Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/120776
Titel: Unsupervised parameterization for optimal segmentation of agricultural parcels from satellite images in different agricultural landscapes
Autor(en): Tetteh, Gideon OkpotiIn der Gemeinsamen Normdatei der DNB nachschlagen
Gocht, AlexanderIn der Gemeinsamen Normdatei der DNB nachschlagen
Schwieder, MarcelIn der Gemeinsamen Normdatei der DNB nachschlagen
Erasmi, StefanIn der Gemeinsamen Normdatei der DNB nachschlagen
Conrad, ChristopherIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2020
Art: Artikel
Sprache: Englisch
Zusammenfassung: Image segmentation is a cost-effective way to obtain information about the sizes and structural composition of agricultural parcels in an area. To accurately obtain such information, the parameters of the segmentation algorithm ought to be optimized using supervised or unsupervised methods. The difficulty in obtaining reference data makes unsupervised methods indispensable. In this study, we evaluated an existing unsupervised evaluation metric that minimizes a global score (GS), which is computed by summing up the intra-segment uniformity and inter-segment dissimilarity within a segmentation output. We modified this metric and proposed a new metric that uses absolute difference to compute the GS. We compared this proposed metric with the existing metric in two optimization approaches based on the Multiresolution Segmentation (MRS) algorithm to optimally delineate agricultural parcels from Sentinel-2 images in Lower Saxony, Germany. The first approach searches for optimal scale while keeping shape and compactness constant, while the second approach uses Bayesian optimization to optimize the three main parameters of the MRS algorithm. Based on a reference data of agricultural parcels, the optimal segmentation result of each optimization approach was evaluated by calculating the quality rate, over-segmentation, and under-segmentation. For both approaches, our proposed metric outperformed the existing metric in different agricultural landscapes. The proposed metric identified optimal segmentations that were less under-segmented compared to the existing metric. A comparison of the optimal segmentation results obtained in this study to existing benchmark results generated via supervised optimization showed that the unsupervised Bayesian optimization approach based on our proposed metric can potentially be used as an alternative to supervised optimization, particularly in geographic regions where reference data is unavailable or an automated evaluation system is sought.
URI: https://opendata.uni-halle.de//handle/1981185920/122731
http://dx.doi.org/10.25673/120776
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Journal Titel: Remote sensing
Verlag: MDPI
Verlagsort: Basel
Band: 12
Heft: 18
Originalveröffentlichung: 10.3390/rs12183096
Seitenanfang: 1
Seitenende: 27
Enthalten in den Sammlungen:Open Access Publikationen der MLU

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
remotesensing-12-03096-v2.pdf26.5 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen