammenfassung: | Large language models (LLMs) are used to seek health information. Guidelines for evidence-based health communication require the presentation of the best available evidence to support informed decision-making. We investigate the prompt-dependent guideline compliance of LLMs and evaluate a minimal behavioural intervention for boosting laypeople’s prompting. Study 1 systematically varied prompt informedness, topic, and LLMs to evaluate compliance. Study 2 randomized 300 participants to three LLMs under standard or boosted prompting conditions. Blinded raters assessed LLM response with two instruments. Study 1 found that LLMs failed evidence-based health communication standards. The quality of responses was found to be contingent upon prompt informedness. Study 2 revealed that laypeople frequently generated poor-quality responses. The simple boost improved response quality, though it remained below required standards. These findings underscore the inadequacy of LLMs as a standalone health communication tool. Integrating LLMs with evidence-based frameworks, enhancing their reasoning and interfaces, and teaching prompting are essential. Study Registration: German Clinical Trials Register (DRKS) (Reg. No.: DRKS00035228, registered on 15 October 2024). |
URI: | https://opendata.uni-halle.de//handle/1981185920/122208 http://dx.doi.org/10.25673/120249 |
Open-Access: | ![]() |
Nutzungslizenz: | ![]() |
Journal Titel: | npj digital medicine |
Verlag: | Macmillan Publishers Limited |
Verlagsort: | [Basingstoke] |
Band: | 8 |
Originalveröffentlichung: | 10.1038/s41746-025-01752-6 |
Enthalten in den Sammlungen: | Open Access Publikationen der MLU |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
s41746-025-01752-6.pdf | 587.61 kB | Adobe PDF | ![]() Öffnen/Anzeigen |