Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/118873
Titel: Uncovering hidden influences : impact of omitted covariates on the estimation of treatment effects using Cox regression in randomized and propensity score matched trials
Autor(en): Strobel, AlexandraIn der Gemeinsamen Normdatei der DNB nachschlagen
Gutachter: Wienke, AndreasIn der Gemeinsamen Normdatei der DNB nachschlagen
Jahn, Antje
Hoyer, AnnikaIn der Gemeinsamen Normdatei der DNB nachschlagen
Körperschaft: Martin Luther University Halle-Wittenberg
Erscheinungsdatum: 2025
Umfang: 1 Online-Ressource (64 Seiten, verschiedene Seitenzählungen)
Typ: HochschulschriftIn der Gemeinsamen Normdatei der DNB nachschlagen
Art: Dissertation
Datum der Verteidigung: 2025-04-23
Sprache: Englisch
URN: urn:nbn:de:gbv:3:4-1981185920-1208312
Zusammenfassung: Hazard ratios (HRs) are commonly used to describe treatment effects in trials focusing on time-to-event outcomes, but have faced growing criticism, particularly regarding non-collapsibility and causal interpretation. This work highlights another concern: unobserved or omitted covariates that induce bias in both randomized and propensity score matched trials. To address this, a new approach, “Dynamic Landmarking”, is introduced. It visually detects biased estimates by iteratively removing sorted observations and refitting Cox models. It also evaluates the balance of observed but omitted covariates using the sum of squared z-differences. Simulations confirm its effectiveness in identifying biased estimates and relevant omitted covariates that cause them. An application to 27 large RCTs found no empirical evidence of built-in selection bias, likely due to small treatment effects and strict inclusion criteria. Thus, HRs remain generally valid, at least regarding this type of bias.
URI: https://opendata.uni-halle.de//handle/1981185920/120831
http://dx.doi.org/10.25673/118873
Open-Access: Open-Access-Publikation
Nutzungslizenz: In CopyrightIn Copyright
Enthalten in den Sammlungen:Interne-Einreichungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Dissertation_MLU_2025_StrobelAlexandra.pdf5.15 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen