Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/120249
Titel: Evaluating evidence-based health information from generative AI using a cross-sectional study with laypeople seeking screening information
Autor(en): Rebitschek, Felix G.In der Gemeinsamen Normdatei der DNB nachschlagen
Carella, Alessandra
Kohlrausch-Pazin, Silja
Zitzmann, MichaelIn der Gemeinsamen Normdatei der DNB nachschlagen
Steckelberg, AnkeIn der Gemeinsamen Normdatei der DNB nachschlagen
Wilhelm, Christoph
Erscheinungsdatum: 2025
Art: Artikel
Sprache: Englisch
Zusammenfassung: Large language models (LLMs) are used to seek health information. Guidelines for evidence-based health communication require the presentation of the best available evidence to support informed decision-making. We investigate the prompt-dependent guideline compliance of LLMs and evaluate a minimal behavioural intervention for boosting laypeople’s prompting. Study 1 systematically varied prompt informedness, topic, and LLMs to evaluate compliance. Study 2 randomized 300 participants to three LLMs under standard or boosted prompting conditions. Blinded raters assessed LLM response with two instruments. Study 1 found that LLMs failed evidence-based health communication standards. The quality of responses was found to be contingent upon prompt informedness. Study 2 revealed that laypeople frequently generated poor-quality responses. The simple boost improved response quality, though it remained below required standards. These findings underscore the inadequacy of LLMs as a standalone health communication tool. Integrating LLMs with evidence-based frameworks, enhancing their reasoning and interfaces, and teaching prompting are essential. Study Registration: German Clinical Trials Register (DRKS) (Reg. No.: DRKS00035228, registered on 15 October 2024).
URI: https://opendata.uni-halle.de//handle/1981185920/122208
http://dx.doi.org/10.25673/120249
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: npj digital medicine
Verlag: Macmillan Publishers Limited
Verlagsort: [Basingstoke]
Band: 8
Originalveröffentlichung: 10.1038/s41746-025-01752-6
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41746-025-01752-6.pdf587.61 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen